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Abstract 

    Magnetic Resonance Imaging (MRI) technology has been increasingly used in large-scale 

association studies. Reproducibility of statistically significant findings generated by MRI-based 

association studies, especially structural MRI (sMRI) and functional MRI (fMRI), has been recently 

heavily debated. However, there is still a lack of overall reproducibility assessment for MRI-based 

association studies. It is also crucial to elucidate the relationship between overall reproducibility and 

sample size in an experimental design. In this study, we proposed an overall reproducibility index for 

large-scale high-throughput MRI-based association studies. We performed the overall reproducibility 

assessments for several recent large sMRI/fMRI databases and observed satisfactory overall 

reproducibility. Furthermore, we performed the sample size evaluation for the purpose of achieving 

a desirable overall reproducibility. Additionally, we evaluated the overall reproducibility of GMV 

changes for UKB vs. PPMI and UKB vs. HCP. We demonstrated that both sample size and some 

experimental factors play important roles in the overall reproducibility for different experiments. In 

summary, a systematic assessment of overall reproducibility is fundamental and crucial in the current 

large-scale high-throughput MRI-based research.  
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1. Introduction 

Magnetic Resonance Imaging (MRI) technology has been widely used in neuroscience 

(Poldrack and Gorgolewski, 2014). It enables us to conduct experiments on grey matter volume 

(GMV) changes (structure MRI), task-free scanning (resting state fMRI) and task-based studies (task 

fMRI) (Ashburner and Friston, 2000; Logothetis, 2008; Snyder and Raichle, 2012). Statistical 

methods for association analyses in these experiments have been frequently performed. 

Reproducibility, or results reproducibility (Goodman et al., 2016) for MRI-based association studies 

has recently received a significant attention. Criticisms have been raised to the phenomena that some 

MRI-based findings are only modestly reproducible and that some results could be interpreted as 

inflated or spurious (Anonymous, 2017; Bennett and Miller, 2010; Botvinik-Nezer et al., 2020; 

Eklund et al., 2016). These debates were mostly on the reproducibility of novel discoveries (i.e. 

findings with statistical significance). To our acknowledge, there is a lack of investigation on the 

overall reproducibility in MRI-based association studies. A satisfactory overall reproducibility can 

also provide us with an adequate confidence in MRI-based research outcomes. 

Overall reproducibility can be interpreted as the level of concordance among large-scale 

association analysis results (i.e. z-score). Accordingly, a mixture model based approach has been 

proposed to conduct hypothesis testing on the overall reproducibility of mass spectrometry studies 

(Lai et al., 2007). Recently, a Bayesian modeling approach has also been proposed to address the 

overall irreproducibility of genome-wide association studies or transcriptome-wide association 

studies (Zhao et al., 2020). For MRI-based association studies, there is still a lack of systematic 

evaluation of overall reproducibility.  

In this study, we proposed an overall reproducibility index for assessing the overall 

reproducibility of MRI-based association studies. To evaluate the performance of our proposed 

overall reproducibility index in MRI-based association studies, we first present a comprehensive 

simulation study which is designed based on UK Biobank structure MRI data (Alfaro-Almagro et al., 

2018; Sudlow et al., 2015b). Then, we present overall reproducibility assessments of GMV-related 

human behavior, brain task state activation and connectivity-behavior studies. Furthermore, with a 

desirable overall reproducibility requirement, we present the related sample size calculations in 

various MRI-based study scenarios. These can be achieved with UK Biobank structure and resting-
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state functional MRI data and IMAGEN task functional MRI data (Bossier et al., 2020; Schumann et 

al., 2010b). Our sample size calculation results could provide a useful guidance in the related MRI 

study planning. Moreover, we demonstrate that the overall reproducibility between two independent 

MRI databases can also be evaluated.  
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2. Materials and Methods 

 

2.1 Study participants 

 

2.1.1 UK Biobank 

UK Biobank (Alfaro-Almagro et al., 2018; Sudlow et al., 2015b) is a prospective 

epidemiological resource gathering extensive questionnaires, physical and cognitive measures and 

biological samples (including genotype), in a cohort of 500000 participants (Sudlow et al., 2015a). 

Participants which years of age between 40-69 at baseline recruitment consent to access to their full 

health records from the UK National Health Service, enabling researchers to relate phenotypic 

measures to long-term health outcomes. They also provided blood, urine and saliva samples, which 

were stored in such a way as to allow many different types of assay to be performed (for example, 

genetic, proteomic and metabolomics analyses). In 2014, UK Biobank began the process of inviting 

back 100000 of the original volunteers for brain, heart and body imaging. The initial release of 10000 

UK Biobank imaging and behavioral measures data was used in our manuscript and more details are 

available online (Alfaro-Almagro et al., 2018). 

 

2.1.2 IMAGEN 

One thousand five hundred and six adolescents (mean age = 14.44 y old; SD = 0.42; range = 

12.88–16.44 y old) from the baseline assessment of the IMAGEN (Bossier et al., 2020; Schumann et 

al., 2010b) sample with complete data in fMRI and behavioral measurements were included in the 

analyses. Detailed descriptions of this study have previously been published (Schumann et al., 2010a).  

 

2.1.3 PPMI 

The Parkinson Progression Marker Initiative (PPMI) is a comprehensive observational, 

international, multi-center study designed to identify PD progression biomarkers both to improve 

understanding of disease etiology and course and to provide crucial tools to enhance the likelihood 

of success of PD modifying therapeutic trials. The PPMI cohort will comprise 400 recently diagnosed 

PD and 200 healthy subjects followed longitudinally for clinical, imaging and biospecimen biomarker 

assessment using standardized data acquisition protocols at twenty-one clinical sites. We only use the 

healthy subjects in this cohort and more details see previously publication (Marek et al., 2011). 

 

2.1.4 HCP  

The WU-Minn HCP consortium (Van Essen et al., 2012) aims to characterize human brain in a 

population of 1200 healthy adults and to enable detailed comparisons between brain circuits, behavior, 
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and genetics at the level of individual subjects. Here, we use the T1 data form this project and more 

details they were initially reported (Van Essen et al., 2013). 

 

2.2 MRI acquisition 

 

2.2.1 UK biobank 

Details of the image acquisition in UK Biobank are also available online (Alfaro-Almagro et al., 

2018). Magnetic resonance imaging (MRI) was performed using a Siemens Skyra 3T running 

VD13ASP4 (Siemens Healthcare, Erlangen, Germany) with a Siemens 32-channel RF receive head 

coil. The T1 structural protocol is acquired at 1mm isotropic resolution using a three-dimensional 

(3D) MPRAGE acquisition, with inversion and repetition times optimized for maximal contrast. The 

superior-inferior field-of-view is large (256 mm), at little cost, in order to include reasonable amounts 

of neck/mouth, as those areas will be of interest to some researchers (for example, in the study of 

sleep apnea). 

Resting-state fMRI use the same acquisition parameters, with 2.4-mm spatial resolution and TR 

= 0.735 s, with multiband acceleration factor. A 'single band' reference image (without the multiband 

excitation, exciting each slice independently) is acquired that has higher tissue-type image contrast; 

this is used as the target for motion correction and alignment. For both databases, the raw data are 

corrected for motion and distortion and high-pass filtered to remove temporal drift. 

 

2.2.2 IMAGEN 

Structural MRI and fMRI data were acquired at eight IMAGEN assessment sites with 3-T MRI 

scanners of different manufacturers (Siemens, Philips, General Electric, and Bruker). The scanning 

variables were specially chosen to be compatible with all scanners. The same scanning protocol was 

used in all cites. In brief, high-resolution T1-weighted 3D structural images were acquired for 

anatomical localization and coregistration with the functional time series. BOLD functional images 

were acquired with a gradient echo, echo planar imaging sequence. 300 vol were acquired for each 

participant, and each volume consisted of 40 slices aligned to the anterior commission/posterior 

commission line (2.4-mm slice thickness and 1-mm gap). The echo time was optimized (echo time = 

30 ms; repetition time = 2200 ms) to provide reliable imaging of subcortical areas. (More details for 

different task see Supplementary) 

 

2.2.3 PPMI 

In this research, we use the MRI data acquired by the PPMI study, in which a T1-weighted, 3D 

sequence (i.e., MPRAGE) is acquired for each subject using 3T SIEMENS MAGNETOM TrioTim 
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syngo scanners. This gives us 374 PD and 169 NC scans. The T1-weighted images were acquired for 

176 sagittal slices, with the following parameters: repetition time (TR) = 2300ms, echo time (TE) = 

2.98ms, flip angle = 9°, and voxel size = 1 × 1 × 1mm3. 

 

2.2.4 HCP 

The Human Connectome Project (HCP) provides a unique, open source, large-scale collection 

of about 1200 human head T1 image datasets and we employed 413 healthy subjects which have no 

clear family related (age-range: 22-36 years) in our study. All HCP imaging data were acquired on a 

Siemens Skyra 3T scanner with a customized SC72 gradient insert. T1w 3D MPRAGE were acquired 

with TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle =8deg, FOV =224×224, 0.7 mm isotropic 

voxel, bandwidth = 210 Hz/px, iPAT = 2, Acquisition time = 7 :40 (min:sec). 

 

2.3 MRI Preprocessing 

 

The rs-fMRI data are preprocessed using standard volume-based fMRI pipeline. For each subject, 

the preprocessing steps include: motion correction (FSL mcflirt), despiking motion artifacts using 

Brain Wavelet Toolbox (Patel et al., 2014), registering to 3×3×3 mm2 standard space by first aligning 

the functional image to the individual T1 structure image using boundary based registration (Greve 

and Fischl, 2009) and then to standard space using FSL's linear and non-linear registration tool (FSL 

flirt and fnirt), regressing out nuisance covariates including Friston-24 parameters, white matter 

signal, cerebrospinal fluid signal, band-pass filtering (0.01-0.1 Hz) using AFNI (3dTproject) and 

spatial smoothing by a 3D Gaussian kernel (FWHM= 6 mm). All the images are manually checked 

to ensure successful preprocessing and insure the mean FD Power not greater than 0.5. After above 

preprocessing, a large sample size imaging and behavioral measures data which contain 8273 subjects 

have been used in this study.  

T1 data were preprocessed with the voxel-based morphometry (VBM) by using the VBM8 

toolbox based on the Statistical Parametric Mapping package (SPM). Firstly, all structural MRI data 

were manually corrected and divided into grey matters, white matters and cerebrospinal fluid. 

Secondly, the grey matter images were aligned to a nonlinear deformation field and normalized to 

Montreal Neurological Institute (MNI) space by using the templates which were created by DARTEL 

tool. Finally, the normalized images were all smoothed with a full-width at half-maximum (FWHM) 

6-mm Gaussian kernel for further analysis. After above procedures, the grey matter images (voxel 

size: 3×3×3 mm2) were obtained for 9850 subjects.  

Task-fMRI data were analyzed with SPM. Spatial preprocessing included slice time correction 

to adjust for time differences caused by multi-slice imaging acquisition, realignment to the first 
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volume in line, nonlinearly warping to the Montreal Neurological Institute space [based on a custom 

echo planar imaging template (53×63×46 mm3 voxels) created out of an average of the mean images 

of 400 adolescents], resampling at a resolution of 3×3×3 mm3, and smoothing with an isotropic 

Gaussian kernel of 5-mm FWHM. 

At the first level of analysis, changes in the BOLD response for each subject were assessed by 

linear combinations at the individual subject level, for each experimental condition (e.g. reward 

anticipation high gain of Monetary Incentive Delay (MID) task), each trial was convolved with the 

hemodynamic response function to form regressors that account for potential noise variance, e.g. head 

movement, associated with the processing of reward anticipation. Estimated movement parameters 

were added to the design matrix in the form of 18 additional columns (three translations, three 

rotations, three quadratic and three cubic translations, and every three translations with a shift of ±1 

TR). 

For the MID anticipation phase we contrasted brain activation during ‘anticipation of high win 

[here signaled by a circle] vs anticipation of no-win [here signaled by a triangle]’; For the emotional 

faces task (EFT) we contrasted brain activation during ‘viewing Angry Face vs viewing Control 

[circles]’; For the stop signal task (SST) we contrasted brain activation during ‘successful stop vs 

successful go’.  

 

2.4 Statistical Analyses 

 

2.4.1 Functional Connectivity Association Study 

Based on the automated anatomical labeling (AAL2) atlas, there are 120 brain regions. 

Each resting-state functional magnetic resonance image (rs-fMRI) included 54,885 voxels (Rolls et 

al., 2015). For each pair of brain regions, the time series were extracted, and the Pearson correlation 

was calculated for each subject to provide the measure of functional connectivity (FC), followed by 

Fisher's z-transformation. The general linear model was used to test the association between the 

region-wise FC links and a human phenotype or behavior. The effects of age, sex and head 

motion (mean frame-wise displacement) were regressed out. 

 

2.4.2 Voxel-wise Association Study 

We used the general linear model to define the association between a specific human phenotype 

or behavior and each intracerebral voxel's gray matter volume, which was included in the automated 
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anatomical labeling (AAL2) atlas (total 54,885 voxels). The effects of age, sex and total intracerebral 

volume (TIV) were regressed out. 

 

2.4.3 Task fMRI Activation 

At the first level of analysis, changes in the BOLD response for each subject were assessed by 

linear combinations at the individual subject level for each experimental condition, and each trial was 

convolved with the hemodynamic response function to form regressors that account for potential 

noise variance (e.g., head movement) associated with the processing of a specific task. Estimated 

movement parameters were added to the design matrix in the form of 18 additional columns (three 

translations, three rotations, three quadratic and three cubic translations, and three translations each 

with a shift of ±1 repetition time). To identify brain activation specific to the task, we contrasted the 

brain activation patterns between the task status and the control status.  

 

2.4.4 Normal Distribution Quantile-based Transformation 

z-scores from a normal distribution quantile transformation were used for the analysis (Lai et al., 

2007). First, based on an appropriate association analysis (functional connectivity association study, 

voxel-wise association study or task fMRI activation), we acquired a list of one-sided P-values. For 

each P-value P, the corresponding z-score z can be calculated as follows: 

𝑧 = 𝜙−1(1 − 𝑃) 

where 𝜙−1(⋅) is the inverse function of the standard normal cumulative distribution function. 

 

2.4.5 Definition of Overall Reproducibility Index 

We firstly consider a nine-component normal-mixture model for the joint distribution of paired 

z-scores [𝑧(1), 𝑧(2)] (see above for z-score calculation). 

𝑓[𝑧(1), 𝑧(2)] = ∑ ∑ 𝜋𝑖𝑗

2

𝑗=0

2

𝑖=0

𝜙𝜇𝑖,𝜎𝑖
2[𝑧(1)]𝜙𝜈𝑗,𝜏𝑗

2[𝑧(2)] 

where 𝜙𝜇,𝜎2 is the normal probability distribution function with mean 𝜇 and variance 𝜎2. We use 

the first component (index 0) to represent the null (no change/correlation) feature component. Then, 

𝜇0 = 𝜈0 = 0 and 𝜎0
2 = 𝜏0

2 = 1. The second and third components (indices 1 and 2) are used to 
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represent negative changes/correlations and positive changes/correlations. Their corresponding 

parameters (means and variances) will be estimated from the paired z-scores with the following 

constraints: 𝜇1, 𝜈1 ≤ 0  and 𝜇2, 𝜈2 ≥ 0 . 𝜋𝑖𝑗  is the proportion for component 𝑖  in the first 

association study and component 𝑗 in the second association study, and ∑ 𝜋𝑖𝑗𝑖𝑗 = 1. 

    This model was termed partial concordance/discordance (PCD) model (Lai et al., 2007; Lai et 

al., 2009; Lai et al., 2014, 2017). Then, we define an overall reproducibility index based on model 

parameters, mixture model reproducibility index (M2RI) (The illustration of M²RI see Figure 1): 

𝑀2𝑅𝐼 =  
𝜋11 + 𝜋22

1 − 𝜋00
 

In a recent study (Zhao et al., 2020), two Bayesian models: curved exponential family normal 

prior model (CEFN) and meta-analysis prior model (META), have been proposed for a similar 

purpose. In these two models,  𝜋𝑛𝑢𝑙𝑙 and 𝜋𝑅 were the proportions of null and reproducible signals, 

respectively. Accordingly, we may define the related overall reproducibility indices:  

𝐶𝐸𝐹𝑁𝑅𝐼/𝑀𝐸𝑇𝐴𝑅𝐼 =  
𝜋𝑅

1 − 𝜋𝑛𝑢𝑙𝑙
. 

 

2.4.6 Confidence Intervals of M2RI 

The confidence intervals (CIs) of M2RI can be obtained by bootstrapping paired z-scores (Efron and 

Tibshirani, 1997; Mclachlan, 1987). For our newly developed overall reproducibility index M2RI, a 

theoretical confidence interval will also be highly useful in practice. Therefore, we have derived the 

asymptotic theoretical CIs for M2RI based on our proposed mixture model (see Supplementary for 

details). 

 

3. Results 

 

3.1 Overall Reproducibility Index Recovers the True Overall Reproducibility Accurately in the 

Simulation Study 

    We conducted a comprehensive simulation study to show the performance of our newly 

proposed overall reproducibility index. Our simulations were designed based on the gray matter 

volume (GMV) data in the UK Biobank. Two-sample comparison is a general association analysis 

scenario in practice, and the overall reproducibility of a large-scale two-sample study is important. 

Therefore, we partitioned the data randomly into four subsets (referred to as Data 1A, Data 1B, Data 
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2A and Data 2B). Before the analysis, as a widely considered practical approach, we checked that 

sex, age, total intracerebral volume (TIV) and total GMV were statistically similar between Data 1A 

vs. 2A as well as Data 1B vs. 2B (two-sample t-test, P>0.05). Otherwise, we repeated the random 

data partition until one passed this similarity requirement. For each feature, there was statistically no 

differences in distribution between Data 1A vs. 2A nor Data 1B vs. 2B. Then, to generate upward or 

downward changes, a specified proportion of voxels in a cluster were randomly chosen and 0.0285-

0.0855 standard deviations of brain-wise GMV (corresponding to approximately 1-3 effect sizes in 

z-scores) were randomly added to (or subtracted from) the chosen voxels of each subject in Data 1A 

and Data 1B. This procedure was repeated 1,000 times. For each repetition, we obtained two lists of 

z-scores: one by voxel-wisely comparing Data 1A vs. Data 2A and the other Data 1B vs. Data 2B. z-

scores were calculated based on the traditional two-sample t-test. A pair of z-scores were obtained for 

each voxel. The overall reproducibility between two lists of z-scores was assessed by our proposed 

overall reproducibility index. The following three simulation scenarios were considered. 

(a) Complete overall reproducibility with a moderate proportion of changes. According to our 

random data partition, there were statistically no differences between Data 1A vs. 2A nor Data 1B vs. 

2B. We modified the 100% of null (no change) to 80% null, 10% upward changes and 10% downward 

changes as follows. We randomly selected two clusters of voxels, each with 10% of the total voxels. 

To simulate 10% upward changes, for each voxel in the first cluster of voxels, we randomly added to 

each subject's GMV a value equivalent to 1-3 effect sizes in z-scores in Data 1A and repeated this in 

Data 1B so that there were 10% reproducible upward changes. For each voxel in the second cluster 

of voxels, we randomly subtracted from each subject's GMV a value equivalent to 1-3 effect sizes in 

z-score in Data 1A and repeated this in Data 1B so that there were 10% reproducible downward 

changes. 

(b) Partial reproducibility. We randomly selected four clusters of voxels. There were 15% of the total 

voxels in each of the first two clusters, and the upward changes and downward changes were 

simulated according to the description in (a). There were 5% of the total voxels in each of the next 

two clusters. For each voxel in the third cluster, we randomly added to each subject's GMV a value 

equivalent to 1-3 effect sizes in z-scores in Data 1A (but not in Data 1B). Then, we had 5% discordant 
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changes (up vs. null). For each voxel in the fourth cluster, we similarly subtracted from each subject's 

GMV in Data 1A (but not in Data 1B) so that we had 5% discordant changes (down vs. null). 

(c) Complete overall reproducibility with a high proportion of changes. Considering that the number 

of consistent significant results from different studies can vary, we randomly selected two clusters of 

voxels, each with 20% of the total voxels. The reproducible upward changes (the first cluster) and 

downward changes (the second cluster) were simulated similarly according to the description in (a). 

The results are summarized in Table 1. Based on the scenario (a) as complete overall 

reproducibility with a moderate proportion of changes, the median M2RI, CEFNRI or METARI was 

0.915, 0.995 or 0.988, respectively. Furthermore, the related lower- and upper-quartiles (Q1-Q3) was 

0.738-0.995, 0.993-0.996 or 0.951-0.993, respectively. It was reasonable to conclude that the assessed 

overall reproducibility could be up to the true overall reproducibility which is 100%. Based on the 

scenario (b) as a partial reproducibility (75%), the median M2RI, CEFNRI or METARI was 0.769, 

0.988 or 0.826 when the related lower- and upper-quartiles (Q1-Q3) was 0.685-0.849, 0.955-0.995 

or 0.691-0.909, respectively. Based on the scenario (c) as complete overall reproducibility with a high 

proportion of changes, the median M2RI, CEFNRI or METARI reached 0.960, 0.998 or 0.994 with the 

lower- and upper-quartiles (Q1-Q3) 0.873-0.999, 0.997-0.998 or 0.973-0.997, respectively. It was 

also reasonable to conclude that the assessed overall reproducibility could be up to the true overall 

reproducibility which is 100%.  

 

3.2 Overall Reproducibility of Large-scale MRI-based Association Studies 

To investigate the overall reproducibility of large-scale MRI-based association analysis in the 

data collected for studying human phenotypes/behaviors and task state activations, as well as the brain 

structure and function, we split each study cohort into two subsets (referred to as Group 1 and Group 

2 based on the order of subject number) with (approximately) the same sample sizes. For the resting-

state functional connectivity (RSFC) data, the sample sizes of the two subsets were 4,136 and 4,137 

for analyzing sex as phenotype vs. RSFC; the sample sizes of the two subsets were 4,131 and 4,131 

for analyzing body mass index (BMI) as phenotype vs. RSFC (as there were missing BMI 

observations). A general linear model was constructed with sex phenotype as the response in each 

subset, with age and mean FD adjusted as covariates (hereafter referred to as Sex as phenotype vs. 

RSFC and BMI as phenotype vs. RSFC; see Figure 2c and Figure 2d for the paired z-scores). For 
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the GMV data, the sample sizes of the two subsets were 4,925 and 4,925, respectively. A general 

linear model was also constructed with sex phenotype as the response in each subset, with age and 

TIV adjusted as covariates (hereafter referred to as Sex as phenotype vs. GMV; see Figure 2a for the 

paired z-scores). For the task-related activation data, the sample sizes of the two subsets were 772 

and 772, respectively. Student's t-test was used to evaluate the activation of the monetary incentive 

delay (MID) task, one of the most common tasks in fMRI studies (this activity is hereafter referred 

to as Activation in the MID task; see Figure 2b for the paired z-scores). For each paired z-scores, an 

overall diagonal pattern can be clearly observed. Different paired z-scores variation patterns can also 

be observed for different analysis scenarios, which implies different mixtures of no-change related 

(null) z-scores and upward/downward-change related (non-null) z-scores. 

Overall reproducibility index was used to evaluate the overall reproducibility based on the paired 

z-scores in Figure 2. The results are shown in Table 2. We bootstrapped the paired z-score to 

construct the related 95% confidence intervals (CIs) and we also calculated the asymptotic theoretical 

95% CIs for M2RI. For Sex as phenotype vs. RSFC, the CEFNRI or METARI was 0.9993 or 0.9992, 

respectively. Furthermore, M2RI was close to one, which also suggested an ideal overall 

reproducibility. Its asymptotic theoretical 95% CI was above 0.98. For BMI as phenotype vs. RSFC, 

CEFNRI or METARI was 0.9986 or 0.9984, respectively. M2RI was still close to one, and its 

asymptotic theoretical 95% CIs were above 0.97. For Sex as phenotype vs. GMV, CEFNRI or 

METARI was 0.9996 or 0.9995, respectively. M2RI was again nearly one and both 95% CIs were 

nearly ideal. For activation in the MID task, CEFNRI or METARI was 0.9997 or 0.9997, respectively. 

M2RI was still nearly one and both 95% CIs were again nearly ideal.  

 

3.3 Sample Size Needed to Achieve a Desirable Overall Reproducibility 

    Sample size calculation is crucial in experimental designs. When designing a large-scale 

association analysis, one may ask what sample size is required to achieve a desirable overall 

reproducibility requirement. For a comprehensive understanding of sample size requirements in 

different large-scale association analysis scenarios, we conducted a large resampling-based 

simulation study. For a study cohort presented in Table 2, we selected a phenotype available in the 

study as response. Then, we randomly selected subjects from the cohort to construct two subsets with 
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a given sample size for each subset. This procedure is appropriate for M2RI. For each given sample 

size, we repeated the resampling and M2RI calculation 1,000 times. 

We evaluated Pr(M2RI > 0.8) empirically for each given sample size. Then, we could obtain the 

minimum sample size to achieve Pr(M2RI > 0.8) > 0.8 in each analysis scenario. (In addition to 0.8, 

other values could be certainly considered, and it is not necessary to always set both values to 0.8.) 

The results for different analysis scenarios are summarized in Figure 3 and Table 3. We assessed the 

minimum sample size for M2RI. For different response phenotypes in the task-related functional MRI 

data, the minimum sample size was only approximately 20 to 30. For the GMV data, a sample size 

of approximately 120 was required when the response was the sex phenotype; a sample size of 70 

was required when the response was the age phenotype and a sample size of 300 was required when 

the response was the BMI phenotype. However, for different response phenotypes in the RSFC data, 

the results were clearly different. Approximately 200 or 300 were required when the response was 

the age or sex phenotype, respectively. When the response was BMI, the minimum sample size 

increased to a very large value (More than 800. When the estimated minimum sample size n close to 

the sample size of the whole dataset N (e.g. n is more than 
𝑁

10
), the minimum sample size estimation 

could be inaccurate as the sample duplication problem in resampling-based simulation study).  

 

3.4 Application: Overall Reproducibility Evaluation of GMV Change for UKB vs. PPMI and 

UKB vs. HCP 

As an application of overall reproducibility index, we considered two MRI databases: PPMI and 

UK Biobank cohorts. For the PPMI database, there were 136 normal subjects of age from 45 to 79. 

As the UK Biobank cohort is much larger, we performed a sample matching based on age and sex for 

this analysis. Seven age groups of 45-49, 50-54, etc. (5-year intervals) were considered. For each age 

group, from the UK Biobank cohort, we randomly selected the same number of female/male subjects 

as that in the PPMI cohort. A total of 136 subjects were randomly selected from the UK Biobank 

cohort. Then, for both databases, we calculated the z-scores for the age phenotype as response vs. 

GMV based on a general linear model with the adjustments for sex and TIV. This was repeated 1,000 

times and we obtained 1,000 lists of paired z-scores.  

As another application of overall reproducibility index, we considered the HCP and UK Biobank 
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cohorts. For the HCP data set, there were 413 subjects of age from 22 to 36. Then, it was not feasible 

to match the corresponding age ranges in the UK Biobank data because this age range was not 

available in the UK Biobank. We still performed a sample matching based on sex. From the UK 

Biobank cohort, we randomly selected the same number of female/male subjects as that in the HCP 

cohort. A total of 413 subjects were randomly selected from the UK Biobank cohort. Then, for both 

databases, we calculated the z-scores for the sex phenotype as response vs. GMV based on a general 

linear model with the adjustments of age and TIV. This was repeated 1,000 times and we obtained 

1,000 lists of paired z-scores. 

For each list of paired z-scores, we applied overall reproducibility index to assess the related 

overall reproducibility (see Table 4 for results). For the PPMI and UK Biobank databases, the median 

M2RI, CEFNRI or METARI was 0.99993,0.9974 or 0.8642 with the lower- and upper-quartiles (Q1-

Q3) 0.99964-0.99998, 0.9967-0.9979 or 0.7404-0.9625, respectively. It was reasonable to conclude 

that both databases were ideally overall reproducible in term of large-scale association analysis with 

age as phenotype. For the HCP and UK Biobank databases, the median M2RI, CEFNRI or METARI 

was only 0.6378,0.4377 or 0.0420, with the lower- and upper-quartile (Q1-Q3) 0.5747-0.7032, 

0.3922-0.4838 or 0.0263-0.0656, respectively. As the age ranges for both databases were clearly 

different, it was also reasonable to observe a relatively low overall reproducibility for this analysis. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 13, 2021. ; https://doi.org/10.1101/2020.08.18.253740doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.18.253740


17 
 

 

4. Discussion 

 

Reproducibility of discoveries based on large-scale data has received a significant attention in 

recent years. However, there are still a lack of overall reproducibility evaluation in neuroimaging 

studies (Anonymous, 2017; Botvinik-Nezer et al., 2020; Eklund et al., 2016; Poldrack, 2019). To 

address this need, we proposed a mixture model based overall reproducibility index, and we discussed 

its relationship to a recently proposed irreproducibility quantity (Zhao et al., 2020). Through a 

comprehensive simulation study, we demonstrated the advantages of overall reproducibility index for 

an accurate overall reproducibility assessment in large-scale MRI-based association studies. We also 

demonstrated satisfactory overall reproducibility achieved from UK Biobank or IMAGEN based 

large-scale association analyses. Then, we evaluated the sample size necessary for achieving a 

desirable overall reproducibility, which is essential in a design of experiment. Moreover, we 

evaluated the overall reproducibility of GMV changes for UKB vs. PPMI and UKB vs. HCP. We still 

observed satisfactory results based on UKB vs. PPMI because of their highly similar experimental 

factors. However, we could not observe satisfactory results based on UKB vs. HCP because of their 

experimental factors could not be entirely similar. Therefore, the impact from some experimental 

factors plays an important role when the overall reproducibility is evaluated. 

Our newly proposed overall reproducibility index was derived from the combination of 

parameters in a mixture model. This index is close related to the irreproducibility quantity 𝜌𝐼𝑅 that 

has been proposed in a previous study (Zhao et al., 2020). Although the overall reproducibility index 

can be interpreted as 1 − 𝜌𝐼𝑅, their related statistical models are different.  

    We conducted a comprehensive sample size calculation for several recent large 

sMRI/fMRI databases. According to our results, an adequate sample size is necessary to report a 

reliable overall reproducibility assessment. Additionally, the sample size requirement is closely 

related to the strength of associations, which depends largely on the signal-to-noise ratio of response 

outcome (e.g., phenotypes) and predictors (e.g., MRI signal). Therefore, the impact of different 

phenotypes, predictor data types, and technology platforms should all be considered in the study of 

overall reproducibility assessment. These results are well illustrated in our results. To achieve the 

desirable overall reproducibility, the required sample size for a task fMRI study is clearly lower than 
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that for a GMV study, which is clearly lower than that for an RSFC study. For a GMV study, the 

required sample size for the age phenotype as response is clearly lower than that for the sex phenotype 

as response. For an RSFC study, the required sample size for the BMI phenotype as response is much 

larger. These results are consistent with our expectations. The data signal-to-noise ratios from a 

task fMRI study are usually clearly large, and the data signal-to-noise ratios from the GMV study are 

usually comparably larger than those from the RSFC study. The phenotype signal-to-noise ratio of 

BMI is clearly smaller than that of sex or age phenotype. Therefore, our results are highly illustrative 

and informative for planning the sample size for a large-sale high-throughput MRI-based association 

study. 

As data pooling or meta-analysis is frequently considered in practice, the evaluation of overall 

reproducibility between two closely related studies is crucial. Such an analysis allows us to 

understand the heterogeneity among different studies. It also allows us to address 

the generalizability of a large-scale association analysis. The relationship between the overall 

reproducibility and the heterogeneity among different experiments was also discussed (Zhao et al., 

2020).  

We have demonstrated that our proposed index is useful for the overall reproducibility 

assessment of large databases. It is still necessary to further develop novel and useful tools for data 

with relatively small sample sizes. Statistically, when the sample size is relatively small, it is difficult 

to fit the z-scores with a simple model. As our future research endeavor, we will investigate other 

approaches so that the overall reproducibility assessment can be achieved for data with a relatively 

small sample size. We believe that these efforts will also help improve the current approach for data 

with a relatively large sample size. Moreover, overall reproducibility index can also be applied to 

brain-wide association study (BWAS) (Cheng et al., 2015a; Cheng et al., 2015b; Gong et al., 2018) 

and other types of large-scale high-throughput association study. We would point out that the overall 

reproducibility assessment of BWAS can be computationally time consuming. As the number of 

features (voxel-wise FCs) is significantly large, we will direct our future research endeavors toward 

how to conduct such an analysis more effectively and efficiently. 
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5. Conclusions 

 

The reproducibility of large-scale high-throughput MRI-based research discoveries has been 

recently debated. There is still a lack of effective and efficient overall reproducibility assessment in 

neuroimaging experiments. Therefore, we have developed an overall reproducibility index for 

assessing the overall reproducibility in large-scale MRI-based association studies. For several recent 

well-known large-sample studies, we have evaluated the sample size to achieve a desirable overall 

reproducibility requirement. Our study provides a scientific contribution to the measurement of 

overall reproducibility that is fundamental and crucial in the current large-scale high-throughput 

MRI-based research. 
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Figures and Tables 

 

 
Figure 1: An illustration of M²RI. 𝜙𝑖,𝑗 is the normal probability distribution function and 𝜋𝑖𝑗 is 

the proportion of features consistent with component 𝑖  in the first association analysis and 

component 𝑗 in the second association analysis. 
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Figure 2: Paired z-scores from four association analysis scenarios. (A) Sex as phenotype vs. GMV 

in UK Biobank data. (B) MID task activation in IMAGEN data. (C) Sex as phenotype vs. RSFC in 

UK Biobank data. (D) BMI as phenotype vs. RSFC in UK Biobank. 
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Figure 3: Sample size calculations for three association analysis scenarios in the UK Biobank 

or IMAGEN data. In each plot, "X (Pr(M2RI > X) > 0.8)" means the minimal M2RI in top 80% 

resampled repetitions (800 resampled repetitions in total 1,000 resampled repetitions). The vertical 

dashed line indicates the minimum sample size for Pr (M2RI > 0.8) > 0.8. (A) Sex as phenotype vs. 

GMV in the UK Biobank data. (B) MID task activation in the IMAGEN data. (C) Sex as phenotype 

vs. RSFC in the UK Biobank data. 
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Table 1: The performance of overall reproducibility index in three simulation analysis scenarios. 

For each simulation analysis scenario, the true reproducibility index is shown in the table. The 

simulation and evaluation were repeated 1000 times to obtain the median, the lower and upper-

quartiles (Q1-Q3) for assessed overall reproducibility. (For more details, please see section Overall 

Reproducibility Index Recovers the True Overall Reproducibility Accurately in the Simulation Study.) 

 

Overall Reproducibility Index Assessed Overall Reproducibility 

Simulation (a) 

100% reproducibility 

Median (Q1-Q3) 

M2RI 0.9150 (0.7378 – 0.9950) 

CEFNRI 0.9951 (0.9932 – 0.9961) 

METARI 0.9879 (0.9506 – 0.9933) 

Simulation (b) 

75% reproducibility 

Median (Q1-Q3) 

M2RI 0.7688 (0.6850 – 0.8488) 

CEFNRI 0.9875 (0.9549 – 0.9948) 

METARI 0.8255 (0.6911 – 0.9092) 

Simulation (c) 

100% reproducibility 

Median (Q1-Q3) 

M2RI 0.9597 (0.8731 – 0.9986) 

CEFNRI 0.9980 (0.9973 – 0.9983) 

METARI 0.9939 (0.9734 – 0.9966) 
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Table 2: Overall reproducibility assessment of four association analysis scenarios. 

For each MRI-based association analysis scenario, the assessed overall reproducibility is shown in 

the table. We obtained 95% confidence intervals (CIs) based on bootstrapping the paired z-scores for 

M2RI. The asymptotic theoretical 95% CIs for M2RI was also presented. (For more details, please see 

section Overall Reproducibility of Large-scale MRI-based Association Studies.) 

 

Overall Reproducibility Index Assessed Overall Reproducibility 

Sex as phenotype vs. RSFC  

M2RI (95% CIs) 0.9999996 (0.9999993 – 0.9999998) 

M2RI (asymptotic theoretical 95% CIs) 0.9999996 (0.9807 – 1) 

CEFNRI 0.9993 

METARI 0.9992 

BMI as phenotype vs. RSFC  

M2RI (95% CIs) 0.9999934 (0.9999904 – 0.9999955) 

M2RI (asymptotic theoretical 95% CIs) 0.9999934 (0.9782 – 1) 

CEFNRI 0.9986 

METARI 0.9984 

Sex as phenotype vs. GMV  

M2RI (95% CIs) 0.99999995 (0.99999993 – 0.99999997) 

M2RI (asymptotic theoretical 95% CIs) 0.99999995 (0.9955 – 1) 

CEFNRI 0.9996 

METARI 0.9995 

Activation in MID task  

M2RI (95% CIs) 0.99999991 (0.99999989 – 0.99999994) 

M2RI (asymptotic theoretical 95% CIs) 0.99999991 (0.9968 – 1) 

CEFNRI 0.9997 

METARI 0.9997 
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Table 3: M2RI based sample size calculations in different MRI association analysis scenarios.  

The minimum sample size to achieve Pr(M2RI > 0.8) > 0.8 is presented for each large-scale 

association analysis scenario. For the RSFC data, sex, age or BMI was considered as phenotype. For 

the GMV data, sex, age or BMI was considered as phenotype. For the fMRI data in task activation, 

MID, SST or EFT task was considered. (For more details, see section Sample Size Needed to Achieve 

a Desirable Overall Reproducibility.) 

 

MRI Study Minimum 

Sample Size 

MRI Study Minimum 

Sample Size 

MRI Study Minimum 

Sample Size 

RSFC  GMV  Task fMRI  

Sex 300 Sex 120 MID 30 

Age 200 Age 70 SST 20 

BMI More than 

800 
BMI 300 EFT 30 
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Table 4: Overall reproducibility index for comparing two databases. 

Overall reproducibility index applications in comparing the large-scale association analysis results 

from two closely related databases. Median with the range of interquartile (Q1-Q3) are shown in the 

table. For the MRI databases PPMI vs. UK Biobank, the analysis was based on age as phenotype vs. 

GMV. For the MRI databases HCP vs. UK Biobank, the analysis was based on sex as phenotype vs. 

GMV. (For more details, please see section Application: Overall Reproducibility Evaluation of GMV 

Change for UKB vs. PPMI and UKB vs. HCP.) 

 

Application Assessed overall reproducibility 

PPMI vs. UKB (Sample size = 136) Median (Q1-Q3) 

M2RI 

CEFNRI 

METARI 

0.99993 (0.99964 – 0.99998) 

0.9974 (0.9967 – 0.9979) 

0.8642 (0.7404 – 0.9625) 

HCP vs. UKB (Sample size = 413) Median (Q1-Q3) 

M2RI 

CEFNRI 

METARI 

0.6378 (0.5747 – 0.7032) 

0.4377 (0.3922 – 0.4838) 

0.0420 (0.0263 – 0.0656) 
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