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Many drugs interact with ion channels in the cells
of the heart and trigger heart rhythm disorders with
potentially fatal consequences. Computational modeling
can provide mechanistic insight into the onset and
propagation of drug-induced arrhythmias, but the effect
of drugs on the mechanical behavior of the heart remains
poorly understood. Here we establish a multiphysics
framework that integrates the biochemical, electrical, and
mechanical effects of drugs from single cardiac cells to
the overall response of the whole heart. For the example
of the drug dofetilide, we show that drug concentrations
of 3.0x and 4.8x increase the heart rate to 122 and 114
beats per minute, increase the myofiber stretches up to
10%, and decrease tissue relaxation by 6%. Strikingly,
the drug-induced interventricular and atrial-ventricular
dyssynchrony results in a 2.5% decreased and 7%
increased cardiac output, respectively. Our results
demonstrate the potential for multiphysics, multiscale
modeling towards understanding the mechanical
implications of drug-induced arrhythmias. Knowing
how differing drug concentrations affect the performance
of the heart has important clinical implications in drug
safety evaluation and personalized medicine.
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Motivation
All medications have side effects. Drug-induced ventricular
arrhythmia and sudden cardiac death are rare but severe
adverse events that should be avoided at all cost.
Consequently, when a new drug is developed, the
proarrhythmic potential of the new compounds is a key
concern. The current gold standard pharmacological
pro-arrhythmic risk stratification combines in vitro experiments
to quantify pharmacological blocking of specific cardiac ion
channels, with electrocardiographic large animal experiments
and clinical studies focusing on changes in tissue activation
duration. Although these biomarkers show good sensitivity,
they are costly and have poor specificity, potentially blocking
safe new drugs from ever reaching the market (38). To
develop novel and more accurate drug-induced arrhythmia
biomarkers, multiphysics multiscale models mechanistically
couple what a pharmacologist sees in a single cell experiment
to what a physician sees in a clinical electrocardiogram (7).
As part of these efforts, our group has recently proposed
an electrophysiological exposure-response simulator that
integrates the interaction between multiple drug compounds
and specific ionic currents at the cellular scale with the
intrinsic cardiac anisotropic conductivity at the tissue scale
and the transmural heterogeneity and tissue organization
at the organ scale (42). This framework allows us to
conduct in silico drug trials for multiple drugs at various
concentrations (46), providing risk categories that correlate

well with reported drug-induced arrhythmia incidence (43).
Based on these results, we trained and validated a
binary risk classifier that accurately predicts the critical
pro-arrhythmic drug concentration (45). From a clinical
perspective however, a binary risk classification only provides
a limited insight into the malignancy of the arrhythmic
event. Dependent on the periodicity of the drug-induced
arrhythmia, the cardiac output can increase, decrease
or stay relatively constant. Consequently, short-duration
non-sustained arrhythmogenicity can have multiple outcomes
for the patient. In this study, we extended our framework
to provide insights into the changing cardiac output of
the heart at varying arrhythmogenic drug concentrations.
More specifically, we use the electrophysiogical activation
sequence to drive biomechanical tissue contraction in the
human heart and study the resulting hemodynamic effects
on the whole-body cardiovascular circulation. Doing so,
we compute a drug’s pharmacological potential to impede
efficient propulsion of blood through the heart chambers and
the rest of the body. As such, we extend what a physician
sees in a clinical electrocardiogram to what a patient feels
and how likely they are to survive specific dosage-dependent
drug-induced arrhythmia events.

Methods

Cardiac electrophysiology. We simulate the
electrophysiological behavior of cardiac tissue using
the monodomain model (41). The main variable of the
monodomain model is the transmembrane potential φ, the
difference between the intra- and extra-cellular potentials. The
transmembrane potential is governed by a reaction-diffusion
equation (20)

φ̇= div(D ·∇φ) +fφ . (1)

Here, we introduce the source term fφ which represents the
ionic currents across the cell membrane and the conductivity
tensor D, which we further decompose into fast D‖ and
slow D⊥ signal propagation parallel and perpendicular to the
cardiac mucle fiber direction f respectively (12),

D =D‖f ⊗f +D⊥[I−f ⊗f ] . (2)

In general, the ionic currents fφ(φ,q(φ); t) are functions of
the transmembrane potential φ and a set of state variables
q(φ) (22; 53), where the state variables themselves are
governed by ordinary differential equations, q̇ = g(φ,q(φ); t) .
The number of currents and state variables determines the
complexity of the model and varies for different cell types. To
simulate the electrophysiological behavior of the Purkinje fiber
network, we choose the Stewart model for human Purkinje
fiber cells (47). A characteristic feature of this model is the
automaticity of its action potential, which enables the cells to
self-excite without an external stimulus. This model is based
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on 14 ionic currents

I =ICaL + INa + ICab + INab + IKr

+ IKs + IK1 + Ito + If + Isus

+ INaK + IpCa + IpK + INaCa

(3)

that are defined through 20 state variables. To study the
spatiotemporal action potential evolution in the myocardium,
we select the O’Hara-Rudy model for human ventricular
cardiomyocytes (27). This model was developed based on
a vast amount of human experimental data and includes
description of key ionic currents for drug-induced arrhythmias.
More specifically, the model is based on 15 ionic currents,

I =ICaL + INa + ICaNa + ICaK + ICab

+ INab + IKb + IKr + IKs + IK1

+ Ito + INaK + IpCa + INaCa,i + INaCa,ss

(4)

of which we replaced the fast sodium current INa of the
original O’Hara-Rudy model with a modified fast sodium
current of the ten Tusscher model (48) to model propagation
in tissue scale simulations (36). These 15 transmembrane
ion currents are defined through a total of 39 state variables.
To account for regional specificity, we reparametrize the
cardiomyocyte cell model for three different cell types:
endocardial, mid-wall, and epicardial cells (27).

We incorporate drug effects by blocking the currents of
the pharmacologically affected ion channels on the Purkinje
and cardiomyocyte cell membrane. Based on discrete
experimental patch clamp measurements of the fractional ion
channel block at various drug concentrations (8), we fit a
Hill-type equation

β = Ch

ICh50 +Ch
, (5)

to describe fractional blockage β at any possible drug
concentrations C. Here, the drug’s concentration-specific ion
channel block is completely described by two parameters: the
exponent h and the concentration IC50 required to achieve
a 50% current block. We focus on the drug dofetilide, an
anti-arrhythmic drug typically used for treating atrial fibrillation.
This drug is a selective IKr blocker, characterized by the Hill
parameters hKr = 0.65 and IC50,Kr = 1.55 nM. To apply the
drug at a desired concentration C, we calculate the fractional
blockage βKr and scale the rapid delayed rectifier potassium
ion channel conductance,

Idrug
Kr = [1−βKr ]IKr (6)

by multiplying the baseline current IKr with the fractional
blockage [1−βKr ]. Based on previous work which delineated
the critical concentrations of dofetilide for developing
arrhythmic events (44), we focus in particular on applying
dofetilide at 3x, 4.8x, and 18.5x its free plasma concentration,
Cmax = 2.1 nM. This corresponds to dofetilide concentrations
of 6.3 nM, 10.1 nM, and 38.9 nM and a rapid delayed rectifier
potassium current IKr channel block of 75%, 80%, and 90%
respectively.

To solve the governing equations 1–6 we adopt the finite
element software package Abaqus Unified FEA (part of
3DExperience Simulia software suite, Dassault Systemes,
Providence, RI, USA) (1). We exploit the structural similarities
of the electrophysiological problem with a heat transfer
problem with a non-linear heat source. We discretize the
transmembrane potential as a nodal degree of freedom and

the ionic currents and gating variables as internal variables
(12). Motivated by the small time step size to resolve the fast
dynamics during the initial phase of the action potential, we
adopt an explicit time integration scheme.

Cardiac mechanics. To model the mechanical behavior of
cardiac tissue, we solve the equilibrium equations derived
from Newton’s laws of motion and the conservation of mass.
Solving for a static state of equilibrium, these equations
translate to

∇σ+ρfϕ = 0

σ = σT
(7)

where σ is the Cauchy stress tensor, ρ is the material
density and fϕ is the body force per unit mass. Additional
boundary conditions truncate the computational domain.
To solve the resulting system of equations, we prescribe
constitutive relations between the Cauchy stress σ and the
tissue deformation and electrophysiology. We first assume
the tissue stress state consists of individual passive and active
contributions,

σ = σpass +σact . (8)

We characterize the kinematics of finite deformation using the
deformation gradient

F =∇ϕ, (9)

where ϕ denotes the deformation field that maps particles X
in the undeformed material configuration B0 to particles x =
ϕ(X,t) in the deformed material configuration B. We perform
a multiplicative decomposition of the deformation gradient into
its volumetric F vol and isochoric F̄ contribution

F = F̄ ·F vol , (10)

where F vol = J1/3I and the Jacobian J = det(F ). It follows
that F̄ = F ·F−1

vol = J−1/3F . We deduce measures of tissue
stretch using the right and left Cauchy-Green tensors, defined
as C = FTF and B = FFT . Their isochoric counterparts
are defined by C̄ = F̄

T
F̄ = J−2/3C and B̄ = F̄ F̄

T =
J−2/3B. To describe a constitutive stress-stretch relationship
that is invariant under superposed rigid body deformations, we
define the following stretch invariants

Ī1 = C : I = det(C̄)
Ī4f = C : (f0⊗f0)
Ī4s = C : (s0⊗s0)
Ī4fs = C : sym(f0⊗s0)

(11)

Here f0 and s0 describe unit orientation vectors along the
considered local material point’s myofiber and sheet direction
in the undeformed configuration, respectively. We describe
the passive hyperelastic behavior of myocardial tissue using
the Holzapfel-Ogden and Arruda-Boyce strain energy function
(15; 13; 2). We decompose the strain energy into an isochoric
contribution ψ̄ and a volumetric contribution ψvol, which reads

ψpass = ψvol + ψ̄ = ψvol + ψ̄iso + ψ̄aniso (12)

and further decompose the isochoric strain energy into an
isotropic and anisotropic contribution. These strain energy
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contributions read

ψvol = 1
D

(
J2−1

2 − lnJ
)

ψ̄iso = a

2b exp[b(Ī1−3)]

ψ̄aniso =
∑
i=f,s

ai
2bi
(
exp
[
bi(Ī4i−1)2]−1

)
+
afs
2bfs

(
exp
[
bfs(Ī4fs)2]−1

)
(13)

Here ψ̄iso corresponds to the strain energy contributions
of the isotropic ground matrix material, whilst ψ̄aniso
consolidates the anisotropic strain energy contributions of the
cardiomyocytes and the families of collagen fibers embedded
within the tissue. By deducing the second Piola-Kirchoff stress
tensor Spass from the strain energy function, we compute the
passive Cauchy stress tensor using push-forward operations
σpass = J−1FSpassF

T ,

σpass = σvol + σ̄iso + σ̄aniso (14)

We deduce the following volumetric, isotropic and anisotropic
passive Cauchy stress contributions,

σvol = 1
D

(
J− 1

J

)
I

σ̄iso =aexp
[
b
(
Ī1−3

)]
B

σ̄iso =2af
(
Ī4f −1

)
exp
[
bf
(
Ī4f −1

)2
]
f ⊗f

+ 2as
(
Ī4s−1

)
exp
[
bs
(
Ī4s−1

)2
]
s⊗s

+afsĪ4fs exp
[
bfs
(
Ī4fs

)2
]

(f ⊗s+s⊗f)

(15)

where f = Ff0 and s= Fs0 respectively denote the myofiber
and sheet directions in the deformed configuration.
We describe the active stress contribution using a
time-varying elastance model (51) which depends on
the regional action potential and sarcomere stretch state λf
(Frank-Starling effect):

σact = Tact
([

Ca2+] ,λf
)

(f ⊗f +ν s⊗s) (16)

where ν describes the active stress interaction between
adjacent muscle fibers along the sheet direction s (30). The
depolarization of the cardiac tissue drives the onset of the
active stress generation.

We solve the governing equations 7–16 within the finite
element software package Abaqus (1). We set up a
Fortran-based user-defined material subroutine describing the
Cauchy stress with respect to the deformation invariants,
membrane potential (temperature; electrophysiology - heat
transfer analogy, ex supra) and time.

Finite element implementation. The basis for our simulation
is the Living Human Heart Model, an anatomically accurate
four-chamber model of the healthy human heart (4;
32). The underlying anatomic geometry is based on
magnetic resonance imaging of a healthy, 30-year old, 50th
percentile U.S. male (54). Images were reconstructed from
0.75 mm thick slices using a medium soft-tissue kernel with
retrospective electrocardiogram gating. Data acquisition
and reconstruction were performed during 70% diastole.
The resulting anatomically accurate model includes all four

chambers, and the major vessels including the aorta, the
pulmonary arteries and the superior vena cava. We prescribe
the complex myocardial and atrial architecture of myofiber f0
and sheet s0 orientations using rule-based algorithms based
on observations from histology and DT-MRI (24; 5; 30).

In this study, we neglect mechano-electrical feedback (40)
and successively solve the electrical and mechanical problem.
The balance between accuracy and computational cost
with respect to element size and critical time step for the
defined electrophysiological and mechanical problem leads
to two different sets of spatiotemporal discretizations (34; 3).
Consequently, we use two different meshes; one to solve the
electrophysiological problem in both ventricles specifically and
one to subsequently couple the electrophysiological results to
the full heart model’s mechanical behavior. For each case, we
simulate five seconds without any drug administration followed
by an additional five seconds of drug exposure to study the
effect of dofetilide on the mechanical behavior and pump
efficiency of the heart.

Electrophysiological drug response.

Ventricular tissue model Given our focus on drug-induced
ventricular arrhythmogenesis and the fact that the atria are
electrically isolated from the ventricles, we concentrate on
electrophysiological drug effects in the ventricles. Motivated
by the relationship between element size and critical time
step size in explicit methods, we converted the ventricular
geometry into a regular discretization of cube elements
with a constant edge length of 0.3 mm across the entire
domain. This results in a discretization with 6,878,459
regular linear hexagonal finite elements, 7,519,918 nodes,
and 268,259,901 internal variables. For the flux term,
we include tissue anisotropy using the fiber definitions f0
and assign longitudinal and transverse conductivities D‖ =
0.090 mm2/ms and D⊥ = 0.012 mm2/ms (26). For the
source term, we employ a body flux subroutine to incorporate
the ionic currents Iion in the solid element formulation (1). To
account for and assign regional variations in cell type, we ran
a series of Laplace problems using the finite element mesh
with different essential boundary conditions (33). From the
solutions, we defined the different cell types across the wall,
20% of endocardial cells, 30% of mid wall cells, and 50% of
epicardial cells. This arrangement ensures positive T-waves
in the healthy baseline electrocardiogram (28).

Purkinje network model The inclusion of the Purkinje
network is critical to model correct excitation patterns (20).
We create the network as a fractal tree that grows on the
endocardial surface (39). This results in a discretization with
39,772 linear cable elements, 39,842 nodes, and 795,440
internal variables. For these Purkinje fiber elements, we
developed a linear user element with a discrete version of
equation 1. We only connect the Purkinje network to the
ventricular tissue at the terminals of the fractal tree (35).
For these connections, we use 3,545 resistor elements with
a resistance of 1.78Ωm, i.e., χ = 140 mm−1 and Cm =
0.01µF/mm2 (26), between each endpoint of the network
and the closest node of the ventricular mesh (6). This
allows us to adopt distinct cellular models with different resting
potentials for ventricular cells and Purkinje cells. Including
resistor elements ensures a bi-directional conduction between
Purkinje network and surrounding tissue. For the flux term, we
set a conductivity of D = 3.0 mm2/ms.
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Figure 1. Spatial discretization to compute the electrophysiological and mechanical solution. A mismatch in required spatiotemporal discretization to solve
the electrophysiological and mechanical problem leads to two different mesh sizes. To quantify the effects of the drug dofetilide on the activation sequence of the
heart, we discretized the ventricles using 39,772 linear cable elements describing the Purkinje fibers and 6,878,459 regular linear hexagonal elements describing the
myocardial tissue. Concomitantly, we computed the biomechanical behavior of the ventricles using a mesh consisting of 192,040 tetrahedral elements. We meshed
the atria and proximal vasculature using 98,683 additional tetrahedral elements.

Electrocardiogram Computation To calculate pseudo
electrocardiograms, at every point x ∈ B across the heart
we project the heart vector ∇φ onto the direction vector
∇(1/||r||) and integrate this projection across the entire
cardiac domain B (19; 20),

φe(xe) =−
∫
B
∇φ ·∇ 1

||r||dV with r = ‖xe−x‖ . (17)

The vector r points from current point x to the electrode
position xe. To mimic one of the pre-cordial leads in the clinical
electrocardiogram, we place the electrode 2 cm away from the
left ventricular wall. This pre-cordial lead is commonly used
to study T waves and QT intervals (14), which are critical to
assess the risk of drug toxicity (37).

Mechanical drug response.

Electromechanical coupling For the mechanical problem, a
coarser spatial discretization suffices to compute accurate
responses (4). Therefore, we discretized the ventricles
using 192,040 linear tetrahedral elements with a mean
edge size of 2.5 mm and 44,182 nodes. Consequently,
the electromechanical coupling requires the interpolation
of a three-dimensional 7,519,918 nodal temperature field
to a three-dimensional 44,182 nodal temperature field.
This was accomplished using Abaqus’s temperature field
interpolation functionality between dissimilar meshes in
subsequent analyses (1). The full heart mesh, including
atria and proximal vasculature parts, comprises 76,282 nodes
and 290,723 elements and local fiber- and sheet-orientation
assignments. This discretization introduces 228,846 degrees

of freedom for the vector-valued deformation. We decribe
the atrial action potential, which is not explictly simulated in
the electrophysiological ventricular drug-exposure response
simulator, using a physiological amplitude step function (18).
We report quantitative myofiber stretches across the left and
right ventricular wall according to the temporal mean value
(and the 95% confidence interval).

Coupling to cardiovascular circulation In order to provide
realistic loading conditions and hemodynamic boundary
conditions for the atria and ventricles in the heart
model, a closed-loop lumped parameter model was set
up in Abaqus (4). This lumped parameter model
comprises the surface-based fluid cavity representation of
the four chambers and additional unit cube fluid cavities
representing the arterial and venous systemic and pulmonary
circulation respectively. We model the mitral/tricupus valve,
the aortic/pulmonary valve, and the systemic/pulmonary
resistance flow resistances between these chambers using
fluid exchange resistors. We model chamber-specific
structural compliances of the additional arterial, venous, and
pulmonary chambers using capacitors on one free wall of the
unit cube fluid cavities. Since we deduce the geometry of the
heart at 70% diastole with the heart already hemodynamically
loaded, we estimate the in vivo stress state at the beginning of
the simulation using an inverse prestressing method (11; 29).

Pressure-volume loops and cardiac output The pressure and
volume in the left and right ventricle is computed using
the hemodynamic fluid-cavity definition of both chambers in
Abaqus. From these measurements, the pressure-volume
loops in both ventricles are extracted. We compute
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the average stroke volume using the last three simulated
dynamically changing pressure volume loops. The average
case-specific heart rate is computed based on the average
time difference between the last three strokes. Similarly,
the time difference between the maximum left and right
ventricular contraction is extracted from the last three
ventricle-specific contraction sequences. The instantaneous
left and right ventricular cardiac output is computed based
on the outflow from the left and right ventricular fluid cavity
respectively. A 2-second rolling average of this instantaneous
outflow expressed as average outflow per minute provides
a more descriptive insight on how the cardiac output
changes with respect to different administered dofetilide drug
concentrations.

Results

Electrophysiological drug effects. Figure 2 and the
Supplementary Video show the different activation patterns for
the baseline case, dofetilide 3x, dofetilide 4.8x and dofetilide
18.5x. These cases correspond to zero, 75, 80 and 90%
block of the Ikr ion channel current respectively. For the
baseline case, where no drug is applied, we observe a
regular activation sequence that repeats itself ten times in
the electrocardiogram. The QRS complex, which represents
the fast depolarization driven by the Purkinje network, is
preceded by a P wave, which highlights the atrial activation.
By blocking the Ikr current 75%, induced by administration
of 3x dofetilide five seconds after drug-free pacing, we see
a disruption in the periodic rhythm of the ventricles, leading
to arrhythmogenesis that shares features of torsades de
pointes. The first electrophysioligcal depolarization wave after
drug administration is still driven by the Purkinje network,
as shown in the first snapshot, followed by a delay in
repolarization, which leads to a secondary activation caused
by early afterdepolarizations in a group of midwall cells. The
case of 80% block of Ikr induced by 4.8x dofetilide also
shows drug-induced arrhythmogenicity, which is qualitatively
similar to the 75% block case. However, the differences
in both activation patterns and electrocardiogram recordings
highlight the chaotic nature of the arrhythmia, where only
a small perturbation in Ikr block leads to a significantly
different temporal evolution of the transmembrane potential.
At 3x dofetilide, the left and right ventricle first get activated
from base to apex and subsequently from right to left
ventricle. At 4.8x dofetilide administration, the depolarization
wave evolves towards a left to right ventricular activation
sequence. The final case of 90% block of Ikr caused by 18.5x
dofetilide shows an arrhythmia that is closer to ventricular
fibrillation, as there are multiple spiral waves driving contractile
tissue activation. This chaotic behavior is reflected in the
electrocardiogram, where the QRS complexes during the
arrhythmia are less defined, with a lower amplitude.

Mechanical drug effects. Figure 3 and the Supplementary
Video highlight the effect that different drug concentrations
have on the time sequence of regional myocyte activation over
time. The shown snapshots correspond to the time points
from Figure 2 with a delay of 50ms (to showcase the locally
induced myocardial contraction following a depolarization
wave). Figure 4 showacases the left and right ventricular
myofiber stretch evolution over time during the five seconds
after drug administration. For the baseline no-drug case, the
orchestrated depolarization wave of both the left and right

ventricle from apex to base causes the ventricles to contract
collectively, pushing the blood volume out to the systemic
and pulmonary circulation in one cooperative squeeze.
More specifically, the myofiber stretches during maximum
contraction measure 0.768 (95% CI: 0.651 - 0.898) and
0.711 (95% CI: 0.620 - 0.950) for the left and right ventricle
respectively. Moreover, the myocardium is fully relaxed during
the atrial contraction, allowing an optimal additional filling of
the ventricles during the atrial kick. The myofiber stretches at
full relaxation amount to 1.072 (95% CI: 0.981 - 1.165) and
1.058 (95% CI: 0.926 - 1.201) for the left and right ventricle
respectively. The myofiber contraction and relaxation remain
in complete sync with an average absolute time difference of
25ms between maximum left and right ventricular contraction.
For the left ventricle, we compute minimum and maximum
myofiber stretches of 0.651 and 1.179 respectively. The 3x
dofetilide-induced arrhythmogenicity leads to dissynchronous
myocardial contraction and relaxation patterns within the
ventricles. Consequently, the myocardial tissue is in active
contraction and passive tension at the same time, as can
be seen from the wider shaded regions of myofiber stretch
variability in Figure 4. In more detail, for dofetilide 3x
we compute left and right ventricular myofiber stretches of
0.778 (95% CI 0.661 - 0.918) and 0.723 (95% CI 0.626
- 0.959) at maximum contraction and myofiber stretches
of 1.022 (95% CI 0.883 - 1.128) and 0.972 (95% CI
0.804 - 1.100) at maximum relaxation. The drug-induced
torsadogenic activation sequence leads to a general right-left
ventricular contraction dyssynchrony, during which the right
ventricle contracts on average 117 ms prior to the left
ventricle. Administration of 3x dofetilide leads to minimum
and maximum left ventricular myofiber stretches of 0.657 and
1.289. The mechanical effects of 4.8x dofetilide administration
are similar to 3x dofetilide, however an important difference
between both cases can be found in dyssynchrony. In
contrast to 3x dofetilide, upon 4.8x dofetilide administration
both left and right ventricular contraction remain synchronized.
We compute an average 25 ms time difference between left
and right ventricular peak contraction, which agrees with
the no-drug baseline case. Similar to 3x dofetilide, the left
and right ventricular myofiber stretches after 4.8x dofetilide
administration amount to 0.777 (95% CI 0.657 - 0.917) and
0.731 (95% CI 0.622 - 0.989) at maximum contraction, and
1.013 (95% CI 0.861 - 1.153) and 0.994 (95% CI 0.817 -
1.145) at maximum relaxation. 4.8x dofetilide affects the
minimum and maximum left ventricular myofiber stretches
measuring 0.657 and 1.298 respectively. For both 3x and 4.8x
dofetilide administration, the maximum myofiber stretches are
approximately 10% higher compared to the baseline no-drug
case, and typically occur just prior to overall ventricular
contraction. This effect arises from the partial contraction
of the myocardial tissue during the interventricular pressure
buildup phase, causing the tissue that is not activated yet to
stretch beyond the baseline physiological stretch range. At
the same time, the minimum left ventricular myofiber stretches
at 3x and 4.8x dofetilide administration remain relatively
comparable to the no-drug baseline case, showcasing the
contractile capacity of the tissue is not heavily affected. Upon
18.5x dofetilide administration, the spatiotemporal stretch
patterns in Figure 3 are completely irregular, as can be
expected from ventricular fibrillation. Consequently, little
synchronicity in ventricular contraction and relaxation remains
as can be seen from the large shaded temporal myofiber
stretch variability shown in Figure 4. The left and right
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Figure 2. Time evolution of the transmembrane potential for different concentrations of dofetilide. Snapshots are taken at different timepoints for different
cases of drug-induced IKr channel block, showcasing the contractile and relaxing deformation in correspondence to the color-plotted electrical activation pattern in
the heart. At the top of each row, the computed electrocardiogram signal is shown in black, where the grey vertical lines depict the showcased snapshots for each
specific case.

ventricular myofiber stretches amount to 0.858 (95% CI 0.726
- 1.113) and 0.786 (95% CI 0.627 - 1.137) during maximum
contraction and 1.017 (95% CI 0.783 - 1.246) and 0.961
(95% CI 0.690 - 1.185) during maximum tissue relaxation.
We compute maximum contractile myofiber stretches of
0.715 and maximum relaxing myofiber stretches of 1.262

upon 18.5x dofetilide administration. It should be noted
that periodicity in overall ventricular contraction-relaxation
fades at this drug concentration, showcased by the smaller
amplitude of the mean temporal myofiber stretch evolution
and the minimum left ventricular myofiber stretches remaining
relatively constant around 0.750 during the last three
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Figure 3. Spatiotemporal evolution of the myofiber stretch for different concentrations of dofetilide. Snapshots are taken at different timepoints for each case,
showcasing the effect that blocking of the IKr channel, in correspondence to different administered concentrations of dofetilide, has on the spatiotemporal contraction
of the heart.
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Figure 4. Time evolution of the left and right ventricular myofiber stretch for different concentrations of dofetilide. The temporal myofiber evolution for the
left (red) and right ventricle (blue) for each case in correspondence to different administered concentrations of dofetilide. The solid lines showcase the temporal mean
value of the myofiber stretch for each respective ventricle whilst the transparent shaded regions represent the ventricle-specific 95% myofiber stretch confidence
intervals.

seconds. During the 18.5x dofetilide-induced ventricular
fibrillation, the right-left ventricular dyssynchrony rises to
a 92 ms time difference between left and right ventricular
peak contraction. Overall, the myofiber stretch variability

amounts to a temporally averaged standard deviation of 0.118,
0.114, 0.133 for dofetilide 3x, 4.8x and 18.5x administration
respectively. Compared to the no-drug baseline averaged
myofiber stretch variability of 0.066, it can be seen how
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Figure 5. The pharmacological effects of dofetilide on the ventricular pressure-volume loops. Pressure-volume loops showcase the efficiency and frequency
of heart contraction for each studied case. For the no-drug case, the pressure-volume loop remains the same. For a 75% IKr channel block (dofetilide 3x), the
end-diastolic volume decreases significantly and fluctuates whilst the heart rate increases. For a 80% IKr channel block (dofetilide 4.8x), the end-diastolic volume
drops moderately and the heart rate increases. For a 90% IKr channel block (dofetilide 18.5x), the end-diastolic volume drops significantly and the end-systolic
volumes increase for both ventricles whilst the heart rate increases.
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Figure 6. The pharmacological effects of dofetilide on the cardiac output. Cardiac output for the left ventricle (LV - red) and right ventricle (RV - blue) expressed
instantaneously (dotted line - l/s) and as a 2-second rolling average (full line - l/min) for the normal case (left column), the mild case (middle column) and the severe
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dofetilide affects an effective synchronized contraction of the
whole ventricle, and leads to decreasing cardiac pumping
efficiency.

This decreasing cardiac pump efficiency is shown in more
detail with respect to the overall cardiovascular circulation in
Figure 5. The no-drug baseline pressure-volume loop for the
left and right ventricle is shown in the left column. When no
drug is administered the stroke volume remains constant at
72 ml. At 3x dofetilide administration, the stroke volume drops
to 29 ml and 20 ml for the left and right ventricle respectively.
This stroke volume change is mostly caused by a drop
in the end-diastolic volume, whilst the end-systolic volume
stays approximately the same. The average arrhythmic heart
rate after 3x dofetilide administration increases to 123 bpm.
At a 80% IKr channel block induced by a 4.8x dofetilide
administration, the stroke volume drops from 72 ml to 35 ml
for both ventricles. Again, the drop in stroke volume is
mostly caused by a smaller end-diastolic volume, whilst the
end-systolic volume stays approximately constant. Dofetilide
4.8x causes the average arrhythmic heart rate to increase to
114 bpm. At a dofetilide administration of 18.5x, the stroke
volume drops to 20 ml for the left ventricle and to 17 ml for

the right ventricle. In this case, the drop in stroke volume is
caused by both a decrease in the end diastolic volume and an
increase in the end-systolic volume. The average arrhythmic
heart rate increases to 109 bpm.

Figure 6 quantifies the combined effect of drug-induced
changing heart rates and stroke volumes on the instantaneous
and average cardiac output, denoted by a dotted and solic line
respectively, for both the left and right ventricle, highlighted
in red and blue respectively. Shown here, 3x dofetilide
administration leads to a +5% increase and a -10% decrease
in the cardiac output for the left and right ventricle respectively.
For 4.8x dofetilide administration, the cardiac output has
moderately increased after 5seconds of drug exposure.
More specifically, the left and right ventricular cardiac
output increased +11% and +3% respectively compared to
the baseline cardiac output with no drug exposure. A
18.5x dofetilide administration causes a severe -46% and
-64% decrease in left and right ventricular cardiac output
respectively.
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Discussion

Many drugs - not just cardiac drugs - can have serious side
effects. One of the most dangerous side effects entails
the development of cardiac arrhythmias. More specifically,
the development of torsades de pointes - a specific type
of polymorphic ventricular tachycardia characterized by a
gradual change in amplitude and twisting of the QRS
complexes around an isoelectric line on the electrocardiogram
(9) - can be especially lethal. Torsades de pointes are
often transient but can, in severe cases, lead to ventricular
fibrillation causing myocardial damage and even sudden
cardiac death. Given its typically short-termed episodic
nature, most torsadogenic episodes remain under the radar
(17; 50), which leads to limited knowledge on the clinical
behavior of the heart during such episodes. When picked
up, the clinical evidence of these arrhythmia typically confines
itself to electrocardiogram recordings. Pressure-volume loop
measurements or flow measurements within a clinical setting
are therefore typically unavailable. In this work, we use
computational modeling to gather otherwise unattainable
insights into the mechanical behavior of the human heart
during drug-induced ventricular arrhythmogenicity episodes.

To understand the genesis and development of drug-induced
ventricular arrhythmia, cardiac electrophysiology needs to
represent both the fast ionic subcellular mechanisms and
the slower spatiotemporal cell-tissue-organ scale diffusion
process in one and the same framework. To provide
accurate physiological outputs and compute potential spiral
wave formation, we need a very fine-scaled spatiotemporal
discretization of the computational domain (34). Cardiac
deformation, on the other hand, is governed by smoother
spatial and slower temporal scales. Solving the biomechanical
balance equations accurately can therefore be achieved
with a much coarser spatio-temporal discretization of
the computational domain (3). Given this mismatch in
required spatio-temporal discretization and the exponential
dependency of computation time on the amount of degrees
of freedom to be computed (16), we set up a unidirectional
forward electromechanical coupling framework. More
specifically, we first computed the electrical propagation
of the action potential through the ventricles using a
fine-resolution exposure-response simulator (41). Next, the
computed spatiotemporal transmembrane potential evolution
drives the biomechanical contraction of the cardiac tissue.
Given that contractility response of the tissue is critically
affected by pre-load and after-load conditions (25), we
incorporated an active tension law that depends on
the local and temporal sarcomere stretch state λf and
coupled the electromechanical heart model to a realistic
zero-dimensional surrogate lumped parameter network model
of the cardiovascular circulation.

We successfully build an electrophysiological model that
inherently captures the regional specificity of the ventricular
myocardium and probes the dynamic interplay of its
endocardial, midwall, epicardial, and Purkinje cells (42).
By extending this model with the dose-dependent effect of
dofetilide on the transmembrane ion channel currents, we
developed a mechanistic exposure-response simulator that
is able to predict the three-dimensional excitation profiles
and electrocardiogram recordings shown in Figure 2. The in
silico predicted dose-dependent torsadogenic risk of dofetilide
agrees favorably with clinical and experimental findings
(41; 46). By extending this multiscale framework to a

multi-physics framework taking into account the mechanical
behavior of the heart and its hemodynamic interaction with
the surrounding cardiovascular circulation, we are now able to
compute the pharmacological effects that different dosages
of dofetilide have on the temporal mechanical behavior
of myocardial tissue, as showcased in Figure 3 and 4.
Studying the phamarcological effects of different dosages
of dofetilide on cardiac pump efficiency involves a complex
interplay between regional tissue de- and repolarization,
regional tissue contraction and relaxation, and continuously
changing hemodynamic loading conditions through the heart’s
connection with the surrounding cardiovascular circulation.
Therefore, we can only fully appreciate these effects by
concomitantly studying the myofiber stretch state in Figure
4, the pressure-volume loops depicted in Figure 5 and the
corresponding cardiac output in Figure 6.

For the no-drug baseline case, both ventricles push out the
blood in one cooperative synchronized contraction, followed
by an extended relaxation phase allowing for atrial blood to
refill the ventricle during early diastole and the atrial kick at
end diastole. The myofiber stretches cooperatively switch
between a contractile and relaxing state, showcased by the
low shaded temporal myofiber stretch variability in Figure
4. Naturally, the corresponding pressure-volume loops and
cardiac output remain constant.

Upon 3x dofetilide administration, the resulting torsadogenic
activation sequence causes an important left-right
ventricular contractility dyssynchrony. Immediately after
drug administration, the left ventricular contraction starts
to trail the right ventricular contraction. Additionally, the
drug-induced torsadogenic swirling electrophysiological
activation sequence drives the heart rate up to 123 bpm,
which causes the ventricles to contract twice before the atria
contract. Consequently, the passive atrial-ventricular filling
time is significantly shortened, leading to a decreased mean
myofiber stretch state during tissue relaxation in Figure 4 and
a drop in the left and right ventricular end-diastolic volumes in
Figure 5. The corresponding drop in the stroke volume leads
to the decreasing instantaneous cardiac output showcased in
Figure 6. The increased heart rate also causes an important
dyssynchrony between the atrial kick and the ventricular
filling phase, further affecting efficient diastolic ventricular
filling and decreasing the end diastolic volume. Initially,
the atrial kick trails the ventricular contraction, however at
specific timepoints within the simulated five-second drug
administration timeframe, this dyssynchrony temporarily
catches up, as can be appreciated from the fluctuating
end diastolic volume evolution in Figure 5. Interestingly, the
decreased cardiac output is counterbalanced by the increased
heart rate, which partially recovers the expected decrease in
cardiac output in Figure 6. For 4.8x dofetilide (80% IKr block),
we see a similar combined effect of heart rate and ventricular
filling. However, in this case, the torsadogenic activation
sequence does not cause a left-right ventricular contraction
dyssynchrony. Additionally, a heart rate of 114bpm leads to
an atrial kick that leads the ventricular contraction, eventually
becoming completely out of phase with the ventricular filling
phase at the end of the five second simulated timeframe.
This explains the gradual drop in stroke volume in Figure
5. For 3x and 4.8x dofetilide administration, differences
in cardiac output in Figure 6 result from dose-dependent
interventricular and atrial-ventricular dyssynchronies. Our
results showcase a decreased and increased cardiac output
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for 3x dofetilide and 4.8x dofetilide, highlighting how higher
arrhythmogenic drug concentration can impact the cardiac
output in a non-intuitive way. Even though the 3x and 4.8x
dofetilide induced arrhythmogeneis affects the cardiac output,
the depolarization waves swirling around the ventricles still
lead to a somewhat temporally structured contraction of
the whole ventricle. The resulting active force build up still
leads to a decent contraction of the full ventricle, leading to
end-systolic volumes that are only slightly larger than for the
baseline no-drug case.

For the 18.5x dofetilide case however, the completely chaotic
depolarization patterns no longer lead to a synchronous
contraction, as can be seen by the large myofiber stretch
variability through the whole arrhythmogenic episode in Figure
4. As a result, both the left and right ventricular end-systolic
volumes are considerably larger than normal. At the same
time, the small re-entrant waves that flicker around the heart
also strongly impact the diastolic filling time, leading to
decreased end-diastolic volumes. The resulting decrease in
stroke volume is so large that the resulting cardiac output
in Figure 6 drops significantly. Therefore, the risk for
sudden cardiac death at 18.5x dofetilide administration can
be expected to be significantly higher than for 3x and 4.8x
dofetilide-induced arrhythmia episodes.

Apart from a more mechanistic sudden cardiac death risk
stratification, our framework also gives important insights
into drug-induced arrhythmogenic overstretching of the tissue.
The tissue stretch state is believed to play an important
role in pathophysiological growth and remodeling processes
(30). Compared to the no-drug baseline case, each
drug-induced arrhythmogenic episode showcased increased
myofiber stretches in Figure 4. As such, it can be
appreciated that our framework provides both acute and
chronic mechanistic insights into heart health during and after
drug-induced arrhythmogenenesis.

Although our study provides valuable insight into the
simultaneous pro-arrhythmic and inotropic liabilities of
pharmacological therapies, it has several important limitations
that we need to keep in mind when interpreting its results:
First, the one-way coupling scheme used in this study does
not take into account mechano-electrical feedback (40). It
has recently been shown that two-way electromechanical
coupling can partially mitigate the action potential duration
induced by dofetilide, raising the critical concentration
inducing early afterdepolarization onset (25). Second, even
though the well-established O’Hara Rudy model used for
describing the electrophysiological behavior of the ventricular
cardiomyocytes was developed based on a vast amount of
human experimental data, a novel update to this model has
recently been proposed (49) which reports, amongst others, a
re-assessment of the myocardial pro-arrhythmic sensitivity to
IKr blockage. Both these limitations might affect the critical
drug concentration at which arrhythmia start developing in
this study (e.g. 3x dofetilide). Third and final, this study
used a unidirectional excitation-contraction model that takes
into account myocardial preload and a critical depolarization
threshold. Further model development providing a
bidirectional coupling between human electrophysiology and
active tension generation (21; 40) will allow us to implement
more detailed active tension generation models that take into
account calcium dynamics, actin-myosin crossbridge cycling
transition states and force-frequency responses. Importantly,
these coupled models need to remain computationally

tractable to be able to compute multiple serial heart beats
and potential steady state outcomes. This is a challenging
endeavor given the very stiff system of ordinary differential
equations for the electrophysiology problem and the amount
of state dependent variables in the contraction-excitation
coupling, that can require up to 40x2400 CPU hours for
simulating one heart cycle, even in a semi-implicit, operator
splitted, MPI optimized framework (23). Future work therefore
also needs to study the sensitivity of inotropic whole body level
results (e.g. end-diastolic and -systolic volumes, ventricular
and atrial dyssynchrony, tachycardia) on the biophysical
details of the underlying cellular models, and whether or not
(potentially machine learning-based) reduced order models
can speed up these computations (10).

Conclusion
This study provides a human-based multiscale and
multiphysics mechanistic framework that couples the
effect that a drug has on one singular ion channel down
at the subcellular level all the way up to a changing
cardiovascular circulation at the whole body level. The
developed framework provides a granular insight in
malignancy of concentration-dependent drug-induced
ventricular arrhythmia. Our simulations extend the binary
pro-arrhythmic risk classification paradigm for different drug
concentrations to an assessment of arrhythmia-severity in
light of clinical output metrics as pressure-volume loops and
cardiac output. Here, we showed the clinical differences
between three drug-induced arrhythmic episodes which
results from the fine balance between electrophysiological
action potential duration and depolarization times on the one
hand and the contractile behavior of the myocardial tissue
combined with the contraction of the atria and the connection
to the surrounding cardiovascular circulation on the other
hand.
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