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Abstract 21 
 22 
Implicit motor recalibration allows us to flexibly move in novel and changing environments. Conventionally, implicit 23 

recalibration is thought to be driven by errors in predicting the sensory outcome of movement (i.e., sensory prediction 24 

errors). However, recent studies have shown that implicit recalibration is also influenced by errors in achieving the 25 

movement goal (i.e., task errors). Exactly how sensory prediction errors and task errors interact to drive implicit recalibration 26 

and, in particular, whether task errors alone might be sufficient to drive implicit recalibration remain unknown. To test this, 27 

we induced task errors in the absence of sensory prediction errors by displacing the target mid-movement. We found that 28 

task errors alone failed to induce implicit recalibration. In additional experiments, we simultaneously varied the size of 29 

sensory prediction errors and task errors. We found that implicit recalibration driven by sensory prediction errors could be 30 

continuously modulated by task errors, revealing an unappreciated dependency between these two sources of error. 31 

Moreover, implicit recalibration was attenuated when the target was simply flickered in its original location, even though 32 

this manipulation did not affect task error – an effect likely attributed to attention being directed away from the feedback 33 

cursor. Taken as a whole, the results were accounted for by a computational model in which sensory prediction errors and 34 

task errors, modulated by attention, interact to determine the extent of implicit recalibration.  35 
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 2 

Author’s summary 36 

What information does the brain use to maintain precise calibration of the sensorimotor system? Using a reaching task 37 

paired with computational modeling, we find that movements are implicitly recalibrated by errors in predicting both the 38 

sensory outcome of movement (i.e., sensory prediction errors) as well as errors in achieving the movement goal (i.e., task 39 

errors). Even though task errors alone do not elicit implicit recalibration, they nonetheless modulate implicit recalibration 40 

when sensory prediction error is present. The results elucidate an unappreciated interaction between these two sources of 41 

error in driving implicit recalibration.   42 
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Introduction  43 

Sensorimotor adaptation is an essential feature of human competence, allowing us to flexibly move in novel and changing 44 

environments (Kim, Avraham, & Ivry, 2020; J. Krakauer, Hadjiosif, Xu, Wong, & Haith, 2019; Ryan Morehead & de Xivry, 45 

2021; Shadmehr, Smith, & Krakauer, 2010). Multiple learning processes have been shown to contribute to the performance 46 

changes observed in adaptation tasks, including an aiming process which is explicit, volitional, and learns rapidly and a 47 

recalibration process which is implicit, automatic, and learns slowly (Haith, Huberdeau, & Krakauer, 2015; Hegele & Heuer, 48 

2010; McDougle, Ivry, & Taylor, 2016; Taylor & Ivry, 2011; Taylor, Krakauer, & Ivry, 2014; Werner et al., 2015). Recent 49 

work has focused on how these two learning processes may be driven by distinct error signals: Whereas explicit aiming 50 

responds to task error (TE) – a signal reflecting task performance (Day, Roemmich, Taylor, & Bastian, 2016; Taylor & Ivry, 51 

2011) – implicit recalibration responds to sensory prediction error (SPE) – an error reflecting the difference between 52 

predicted and actual feedback (Donchin, Francis, & Shadmehr, 2003; Kim, Morehead, Parvin, Moazzezi, & Ivry, 2018; 53 

Lee, Oh, Izawa, & Schweighofer, 2018; Mazzoni & Krakauer, 2006; Morehead, Taylor, Parvin, & Ivry, 2017; Shadmehr et 54 

al., 2010; Wolpert, Miall, & Kawato, 1998). Moreover, these two learning processes are thought to rely on distinct neural 55 

modules, with explicit aiming requiring more prefrontal control (Anguera, Reuter-Lorenz, Willingham, & Seidler, 2010; 56 

Benson, Anguera, & Seidler, 2011; Taylor & Ivry, 2014) and implicit recalibration requiring more cerebellar control 57 

(Butcher et al., 2017; Hadjiosif et al., 2014; Izawa, Criscimagna-Hemminger, & Shadmehr, 2012; Schlerf, Xu, Klemfuss, 58 

Griffiths, & Ivry, 2013; Taylor, Klemfuss, & Ivry, 2010; Tseng, Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007).  59 

 60 

However, recent results from visuomotor rotation tasks have motivated a broader perspective of implicit recalibration, and 61 

in particular, led to the proposal that implicit recalibration is sensitive not only to sensory prediction error, but also to task 62 

outcome. Empirically, the evidence supporting this hypothesis comes from studies in which perturbed visual feedback (the 63 

source of SPE) is combined with a manipulation of target size or target jumps (Cameron, Franks, Inglis, & Chua, 2010a, 64 

2010b; Magescas & Prablanc, 2006) to create a condition in which the visual feedback “hits” the target (Figure 1). 65 

Adaptation in such situations is attenuated by about ~20% compared to that observed in control conditions with a similar 66 

SPE (Kim, Parvin, & Ivry, 2019; Leow, Marinovic, de Rugy, & Carroll, 2018). The hypothesis that implicit recalibration is 67 

sensitive to both SPE and task outcome is consistent with recent neurophysiological observations of reward-related activity 68 

in the cerebellum (Heffley & Hull, 2019; Hull, 2020; Ohmae & Medina, 2015; Sendhilnathan, Ipata, & Goldberg, 2020; 69 

Wagner, Kim, Savall, Schnitzer, & Luo, 2017).  70 
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 71 

But how exactly are SPE and task outcome combined to drive implicit recalibration? One possibility is that behavior reflects 72 

the operation of two independent learning processes, one sensitive to SPE and the other sensitive to task outcome (Kim et 73 

al., 2019; Leow et al., 2018). While this dual-error model is consistent with existing findings, it is unknown whether this 74 

reflects the operation of two learning processes that operate independently. For example, it remains to be seen if TE-only 75 

would be sufficient to drive adaptation, as would be predicted by such a dual-error model.  76 

 77 

Alternatively, SPE and task outcome may interact. For example, the strength of the SPE might be modulated by task 78 

outcome; if the displaced cursor still manages to intersect the target, a reward signal linked with task success could weaken 79 

the system’s sensitivity to SPE, reducing the rate of recalibration (Gonzalez Castro, Monsen, & Smith, 2011; Shmuelof et 80 

al., 2012). A different form of interaction might arise from processes tangential to recalibration. For example, displacement 81 

of the target, as is commonly used to manipulate TE, might capture attention and weaken the salience of the SPE. In 82 

principle, the interaction between TE and SPE could also be a combination of multiple effects. 83 

 84 

To examine how SPE and TE collectively shape implicit recalibration, we performed a series of visuomotor experiments 85 

that systematically varied the size of these two errors. We also compared participants’ performance to a series of 86 

computational models designed to catalogue potential ways in which SPE and TE may interact. To control the size of SPE 87 

(i.e., operationalized as the difference between the cursor feedback and the original target location), we used clamped visual 88 

feedback (Morehead et al., 2017), in which the timing and extent of cursor motion is linked to hand motion, but the cursor 89 

trajectory is offset by a fixed angle relative to the target, and thus independent of the hand trajectory. To control the size of 90 

TE (i.e., operationalized as the difference between the cursor feedback and the new target location), we jumped the target 91 

by a variable amount soon after movement initiation. In all cases, these manipulations were coupled with instructions to 92 

ignore the visual feedback and always reach straight towards the original target – an approach which has been shown to 93 

reliably elicit implicit recalibration without contamination from explicit strategies (Leow et al., 2018; Tsay, Parvin, & Ivry, 94 

2020). These experiments, coupled with computational models, allow us to precisely characterize the effects of SPE and TE 95 

on implicit recalibration. 96 

 97 
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  98 

 
 
Figure 1: Implicit recalibration elicited by SPE + TE and SPE-only. (a) Illustration of experimental apparatus. (b-c) Task 
outcome was manipulated by either varying the size of the target (Kim et al, 2019) or varying the size of the target jump (Leow et 
al, 2018). Both SPE and TE are present when the cursor feedback straddles or misses the target, and only SPE is present when the 
cursor “hits” the target. (d-e) Implicit recalibration, as measured by the asymptote of hand angle in a clamped feedback design in 
Kim et al 2019 or during no-feedback aftereffect trials in a standard visuomotor rotation design, was reduced when TE was removed. 
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Results 99 

Experiment 1-2: TE alone is not sufficient to drive implicit adaptation. 100 

We first examined whether TE-only perturbations would elicit implicit recalibration (Figure 2). We induced TEs by jumping 101 

the target a varying amount, between ±16° from trial to trial, while pairing all of these conditions with a clamped cursor that 102 

always moved through the original target (i.e., 0° clamp). If TE alone is sufficient to elicit implicit recalibration, the 103 

participant’s movement would be expected to shift in the direction of the jumped target on the subsequent trial. As a point 104 

of comparison, we also tested a condition in which both SPE and TE varied together, through separate blocks in which 105 

cursor feedback was clamped between ±16° while the target remained stationary (SPE+TE). We expected the participant’s 106 

movement would be shifted in the opposite direction of the cursor for these conditions. To ensure that learning was implicit, 107 

participants were instructed to always move directly to the original target location, ignoring both the cursor feedback and 108 

the target jump.  109 

 110 

In trials when both SPE and TE were present, all participants exhibited robust changes in hand angle to (partially) counter 111 

the imposed error, a key signature of implicit recalibration (Figure 2c; Mean slope ± SEM: 𝛽 = 	−0.1 ± 0.0;	𝐹(",$"$) =112 

136.0, 𝑝 = 1.3	 ×	10&$', 𝜂$ = 0.2). The change in hand angle as a function of error size appeared to be sublinear, 113 

composed of a linear zone for smaller perturbations (0° – 4°) and a saturated region for larger perturbations (4° – 16°), 114 

consistent with previous reports of saturated learning across a wide range of error sizes (Hayashi, Kato, & Nozaki, 2020; 115 

Kasuga, Hirashima, & Nozaki, 2013; Kim et al., 2018; Morehead et al., 2017; Wei & Körding, 2009).  116 

 117 

A very different picture was observed in the TE-only blocks. Here participants exhibited no reliable change in hand angle 118 

in response to the TE (Figure 2d; 𝛽 = 	0.0 ± 0.0;	𝑡($"$) = 0.6, 𝑝 = 0.69, 𝐷 = 0.1). Critically, there was a striking 119 

interaction between perturbation size and perturbation type	(𝛽 = 	1.2 ± 0.1;	𝐹(",$"$) = 61.1, 𝑝 = 	2.5	 ×	10&"(, 𝜂$ =120 

0.2), where robust implicit recalibration was observed when both SPE + TE were present, but not when TE-only was 121 

provided.  122 

 123 

As a test of generality, we examined whether TE-only perturbations would elicit implicit recalibration when all perturbation 124 

conditions were scheduled in a random manner, rather than providing TE-only and SPE+TE trials in separate blocks (see 125 
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Table 3 in the Methods section). Again, robust sign-dependent changes in hand angle were observed for all participants in 126 

the SPE + TE condition (Set A: 𝛽 = 	−0.4 ± 0.0;	𝐹(",")*) = 138.7, 𝑝 = 	1.5	 ×	10&$', 𝜂$ = 0.2; Set B: 𝛽 = 	−0.4 ±127 

0.0;	𝐹(",")*) = 128.9, 𝑝 = 	2.8	 ×	10&$(, 𝜂$ = 0.1; Figure 2d & f). In contrast, TE-only trials again failed to elicit any 128 

sign-dependent changes in hand angle (Set A: 𝛽 = 	0.0 ± 0.1;	𝑡(")*) = 0.5, 𝑝 = 0.62, 𝐷 = 0.1; Set B: 𝛽 = 	0.0 ±129 

0.1;	𝑡(")*) = −0.4, 𝑝 = 0.72, 𝐷 = 0.1; Figure 2f & h). The interaction between perturbation type	and size was replicated 130 

(Set A: 𝛽 = 	0.4 ± 0.0;	𝐹(",")*) = 67.5, 𝑝 = 	2.9	 ×	10&"', 𝜂$ = 0.2; Set B: 𝛽 = 	0.4 ± 0.0;	𝐹(",")*) = 93.3, 𝑝 = 	2.7	 ×131 

	10&"+, 𝜂$ = 0.3), showing robust implicit recalibration when both SPE + TE were present, but not when TE-only was 132 

provided.  133 

 134 

Together, these results indicate that TE alone is not sufficient to drive implicit recalibration. This stands in contrast to SPE, 135 

which leads to implicit recalibration whether or not TE is present (Kim et al., 2019; Leow et al., 2018; Leow, Marinovic, 136 

de Rugy, & Carroll, 2020). Moreover, these results challenge the hypothesis that SPE and TE operate strictly in an 137 

independent manner.  138 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.06.20.449180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449180
http://creativecommons.org/licenses/by-nd/4.0/


 8 

 139 

 140 

Modeling the potential ways in which TE and SPE may interact to drive implicit recalibration.  141 

Although TE alone may not induce recalibration, previous work has shown that the presence or absence of TE will modulate 142 

the response to SPE (Kim et al., 2019; Leow et al., 2018, 2020). To understand the potential ways in which SPE and TE 143 

may interact to drive learning, we considered several models that encapsulated a variety of possible mechanisms. Figure 3 144 

shows these models with their predicted responses to a fixed clamp size (i.e., fixed SPE) and varying TE size. 145 

 146 

We first consider two simple base models, both of which cannot account for previously established results (including 147 

Experiment 1) but will serve as a foundation and a contrast for more elaborated models. The first model is one in which TE 148 

does not contribute to implicit recalibration. By this Invariant SPE model, we would expect recalibration to be invariant to 149 

 
 
Figure 2: Task error alone does not elicit implicit recalibration (Exp 1 – 2). Using clamped visual feedback for testing implicit 
responses to: (a) SPE + TE, induced by offsetting the cursor trajectory at a fixed angle relative to the target, and (b) task error (TE), 
induced by jumping the target immediately after movement initiation, with the cursor clamped to 0° (the original target location). 
(c) – (d) In Exp 1, participants experienced 4 alternating blocks of target jumps and clamped feedback (201 trials/block). The 
perturbation sizes within a given block were randomized in order to prevent accumulated learning. Adaptation was quantified by 
measuring how much the hand angle changed on trial n + 1 in response to the perturbation on trial n. (e) – (h) In Exp 2, participants 
experienced a fully randomized (mixed) schedule of target jumps (Set A with ±4° TE-only perturbations and Set B with ±8° TE-
only perturbations) and clamped feedback (both sets with ±4° SPE + TE perturbations). Dots connected with thick line represent the 
across participant average; thin lines represent individual data. Note that the x- and y-axes are not drawn on the same scale.  
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the size of target jumps and thus the size of TE (Figure 3a). As noted above, this model is insufficient given the 150 

demonstrations in the literature where the response to feedback involving only SPE is attenuated compared to feedback in 151 

which there is both SPE and TE (Figure 1). 152 

 153 

The second base model is one in which TE and SPE make independent contributions to implicit recalibration (Dual-Error 154 

model), with their respective contributions simply being summed. Consequently, jumping the target in the same signed 155 

direction as the clamped cursor (e.g., clockwise target jump and clockwise clamp) will decrease the absolute magnitude of 156 

TE (as long as the target displacement is less than twice the magnitude of the cursor perturbation). This ought to decrease 157 

recalibration since SPE and TE make opposing contributions to the behavioral change. Conversely, jumping the target away 158 

from the cursor will increase TE, and thus increase recalibration (Figure 3b). This model, however, cannot account for the 159 

failure of TE-only to elicit recalibration (see Figure 2d, e, f).  160 

 161 

Building on the failure of these base models, we considered potential ways in which task outcome might influence 162 

recalibration to SPE in an interactive manner. One possible way is based on the hypothesis that recalibration is attenuated 163 

by a scalar intrinsic reward signal that simply indicates whether or not the movement goal was achieved (i.e., whether or 164 

not the cursor “hits” the target) (Cashaback, McGregor, Mohatarem, & Gribble, 2017; Galea, Mallia, Rothwell, & 165 

Diedrichsen, 2015; Izawa & Shadmehr, 2011; Kim et al., 2019; Konrad Paul Körding & Wolpert, 2004; Nikooyan & Ahmed, 166 

2015). The intrinsic reward signal can be interpreted as a gain controller, similar to previous efforts to model the effect of 167 

explicit rewards and punishments on recalibration (Galea et al., 2015). That is, when the movement goal is achieved, the 168 

drive to recalibrate the motor system is reduced. This Rewarded SPE model predicts a transient drop in recalibration only 169 

for a narrow range of target jumps corresponding to the cursor hitting the target (Figure 3c).  170 

 171 

An alternative model is that recalibration might be modulated by the distracting presence of the target jump, perhaps due to 172 

attention being directed away from processing the feedback signal (Song, 2019; Taylor & Thoroughman, 2007). This 173 

Distracted SPE model is grounded in a rich history of visual psychophysics revealing worse accuracy at detecting, 174 

discriminating, and processing visual stimuli in unattended regions of visual space (Dosher, Sperling, & Wurst, 1986; 175 

Kinchla, 1992). For the model, we assume that displacing the target distracts attention away from the feedback cursor, and 176 

thus decreases the efficacy of recalibration. As a first approximation, we model this as a gaussian gain function in which 177 
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 10 

the attentional cost increases with the magnitude of the target jump (variable cost depicted in Figure 3e), an assumption we 178 

will test in Experiment 4.  179 

 180 

This attentional hypothesis highlights that jumping the target has two effects: In addition to modifying the size of a putative 181 

TE signal, the standard motivation for this manipulation (Leow et al., 2018, 2020), it is a source of attentional distraction. 182 

One way to separate these factors is to transiently turn off the target while keeping its position fixed. Assuming the flicker 183 

serves to distract attention, this “jump-in-place” condition would identify an attentional cost that is independent of the 184 

change in TE, an assumption we will test in Experiment 3. This attenuating effect is shown in Figure 3e as a fixed attentional 185 

cost, that is, implicit recalibration when the target flickers in the same place during the trial (jump-in-place) would be 186 

attenuated compared to a condition when the target remains stationary and visible throughout the trial (no-jump). This fixed 187 

cost rides on top of a variable attentional cost that is dependent on the distance of the target displacement.  188 

 189 

The Rewarded SPE (Figure 3c) and Distracted SPE (Figure 3e) models consider the modulatory effects of intrinsic reward 190 

and attention on a base model in which TE does not directly influence implicit recalibration (the Invariant SPE model). We 191 

also considered how the modulatory effects of reward and attention might influence implicit recalibration if both SPE and 192 

TE drive learning (Dual-Error model). The predictions of these hybrid, dual-error models are presented in Figures 3d 193 

(Rewarded SPE+TE) and 3f (Distracted SPE + TE), both of which predict an asymmetrical effect of target jumps.  194 
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 195 

 196 

Experiment 2: TE modulates implicit recalibration in the presence of SPE. 197 

To empirically examine the interactions between SPE and TE, and evaluate the models described above, we performed a 198 

second experiment in which we varied the size of target jumps in the context of an SPE, induced by non-zero clamped 199 

feedback (see Table 3). To vary the size of TE, we jumped the target between ±8° away from the original target location. 200 

 
 
Figure 3: Modeling the influence of target jumps on adaptation to TE and SPE. Given a constant SPE magnitude, SPE may be 
(a) impervious to target jumps (b) attenuated when the cursor “hits” the target (modulated by intrinsic reward), or (c) attenuated due 
to the motion of the jumping target diverting attention away from computing a SPE. The attenuation is assumed to be driven by the 
mere presence of a target jump (fixed cost – an effect isolated by flickering the target, also known as the jump-in-place condition) 
and varied with target jump size (variable cost). Right column (b), (d), (f): Adaptation may also be driven by a TE-based learning 
process, assumed here to be a linear function of the distance between the feedback and new position of the target. The red indicates 
expected behavior, which is the composite of the SPE process (grey) and TE-based process (black).  
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For the non-zero SPE, we clamped the cursor at ±4° from the original target, randomizing the direction of the feedback 201 

cursor from trial to trial.  202 

 203 

In response to a stationary target (i.e., no jump), participants adapted 1.5° in response to a 4° clamp (Figure 4a). When the 204 

target jumped towards the cursor, implicit recalibration was reduced in a roughly stepwise, linear manner (Table 3): Jump-205 

to (i.e., target jumps to the cursor) reduced implicit recalibration by 13% and jump-past (i.e., target jumps in the direction 206 

of and beyond the cursor) reduced implicit recalibration by 33%. The fact that jumping the target influenced behavior argues 207 

against the Invariant SPE model; task outcome indeed influences behavior in the presence of SPE. The graded effect is also 208 

not compatible with the Rewarded SPE models (Figure 3c, d), as these models predict a modulating effect of target jumps 209 

only when the target intersects the cursor feedback, providing a putative intrinsic reward.  210 

 211 

Implicit recalibration was greater when the target jumped away from the cursor compared to when it jumped past (0.3 ±212 

0.1;	𝑡(,,) = 2.6, 𝑝 = 0.01, 𝐷 = 	0.8) (Figure 4a; Table 1). This pattern is most consistent with the unique, asymmetrical 213 

function predicted by the Distracted SPE + TE model (Figure 3e) and refutes the symmetrical function predicted by the 214 

Distracted SPE-only model (Figure 3f). That is, implicit recalibration may be dependent on both SPE and TE (conditioned 215 

on the presence of SPE), although the act of manipulating TE via target jumps may have a distracting effect that reduces 216 

sensitivity to SPE.   217 

 218 

Experiment 3: Target jumps vary the size of TE but also attenuate implicit recalibration.  219 

Exp 3 was designed to provide a strong test of the assumption that jumping the target distracts attention: Namely we predict 220 

that recalibration in response to an SPE will be attenuated by distraction, even if the distracting event does not influence TE 221 

(or SPE). To test this prediction, we introduced a condition in which the target was perturbed without changing locations, 222 

disappearing upon movement initiation and then reappearing in its original location on the next screen refresh (jump-in-223 

place; i.e., flickering the target). The difference between implicit recalibration for no-jump (i.e., stationary target) and jump-224 

in-place should indicate the effect of distraction. By varying the size of the SPE, we can ask if the magnitude of the 225 

distraction effect is independent of SPE magnitude. To test this prediction, we used two clamp sizes (±3° and ±7°). Because 226 

the experiment was conducted online (in response to COVID pandemic restrictions regarding in-person testing), we were 227 

able to increase the sample size.  228 
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 229 

On average, participants adapted 1.1° and 1.5° in response to 3° and 7° clamps, respectively (no jump; Figure 4b-c; Table 230 

1). Strikingly, the response was attenuated in the jump-in-place conditions despite the fact that the SPE and TE were 231 

identical to that in the corresponding no-jump conditions. Moreover, the magnitude of this effect, which represents the fixed 232 

attentional cost on recalibration, was similar for the two clamp sizes, ~40% (no interaction: = 	0.4 ± 0.0;	𝐹((,$)') =233 

0.1, 𝑝 = 0.96, 𝜂$ = 0). In addition to the fixed attentional cost due to the flicker of the target, we observed an approximately 234 

linear effect of TE on implicit recalibration. For instance, in Exp 3A recalibration was larger by approximately 0.5° in the 235 

jump-in-place condition compared to the jump-to condition, and increased by another 0.5° in the jump-away condition 236 

(Table 1). This linear effect of TE is uniquely predicted by the Distracted SPE + TE model.  237 

 238 

In summary, the results indicate that perturbing the target yields 1) an asymmetrical hand angle function, 2) a fixed cost 239 

most clearly evident in the jump-in-place condition, and 3) a linear effect of TE after accounting for this fixed attentional 240 

cost. These three effects, in aggregate, provide strong support that jumping the target not only modulates the size of the TE, 241 

but also attenuates the extent of recalibration from SPE (Distracted SPE+TE model). Notably, these results were replicated 242 

both in-lab and online settings.  243 
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Figure 4: Implicit recalibration is modulated by TE in the presence of SPE (Exp 2 – 3). (a) – (c) Participants experienced a 
randomized zero-mean perturbation schedule where both clamp size (Exp 2, in-person: ±4° clamp; Exp 3, online: ±3° or ±7°) and 
target jump size (Exp 2 range: -8 to 8; Exp 3 range: -3 to 3) were varied. A positive change in hand angle signified recalibration in 
the expected direction, by flipping the sign of hand angles in response to counterclockwise (+) clamped feedback and clockwise (-) 
target jumps. Dots represent mean and vertical lines represent SEM.  
 
 

Table 1 Exp 2A-B 
(-4° Clamp) 

Exp 3A 
(-3° Clamp) 

Exp 3B 
(-7° Clamp) 

Fixed 
Effects Past To No 

Jump Away To Jump-
in-place 

No 
Jump Away Near Jump-

in-place 
No 

Jump Away 

Target 
Jump 
Size 

-8° -4° 0° +8° -3° 0° 0° +3° -3° 0° 0° +3° 

Mean 
(𝑆𝐸𝑀) 

1.1 
(0.1) 

1.3 
(0.1) 

1.5 
(0.1) 

1.4 
(0.1) 

0.1 
(0.2) 

0.6 
(0.2) 

1.0 
(0.2) 

1.1 
(0.2) 

0.5  
(0.2) 

1.1 
(0.2) 

1.5 
(0.2) 

1.5  
(0.2) 

Mean 
- No 
Jump 

(𝑆𝐸𝑀) 

-0.5 
(0.1) 

-0.2 
(0.1)  

-0.1 
(0.1) 

-1.0 
(0.2) 

-0.4 
(0.2)  

0.0 
(0.2) 

-1.0 
(0.2) 

-0.4 
(0.2)  

0.0  
(0.2) 

𝐷 -1.0 -0.4 -0.2 -0.8 -0.3 0.0 0.3 0.2 0.1 
𝑃 <0.001 0.14 0.42 <0.001 0.02 0.88 <0.001 0.02 0.88 

 
Table 1: Summary of model-free results. Mean estimates (SEM) from the linear mixed effect model for each target jump condition. 
Changes in hand angle in response to counterclockwise (+) clamped feedback were flipped to clockwise (-), such that a positive 
change in hand angle always signify adaptation in the expected direction (i.e., away from the clamped feedback). Contrasts between 
no jump and other target jump conditions are also shown, with Cohens’ D and P values provided. Significant contrasts (P < 0.05) 
are highlighted in a shaded light-grey box.  
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Experiment 4: Implicit recalibration reflects the joint contribution of TE, SPE, and the distractive effects of target jumps 245 

To further probe how the distracting effect of target jumps interacts with the magnitude of TE, we sampled a wide range of 246 

target jump sizes in Experiment 4 (Figure 5a). As shown in Figure 3f, we assume that the attenuating effect of distraction 247 

will increase with the size of the target jump due to attention being further displaced from the feedback cursor. As such, the 248 

inclusion of a larger range of target jumps should produce a marked asymmetrical function.  249 

 250 

This prediction was confirmed (Figure 4b): Implicit recalibration decreased when the target jumped towards the cursor and 251 

remained relatively invariant when the target jumped away from the cursor, even as far as 30° (jump-away). This 252 

phenomenon could be attributed to the contribution of a TE process that offsets the attentional costs of target jumps on a 253 

SPE-based implicit recalibration process.  254 

 255 

Sampling a wider range of target jumps also allowed us to fit our candidate models to the data (see formalization in Table 256 

4 of the Methods section). In doing so, we could quantitatively evaluate how well our six candidate models fit the data while 257 

taking into account model complexity. Consistent with the qualitative assessments described above, the Distracted SPE + 258 

TE model provided the best fit, having the highest 𝑅$ and lowest AIC (Table 2).  259 

 260 

The modeling work also allowed us to evaluate the best fitting parameters of the Distracted SPE + TE model. The parameter 261 

values suggest that TE may contribute to learning. The slope (𝛽!") of the TE function was 0.02	 ± 0.003, suggesting that 262 

of the 0.5° change in hand angle observed for the 3° no-jump condition (where both SPE and TE are present), ~12% of the 263 

change came from TE. Similarly, when the error increased to 7° in a no-jump condition, ~16% of the 0.09° change in hand 264 

angle came from TE. These results indicate that SPE has a much larger impact on implicit adaptation compared to TE. 265 

 266 

The Distracted SPE + TE model has two parameters to capture the effects of perturbing the target. First there is a fixed 267 

effect arising from the transient changes that occur when the target is perturbed. The estimate of this parameter (𝐶-) in the 268 

best fitting model was 0.84	 ± 0.13.	Thus, the mere perturbation of the target, even if it was not spatially displaced reduced 269 

recalibration by 15%. Second there is a variable cost (𝜎#$) due to SPE-based learning being attenuated as the target jump 270 
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distance increased. The estimate of this parameter was 11.8	 ± 2.3. From this value, SPE would no longer be effective in 271 

driving implicit recalibration for target jumps greater than 35°.   272 

  273 

 

 
 
Figure 5: Implicit recalibration reflects the contribution of learning from task error and sensory prediction error, with the 
latter sensitive to distraction from target jumps (Exp 4). (a-b) Participants experienced a randomized zero-mean perturbation 
schedule with clamp sizes (-3° shown in orange; -7° shown in blue) × target jumps (x axis, -30° through 30°). The Distracted SPE 
+ TE model was the winning model.  
 
 
 

Table 2 
SPE Only SPE + TE 
# of  
free param 𝑹𝟐 AIC # of  

free param 𝑹𝟐 AIC 

Invariant SPE 0 -0.54 -18 1 -0.54 -18 
Rewarded SPE 2 0.15 -28 3 0.53 -37 
Distracted SPE 2 0.33 -33 3 0.72 -47 

 
Table 2: Summary of model-based results.  
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Discussion 274 

Although it is widely recognized that implicit sensorimotor recalibration serves to minimize motor execution errors, the 275 

error signals that drive this learning process remain the subject of considerable debate (Kim et al., 2020; J. Krakauer et al., 276 

2019; Shadmehr et al., 2010). In particular, the idea that sensory prediction error (SPE), the mismatch between the expected 277 

and actual feedback, is the sole learning signal has been challenged by recent evidence demonstrating that task error (TE), 278 

the mismatch between the target location and feedback may also impact implicit recalibration (Albert et al., 2020; Kim et 279 

al., 2019; Leow et al., 2018; Miyamoto, Wang, & Smith, 2020). Whether these two types of error drive implicit recalibration 280 

independently or interactively remains unknown.  281 

 282 

In traditional sensorimotor adaptation tasks, SPE and TE are confounded. Displacing the hand in a force field or perturbing 283 

the feedback in a visuomotor rotation task introduces both SPE and TE. To unconfound these signals, researchers have 284 

developed methods that selectively influence one signal or the other. For example, by making the angular trajectory of the 285 

feedback cursor independent of the movement, an SPE of a fixed size may either be accompanied by TE (when the target 286 

is small, and the cursor misses the target) or occur without TE (when the target is large, and the cursor hits the target). 287 

Conversely, displacing the target (i.e., target jump) selectively modulates TE given the assumption that the expected location 288 

of the feedback remains at the original target location.  289 

 290 

Building on these methodological advances, we designed a series of experiments to systematically manipulate SPE and TE 291 

and used the data to test a set of computational models. We first considered a model in which these two types of error make 292 

independent contributions to implicit recalibration, with the resultant behavior being the composite operation of two distinct 293 

learning processes (Figure 3a, b). This idea takes inspiration from the work of Mazzoni and Krakauer (2006) who showed 294 

that implicit recalibration continued to operate even in the absence of task error, a result that suggests SPE-dependent 295 

learning is modular. A natural extension of this modular, dual-error model would posit that TE alone should also be 296 

sufficient to drive implicit recalibration. In three experiments, we failed to find support for this hypothesis. When the 297 

clamped feedback moved directly to the original target location (no SPE), hand angle remained unchanged in response to 298 

target jumps. That is, TE in the absence of SPE failed to induce implicit recalibration, arguing against models in which SPE-299 

dependent and TE-dependent learning processes operate in a strictly independent manner.  300 

 301 
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Given the failure of this simple model and the dependency of TE on SPE, we considered different ways in which SPE-302 

dependent and TE-dependent processes might interact. We varied task outcome in a continuous manner by jumping the 303 

target, either away from the perturbed cursor (increasing TE), towards the perturbed cursor (reducing TE), or to the location 304 

of the perturbed cursor (nullifying TE; i.e., SPE only). In stark juxtaposition to the failure of TE only to elicit implicit 305 

recalibration, SPE only reliably elicited implicit recalibration, which is a finding consistent with previous literature (Kim et 306 

al., 2019; Leow et al., 2018, 2020).  307 

 308 

By modulating TE in a fine-grained, continuous manner, we revealed an unexpected, asymmetrical effect on implicit 309 

recalibration: Implicit recalibration decreased when TE decreased yet remained largely unaffected when TE increased. 310 

These results are at odds with the hypothesis that task outcome provides a binary reward signal (Figure 3c, d), with TE 311 

being present when the cursor misses the target and TE being absent when the cursor hits the target (Cashaback et al., 2017; 312 

Galea et al., 2015; Kim et al., 2019; Konrad Paul Körding & Wolpert, 2004; Nikooyan & Ahmed, 2015). This asymmetrical 313 

function is also at odds with the hypothesis where SPE-learning, the sole process driving implicit recalibration, is attenuated 314 

by a generic distractor effect of displacing the target (Figure 3e).  315 

 316 

Instead, the pattern of results supports a hybrid model, where implicit recalibration is driven by both TE and SPE, with each 317 

error signal having a modulatory effect on the other error signal (Figure 3f). Implicit recalibration scales with the size of 318 

TE, but only when SPE is also present. Implicit recalibration also scales with the size of SPE but is attenuated when the 319 

target is perturbed. We hypothesize that the modulation of SPE-based learning occurs because attention is directed away 320 

from the feedback cursor and towards the (displaced) target, an effect that increases with the size of the displacement. Taken 321 

together, this hybrid perspective underscores the rich, dynamic interplay between two distinct error signals that drive 322 

implicit recalibration in an interactive manner.  323 

 324 

We recognize that at this stage of development, the models are largely descriptive, intended to provide a qualitative sense 325 

of the behavioral changes that would be expected given different ways in which sensory prediction error and task error 326 

might interact. Future work will be required to develop stronger theoretical foundations and more rigorous experimental 327 

tests for the different assumptions underlying the models; for example, to ask if the signals follow normative principles such 328 

as optimal integration (Burge, Ernst, & Banks, 2008; Ernst & Banks, 2002) or relevance estimation (Wei & Körding, 2009).  329 
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 330 

While implicit recalibration seems to scale with TE in the presence of SPE, it remains unclear why TE alone fails to elicit 331 

recalibration. One possibility is that SPE serves as a gating signal, with recalibration only engaged in the presence of SPE 332 

and then responding to all sources of error information. Alternatively, the lack of an SPE may allow the brain to correctly 333 

attribute the target jump to an external cause (Konrad P. Körding et al., 2007; Shams & Beierholm, 2010; Wei & Körding, 334 

2009). In contrast, when a TE occurs in the presence of an SPE, the brain may be less confident in attributing the error to 335 

an external cause and, as such, use both sources of information to recalibrate the sensorimotor system. This latter hypothesis 336 

might account for the recent findings of Ranjan and Smith (2020) who observed robust adaptation in response to TE alone, 337 

a result at odds with the current study (Ranjan & Smith, 2020). Whereas our participants were told to ignore the 338 

manipulations of the cursor and the target, Ranjan and Smith instructed participants to hit the target with their cursor. These 339 

instructions may have rendered the position of the displaced target and the cursor relevant, thereby motivating participants 340 

to recruit more explicit re-aiming strategies to reduce TE (Oza, Kumar, & Mutha, 2020).  341 

 342 

The current study also highlights an important methodological issue. Similar to the way error clamps have provided a tool 343 

to isolate implicit recalibration, target jumps have been viewed as a way to provide a “pure” manipulation of TE. However, 344 

our results show an attenuated effect on implicit recalibration from the transient effects associated with perturbing the target, 345 

a result made salient by the conditions in which the target briefly disappeared and then reappeared at its original location. 346 

The transient sensory events associated with a target jump or flash might siphon attention away from the visual feedback, 347 

thereby weakening the overall learning signal. Alternatively, a transient distraction may have increased the likelihood that 348 

visual feedback is mis-localized, thus attenuating the motor system’s reliance on this uncertain feedback  (Burge et al., 2008; 349 

Konrad P. Körding & Wolpert, 2004; Tsay, Avraham, et al., 2020; Tsay, Kim, Parvin, Stover, & Ivry, 2021; Wei & Körding, 350 

2010). Regardless of the mechanism, our results underscore the importance of considering the distractive effect of a target 351 

jump manipulation and the consequences of this on implicit recalibration.  352 
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Methods: 353 

Participants and Apparatus  354 

All participants were between 18 – 30 years old and right-handed, as determined by either the Edinburgh handedness 355 

inventory (Oldfield, 1971) or through self-report. The protocol was approved by the IRB at University of Delaware and UC 356 

Berkeley.  357 

 358 

In-person participants (Exp 1 – 2): Undergraduate students were recruited from the University of Delaware community, 359 

receiving financial compensation for their participation at a rate of $10/hour. Participants were seated in front of a custom 360 

tabletop setup and held the handle of a robot manipulandum (KinArm: BKIN Technologies, sampling rate 200 Hz) that was 361 

positioned below a mirror. Visual feedback was projected by a monitor placed directly above onto the mirror, which 362 

occluded vision of the participant’s hand during the experiment. Peripheral vision of the arm was minimized by 363 

extinguishing the room lights. Participants completed the task by moving the robot manipulandum, which was constrained 364 

to a horizontal 2D plane.  365 

 366 

Online participants (Exp 3 – 4): Participants were recruited via Amazon Mechanical Turk, receiving financial compensation 367 

for their participation at a rate of $8/hour. Participants used their own laptop computer to access a customized webpage 368 

(Tsay, Lee, Ivry, & Avraham, 2021) hosted on Google Firebase (sampling rate typically ~60 Hz) (Anwyl-Irvine, Dalmaijer, 369 

Hodges, & Evershed, 2020; Bridges, Pitiot, MacAskill, & Peirce, 2020). Recruitment was restricted to trackpad users to 370 

minimize variability from different response devices. Participants completed the task by swiping their index finger on the 371 

trackpad.  372 

 373 

Reaching Task Procedure 374 

In-person procedure: Reaches were made from a start location to one target (90° location, straight ahead). The start location 375 

was indicated by a white ring (6 mm diameter) and the target by a blue circle (6 mm diameter), with the radial distance 376 

between the start location and target fixed at 10 cm. To initiate a trial, the robot arm moved the participant’s hand to the 377 

start location. Visual feedback of the hand position was given via a cursor (white circle 3.5 mm diameter) only when the 378 

hand was within 1 cm of the start position. Once the hand remained within the start location for 500 ms, the target appeared, 379 
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serving as a cue to indicate the location of the target and an imperative to initiate the reach. To discourage on-line corrections, 380 

participants were instructed to perform fast, ‘shooting’ movements through the target as soon as the target appeared.  381 

 382 

Reaction time (RT) was defined as the time from initial target presentation to the start of movement (defined as when the 383 

hand first exceeded 5 cm/s for at least 50 milliseconds). Movement time (MT) was defined as the time between the start of 384 

movement and when the hand crossed the radial target distance of 10 centimeters. To ensure that participants moved at a 385 

fast speed that excluded online feedback corrections, the message “Too Slow” appeared on the screen at the end of the trial 386 

when MT was < 40 cm/s at peak velocity. We also presented the message “Too Fast” if MT was > 70 cm/s at peak velocity 387 

to ensure that participants did not make simple ballistic movements in the general direction of the target (this criterion was 388 

rarely exceeded). After completing the reach, the participant was instructed to keep the arm and shoulder relaxed as the 389 

robot moved the hand back to the starting position.  390 

 391 

Online procedure: The reaching task was adapted for an online study. We did not obtain information concerning the monitors 392 

used by each participant; as such, we cannot specify the exact size of the stimuli. However, from our experience in 393 

subsequent studies, we assume that most online participants used a laptop computer. To provide a rough sense of the 394 

stimulation conditions, we assume that the typical monitor had a 13” screen with a width of 1366 pixels and height of 768 395 

pixel (Anwyl-Irvine et al., 2020). The center position was indicated by a white circle (0.5 cm in diameter) and the target 396 

location was indicated by a blue circle (also 0.5 cm in diameter). To ensure that reaches remain in the trackpad, we reduced 397 

the radial distance of the target to 6 cm and positioned the target at the 45° target (upper right quadrant). 398 

 399 

The participant made center-out planar movements by moving the computer cursor with her trackpad to a visual target. To 400 

initiate each trial, the participant moved their hand to the start location. Visual feedback of the hand position was given via 401 

a cursor (white circle 0.5 cm diameter) when the hand was within 1 cm of the start position. Once the hand remained within 402 

the start location for 500 ms, the target appeared, serving as a cue to indicate the location of the target and an imperative to 403 

initiate the reach. To discourage on-line corrections, participants were instructed to perform fast, ‘shooting’ movements 404 

through the target as soon as the target appeared. 405 

  406 
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RT was defined as the time from initial target presentation to the start of movement (i.e., when the hand movement exceeded 407 

1 cm from the start location). Due to the lower sampling rate of standard computer monitors compared to in-person setup, 408 

we opted to define RT in terms of movement distance (requiring fewer samples) rather than movement velocity (requiring 409 

more samples to adequately estimate). There were no constraints on RT. MT was defined as the time between the start of 410 

the movement and when the radial distance of the movement reached 6 cm. To ensure that the movements were made 411 

quickly, the computer displayed a “too slow” message if MT exceeded 300 ms. We did not include a “too fast” message 412 

since participants recruited online, based on our pilot results, err on the side of moving too slowly.  413 

 414 

There were three types of cursor feedback trials used throughout the in-person and online experiments: On veridical 415 

feedback trials, the cursor corresponded to the position of the hand. On clamped feedback trials, the cursor followed an 416 

invariant path along a constant angle with respect to the target. The radial distance of the cursor, relative to the start position, 417 

was yoked to the participant’s hand. In both types of feedback trials, the radial position of the cursor matched the radial 418 

position of the hand until the movement amplitude reached the radial distance of the target, at which point the cursor froze 419 

for 50 ms. On no-feedback trials, the cursor was blanked when the target appeared, and did not re-appear until the participant 420 

had completed the reach and returned to the start location for the next trial.  421 

 422 

There were also target jump trials, where upon movement initiation (i.e.,  in-person: velocity > 5 cm/s; online: radial distance 423 

> 1 cm), the original target was blanked and immediately re-positioned at a new target location (i.e., one screen refresh 424 

between offset of original target to onset of new target; in-person: within 1 ms; online: <15 ms, accounting for the delay in 425 

the monitor system (Anwyl-Irvine et al., 2020; Bridges et al., 2020)). We varied the size of the target jump and categorized 426 

these based on the relative position of the new target location to the clamped cursor position: jump-past, jump-to, jump-427 

near, jump-away, and jump-in-place. When the target jumps in the direction of the the clamped cursor feedback, the size of 428 

the target jump could either be greater than (jump-past), equal to (jump-to), or less than (jump-near) the clamped angle. On 429 

jump-away trials, the target was repositioned in the direction opposite to the clamped feedback. On jump-in-place trials, the 430 

target disappeared upon movement initiation (1 refresh) and then reappeared (1 refresh) in the same (original) location (<30 431 

ms, accounting for delays in the system). While jump-in-place has a longer interval between successive displays of the 432 

target compared to other target jump conditions, this interval ensured that jump-in-place trials elicited a detectable 433 

disturbance to the visual display, something that was obvious in the other target jump conditions.  434 
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 435 

 436 

 437 

Experiment 1 – 2, In-person Experiments 438 

Reaching trials were performed to the 90º target (straight ahead). The experiment began with 100 baseline reaching trials 439 

with veridical feedback, provided to familiarize the participants with the reaching task. These trials were used to emphasize 440 

that movements should “shoot” through the target and demonstrate that the feedback and target would disappear soon after 441 

the movement amplitude exceeded the radial distance of the target.  442 

 443 

The participant then completed a block of perturbation trials. Just before the start of this block, the error clamp and target 444 

jump manipulations were described to the participant, and she was told to ignore the cursor “feedback” as well as any change 445 

in the position of the target, always attempting to reach directly to the original target. To help the participant understand the 446 

task irrelevant nature of the clamped feedback and target jump, three demonstration trials were provided. The target 447 

appeared straight ahead at 90º and the participant was told to reach to the left (demo 1), to the right (demo 2), and backward 448 

(demo 3). The cursor moved in a straight line with a 45º offset from the original target in all three trials, and the target 449 

“jumped” upon movement initiation 0° (demo 1), 45° (demo 2), and 90° (demo 3) away from the original target.  450 

 451 

Table 3 N Setting Perturbation Conditions 
Set Clamp size (°) Target jump (°) Figure 

Exp 1 12 In-Person -- 
0, ±4, ±16 0 2c 
0 0, ±4, ±16 2d 

Exp 2 40 In-Person 
A 

-4 0, -4, -8  2e, 3a +4 0, +4, +8 
0 0, ±4 2f 

B ±4 0, ±8 2g, 3a 
0 0, ±8 2h, 3a 

Exp 3 100 Online A ±3  ±3, 0, 0jump-in-place   3b 
B ±7  ±3, 0, 0jump-in-place 3c 

Exp 4 210 Online 

A 
+3 -10, -3, 0, +3, +7, +10, +17 

4b 

-3 +10, +3, 0, -3, -7, -10, -17 

B +7 -10, -3, 0, +3, +7, +10, +17 
-7 +10, +3, 0, -3, -7, -10, -17 

C ±3 ±0, ±10, ±17, ±30 
D ±7 ±0, ±10, ±17, ±30 

 
Table 3: Summary of experiments. 
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In Exp 1, the perturbation block was composed of mini-blocks (Table 3; 804 perturbation trials = 4 mini-blocks x 201 452 

trials/mini-block) of either SPE + TE perturbations (i.e., when clamped feedback is paired with a stationary target) or TE-453 

only perturbations (i.e., when a 0° clamp is paired with a target jump). We opted to keep these perturbation conditions 454 

separate to minimize any interference or generalization of learning from one trial type to another (Dang, Parvin, & Ivry, 455 

2019; J. W. Krakauer, Ghilardi, & Ghez, 1999; Lerner et al., 2020). SPE + TE and TE-only mini-blocks were interleaved, 456 

with the order counterbalanced across individuals. Within each mini-block, there were 20 trials per condition provided in a 457 

random, zero-mean order (with the exception of 21 trials for 0° clamp x 0° target jump). This resulted in 80 trials per clamp 458 

size x target jump combination across the entire experiment (84 trials in the 0° clamp, 0° target jump condition).  459 

 460 

The perturbation block in Exp 2 was not composed of mini-blocks. Instead, we opted to randomize all perturbation 461 

conditions across the entire experiment (724 trials) to evaluate whether our results from Exp 1 would hold under another 462 

perturbation schedule. To sample a wider range of clamp size x target jump combinations while keeping the experiment 463 

within 1 hour to minimize fatigue, participants experienced different sets of perturbations (Set A or Set B). In Set A, the 464 

target always jumped in the same direction as the error clamp, while in Set B, the target either jumped in the same or in the 465 

opposite direction of the error clamp (Table 3). There were 80 trials per clamp size x target jump combination (84 trials for 466 

the 0° clamp, 0° target jump condition).  467 

 468 

Experiment 3 – 4, Online Experiments 469 

Due to the onset of the pandemic, Exp 3 – 4 were conducted online. With this approach, we were able to increase our sample 470 

size in an efficient manner, providing greater power to detect subtle differences between target jump conditions. We used 471 

an motor learning platform (OnPoint) (Tsay, Lee, et al., 2020, 2021) and recruited participants using Amazon Mechanical 472 

Turk. Despite substantial differences between in-person and online sensorimotor learning experiments (e.g., in-person: dark 473 

room to occlude vision of the hand; online: full visibility of the hand for trackpad users), we have found that the results 474 

obtained online are quite similar to those obtained in-person (Tsay, Lee, et al., 2021).  475 

 476 

We made several additional changes to the experiment. We included “attention checks” to verify whether participants 477 

attended to the task. Specifically, during the inter-trial interval, participants occasionally were instructed to make an arbitrary 478 

response (e.g., “Press the letter “b” to proceed.”). If participants failed the make the specified keypress, the experiment was 479 
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terminated. These attention checks were randomly introduced within the first 50 trials of the experiment. We also included 480 

“instruction checks” after our three demo trials to assess whether participants understood the nature of the error clamp and 481 

target jump manipulations: “Identify the correct statement. Press 'a': I will aim away from the original target. I will ignore 482 

the white dot. Press 'b': I will aim directly towards the original target location and ignore the white dot.” The experiment 483 

was terminated if participants failed to make an accurate keypress (i.e., “b”).  484 

 485 

The block structure in Exp 3 and 4 were the same, composed of a baseline block with veridical feedback (28 trials) and a 486 

perturbation block with clamp feedback paired with target jumps (Exp 3: 120 trials; Exp 4: 252 trials). All perturbation 487 

conditions were randomized in a zero-mean manner throughout the experiment. The perturbation conditions were again 488 

divided into sets (See Table 1; Exp 3: Sets A—B; Exp 4: Sets A—D) to sample a wider range of clamp size x target jump 489 

combinations, while keeping the experiment within 1 hour. There were 30 trials per clamp size x target jump combination 490 

in Exp 3 and 18 trials per combination in Exp 4.  491 

 492 

Data analysis, Model Free 493 

The primary dependent variable of reach performance was the hand angle, defined as the hand position relative to the target 494 

when the movement amplitude reached the target distance (i.e., angle between the lines connecting start position to target 495 

and start position to hand).  496 

 497 

Outlier responses were defined as trials in which the hand angle deviated by more than 3 standard deviations from a moving 498 

5-trial window. These outlier trials were excluded from further analysis, since behavior on these trials could reflect 499 

attentional lapses or anticipatory movements to another target location (average percent of trials removed per participant ± 500 

SD: Exp 1: 0.2 ± 0.2%; Exp 2: 0.1 ± 0.2%; Exp 3: 0.8% ± 0.8%; Exp 4: 1.1 ± 0.1%). 501 

 502 

As a measure of trial-by-trial implicit recalibration, we evaluated each participant’s median change in hand angle on trial n 503 

+ 1, as a function of the perturbation condition (clamp size x target jump) on trial n (Δ Hand Angle).  504 

 505 

We sought to determine whether SPE + TE and TE-only perturbations elicit robust sign-dependent changes in hand angle 506 

(Exp 1 and 2). Specifically, in the SPE + TE condition, we expect implicit recalibration to result in a change in hand angle 507 
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in the opposite direction of the error clamp (e.g., a CW clamp eliciting a CCW change in hand angle). In contrast, in the 508 

TE-only condition, we expect implicit recalibration to be in the same direction as the target jump (e.g., a CW target jump 509 

eliciting a CW change in hand angle). To better visualize the difference between SPE + TE and TE-only conditions, the 510 

sign of the target jump was flipped, such that the expected change in hand angle would also be in the opposite direction of 511 

the perturbation (i.e., a negative target jump would elicit a positive change in hand angle). Each participants’ data were 512 

submitted to a linear regression with perturbation size (Exp 1: 0, ±4°, ±16°; Exp 2, Set A: 0, ±4°; Exp 2, Set B: 0, ±4°, ±8°) 513 

and perturbation type (clamp vs target jump) as main effects. The mean regression slopes (𝛽) ± SEM across participants 514 

were provided.  515 

 516 

To ask whether the effect of TE would be conditional on the presence of SPE, we submitted each participants’ data in Exps 517 

2 and 3 to a linear regression with target jump size and task set as main effects. Post-hoc contrasts were performed using 518 

two tailed t-tests, and P values were Bonferroni corrected. The mean regression values (𝛽) ± SEM across participants were 519 

provided.  520 

 521 

Data analysis, Model Based 522 

In this section, we formalize the six models justified in the Results section titled: “Modeling the potential ways in which TE 523 

and SPE may interact to drive implicit recalibration.” The development of these models was based on different assumptions 524 

about how the size of target jumps (𝜃.) and the size of the error clamp (𝜃/) impact the processing of SPE and TE.  525 

 526 

The first set of models posit that the motor system responds only to SPE (Table 4: SPE only column): First, SPE may be 527 

impervious to target jumps (Invariant SPE), where motor updates are not affected by target jumps (𝑈𝜃𝑗01, or the motor 528 

update during no-jump). Second, SPE may be attenuated when the cursor lands in the target, modulated by intrinsic reward 529 

(Rewarded SPE). The amount of reward modulation could vary with 𝛾2, a gain value determining the amount of attenuation, 530 

and 𝜎2, the standard deviation of reward function determining the scope of attenuation. Third, SPE may be attenuated due 531 

to a distracting effect of target jumps, which may siphon attention away from processing feedback and/or the movement 532 

goal (Distracted SPE). The attenuation may be due to the presence of a target jump (a fixed cost, 𝐶-) and the size of the 533 

target jump (variable cost, modeled as a gaussian decay with standard deviation 𝜎3).  534 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.06.20.449180doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.20.449180
http://creativecommons.org/licenses/by-nd/4.0/


 27 

 535 

We recognize that the distracted SPE hypothesis may take on a different form, where there may only be a fixed cost or only 536 

be a variable cost (or a different type of variable cost, like an inverted gaussian). However, these models fail to qualitatively 537 

capture our results, and therefore, we opted not to include these models in our formal analysis. We also recognize that, at 538 

present, we only consider how target jump impacts learning from SPE, whereas target jumps may also impact learning from 539 

TE. 540 

 541 

Alternatively, implicit recalibration may also be driven by both SPE and TE-based learning processes (Table 4: SPE + TE). 542 

The contribution of TE was assumed to vary with the distance between the cursor feedback and the new target position in a 543 

linear fashion. 𝛽45 captures the slope of this function, and the 𝜃/ − 	𝜃. term constrains implicit recalibration from TE to 0 544 

when TE is 0 (i.e., when the target jumps onto the cursor feedback). This model assumes the net motor update (𝑈46789) to 545 

be the sum of a SPE-based learning process (𝑈:;5) and a TE based learning process (𝑈45).  546 

 547 

  548 

We evaluated the six models by simultaneously fitting group-averaged data for both ±3° and ±7° clamp groups in Exp 4. 549 

To quantify model performance, we calculated 𝑅$ and AIC (Akaike Information Criterion) scores. The winning model was 550 

the model with the largest 𝑅$	and the smallest AIC. In order to calculate confidence intervals for the parameter estimates, 551 

we applied standard bootstrapping techniques, constructing group-averaged hand angle data 1000 times by randomly 552 

resampling with replacement from the pool of participants within each group. We started with 10 different initial sets of 553 

parameter values and estimated parameter values that minimized the least squared error between the bootstrapped data and 554 

the model output.  555 

 556 

Table 4 SPE Only SPE + TE 

Invariant SPE 𝑈'(" =	𝑈)"*	, 

𝑈!-./0 =	𝑈!" + 𝑈'(" 
 

𝑈!" =	𝛽!"(𝜃1 − 	𝜃2) 
Rewarded SPE 𝑈'(" =	𝑈)"*, −	𝛾3𝑒

4()#4	)")$

$7%$
8

 

Distracted SPE 𝑈'(" =	 (𝑈)"*, −	𝐶9)	𝑒
()")$

$7&
$8
 

 
Table 4: Summary of models. Parameters could either be free (red) or fixed (black, based on empirical data in Exp 4). 
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