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Abstract 

Emerging efforts toward prevention of stress-related mental disorders have created a need for unobtrusive 

real-life monitoring of stress-related symptoms. We used ecological momentary assessments (EMA) 

combined with wearable biosensors to investigate whether these can be used to detect periods of 

prolonged stress. During stressful high-stake exam (versus control) weeks, participants reported increased 

negative affect and decreased positive affect. Intriguingly, physiological arousal was decreased on average 

during the exam week. Time-resolved analyses revealed peaks in physiological arousal associated with 

both self-reported stress and self-reported positive affect, while the overall decrease in physiological 

arousal was mediated by lower positive affect during the stress period. We then used machine learning to 

show that a combination of EMA and physiology yields optimal classification of week types. Our findings 

highlight the potential of wearable biosensors in stress-related mental-health monitoring, but critically 

show that psychological context is essential for interpreting physiological arousal detected using these 

devices. 

 

Teaser 

Smartwatches combined with daily diaries of mood can detect stress periods using individualized machine 

learning models. 
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Introduction 

Stress-related mental disorders such as major depression and anxiety disorders have gained increased 

recognition in the public eye. While a vast body of research exists regarding these disorders, studies have 

mostly focused on retrospective assessments of individuals who are already afflicted with these 

conditions. More recently, an increased interest has emerged in determining what makes some individuals 

more resilient to developing these disorders than others (1–4). Investigating resilience requires 

investigation of individual variation in stress reactivity prior to the development of psychological 

illness(1). A driving force behind this approach is the need to establish early warning signs of subsequent 

onset of stress-related disorders. Early interventions are known to improve psychological outcomes in 

patients(5), and reduce the economic burden of psychiatric illness on society(6). The ability to 

unobtrusively detect states of stress in daily life would enable early ecological interventions in those at 

risk, by either flagging risk states to health-care providers, or by delivering in-the-moment personalized 

interventions during these periods(7, 8).  

Previous attempts looking at daily-life stress have used Experience Sample Methods (ESM(9), also 

known as Ecological Momentary Assessments or EMA)(10) to derive ecologically valid experiences of 

stress in daily life. These paradigms use repeated questionnaire assessments ("beeps") in the daily life of 

individuals to gain a better understanding of various psychological processes such as addiction(11), 

interpersonal relationships(12), and stress reactivity(13–15). Studies using these methods in stress and 

stress-related disorders have identified specific behavioral patterns in everyday life that may explain, or in 

some instances predict onset of psychiatric illness(16, 17). Such studies have also given insight into 

associations between the impact of stress exposure on affect, showing the effects of stress on positive and 

negative mood and its links to depression(18, 19). While these studies have provided insight into the 

dynamics of disease and behavior in daily life, they are often intrusive and require active participation of 

clients or patients. Additionally, extensive longitudinal sampling may not be feasible for all psychiatric 

populations(20). Relying on subjective measures may inadvertently result in unreliable data due to 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.06.29.450360doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.29.450360


Page 4 of 32 

careless responses, or a participants’ lower insight into symptoms and states associated(21). Furthermore, 

the sparse sampling of subjective states using EMA may miss the time windows in which stress responses 

occur. This has led to a growing interest in establishing adequate passive and ambulatory mental-health 

monitoring that may be more reliably used in a general population. 

The emergence of widely accessible wearable biosensors has raised the question whether these devices 

can be used for ecological physiological assessments (EPA), either as an add-on or as an alternative to 

EMA, in mental health monitoring. While measuring stress-hormone reactivity in daily life remains very 

difficult(22–24), wearable biosensors offer continuous recording of autonomic physiological markers 

such as skin conductance (SC) and heart rate (HR). These measures have been extensively validated in 

laboratory-based studies using controlled stress-induction protocols(25), showing increased HR and SC 

and decreased HR variability in response to stressors(26, 27). Changes in SC and HR have also been 

associated with increased psychological stress(28). Notably, however, these autonomic physiological 

parameters are associated with general arousal(29), and this includes high-arousal states of positive affect 

as well(27). This indicates that the use of EPA may be more complicated in daily life than in the lab: 

While acute stress may trigger arousal, arousal itself may not necessarily signal the presence of acute 

stress. 

Although autonomic physiological responses have been extensively studied in the lab and linked to stress 

and arousal, their links to stressors in real life are not well understood. Few attempts have been made at 

investigating the physiology of stress in daily life, mostly using fixed scenarios such as driving(30), or 

using burdensome equipment, such as ECG belts, that may be difficult to apply in the general 

population(31). An important study using large-scale wearable data using ECG and wrist-worn devices by 

Smets and colleagues (2018) showed that these findings could be replicated when classifying individual 

stress levels in real life as high, moderate, and low(32). However, one limitation of this study is the lack 

of environmental stressors, and the underlying assumption that subjective stress measures can be taken as 

the "ground truth". Indeed, the overall reports of stressed states in this study were relatively low when 
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compared to the non-stress states. Additionally, while understanding the change of physiological arousal 

related to single time experiences of stressors is important, it is the change in the measures related to the 

accumulation of stress over a prolonged period that may be more important in the context of mental health 

and resilience.  

In the current study, we therefore aimed to investigate the validity of passive EPA monitoring of 

physiological arousal and active EMA measures to detect prolonged stress exposure. We investigated a 

population of first-year medical and biomedical students, who have been shown to experience increased 

psychological distress relative to peers in other programs(33). Participants underwent two weeks with 

combined EMA and EPA assessments, one prior to a high-stake examination (i.e., stress week) and the 

other during a regular period (i.e., control week). Participants answered questions regarding subjective 

stress in the EMA questionnaires, including event-related stress (i.e., most prominent event between 

surveys), activity-related (i.e., current activity), social-related stress (i.e., social context), and physical 

stress (i.e., physical discomfort). Additional outcome measures were recorded from both the EMA and 

EPA including mood (positive and negative), and autonomic arousal measures of HR and SC (Figure 1).   

We first validated our protocol by examining differences in subjective stress measures from EMA 

between the weeks. We then assessed the impact of prolonged stress exposure on mood and physiology 

outcomes. Finally, we used individualized machine-learning models to classify per time point (beep) 

whether participants were in a stress or control week, using either mood measures, physiological 

measures, or a combination of both. In addition to confirming increased subjective stress in the exam 

week, we predicted that there would be a shift in both physiological (increased autonomic physiological 

responses) and mood (more negative affect) outcomes as a function of stressful experiences. Based on 

previous findings, we expected that both EPA and EMA measures would be successful in classifying 

prolonged stress states. We also expected that models combining both sources of data (EPA+EMA) would 

outperform either of the previous models.  
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Fig 1. Study Timeline. Diagram portraying sequence of participation in the study with counterbalanced weeks 

Results 

Examination periods are associated with increased self-reported stress. 

We first validated our stress manipulation by examining if there were overall differences in the subjective 

stress measures between the control and stress weeks using generalized linear mixed effects models with 

the different types of EMA subjective stress measures as dependent variables (i.e., event stress, activity 

stress, social stress, and physical stress), week type as a fixed effect (stress or control), and subject as 

random effect in a single model. We additionally controlled for exercise, movement, sex, study program, 

and modeled the survey instance (i.e., time of day of beeps), day, and week order (stress or control week 

first) to control for potential confounds in the data. We found a significant increase in prominent stressful 

events (i.e., event-related stress in periods between beeps, β=0.31, 95%CI [0.18, 0.43], std. error=0.06, t-

stat=4.92, p<0.001) and current reports of stress (i.e., activity-related stress at the time of beeps, β=0.49, 

95%CI [0.29, 0.69], std. error=0.1, t-stat=4.81, p<0.001). Social stress was not significantly different 

between the two weeks (β=0.02, 95%CI [-0.01, 0.05], std. error=0.02, t-stat=1.19, p=0.236). The control 

items measuring physical stress also did not differ significantly between the weeks (β=-0.06, 95%CI [-

0.24, 0.12], std. error=0.9, t-stat=-0.65, p=0.519), showing that increases in our subjective stress measures 

were likely due to our experimental manipulation, as opposed to other environmental or physical changes 

(Figure 2A). There were no effects of the other covariates in the model aside from males reporting slightly 
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higher social stress than females, and some effects of movement and exercise of physical stress 

(Supplementary material Table S1 for full model results).  

We next investigated the effects of stress exposure (i.e., week type) on mood and physiology as our main 

outcome measures. The same covariates used in modeling subjective stress were used here. Models for the 

physiology features also included mean skin temperature and change in temperature as measured by the 

slope during the selected time windows as fixed effects with random slopes. This was done as we 

expected these variables to have a significant effect on heart rate and skin conductance. For example, 

warmer body temperatures might result in increased sweat production, and thus increased skin 

conductance levels. Relative movement during a period may result in sensor displacement that was 

potentially unaccounted for in the processing pipeline and was thus also included as a covariate in the 

physiology models(34). Adjusted p-values were calculated using FDR correction and are reported below. 

In accordance with our expectations, we saw an increase in negative affect (β=0.11, 95%CI [0.07, 0.16], 

std. error=0.02, t-stat=4.8, p<0.001), and decrease in positive affect (β=-0.08, 95%CI [-0.11, -0.05], std. 

error=0.01, t-stat=-5.23, p<0.001) during the stress week (Figure 2B, full model details in supplementary 

material Table S2). Contrary to our expectations from laboratory stress studies, we found a decrease in 

arousal-related measures derived from skin conductance and heart rate during the exam week (Figure 2B).  

There was a decrease in the number of skin conductance responses (log-Mean=-0.23, 95%CI [-0.39, -

0.08], std. error=0.08, t-stat=-3.00, p<0.05). Maximum heart rate was also lower during the stress week 

(β=-0.11, 95%CI [-0.17, -0.04], std. error=0.03, t-stat=-3.30, p<0.05). Additionally, we confirmed 

expected effects of movement and skin temperature confounds on skin conductance and heart rate 

measures (supplementary material Table S3).  
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Fig 2. Fixed effects estimates of between-week difference. (A) Event-related stress (pertaining to the 
most prominent event since the last survey), and activity-related stress (relating to the current activity 
participants are engaged in) are significantly higher in the stress week compared to the control week. (B) 
This is accompanied by increased negative affect, decreased positive affect, and decreases in averages of 
multiple arousal-related physiological measures. Error bars represent confidence intervals. 

 

Momentary subjective stress is associated more strongly with mood than physiology. 

To explore the dynamics underlying the unexpected average decrease in measures of physiological arousal 

during the stress week, we investigated the link between moment-to-moment fluctuations in subjective 

stress and outcome measures (mood and physiological arousal). Separate models were constructed for 

each of the mood and physiology outcomes, with subjective stress variables as fixed effects and subject as 

a random effect. Due to high correlations between activity stress and both event (r=0.42, p<0.001) and 

social stress (r=0.34, p<0.001), interaction terms were also modeled for these two variables. Additional 

confounds were modelled as fixed effects with random slopes including sex, beep, temperature, mean 

displacement, and physical activity. Subjective stress measures were examined for multicollinearity using 
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the variable inflation score (VIF) in each of the models without the interaction terms using the R package 

“performance”(35). VIF‘s for all results were below five, indicating low multicollinearity. Results (see 

Figure 3) were corrected for multiple comparisons using FDR correction. 

In models investigating the moment-to-moment relationship between subjective stress and mood, we 

found a positive association between negative affect and activity related stress (β=0.08, 95%CI [0.02, 

0.14], std. error=0.03, t-stat=2.75, p<0.05), social stress (β=0.23, 95%CI [0.19, 0.28], std. error=0.02, t-

stat=10.15, p<0.001), and physical stress (β=0.13, 95%CI [0.10, 0.16], std. error=0.02, t-stat=8.21, 

p<0.001). The opposite was true for positive affect, with negative associations for event-related stress (β=-

0.12, 95%CI [-0.19, -0.05], std. error=0.03, t-stat=-3.45, p<0.001), activity-related stress(β=-0.20, 95%CI 

[-0.28, -0.12], std. error=0.04, t-stat=-4.95, p<0.001), social stress (β=-0.30, 95%CI [-0.s36, -0.24], std. 

error=0.03, t-stat=-9.75, p<0.001), and physical stress(β=-0.15, 95%CI [-0.19, -0.11], std. error=0.02, t-

stat=-7.63, p<0.001; see supplementary material Table S4 for full results). Regarding moment-to-moment 

associations with physiology measures, the number of skin conductance responses was positively 

associated with increased activity-related stress (β=0.08, 95%CI [0.01, 0.16], std. error=0.04, t-stat=2.2, 

p=0.045). The magnitude of skin conductance responses was associated with both activity (β=0.07, 

95%CI [0.01, 0.13], std. error=0.02, t-stat=2.16, p=0.046) and event stress (β=0.07, 95%CI [0.02, 0.12], 

std. error=0.03, t-stat=2.16, p=0.016). For heart-rate measures, only minimum heart rate was negatively 

associated with social stress (β=-0.02, 95%CI [-0.03, -0.00], std. error=0.01, t-stat= -2.69, p=0.016). Full 

details are reported in supplementary material Table S5. Thus, moment-to-moment fluctuations in 

subjective stress are associated with expected mood changes and increases in physiological arousal, and 

therefore, the observed average decrease of physiological arousal measures during stress weeks is not 

explained by physiological changes associated with subjective stress. 
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Fig 3. Effect estimates for the associations between moment-to-moment fluctuations in subjective 
stress and measures of mood and physiology. Subjective stress measures are generally associated 
with a decrease in positive affect, an increase in negative affect, and increases in some of the measures 
of physiological arousal. P-values corrected for multiple comparisons using FDR. Error bars represent 
confidence intervals. 
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Positive mood is related to increased arousal and mediates week changes. 

To investigate whether the observed average decrease of physiological arousal measures during stress 

weeks could instead be linked to reduced positive affect, we investigated the moment-to-moment 

association between affect and physiological arousal using the same covariates as the previous models. 

Due to a strong negative correlation between positive and negative affect (r=-0.57, P<0.001), interaction 

effects between positive and negative affect were added to the models. Multicollinearity was checked on 

the base models without the interaction terms. All VIF’s were below five. Increased positive affect was 

related to the number of skin conductance responses (β=0.03, 95%CI [0.01, 0.05], std. error=0.01, t-

stat=2.55, p=0.018), and increased mean heart rate (β=0.01, 95%CI [0.00, 0.02], std. error=0.01, t-

stat=2.83, p<0.01), minimum heart rate (β=0.01, 95%CI [0.00, 0.03], std. error=0.01, t-stat=2.55, 

p=0.015), and maximum heart rate (β=0.02, 95%CI [0.00, 0.03], std. error=0.01, t-stat=2.56, p=0.021, 

Figure 4, full model details in supplementary material Table S6).  Thus, in addition to subjective stress, 

also positive affect is positively associated with momentary physiological arousal. 
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Fig 4. Relationship of momentary affect and physiology. Arousal-related physiological 
measures (magnitude of skin conductance responses and mean and minimum heart rate) were 
linked to positive affect, but not to negative affect. P-values are corrected for multiple 
comparisons using FDR. Error bars represent confidence intervals. 
 

Next, to confirm that the observed average decrease in physiological arousal observed during the stress 

weeks is due to the decrease in positive affect, we assessed whether positive affect statistically mediated 

the effects of week type on physiological arousal. For this analysis, we specifically focused on the arousal 

measures that were also linked to subjective stress: The number of skin conductance responses and their 

magnitudes. Effect estimates were computed via Monte Carlo simulation (n=5,000). Results indicated that 

positive affect mediated a significant proportion of the relationship between skin conductance magnitude 

and week type (Approximately 7.3%, Mediating Estimate= -0.014, 95%CI [-0.03, 0.00], p= 0.028) but not 

the whole relationship (Direct Estimate=-0.166, 95%CI [-0.23, -0.10], p<0.001), indicating additional 

mechanisms that may also underly this relationship. The effect of week type on number of skin 

conductance responses was not mediated by positive affect. 
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Machine-learning classification of week types using mood and physiology. 

We next examined to what extent prolonged stress (i.e., week type; stress versus control) can be classified 

using machine learning based on measures of affect, physiological arousal, or a combination of both. We 

made use of random-forest machine-learning models and a leave-one-beep-out approach (LOBO), where 

models were tested on a single-subject level by training them on a single subject’s data omitting one beep. 

Models were then tested on the left-out beep, with this process repeated until all beeps had been removed 

once.  Model 1 attempting to classify week type from positive and negative affect resulted in a mean 

subject-level error rate of 33.45% (SD=±2.21). Model 2 tested if week type could be classified from the 

physiology data alone, resulting in a mean subject-level error rate of 36.11% (SD=±2.72). We finally 

determined the classification error for the combination of mood and physiology, resulting in the lowest 

error rate (M=29.87%, SD=±3.45).  

Each model was tested against its bootstrapped error rate (n=10,000) to determine whether the model 

performed above chance level. P-values were first calculated from the distribution by examining the 

proportion of bootstrapped error rates that exceed the actual model. All models performed significantly 

above chance on an individual level for all but one subject (Figure 6, individual p-values for each subject 

and error rates are reported in  associated online notebook indicated at the end of the supplementary 

material).  Group-level effects were further tested with paired-samples t-tests comparing the LOBO 

models to the mean bootstrapped error for each model. Model 1 (Affect, Mdiff=-16.29, t(80)=-64.06, 

p<0.001), Model 2 (Physiology, Mdiff=-13.87, t(78)=-50.38, p<0.001), and Model 3 (Combination, Mdiff=-

19.45, t(78)=-48.94, p<0.001) all performed above chance at the group level.  

Paired-samples t-tests comparing the within-subject error rates between the LOBO models showed that the 

model using only EPA data (M2) had the highest error rates, and performed significantly worse than the 

model using affect (M1) items (Mdiff=2.60, t(78)=14.65, p<0.001). The model using affect measures alone 

came in second relative to the model using a combination of measures (Mdiff=3.64, t(78)=19.20, p<0.001). 
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However, worth noting is that the overall difference between models 1 and 2 was at 2.60% on average, 

which shows that Model 2 using EPA wristwatch data performed almost on par with the EMA affect 

model. While overall the EMA mood models performed better, in some subjects the models had almost 

equivalent performance.  

Within-subject models offer better predictions than between-subject 

We next sought to investigate the generalizability of these models from a within-subject approach to a 

population-level one (using between-subject classification training). This was done through the commonly 

used leave-one-subject-out (LOSO) cross-validation instead. The same measures were used for these 

models again: model 1 (M1) attempted to classify week from affect, model 2 classified week from 

physiology (M2), and model 3 used the combination of mood and physiology for classification (M3). M1 

using affect (45.85%, SD±9.50), M2 using physiology 48.42%, SD=±8.05), and M3 using the 

combination (42.44%, SD=±9.00) were tested against their bootstrapped counterpart similar to the LOBO 

models.  

 

Fig 5. Random-forest classification error estimates. Average error estimates and 
error bars (representing standard errors of the mean) for each of the random-forest 
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models. Combinations of mood and physiology yield superior classification, and 
individually trained and tested models (LOBO, Leave-One-Beep-Out) perform better 
than models trained on group-level data (LOSO, Leave-One-Subject-Out). Chance 
levels estimated from permutation test and confidence interval are shown in blue. 
Significance levels between bars indicate between model comparisons, and above 
bar indicate model comparison to chance levels. ***P<0.001. - 
 

For some individual subjects LOSO models performed significantly above chance level (Model 1-Affect 

n=45(54.1%), Model 2-Physiology n=30(37.9%), and Model 3-Combination n= 55(69.6%)) in classifying 

week type (subject level p-values reported in supplementary material section 7). Group level analysis 

using a paired sample t-test showed that only model 1 (Affect, Mdiff=-3.63, t(80)=-3.59, p<0.001), and 

model 3 (Combinations, Mdiff=-6.55, t(78)=-6.81, p<0.001) performed better than chance. Model 2 did not 

perform above chance at the group level (Physiology, Mdiff=-1.34, t(78)=-1.54, p=0.128). 

We additionally directly compared the classification errors between the LOSO and LOBO models for each 

subject using a paired-sample t-test. For all three models, the LOBO within subject approach performed 

better than the LOSO. LOSO model 1 using mood as a classifier performed significantly worse than the 

equivalent LOBO model (Mdiff=11.43, t(80)=12.17, p<0.001). The LOSO error estimates for model 2 using 

physiology as a classifier were also significantly worse than the LOBO counterpart (Mdiff=8.11, t(78)=8.61, 

p<0.001).  Model 3 LOSO error rates using the combination were the lowest among the LOSO family of 

models, but similarly performed worse than the LOBO model counterpart (Mdiff=12.61, t(78)=11.74, 

p<0.001). This demonstrates that training classifiers on individual data results in vastly superior 

classification compared to training models on population-level models.   
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Discussion 

In the current study, we investigated physiological and psychological responses to an ecological prolonged 

stressor in daily life (i.e., an exam week in students), with the goal of determining the usability of passive 

monitoring technologies for detection of prolonged stress. We employed EMA and EPA to track 

subjective stress, mood, and arousal-related physiology. Our findings confirmed an overall increase in 

subjective stress levels during the exam week. As hypothesized, during the stress week, negative mood 

increased, and positive mood decreased. Contrary to what was expected, lower skin conductance and heart 

rate arousal measures were observed during the stress week. At a beep-to-beep time scale, increased 

subjective stress was associated with increased negative mood, decreased positive mood, and increased 

skin conductance responses. Interestingly, positive affect was also associated with skin conductance 

responses, and mediated the changes seen between the two weeks. This indicates that the observed 

decreases in physiological arousal measures were (at least partially) due to a reduction in positive mood. 

Finally, using a machine-learning approach, we showed that the combination of individual mood and 

physiology best dissociated stress from control weeks. These results highlight the potential of using 

passive monitoring using wearable sensors, but they also caution that mood measures are still important in 

distinguishing positive and negatively valent arousal. 

In our results, we observed an increase in self-reported stress during the exam week in line with previous 

findings on examination stress, thus providing a validation for our paradigm(36, 37).  Interestingly, the 

effects of week type also included expected changes in mood items, with increased negative and decreased 

positive affect. However, while we initially expected arousal measures to be increased during the stress 

week, the opposite was true in our results. The observed overall decrease in physiological arousal during 

stress weeks appears at odds with the positive association between subjective stress and increased arousal 

shown in our moment-to-moment analysis and in previous works(26, 30, 32, 38). What becomes evident 

here is that there is a distinct mechanism that differentiates prolonged stress from acute stress. While 

prolonged stress leads to increased moment-to-moment peaks in self-reported acute stress, it also results 
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more generally in decreased positive affect and decreased overall average arousal. Given that positive 

affect and arousal measures are both reduced during the stress week, it appears that the dominant effect on 

arousal is tied to (reduced) positive affect rather than to peaks in subjective stress. The mechanistic link 

supporting this claim is shown in our mediation analysis, which confirms that positive affect (partially) 

mediates the effect of week type on reduced arousal. While this may seem counterintuitive, physiological 

arousal through skin conductance and heart rate measures has shown to be responsive to both positive and 

negative events, showing that physiological arousal is not valence specific(27, 38–41). Thus, the net 

effect of prolonged stress exposure (as operationalized in this study) stems in part from a reduction in 

overall arousal driven by reductions in positive mood that persist outside of peak moments of acute stress.  

We subsequently tested the ability of machine-learning models in classifying stress and control weeks 

based on either physiology, mood, or both combined. Physiology models could classify prolonged stress 

exposure almost as well as models using mood alone (3.85% difference on average). However, and more 

importantly, the combination of both resulted in the best predictive accuracy (approximately 29.9% error). 

Thus, it is apparent that the addition of mood questions to physiological arousal provides valuable 

information to classification models. This builds on the initial findings of our mixed models and mediation 

analysis, showing that accounting for valence through mood is important in trying to separate stress-

induced arousal from positive arousal. This problem is highlighted in studies using skin conductance 

trigger-based EMA to detect stress, which resulted in capturing positive arousal instead(39)  . Our findings 

highlight the need for continued development of passive, non-invasive measurements for stress detection. 

This would allow us to bypass some limitations of EMA, such as response biases, (lack-of) insight into 

mood states, the age and sex of participants, and the instructions given by experimenters(42–44). With the 

recent growth of interest in the application of physiological assessments in clinical populations, our 

findings indicate that combining a wrist-worn device with a minimally invasive mood assessment might 

offer a feasible approach to detecting stress in clinical populations that surpasses a full battery of EMA 

measures. 
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In addition to showing the utility of physiological monitoring, our results also show the importance of 

individualized approaches in stress detection. We assessed the generalizability of our machine-learning 

approach by comparing individualized models (i.e., Leave-One-Beep-Out, LOBO) to group-level models 

(i.e., Leave-One-Subject-Out, LOSO). Classification models trained and tested on an individual’s own 

data performed significantly better than those trained at the group level. This shows that our 

individualized approach offers drastic improvements to classification of stress states. Both our own and 

previous studies using LOSO models in this pursuit had mixed results for individual participants, with 

only around 18% of participants in other studies achieving high classification performance (i.e., low error 

rates)(32).  With the movement towards more personalized approaches in psychiatry, the outcomes of the 

individualized LOBO method further emphasize the need for a personalized approach. The reason for this 

is likely that the same experience can generate different physiological and psychological responses in 

different people based on a multitude of factors such as sex, appraisal, or clinical traits and features(45). 

For example, it may be reasonable to assume that patients with anxiety may display a very different 

physiological response to stress than those with depression (hyper vs hypo activation) or than those with 

impulsive aggression(40). Individualized models would allow for greater prediction than a one-size-fits 

all approach, with improved generalizability of the methods. One foreseeable implementation in general 

practice may include a period of passive data collection so that adequate data for individual patients can be 

acquired to train and test models with a continuous data stream. 

Some limitations that warrant discussion include the implementation of physiology assessments. While 

marketable devices are available, the underlying processing and feature extraction is not easily 

implementable in clinical practice. Recent tools(45) and recommendations have made the process 

simpler(46),  but decisions on what processing steps to implement, what software and platform to use, and 

what features to select are beyond the scope of many clinicians. Through highlighting important features 

in our own results, we hope to elucidate what physiology measures might be relevant in practice to 

continue the development of accessible platforms in clinical practice. Furthermore, processing of 
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physiology data requires that poor quality signals be removed from the full data set. However, despite 

discarding 10% of surveys due to poor quality physiology, we were still able to maintain 77% completion 

rates, which are comparable to many other studies using EMA alone(43). The need for computational 

power is also apparent in the model estimations in our study. While the individualized LOBO and group-

level LOSO models were relatively easy to estimate, bootstrap estimations are much more 

computationally expensive and can require days to compute. These issues on a whole are not easy to solve 

but increasing technological advancements will make future research using these methods even more 

accessible. 

In conclusion, our study shows that EPA can potentially be used for monitoring stress-related mental 

health, but highlights the fact that psychological context remains critical in interpreting changes in 

physiological arousal in terms of acute stress versus positive affect. We show that a combination of EMA 

and EPA is optimal for detecting prolonged stress, and we furthermore highlight the need for an 

individualized approach in this effort. Personalized approaches in psychiatry have been gaining 

momentum in recent years, and our findings further support this development. If successfully 

implemented at wider scale, our findings may have implications on disease prevention that may help 

reduce the overall disease burden of stress-related disorders through personalized early-warning systems 

and treatment strategies, though more work is needed to explore differences in these mechanisms in 

various clinical populations. 
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Materials and Methods 

Experimental Design 

We recruited 84 right-handed, first year bachelor’s students in the medical or biomedical science majors 

from Radboud Health Academy spanning three academic years (2017, 2018, and 2019). One participant 

withdrew during testing, resulting in a total sample size of 83 participants used in the analysis. The 

programs were selected due to their structured examination weeks that occur every 5th and 10th week of a 

semester, allowing us to examine a period with higher stress levels during examination weeks as an 

ecological prolonged stressor. While course work and examinations for both programs were identical, 

participants’ major was recorded to be used in statistical models as a confound. Only participants with no 

history of psychiatric illness were included in the study. Recruitment was stopped following the COVID-

19 outbreak (in March 2020). All procedures carried out were approved by the regional medical ethical 

review board (CMO Arnhem-Nijmegen). 

Participants completed two weeks of ecological momentary assessments (EMA), one occurring during an 

examination period (i.e., stress week) and the other occurring on average 16 days (min=10, max=33) 

outside of these periods (i.e., control week, demographics in Table 1). Compliance rates were overall high 

with 84% of surveys being completed within the allocated one-hour window during both stress and control 

weeks. When accounting for missing and poor-quality physiology (EPA) data, completion rates dropped 

to between 76% and 77% which was within the median ranges for EMA studies reported the metanalysis 

by Vachon et al (2019, Table 1)(43). Gender distribution was similar to that of students enrolled at the 

university (57% female, according to Radboud University website). We were unable to fully 

counterbalance the order of weeks due to termination of recruitment upon the onset of the COVID-19 

crisis. Week order was therefore controlled for in all statistical models. At the end of each of these weeks, 

participants completed a series of behavioral tasks, and a psychological test battery. Participants also 

underwent two counterbalanced fMRI sessions which are outside the scope of this paper and will be 

reported elsewhere. 
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Table 1. Descriptive statistics  

Sex Female 51 (61.4%) Male 32 (38.6%)  

Course 
Program Medicine 61 Bio-Medical Sciences 22 

 

 Exam Week Control Week 
First Week 27 (32.5%) 56 (67.5%) 
 1st Qu.* Mean 3rd Qu.* 1st Qu.* Mean 3rd Qu.* 
Survey 
Completion 

34 
(81%) 

35.51 
(85%) 

39 
(93%) 

34 
(81%) 

35.89 
(85%) 

40 
(95%) 

Completion 
with usable 
Physiology 

29 
(69%) 

32.15 
(76.55%) 

37 
(88%) 

29 
(69%) 

32.36 
(77.05%) 

37 
(88%) 

* 1st and 3rd Quantiles indicating 50% of participants had completion rates in given range 
 

 

Assessing daily-life stress through EMA and EPA 

To assess stress reactivity in daily life, we employed EMA and EPA. Participants completed two different 

testing weeks, with one of these periods culminating in a high-stakes exam (i.e., stress week) and the other 

with no examinations (i.e., control week). This allowed us to objectively examine a period with higher 

stress levels and subsequently determine individualized patterns of stress reactivity. Participants initially 

had an intake meeting during which the study procedures were explained before the start of the testing 

weeks. During these weeks, participants received six surveys a day at fixed intervals. Surveys were hosted 

on CastorEDC(47), and participants received links to the surveys via SMS texts. Participants were given a 

one-hour window to fill in the surveys to adjust for differences in class schedules within the population, as 

phones were not permitted during these times. While this time window is longer than that used in some 

studies(14, 48), it is still within range of time windows used in other studies(49). Surveys assessed 

different psychological aspects related to stress, using questionnaires and constructs based on other studies 

in EMA literature (see Vaessen et al. 2017 for overview of question types)(50). Additionally, the first 

questionnaire of the day contained an assessment for sleep quality, while the last contained items 

regarding self-reflection. The full questionnaires are provided in the associated online repository listed in 

the supplementary materials section 7. 
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The EMA surveys themselves consisted of questions regarding subjective stress used in the validation of 

our experimental paradigm, and mood questions (positive and negative affect) relating to our subjective 

outcome measures filled in on a 7-point Likert scale. Questions in the validation set probed four types of 

stress as follows: i) Event-related stress assessed the most prominent event that occurred in between EMA 

beeps ii) Activity-related stress questions probed the activity participants were engaged in upon receiving 

the beep iii) Social-related stress addressed stress that may arise from the social context participants were 

present in (either being alone, or with someone) iv) Physical-related stress was used as a control measure 

to account for environmental and physical demands. Mood outcome questions consisted of four items 

assessing positive mood, and five items assessing negative mood.  

In addition to filling in EMA surveys, participants were also instructed to wear an Empatica E4 wristband 

(Empatica, Milano, Italy) that collected ambulatory EPA data throughout the stress and control weeks. 

Ambulatory data is collected continuously and in the background without the need of participants to 

actively engage in the collection of this type of data. Participants were instructed to charge the watch and 

simultaneously synchronize the data to anonymized researcher-specific accounts once a day for one hour 

preferably when showering to minimize data loss. A detailed explanation was given to participants on 

their operation with a practice session recorded during the intake interview. The E4 devices collected 

blood pulse volume, electrodermal activity, three-axis movement, and body temperature.  

EPA Data Processing 

EPA Data cleaning was performed using Python (V3.6.1)(51). Additional packages used for 

preprocessing included NumPy (V1.18.1)(52) and Pandas (V1.0.3)(53). Time stamps for each survey 

instance were used to classify surveys as belonging to a stress or control week. Ten-minute time windows 

prior to each survey were selected for the extraction of physiology features acquired from the E4. Pre-

processed IBI data were deemed too sparse to offer meaningful temporal domain analysis, with an average 

of 27% of IBIs successfully detected in our selected time window. This is within the margins of the 

manufacturer’s signal loss estimates in daily use. We instead selected average heart rate features from the 
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resulting processed files from Empatica. The devices use a strict proprietary detection algorithm in the 

detection of IBIs, so these files can be used with minimal processing to derive global heart rate features. 

These features included the mean, minimum, and maximum heart rate. Raw skin conductance was 

processed for offline use with the PyPhysio package (V2.1)(45). A minimum threshold of 0.01 µsiemens 

was set for the skin conductance levels deemed of acceptable quality based on previous recommendations 

of a threshold between 0.01-0.05 µsiemens(46). Data was first despiked to remove artifacts due to sudden 

hand motions using standard settings in the library. Data was then denoised to remove remaining artifacts 

through windowed filtering of changes in the signal greater than 0.02 µsiemens between subsequent 

samples.  Additionally, an Elliptic filter with cut-off frequency set between 0.8 and 1.1 was applied to the 

data. Skin conductance data were subsequently de-convolved using a Bateman impulse response function 

into phasic and tonic components from which specific features were extracted (mean tonic activity, and 

magnitude, area under the curve, and the number of phasic responses). The raw temperature measures 

were used to calculate the mean skin temperature, as well as the slope as a function of change in skin 

temperature within the acquired time window. Two participants had a watch with faulty temperature 

sensors. These measures were substituted from the population mean and standard deviation to avoid loss 

of participants' data due to missing data points in statistical models. The other sensors on this device were 

tested and no errors were detected in other recordings. Finally, the root mean squared displacement in 

each time window was calculated from the accelerometer data. The extracted features were collected into 

a single data frame used for statistical analysis. 

Statistical Analysis 

All statistical analyses were conducted in R (R, version 3.6.1). EMA surveys contained several questions 

relating to four stress scales: 1) Event stress 2) Activity Stress, 3) Social Stress and 4) Physical stress (Box 

1 for detailed information). Items on a reversed scale were inverted. Items for each scale were summed to 

create a single score for each of the scales. The same was done for items relating to positive and negative 
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affect. Total item scores were then rescaled, and a subject centered measure was derived. Surveys that 

were not filled in within the assigned time window were excluded from further analyses. 

Initial analysis examined overall differences in the population between the two weeks to establish the 

validity of the experimental manipulation through generalized linear mixed effects models using the 

“lmer” package(54). A maximal fitting approach was used in constructing our models to reduce Type-I 

errors in which random slopes were estimated for all fixed effects(55). EMA and EPA measures were 

modeled as dependent variables, with week type as the primary predictor of interest. Sex, program, order 

of the weeks, as well as day relative to start and beep number were modeled as fixed effects. We 

additionally modeled nuisance regressors using temperature and movement for the EPA models. We used 

subject as a random effect and modeled random slopes for each of the predictors. A random intercept was 

set for the random effect modeling our predictor of interest (i.e., week type). Except for week type, which 

was the predictor of interest, we did not model random slopes for factors with seven or fewer levels.  

Model fits were checked, and model families were adjusted to achieve optimal fit based on Akaike 

Information Criterion (AIC) and residual normality. We additionally sought to replicate previous findings 

associating momentary stress with physiology signals, and to further explore findings from our week 

assessments. To this end, we examined the relationships underlying the continuous physiology and 

psychological outcomes in relation to the combined subjective stress measures. Models were fit with the 

same approach used in the first analysis. Mediation analysis was then used to explain the apparent 

differences in the relationships between the week type and momentary analyses. 

Machine-Learning Models 

One of our primary goals was assessing the ability to use ambulatory, non-intrusive measures to determine 

whether someone is currently in a stressed state. To this end, random forest models were used to 

determine the ability to classify whether subjects were in the stress or control week using the collected 

EMA and/or ambulatory EPA data using the randomForest package in R(56). Random forest models were 

selected due to the demonstrated high accuracy(57), previous use in similar studies(32, 58), and 
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simplicity of implementation that may make them more usable in a broader setting. To determine the 

variables used in training the models, we conceptualized mood and changes in physiology as outcomes of 

stressed states based on previous findings(18, 19). That is, we expected that feelings of stress would 

directly impact mood and be related to changes in physiology. Therefore, we selected only the mood items 

from the EMA measures in these analyses.  

Model predictions were estimated using a Leave-One-Beep-Out (LOBO) cross-validation method similar 

to a Leave-One-Trial-Out (LOTO) approach used in other fields using custom functions(59, 60). Models 

estimating the classification errors were constructed at a single-subject level. For each participant, a model 

was estimated on their n-1 beep data set, with a prediction being tested on the removed beep. This was 

repeated until all beeps had been removed once for the subject and tested against their remaining data set. 

Three models were tested as follows: Model 1 tested the ability to classify week type from positive and 

negative affect. Model 2 tested the ability to predict week type from ambulatory data collected via the E4 

wristband. Model 3 tested the combination of physiology and mood data in predicting week type. A 

bootstrapped error was estimated through permutation tests by randomly resampling the week type and 

testing each of the models again. Resampling was carried out using 10,000 iterations per model to achieve 

the true error distributions. Each model was tested against the distribution resulting from the permutation 

tests to determine if predictions were indeed above chance. Models were then tested against the average 

error rates of the permutation tests to determine group level effects using paired sample t-tests. Models 

were then tested against each other to determine which model had the lowest error rates. Finally, we tested 

the generalizability of the random forest models to a population level using a Leave-One-Subject-Out 

(LOSO) analysis(60). In a LOSO analysis, models were trained on N-1 participants dataset, where an 

entire participant’s data was removed from the dataset and a model trained on the remaining participants. 

Classification errors for the removed participant were then calculated, and the process repeated until each 

participant had been removed once from the dataset. Model predictions using the LOBO were then 
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compared to that of the LOSO method to estimate the generalizability of machine-learning models on the 

data. 
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