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ABSTRACT 25 

Microbial interactions are fundamental for Earth’s ecosystem functioning and biogeochemical cycling. 26 

Nevertheless, they are challenging to identify and remain barely known. The omics-based censuses are 27 

helpful to predict microbial interactions through the inference of static association networks. However, 28 

since microbial interactions are highly dynamic, we have developed a post-network-construction approach 29 

to generate a temporal network from a single static network. We applied it to understand the monthly 30 

microbial associations’ dynamics occurring over ten years in the Blanes Bay Microbial Observatory 31 

(Mediterranean Sea). For the decade, we identified persistent, seasonal, and temporary microbial 32 

associations. Moreover, we found that the temporal network appears to follow an annual cycle, collapsing 33 

and reassembling when transiting between colder and warmer waters. We observed higher repeatability 34 

in colder than warmer months. Altogether, our results indicate that marine microbial networks follow 35 

recurrent temporal dynamics, which need to be accounted to better understand the dynamics of the ocean 36 

microbiome. 37 

 38 

Keywords: association network; temporal network; time series; microbial interactions; microorganisms; 39 

ocean; plankton  40 
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INTRODUCTION 41 

Microorganisms are the most abundant life forms on Earth and are fundamental for global ecosystem 42 

functioning (Falkowski et al., 2008; DeLong, 2009; Krabberød et al., 2017). The number of 43 

microorganisms on Earth is estimated to be ≈ 1012 species (Locey & Lennon, 2016), comprising ≈ 1030 44 

cells (Whitman et al., 1998; Kallmeyer et al., 2012). The oceans harbor ≈ 1029 microbial cells (Whitman 45 

et al., 1998) accounting for ~70% of the total marine biomass (Bar-On et al., 2018; Bar-On & Milo, 2019). 46 

These cell numbers are known to be dynamic. 47 

Microbial ecosystems are dynamic and their community composition is determined through a 48 

combination of ecological processes: selection, dispersal, drift, and speciation (Vellend, 2020). Selection 49 

is a prominent community structuring force that is exerted via multiple abiotic and biotic environmental 50 

factors (Lindström & Langenheder, 2012; Mori et al., 2018). Several studies have addressed the role of 51 

abiotic factors in structuring microbial communities. For example, temperature, one of the primary 52 

environmental variables, exerts selection in the ocean microbiome over spatiotemporal scales (Bunse & 53 

Pinhassi, 2017; Giner et al., 2019; Lambert et al., 2019; Logares et al., 2020). Biotic factors can also exert 54 

a strong selection on microbial communities (Barraclough, 2015). However, a mechanistic understanding 55 

of how they affect community structure is currently lacking, as the diversity of microbial interactions is 56 

barely known (Krabberød et al., 2017; Bjorbækmo et al., 2019). 57 

The vast microbial diversity and the fact that most microorganisms are still uncultured (Baldauf, 58 

2008; Lewis et al., 2020) make it impossible to experimentally test all potential interactions. However, 59 

omics-technologies allow estimating microbial sequence abundances over spatiotemporal scales, which 60 

permit determining (statistical) associations between microorganisms. These associations can be 61 

summarized as a network with nodes representing microorganisms and edges representing potential 62 

interactions (Weiss et al., 2016; Layeghifard et al., 2017). 63 

As microorganisms are highly interconnected (Layeghifard et al., 2017), association networks 64 

provide a general overview of the entire microbial system and have been tremendously valuable for 65 

generating interaction hypotheses. In particular, several time-series have allowed the investigation of 66 

possible ecological interactions among marine microorganisms (Steele et al., 2011; Chow et al., 2013, 67 

2014; Cram et al., 2015; Needham et al., 2017; Parada & Fuhrman, 2017; Krabberød et al., 2021). For 68 

example, previous work characterized ecological links between marine archaea, bacteria, and eukaryotes 69 

(Steele et al., 2011), including links with viruses (Chow et al., 2014; Needham et al., 2017), also 70 

investigating within- and between ocean-depth relationships (Cram et al., 2015; Parada & Fuhrman, 71 
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2017). Not only time-dependent associations among ecologically important taxa were identified, but also 72 

potential synergistic or antagonistic relationships, as well as possible ‘keystone’ species and potential 73 

niches (Steele et al., 2011; Chow et al., 2013). Moreover, studies found more associations between 74 

microorganisms than between the microorganisms and environmental factors, which would suggest the 75 

dominance of microbial relationships over associations between microorganisms and environmental 76 

factors (Steele et al., 2011; Krabberød et al., 2021). 77 

 Previous studies used temporal microbial-abundance data to build static networks. This static 78 

abstraction is based on several assumptions (Blonder et al., 2012), principally that the network topology 79 

does not change (static) and edges represent persistent associations assumed as interactions, that is, edges 80 

are present throughout time-space. This assumption cannot represent the reality for most microbial 81 

interactions. Thus, a single static network usually captures persistent, temporary, and recurring (including 82 

seasonal) associations, which need to be disentangled. 83 

Despite the contribution of static networks to our understanding of microbial interactions in the 84 

ocean, it is necessary to incorporate the temporal dimension. Using a temporal network instead of a single 85 

static network would allow investigating the dynamic nature of microbial associations, contributing to 86 

comprehend how they change over time, whether their change is deterministic or stochastic, and how 87 

environmental selection influences network architecture. Addressing these questions is fundamental for a 88 

better understanding of the dynamic interactions that underpin microbial ecosystem function. Here, we 89 

investigate marine microbial associations through time using an approach developed to determine a 90 

temporal network from a single static network. 91 

 92 

RESULTS 93 

Extracting a temporal network from a single static association network 94 

Leveraging ten years of monthly samples from the Blanes Bay Microbial Observatory (BBMO) in the 95 

Mediterranean Sea (Gasol et al., 2016), we computed sequence abundances for 488 bacteria and 1005 96 

microbial eukaryotes from two organismal size-fractions: picoplankton (0.2 – 3 µm) and nanoplankton (3 97 

– 20 µm). We removed Archaea since they are not very abundant in the BBMO surface and, additionally, 98 

primers were not optimal to quantify them. We inferred Amplicon Sequence Variants (ASVs) using the 99 

16S and 18S rRNA-gene. After filtering the initial ASV table for sequence abundance and shared taxa 100 

among size fractions, we kept 285 and 417 bacterial, 526 and 481 eukaryotic ASVs in the pico- and 101 

nanoplankton size-fractions, respectively. We found 214 bacterial ASVs that appeared in both size 102 
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fractions, but only two eukaryotic ASVs: a Cryothecomonas (Cercozoa) and a dinoflagellate (Alveolate). 103 

 We used a total of 1709 ASVs to infer a preliminary association network with the tool eLSA (Xia 104 

et al., 2011, 2013). Next, we removed environmentally-driven edges with EnDED (Deutschmann et al., 105 

2020) and only considered edges which association partners co-occurred more than half of the times 106 

together than alone (see methods and Figure 1A-B). Our filtering strategy removed a higher fraction of 107 

negative than positive edges (see methods and Supplementary Table 1). The resulting network is our single 108 

static network connecting 709 nodes via 16626 edges (16481 edges, 99.1%, positive and 145, 0.9% 109 

negative). 110 

Next, we developed a post-network-construction approach to determine a temporal network from 111 

a single static network. Building upon the single static network, we determined 120 sample-specific 112 

(monthly) subnetworks (see methods for details). These monthly subnetworks represent the 120 months 113 

of the time series and together comprise the temporal network. Each monthly subnetwork contains a subset 114 

of the nodes and a subset of the edges of the single static network. To determine which nodes and edges 115 

are present each month, we used the ASV abundances indicating the presence (ASV abundance > 0) or 116 

absence (ASV abundance = 0) as well as the estimated start and duration of associations inferred with the 117 

network construction tool eLSA (Xia et al., 2011, 2013) (Figure 1, see Methods).  118 

 119 

The single static network metrics differed from most monthly subnetworks 120 

Since each monthly subnetwork was derived from the single static network, they were smaller, containing 121 

between 141 (August 2005) and 571 (January 2012) nodes, median ≈354 (Figure 2A), and between 560 122 

(April 2006) to 15704 (January 2012) edges, median ≈6052 (Figure 2B). For further characterization, we 123 

computed six global network metrics (Figure 2C and Methods). The results indicated that the single static 124 

network differed from most monthly subnetworks and it also differed from the average. In general, the 125 

single static network was less connected (edge density) and more clustered (transitivity) with higher 126 

distances between nodes (average path length) and stronger associations (average positive association 127 

score) than most monthly subnetworks (Figure 2C). In addition, the single static network was usually more 128 

assortative according to the node degree but less assortative according to the domain (bacteria vs. 129 

eukaryote) than most monthly subnetworks (Figure 2C). High assortativity indicates that nodes tend to 130 

connect to nodes of similar degree and domain, respectively. 131 

 132 
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Monthly subnetworks display seasonal behavior with yearly periodicity 133 

Over the analyzed decade, the network became more connected and clustered in colder months, with 134 

stronger associations and shorter distances between nodes (Figure 2C, Supplementary Figures 1 and 2). 135 

Most global network metrics indicated seasonal behavior with yearly periodicity (Figure 2C). For 136 

instance, edge density, average positive association score, and transitivity were highest at the beginning 137 

and end of each year, while average path length and assortativity (bacteria vs. eukaryotes) were highest 138 

in the middle of each year. Assortativity (degree), in contrast to other metrics, usually had two peaks per 139 

year corresponding to April or May, and November (Figure 2C). 140 

We found that mainly temperature and day length, and to a lesser extent nutrient concentrations 141 

(mainly SiO2, NO3
− and NO2

−, less PO4
3−), and total chlorophyll-a concentration affected network 142 

topologies as indicated by correlation analysis (Supplementary Figure 2). For example, edge density was 143 

highest and temperature lowest in January-March. Then, the edge density dropped as the temperature 144 

increased. April-June displayed edge densities slightly above or similar to the warmest months July-145 

September, while October-December had similar or slightly lower edge densities than the coldest months 146 

January-March. Edge density vs. hours of light (day length) indicated a yearly recurrent circular pattern 147 

for September-April (Supplementary Figure 1). May-August were not part of the circular pattern and had 148 

the highest day length and lowest edge density (Supplementary Figure 1). 149 

Next, we quantified how many edges are preserved (kept), lost, and gained (new) in consecutive 150 

months. We found the highest loss of edges in April. The overall number of edges (preserved and gained) 151 

were lowest during April-September and increased towards the end of each year (Figure 2B). The number 152 

of associations changed over time in a yearly recurring pattern with few associations being preserved 153 

when transitioning from colder to warmer waters. We see a clear network change from colder to warmer 154 

months, similar to a crash. In turn, the network change from warmer to colder months is less abrupt, similar 155 

to a reassembling. Thus, network change was not symmetrical over the studied decade at BBMO. 156 

Moreover, we defined summer and winter as in (Krabberød et al., 2021), and compared both seasons 157 

between consecutive years in terms of preserved, gained and lost associations and ASVs. We observed 158 

higher repeatability in terms of edges (Supplementary Figure 3) and ASVs (results not shown) in colder 159 

than in warmer months, indicating higher predictability during low temperature seasons. 160 

 161 

Potential core associations 162 

A single static network can comprise permanent, seasonal, and temporary associations. By comparing 163 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

7 

monthly subnetworks, we identified edges that remain (preserved), appear (gained), or disappear (lost) 164 

over time (Figure 2B). Intuitively, we would classify permanent associations through 100% recurrence. 165 

However, no association fulfilled the 100% criteria. Most associations had a low recurrence with three-166 

quarters of the associations present in no more than 38% (46 monthly subnetworks). The average 167 

association prevalence increased slightly for taxonomically more related microorganisms (Supplementary 168 

Figure 4). Considering the 100 most prevalent associations, which appeared in 71.7-98.3% (86-118) 169 

monthly subnetworks, 87 were bacterial associations (Supplementary Table 2).  170 

Although temporal recurrence of associations over the ten years was low, we found high recurrence 171 

in corresponding months from different years. We quantified the fraction of subnetworks in which each 172 

association appeared (Supplementary Figure 5). We observed the highest prevalence from December to 173 

March, and the lowest prevalence from June to August (Supplementary Figure 5). For each month, we 174 

taxonomically characterized prevalent associations appearing in at least nine out of ten monthly 175 

subnetworks (Figure 3). We found more association partners in colder waters compared to warmer waters. 176 

Alphaproteobacteria associations dominated, especially in April and May. The Alphaproteobacteria 177 

ASVs having highly prevalent associations belonged to Pelagibacter ubique (SAR11 Clades Ia & II), 178 

Rhodobacteraceae, Amylibacter, Puniceispirillales (SAR116), Ascidiaceihabitans, Planktomarina, 179 

Parvibaculales (OCS116), and Kiloniella. Between April and May, we noticed a large increase in the 180 

fraction of associations including Cyanobacteria or Bacteroidetes as association partners. While 181 

Cyanobacteria associations were a small fraction during November-April, they had a dominant role from 182 

May-October along with Bacteroidetes and Alphaproteobacteria associations (Figure 3). 183 

 184 

Dynamic associations within main taxonomic groups: the case of Cyanobacteria  185 

Our results indicated that associations are dynamic within specific taxonomic groups. Therefore, we 186 

investigated their behavior in Cyanobacteria given the importance of this group as primary producers in 187 

the ocean. We found 661 associations for Cyanobium, Prochlorococcus, and Synechococcus ASVs 188 

(Figure 4 and Supplementary Figure 6). Most associations between cyanobacterial ASVs were positive 189 

(63 of 65), only a Synechococcus (referred to as bn_ASV_5) was negatively associated (association score 190 

measured -0.5) to other Synechococcus (bn_ASV_1 and bn_ASV_25), which were positively associated 191 

(association score of 0.8). While bn_ASV_5 appeared mainly in colder months, the other two appeared 192 

mainly in warmer months (Supplementary Figure 6). All Cyanobacteria had more associations to other 193 

bacteria (in total 433) than eukaryotes (in total 163), which were dinoflagellate (103), Chlorophyta (25), 194 
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Ochrophyta (12), Cryptophyta (11), Stramenopiles (5), Ciliophora (5), and Cercozoa (2). 195 

Within the temporal network, the fraction of Cyanobacteria associations was highest in April-196 

October (Figure 4A), which are the months with the fewest edges in the entire temporal network (Figure 197 

2B), e.g., in the year 2011 (Figure 4B). We found that cyanobacterial ASVs, although being evolutionarily 198 

related, behaved differently in terms of number of associations over time, and association partners 199 

(Supplementary Figure 6). For example, Synechococcus bn_ASV_5 had less partner than bn_ASV_1 200 

according to numbers of associations but more according to taxonomic variety; both belonged to the most 201 

abundant ASVs (Supplementary Figure 6). Only a tiny fraction of Prochlorococcus (e.g. bp_ASV_18) 202 

association partners were other Cyanobacteria, which contrasted to Synechococcus and Cyanobium 203 

(Supplementary Figure 6). Moreover, we observed that Cyanobium (bn_ASV_20) connected to one 204 

Deltaproteobacteria (SAR324) ASV during the first eight years, but the association disappeared in the 205 

last two years. In particular, the inferred association duration was 101 months, starting March 2004 and 206 

ending with July 2012. After summer 2012, the Deltaproteobacteria ASV was not detected except from a 207 

few reads in November and December of 2012 and 2013. This Cyanobacteria example is likely 208 

representative of the dynamics of associations within other main taxonomic groups. 209 

 210 

DISCUSSION 211 

Previous work found yearly recurrence in microbial community composition at the BBMO (Giner et al., 212 

2019; Auladell et al., 2020; Krabberød et al., 2021), and at the Bay of Banyuls (Lambert et al., 2019), 213 

both in the NW Mediterranean Sea. Our approach focused in the connectivity of microorganisms and how 214 

they organize themselves from a network perspective. Similar to previous studies (Giner et al., 2019; 215 

Lambert et al., 2019; Auladell et al., 2020; Krabberød et al., 2021), our temporal network displayed 216 

seasonality with annual periodicity for most global network metrics. In general, our measured global 217 

network metrics are within previous work range (Steele et al., 2011; Chow et al., 2013, 2014; Cram et al., 218 

2015; Lima-Mendez et al., 2015; Zhao et al., 2016; Chaffron et al., 2020) (Table 2 for edge density, 219 

transitivity, and average path length). Contrary to early works reporting biological networks generally 220 

being disassortative (negative assortativity based on degree) (Newman, 2002), our single static network 221 

and monthly subnetworks were assortative. Microorganisms had more and stronger connections and a 222 

tighter clustering in colder than in warmer waters. Seasonal bacterial freshwater networks (Zhao et al., 223 

2016) also showed higher clustering in fall and winter than spring and summer, but in contrast to our work, 224 

networks were biggest in summer and smallest in winter. In agreement with our results, Chaffron et al. 225 
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reported higher association strength, edge density, and transitivity in polar regions (colder) compared to 226 

other regions (warmer) of the global ocean (Chaffron et al., 2020). Colder waters in the Mediterranean 227 

Sea are milder than polar waters, but together, these results suggest that either microorganisms interact 228 

more in colder environments, or that their recurrence is higher due to higher environmental selection 229 

exerted by low temperatures and therefore, they tend to co-occur. Alternatively, lack of resources (mostly 230 

nutrients) in summer or in the tropical and subtropical ocean may prevent the establishment of several 231 

microbial interactions. In any case, temperature may not be the only driver of network architecture. 232 

The effects of environmental variables on network metrics are unclear (Röttjers & Faust, 2018), 233 

yet, our approach allowed identifying potential environmental drivers of network architecture. Correlation 234 

analyses pointed to the usual suspects that have been already found to influence microbial abundances. 235 

For instance, our results indicated that temperature and day length, key variables driving microbial 236 

assemblages in seasonal time-series (Bunse & Pinhassi, 2017; Giner et al., 2019; Lambert et al., 2019), 237 

and to a lesser extent inorganic nutrients, were the main factors influencing global network metrics. This 238 

is also in agreement with earlier works indicating that phosphorus and nitrogen are the primary limiting 239 

nutrients in the Western Mediterranean Sea (Estrada, 1996; Sala et al., 2002). Altogether, our correlation 240 

analysis is a step forward to elucidate the effects of environmental variables on network metrics, although 241 

we did not consider several other variables that could affect networks (e.g. organic matter). 242 

Our preliminary network (significant associations derived with eLSA) contained 18% negative 243 

edges compared to 0.9% in the single static network (after applying EnDED and Jaccard index). Thus, our 244 

filtering strategy removed proportionally more negative edges. Associations may represent positive or 245 

negative interactions, but they can also indicate high niche overlap (positive association) or divergent 246 

niches (negative association) between microorganisms (Hernandez et al., 2021). We hypothesize that most 247 

of the removed negative edges represented associations between microorganisms from divergent niches, 248 

most likely corresponding to colder or warmer months. 249 

 We found more highly prevalent associations within specific months, than when considering all 250 

ten-years of data. Furthermore, our results indicate a potentially low number of core interactions and a 251 

vast number of non-core ones. Usually, core microorganisms are defined based on sequence abundances, 252 

as microorganisms (or taxonomical groups) appearing in all samples or habitats being under investigation 253 

(Shade & Handelsman, 2012). Shade & Handelsman (Shade & Handelsman, 2012) suggested other 254 

parameters, including connectivity, will create a more complex portrait of the core microbiome and 255 

advance our understanding of the role of key microorganisms and functions within and across ecosystems 256 
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(Shade & Handelsman, 2012). Using a temporal network, we identified core associations based on 257 

recurrence, which contributes to our understanding of key interactions underpinning microbial ecosystem 258 

function. Considering associations within each month, we found more highly-prevalent associations in 259 

colder than in warmer months. Our results indicated microbial connectivity is more repeatable (indicating 260 

higher predictability) in colder than in warmer waters. On one hand, the microbial community in colder 261 

waters being more recurrent (Giner et al., 2019) may explain our observations indicating a more robust 262 

connectivity. On the other hand, it may be the stronger connectivity that leads to more similar communities 263 

in colder waters in BBMO. Last but not least, the interplay of both species dynamics and interactions may 264 

determine community turnover in the studied ecosystem. From a technical viewpoint, the overall single 265 

static network may have missed to capture summer associations resulting in smaller monthly subnetworks. 266 

For instance, a previous work in freshwater lakes constructed season specific networks and found more 267 

associations in summer than winter with Cyanobacteria dominating in summer, which may be due to 268 

strong co-occurrence patterns and suitable living conditions (Zhao et al., 2016). 269 

Several network-based analyses have been used to study Cyanobacteria associations. For example, 270 

Chow et al. (Chow et al., 2014) determined for 12 Cyanobacteria (Prochlorococcus and Synechoccus) 44 271 

potential relationships with two potential eukaryote grazers (a ciliate and a dinoflagellate), 39 to other 272 

bacteria and three between Cyanobacteria, which were all positive. Similarly, all cyanobacterial ASVs in 273 

our study connected primarily to other bacterial ASVs, and exerted mainly positive associations. In 274 

agreement, Cyanobacteria also displayed primarily positive associations in a network determined for the 275 

global ocean (Lima-Mendez et al., 2015).  276 

Identifying different potential association partners of closely related Cyanobacteria, may indicate 277 

adaptations to different niches. A recent study found distinct seasonal patterns of closely related taxa 278 

indicating niche partitioning at the BBMO, including Synechococcus ASVs (Auladell et al., 2020). Our 279 

approach can complement and further characterize “sub”-niches by providing association partners for 280 

different ASVs. Moreover, in contrast to a single static network, temporal networks allow identifying 281 

associated partners in time (Supplementary Figure 6). An increase in abundance of a microorganism may 282 

promote the growth of associated partners and a decrease may hinder the growth of partners or cause 283 

predators to prey on other microorganisms. Moreover, given the majority of association partners being 284 

other bacteria, the growth of Cyanobacteria may affect other bacteria and their growth, which is why it is 285 

necessary to explore potential interaction partners (Zhao et al., 2016). 286 

From a technical perspective, our approach allowed us to see what the single static network 287 
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captured since all our temporal network observations are linked to it. Thus, future studies with higher 288 

sampling frequency may be able to construct networks within a month. However, our approach is a good 289 

starting point that allows us to move forward, but still, it has limitations, suggesting caution when making 290 

biological interpretations from the temporal network. Another limitation is that we disregarded local 291 

network patterns by using global network metrics. Future work could use the local-topological metric 292 

based on graphlets (Pržulj et al., 2004). Counting the number of graphlets a node is part of quantifies their 293 

local connection patterns, which allows to infer seasonal microorganisms through recurring connection 294 

patterns in a temporal network. Such a network-based approach would complement the detection of the 295 

seasonal microorganisms based on sequence abundances (Giner et al., 2019). 296 

 297 

CONCLUSION 298 

Incorporating the temporal dimension in the microbial association analysis unveiled multiple patterns that 299 

often remain hidden when using static networks. We developed a post-network-construction approach to 300 

generate a temporal network from a single static network that represents a step forward for disentangling 301 

the temporal nature of microbial associations. Yet, this approach has limitations, such as the monthly 302 

sampling frequency in our study. Using a higher sampling frequency would be the main solution.  303 

Investigating a coastal marine microbial ecosystem over ten years revealed a one-year-periodicity in the 304 

network topology. The temporal architecture was not stochastic, but displayed a modest amount of 305 

recurrence over time, especially in winter. Altogether, our approach allows comparing (sub)networks 306 

across spatiotemporal scales. Future efforts to understand the ocean microbiome should consider the 307 

dynamics of microbial interactions as these can be basis of ecosystem function. 308 

 309 

MATERIALS AND METHODS 310 

The Blanes Bay Microbial Observatory (BBMO) 311 

BBMO is a coastal oligotrophic site in the North-Western Mediterranean Sea (41◦40′N 2◦48′E) with not 312 

many identified natural disturbances and little anthropogenic pressures, with the exception of the 313 

construction of a nearby harbor from 2010 to 2012 (Gasol et al., 2016; Ferrera et al., 2020). The seasonal 314 

cycle is typical for a temperate coastal system (Gasol et al., 2016), and the main environmental factors 315 

influencing microbial seasonal succession in temperate waters have been well studied and are known 316 

(Bunse & Pinhassi, 2017). Shortly, the water column is slightly stratified in summer before it destabilizes 317 
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and mixes in late fall, increasing the availability of inorganic nutrients with maximum concentrations in 318 

winter, between November and March. The high amounts of nutrients and increasing light induce 319 

phytoplankton blooms, mostly in late winter-early spring. During summer, inorganic nutrients become 320 

limiting, primary production is minimal, and dissolved organic carbon accumulates (Gasol et al., 2016). 321 

 322 

From sampling to sequence abundances 323 

We sampled surface water (≈ 1m depth) monthly from January 2004 to December 2013 to determine 324 

microbial community composition and also measured ten environmental variables, which were previously 325 

described (Gasol et al., 2016; Giner et al., 2019): water temperature (◦C) and salinity (obtained in situ with 326 

a SAIV-AS-SD204 Conductivity-Temperature-Depth probe), day-length (hours of light), turbidity 327 

(Secchi depth in meters), total chlorophyll-a concentration (µg/l, fluorometry of acetone extracts after 150 328 

ml filtration on GF/F filters), and five inorganic nutrients: PO4
3−, NH4

+, NO2
−, NO3

− and SiO2 (µM, 329 

determined with an Alliance Evolution II autoanalyzer (Grasshoff et al., 2009)). 330 

Sampling of microbial communities, DNA extraction, rRNA-gene amplification, sequencing and 331 

bioinformatic analyses are explained in detail in (Krabberød et al., 2021). In short, 6 L of water were 332 

prefiltered through a 200 µm nylon mesh and subsequently filtered through another 20 µm nylon mesh and 333 

separated into nanoplankton (3 – 20 µm) and picoplankton (0.2 – 3 µm) using a 3 µm and 0.2 µm pore-size 334 

polycarbonate and Sterivex filters, respectively. Then, the DNA was extracted from the filters using a 335 

phenol-chloroform protocol (Schauer et al., 2003), which has been modified for using Amicon units 336 

(Millipore) for purification. We amplified the 18S rRNA genes (V4 region) with the primers 337 

TAReukFWD1 and TAReukREV3 (Stoeck et al., 2010), and the 16S rRNA genes (V4 region) with Bakt 338 

341F (Herlemann et al., 2011) and 806RB (Apprill et al., 2015). Amplicons were sequenced in a MiSeq 339 

platform (2x250bp) at RTL Genomics (Lubbock, Texas). Read quality control, trimming, and inference 340 

of Operational Taxonomic Units (OTUs) delineated as Amplicon Sequence Variants (ASVs) was made 341 

with DADA2 (Callahan et al., 2016), v1.10.1, with the maximum number of expected errors set to 2 and 342 

4 for the forward and reverse reads, respectively. 343 

Microbial sequence abundance tables were obtained for each size fraction for both microbial 344 

eukaryotes and prokaryotes. Before merging the tables, we subsampled each table to the lowest sequencing 345 

depth of 4907 reads with the rrarefy function from the Vegan R-package (Oksanen et al., 2019), v2.4-2, 346 

(see details in (Krabberød et al., 2021)). We excluded 29 nanoplankton samples (March 2004, February 347 

2005, May 2010 - July 2012) due to suboptimal amplicon sequencing. In these, abundances were estimated 348 
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using seasonally aware missing value imputation by the weighted moving average for time series as 349 

implemented in the imputeTS R-package (Moritz & Gatscha, 2017), v2.8.  350 

Sequence taxonomy was inferred using the naïve Bayesian classifier method (Wang et al., 2007) 351 

together with the SILVA database (Quast et al., 2012), v.132, as implemented in DADA2 (Callahan et al., 352 

2016). Additionally, eukaryotic microorganisms were BLASTed (Altschul et al., 1990) against the Protist 353 

Ribosomal Reference (PR2) database (Guillou et al., 2012), v4.10.0. The PR2 classification was used 354 

when the taxonomic assignment from SILVA and PR2 disagreed. We removed ASVs that identified as 355 

Metazoa, Streptophyta, plastids, mitochondria, and Archaea since the 341F-primer was not optimal for 356 

recovering this domain (McNichol et al., 2020). 357 

The resulting table contained 2924 ASVs, Table 1A. Next, we removed rare ASVs, keeping ASVs 358 

with sequence abundance sums above 100 reads and prevalence above 15% of the samples, i.e., we 359 

considered taxa present in at least 19 months. The resulting table contained 1782 ASVs, Table 1B. An 360 

ASV can appear twice, in the nano and pico size fractions due to dislodging cells or particles and filter 361 

clogging. This can introduce biases in our analysis. To reduce these biases, as done previously (Krabberød 362 

et al., 2021), we divided the abundance sum of the bigger by the smaller size-fraction for each ASV 363 

appearing in both size fractions and set the picoplankton abundances to zero if the ratio exceeded 2. 364 

Likewise, we set the nanoplankton abundances to zero if the ratio was below 0.5. This operation removed 365 

two eukaryotic ASVs and 41 bacterial ASVs from the nanoplankton, and 30 bacterial ASVs from the 366 

picoplankton (Table 1C). The resulting table was used for network inference. 367 

 368 

From sequence abundances to the single static network  369 

First, we constructed a preliminary network using the tool eLSA (Xia et al., 2011, 2013), as done in 370 

(Deutschmann et al., 2020; Krabberød et al., 2021), including default normalization and z-score 371 

transformation, using median and median absolute deviation. Although we are aware of time-delayed 372 

interactions, we considered our 1-month sampling interval as too large for inferring time-delayed 373 

associations with a solid ecological basis, and focused on contemporary interactions between co-occurring 374 

microbes. Using 2000 iterations, we estimated p-values with a mixed approach that performs a random 375 

permutation test of a co-occurrence if the comparison's theoretical p-values are below 0.05. The 376 

Bonferroni false discovery rate (q) was calculated based on the p-values using the p.adjust function from 377 

the stats R-package (R Core Team, 2019). We used the 0.001 significance threshold for the p and q values, 378 

as suggested in other studies (Weiss et al., 2016). We refrained from using an association strength 379 
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threshold since it may not be appropriate to differentiate between true interactions and environmentally-380 

driven associations (Deutschmann et al., 2020), and changing thresholds have been shown to lead to 381 

different network properties (Connor et al., 2017). The preliminary network contained 754 nodes and 382 

29820 edges (24458, 82% positive, and 5362, 18% negative). 383 

Second, for environmentally-driven edge detection, we applied EnDED (Deutschmann et al., 384 

2020), combining the methods Interaction Information (with a 0.05 significance threshold and 10000 385 

iterations) and Data Processing Inequality. We inserted artificial edges connecting each node to each 386 

environmental parameter. We identified and removed 3315 (11.12%) edges that were environmentally-387 

driven, i.e., 26505 edges (23405, 88.3% positive, and 3100, 11.7% negative) remained, Supplementary 388 

Table 3 and 4. 389 

Third, we determined the Jaccard index, 𝐽, for each microorganisms pair associated through an 390 

edge. Let 𝑆𝑖 be the set of samples in which both microorganisms are present (sequence abundance above 391 

zero), and 𝑆𝑢 be the set of samples in which one or both microorganisms are present. Then, we can 392 

calculate the Jaccard index as the fraction of samples in which both appear (intersection) from the number 393 

of samples in which at least one appears (union): 𝐽 = 𝑆𝑖/𝑆𝑢. We chose 𝐽 > 0.5, which removed 9879 394 

edges and kept 16626 edges (16481, 99.1% positive and 145, 0.9% negative). We removed isolated nodes, 395 

i.e., nodes without an associated partner in the network. The number and fraction of retained reads are 396 

listed in Table 1. The resulting network is our single static network. 397 

 398 

From the single static network to the temporal network 399 

We determined the temporal network comprising 120 sample-specific (monthly) subnetworks through the 400 

three conditions indicated below and visualized in Figure 1. The subnetworks are derived from the single 401 

static network and contain a node subset and an edge subset of the static network. Let e be an association 402 

between microorganisms A and B, with association duration d = (t1, t2), i.e., the association starts at time 403 

point t1 and ends at t2. Then, considering month m, the association e is present in the monthly subnetwork 404 

Nm, if 405 

1) e is an association in the single static network, 406 

2) the microorganisms A and B are present within month m, and 407 

3) m is within the duration of association, i.e., t1 ≤ m ≤ t2. 408 

With the 2nd condition, we assumed that an association was present in a month if both microorganisms 409 

were present, i.e., the microbial abundances were non-zero for that month. However, we cannot assume 410 
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that microbial co-occurrence is a sufficient condition for a microbial interaction because different 411 

mechanisms influence species and interactions, and the environmental filtering of species and interactions 412 

can be different (Poisot et al., 2012). Using only the species occurrence assumption would increase 413 

association prevalence. To lower this bias, we also required that the association was present in the static 414 

network, 1st condition, and within the association duration, 3rd condition, both inferred by eLSA (Xia et 415 

al., 2011, 2013). Lastly, we removed isolated nodes from each monthly subnetwork.  416 

 417 

Network analysis 418 

We computed global network metrics to characterize the single static network and each monthly 419 

subnetwork, using the igraph R-package (Csardi & Nepusz, 2006). Some metrics tend to be more 420 

correlated than others implying redundancy between them and clustering them into four groups 421 

(Jamakovic & Uhlig, 2008). Thus, we selected one metric from each group: edge density, average path 422 

length, transitivity, and assortativity based on node degree. In addition, we also computed the average 423 

strength of positive associations between microorganisms using the mean, and assortativity based on the 424 

nominal classification of nodes into bacteria and eukaryotes. Assortativity (bacteria vs. eukaryotes) is 425 

positive if bacteria tend to connect with bacteria and eukaryotes tend to connect with eukaryotes. It is 426 

negative if bacteria tend to connect to eukaryotes and vice versa. We also quantified associations by 427 

calculating their prevalence as the fraction of monthly subnetworks in which the association was present 428 

for all ten years (recurrence), and monthly. We visualized highly prevalent associations with the circlize 429 

R-package (Gu et al., 2014). We tested our hypotheses of environmental factors influencing network 430 

topology by calculating the Spearman correlations between global network metrics and environmental 431 

data, using Holm’s multiple test correction to adjust p-values (Holm, 1979), with the function corr.test in 432 

psych R-package (Revelle, 2020). We used Gephi (Bastian et al., 2009), v.0.9.2, and the Fruchterman 433 

Reingold Layout (Fruchterman & Reingold, 1991) for network visualizations. 434 

 435 

Cyanobacteria 436 

Our dataset contained 19 cyanobacterial ASVs, which all appeared in the nano-, and nine in the 437 

picoplankton. This is against expectations, as Cyanobacteria are part of the pico-plankton. Yet, they have 438 

been observed in fractions above 3 µm at BBMO (Mestre et al., 2020). Recovering ASVs in the 439 

nanoplankton may be due to cell aggregation, particle attachment, clogging of filters or being prey to 440 

bigger microorganisms. We blasted the sequences against the Cyanorak database (Garczarek et al., 2021), 441 
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v.2. We performed BLASTN matches against the nucleotide database containing all Synechococcus and 442 

Prochlorococcus RNAs with the option -evalue 1.0e-5. We found 2812 sequences comprising 95 different 443 

ecotypes (considering name, clade and subclade), with 93.84-100% identity. There were 63 sequences (34 444 

different microorganisms) with a similarity of 100% for 11 ASVs. Most matching sequences were found 445 

for Synechococcus ASV_1. While Synechococcus ASV_5 had only two 100% hits, they did not 100% 446 

match to ASV_1 (Supplementary Table 5). 447 
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FIGURE LEGENDS 681 

Figure 1: Conceptual idea on how we determine a temporal network from a single static network via 682 

subnetworks. A) A complete network would contain all possible associations (edges) between 683 

microorganisms (nodes). B) The single static network is inferred with the network construction tool eLSA 684 

and a filtering strategy considering association significance, the removal of environmentally-driven 685 

associations, and associations whose partners appeared in more samples together than alone, i.e., Jaccard 686 

index being above 0.5. An association having to be present in the single static network is the first out of 687 

three conditions for an association to be present in a monthly subnetwork. C) In order to determine 688 

monthly subnetworks, we established two further conditions for each edge. First, both microorganisms 689 

need to be present in the sample taken in the specific month. Second, the month lays within the time 690 

window of the association inferred through the network construction tool. Here, three months are indicated 691 

as an example. D) Example of monthly subnetworks for the three months. The colored nodes correspond 692 

to the abundances depicted in C). 693 

 694 

Figure 2: Global (sub)network metrics. A) Number of ASVs (counting an ASV twice if it appears in both 695 

size fractions) for each of the 120 months of the Blanes Bay Microbial Observatory time series. There are 696 

1709 ASVs, of which 709 ASVs are connected in the static network. In black, we show the number of 697 

nodes connected in the temporal network, and in red the number of nodes that are isolated in the temporal 698 

network, i.e., they are connected in the static network and have a sequence abundance above zero for that 699 

month ("non-zero"). In dark gray, we show the number of ASVs that are non-zero in a given month but 700 

were not connected in the static and subsequently temporal network. In light gray, we show the number 701 

of ASVs with zero-abundance in a given month. The sum of connected and isolated nodes and non-zero 702 

ASVs represents each month's richness (i.e., number of ASVs). B) By comparing the edges of two 703 

consecutive months, i.e., two consecutive monthly subnetworks, we indicate the number of edges that 704 

have been lost (red), preserved (black), and those that are gained (blue), compared to the previous month. 705 

C) Six selected global network metrics for each sample-specific subnetwork of the temporal network. The 706 

colored line indicates the corresponding metric for the single static network. 707 

 708 

Figure 3: Associations with a monthly prevalence of at least 90%. Bacteria and eukaryotes are separated 709 

and ordered alphabetically. We provide in parentheses the number of associations that appeared in at least 710 

nine out of ten monthly subnetworks. 711 

 712 

Figure 4: Cyanobacteria associations. A) Fraction of edges in the temporal network containing at least 713 

one Cyanobacteria. B) Location of Cyanobacteria associations in the temporal network and the single 714 

static network. Here we show, as an example, selected months of year 2011. The number and fraction of 715 

cyanobacterial edges and total number of edges is listed below each monthly subnetwork and the single 716 

static network.  717 
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TABLES 718 

Table 1: Number and fraction of ASVs and reads (total, bacterial and eukaryotic) for the sequence abundance tables (A, B, and 719 
C), the preliminary network with significant edges (D), and the single static network (E) obtained after removing environmentally-720 
driven edges and edges with association partners appearing more often alone than with the partner. If an ASV appeared in the 721 
nano- and pico-plankton size fractions, it was counted twice. 722 

Count tables ASVs Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

A 2 924 2 273 548 1 365 1 121 855 1 559 1 151 693 

B 1 782 2 155 318 1 009 1 057 599 773 1 097 719 

C 1 709 2 062 866 1 007 1 057 263 702 1 005 603 

D 754 1 657 885 306 730 025 448 927 860 

E 709 1 621 959 294 719 558 415 902 401 

       

Fractions ASV Reads Eukaryote Eukaryotic reads Bacteria Bacterial reads 

B/A*100 60.94 94.80 73.92 94.27 49.58 95.31 

C/A*100 58.45 90.73 73.77 94.24 45.03 87.32 

D/C*100 44.12 80.37 30.39 69.05 69.05 92.27 

E/C*100 41.49 78.63 29.20 68.06 59.12 89.74 

A – raw sequence abundance table; B – sequence abundance table without rare ASVs; C –sequence abundance table after size-fraction filtering; D – 723 
preliminary network with significant edges; E – single static network  724 
  725 
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Table 2: Global network metrics of previously described microbial association networks 726 

Edge density Transitivity Average 
path length 

Sampling Location Domains Notes Reference 

0.04 0.26 3.05 Monthly 
samples 

August 2000 
- March 

2004 

Subsurface deep 
chlorophyll 

maximum depth off 
the southern 

California coast 
(SPOT) 

Archaea, bacteria, 
and eukaryotes 

Edge density for 
microbial network 

including environmental 
factors. Transitivity and 
average path length for 

microbial network. 

(Steele 
et al., 
2011) 

0.14 0.33 1.94 Monthly 
samples 

August 2000 
- January 

2011 

Two depths at 
SPOT 

Free-living bacteria 
and some 

picoeukaryotes 

Metrics from surface 
layer network. 

(Chow 
et al., 
2013) 

0.02 0.24  Monthly 
samples 

March 2008 
- January 

2011 

surface ocean (0-
5m) at SPOT 

Free-living 
eukaryotes (0.7–20 

µm), bacteria (0.22–1 
µm) and viruses (30 

kDa–0.22 µm) 

 (Chow 
et al., 
2014) 

0.04 0.28 2.07 Monthly 
samples 

August 2003 
- January 

2011 

Five depths at 
SPOT 

Free-living bacteria Metrics from 5 m layer 
network. 

(Cram 
et al., 
2015) 

(0.023) 
W:0.033 
Sp:0.032 

S:0.036 
F:0.029 

(0.472) 
W:0.518 
Sp:0.480 

S:0.475 
F:0.573 

(4.84) 
W:2.16 
Sp:5.03 
S:7.26 
F:3.04 

Spatial 
samples 

52 samples from 
freshwater lakes 
(surface) in China 

Bacteria Metrics for (whole 
network) and seasonal 

networks: W: winter, Sp: 
spring, S: summer, and 

F: fall 

(Zhao et 
al., 

2016) 

E:0.005 
EP:0.003 

P:0.008 

E:0.2 
EP:0.0 
P:0.43 

E:3.05, 
EP:3.02 

P:2.56 

Spatial 
sampling 

68 stations from the 
Tara Oceans 

expeditions (TARA) 
at two depths 
across eight 

oceanic provinces 

Organisms from 
seven size fractions 

spanning from 
viruses to small 

metazoans 

Metrics from surface 
networks including E; 
eukaryotes only, EP: 

eukaryotes and 
prokaryotes (0.5-5 µm), 
and P: prokaryotes only 

(0.2-1.6 µm) 

(Lima-
Mendez 

et al., 
2015) 

0.002 0.036  Spatial 
sampling 

Samples from 115 
stations from the 

TARA at two depths 
covering all major 
oceanic provinces 
from pole to pole 

Bacteria, archaea, 
and eukaryotes from 

six size fractions. 

Metrics represent the 
means of sample-

specific subnetworks. 

(Chaffro
n et al., 
2020) 

  727 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2021. ; https://doi.org/10.1101/2021.07.13.452187doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.13.452187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

25 

SUPPLEMENTARY MATERIAL 728 

 729 

FIGURES LEGENDS 730 

Supplementary Figure 1: Correlation Analysis. Using the temporal network, we correlated six global 731 

network metrics with environmental factors including the nutrients PO4
3−, NH4

+, NO2
−, NO3

− and SiO2. 732 

The global network metrics were: Edge density, Average positive association (Avg. pos. ass.) score, 733 

Transitivity, Average path length (Avg. path length), Assortativity (degree), and Assortativity (bacteria 734 

vs. eukaryote). Each dot is a sample-specific subnetwork and its color indicates the month it represents. 735 

Also, the linear regression line with a 0.95 confidence interval is shown in gray. 736 

 737 

Supplementary Figure 2: Correlation Analysis through linear regression. Using the temporal network, 738 

we correlated six global network metrics with environmental factors including the nutrients PO4
3−, NH4

+, 739 

NO2
−, NO3

− and SiO2. The global network metrics were: Edge density, Average positive association 740 

(Avg. pos. ass.) score, Transitivity, Average path length (Avg. path length), Assortativity (degree), and 741 

Assortativity (bacteria vs. eukaryote). The number, circle's size and color in the square correspond to the 742 

Spearman correlation scores, no circle indicates non-significance. 743 

 744 

Supplementary Figure 3: Number of preserved, gained, and lost edges in summer and winter. A) 745 

Indicates how we determined summer indicated with red dots (temperature above 17 ºC and day length 746 

above 14 hours) and winter indicated with blue dots (temperature below 17 ºC and day length below 11 747 

hours); gray dots indicate months that are neither summer nor winter. B) accumulation curve of ASVs per 748 

year for winter (blue) and summer (red). C) and D) number of preserved, gained, and lost edges for winter 749 

and summer, respectively. The colors of flows indicate the prevalence of an edge with 10 (light blue) 750 

being present in each year, and 1 (dark blue) appearing in only one year. An edge appears in a year if it 751 

appears in at least one monthly subnetwork in the corresponding season. In winter, most edges appear in 752 

all years (light blue indicating 100% prevalence with edges present in all ten years), i.e. most edges are 753 

preserved in the consecutive months (we see a flow from the white preserved box to the next white 754 

preserved box). In summer, compared to winter, less edges are present in a month (combination of boxes 755 

indicating preserved, first time gained, and gained), and more edges are (re)gained and lost throughout the 756 

years (subsequently prevalence is lower indicated through darker blue). 757 

 758 

Supplementary Figure 4:  Association prevalence increases slightly when microorganisms are 759 

taxonomically more related. We grouped the associations according to the taxonomic classification of 760 

association partners (columns) and size fractions (rows). For example “Class” groups associations 761 

between bacteria and eukaryotes, respectively, which were assigned to the same class. The gray column 762 

groups associations between bacteria and eukaryotes. The boxplot shows the association prevalence over 763 

a decade, i.e. in how many monthly subnetworks an association appears (given as fraction from 0 to 100% 764 

= 120 networks). 765 

 766 

Supplementary Figure 5:  Association prevalence per month. Big bar plots: distribution of associations' 767 

prevalence for each month. For example, the bar at 100 for January indicates the number of edges that 768 

have been present in all Januarys of the ten -year time series. Small bar plots: number of nodes forming 769 

the associations with a 100% prevalence. For example, only bacteria were responsible for the edges during 770 

May, with an association prevalence of 100%. Bacteria are indicated with B or b, eukaryote with E or e. 771 

ASVs from the nano size-fraction have a capital letter (B, E), and ASVs from the pico size-fraction have 772 

a small letter (b, e).  773 
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Supplementary Figure 6: Association Partners of Cyanobacteria. Number of Cyanobacteria associations 774 

in the temporal network (stacked bars) and the cyanobacterial sequence abundance in each month (black 775 

dashed line). Within the box, figures are split by ASVs (rows) and size fraction: picoplankton (left column) 776 

and nanoplankton (right column). The unboxed plots on the right are ASVs detected only in the 777 

nanoplankton. The height of the bar indicates the number of edges in each month for each cyanobacterial 778 

ASV. The color indicates the taxonomy of the association partner. From bottom to top, first appear bacteria 779 

and then eukaryotes, both sorted alphabetically. The subtitle shows the number of association partners 780 

followed by their identifiers (first 3 letters) for bacteria and eukaryotes. 781 

 782 

SUPPLEMENTARY TABLES 783 
Supplementary Table 1: Number of nodes, removed isolated nodes, and number and fraction of edges in the preliminary 784 
network (A), and network obtained after removing environmentally-driven edges (B) and edges with association partners 785 
appearing more often alone than with the partner (C), which is the single static network. For comparison, we also give the 786 
minimum and maximum number of nodes and edges for the temporal network (D). We did not determine the union and 787 
intersection for the temporal network. If an ASV appeared in the nano and pico size fraction, it is counted twice. Therefore, for 788 
A-C) we also determined the number of microorganisms not considering size fraction (union) and being present in both size 789 
fractions (both, i.e. intersection). 790 

 A) eLSA B) EnDED C) Static network D) Range in Temporal network 

Connected nodes 754 754 709 130-542 

Bacteria (pico) 169 169 164 13-148 

Bacteria (nano) 279 279 251 31-204 
Bacteria (union) 309 309 281  

Bacteria (both) 139 139 134  

Eukaryote (pico) 150 150 141 7-124 
Eukaryote (nano) 156 156 153 2-138 

Eukaryote (union) 306 306 294  
Eukaryote (both) 0 0 0  

Isolated nodes 1000 0 45 6-38 

Edges 29820 26505 16626 538-15083 
Positive edges 24458 23405 16481 523-14940 

(%) 82.0 88.3 99.1 92.2-99.7 

Negative edges 5362 3100 145 12-143 
(%) 18.0 11.7 0.9 0.3-7.8 

pico and nano – microorganism detected in the picoplankton and nanoplankton, respectively, union – how many microorganisms when not considering size-791 
fraction, both – how many microorganims appear in both size fractions 792 
 793 
Supplementary Table 2: Top 100 most prevalent/recurring associations. Associations were classified based on the domain of 794 
association partners. 795 

Association partners Number of associations 

Bacterial association in picoplankton 42 
Bacterial association in nanoplankton 35 
Bacterial associations between size fractions 10 
Bacteria associated to Eukaryote in nanoplankton 4 
Eukaryotic association in nanoplankton 3 
Bacteria associated to Eukaryote in picoplankton 3 
Bacteria in nanoplankton associated to Eukaryotic picoplankton 2 
Eukaryotic association in picoplankton 1 

 796 
Supplementary Table 3: Number of environmental factors leading to the removal of edges. 797 

Number of environmental factors Edges Positive edges Negative edges 

0, i.e. not environmentally-driven edges 26505 23405 (88.3%) 3100 (11.7%) 

1 2747 1019 (37.1%) 1728 (62.9%) 

2 506 33 (6.5%) 473 (93.5%) 

3 61 1 (1.6%) 60 (98.4%) 

4 1 0 (0%) 1 (100%) 

  798 
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27 

Supplementary Table 4: Number of environmentally-driven edges for each environmental factor and fraction considering the 799 
total number of edges (29820) in the network. In addition, we present the number of positive and negative edges and the fraction 800 
considering number of edges removed through an environmental factor. 801 

Environmental factor Edges Positive edges Negative edges 

Temperature 1920 (6.44%) 725 (37.8%) 1195 (62.2%) 

Total chlorophyll-a concentration 838 (2.81%) 82 (9.8%) 756 (90.2%) 

Day length 730 (2.45%) 237 (32.5%) 493 (67.5%) 

NO2
− 192 (0.64%) 26 (13.5%) 166 (86.5%) 

SiO2 162 (0.54%) 6 (3.7%) 156 (96.3%) 

NO3
− 57 (0.19%) 12 (21.1%) 45 (78.9%) 

Turbidity 47 (0.16%) 0 47 (100%) 

Salinity, NH4
+, and PO4

3− 0 0 0 

 802 
Supplementary Table 5: 100% Matching sequences from Cyanorak database for selected cyanobacterial ASVs 803 

ASV Number Matching sequence name with clade and subclade 

Synechococcus #1 38 2x A15-24 III IIIa, 2x A15-28 III IIIb, 3x A15-44 II IIa, 2x A15-62 II IIc, 2x A18-40 III IIIa, 2x A18-46.1 III IIIa, 2x BOUM118 
III IIIa, 2x CC9605 II IIc, 2x M16.1 II IIa, 2x PROS-U-1 II IIh, 2x ROS8604 I Ib, 3x RS9902 II IIa, 3x RS9907 II IIa, 2x 
RS9915 III IIIa, 2x TAK9802 II IIa, 1x WH8016 I Ib, 2x WH8103 III IIIa, 2x WH8109 II IIa 

Synechococcus #5 2 2x PROS-9-1 I Ib 
Prochlorococcus #18 2 1x EQPAC1 HLI HLI, 1x MED4 HLI HLI 
Cyanobium #20 2 1x MINOS11 5.3 5.3,  1x RCC307 5.3 5.3 

 804 
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A) all potential associations B) determing single static network (1st condition)

Preliminary network inferred 
through eLSA with significance 

threshold (p and q < 0.001)
Single static network

D) temporal network constituted from monthly subnetworks

Month m3Month m2Month m1

C) determining subnetworks

2nd condition: both microorganisms are present

3rd condition: month is within duration of association

m1 m2 m3

m1 m2 m3

m1 m2 m3time

a
b

u
n
d
a
n
ce

duration of association

Microorganism B

Microorganism A

removing 
environmentally-

driven 
associations

only keeping 
associations 
with Jaccard 
index >0.5
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Big barplots:

associations' prevalence 

within a month.

Little barplots:

number of nodes of 

associations with a 

100% prevalence.

B, b - Bacteria

E, e - Eukaryotes

B, E - Nano size fraction

b,e - Pico size fraction

Association prevalence (in %)
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