
gpuZoo: Cost-effective estimation of gene regulatory networks using the Graphics
Processing Unit

Marouen Ben Guebila1, Daniel C Morgan2, Kimberly Glass1,2, Marieke L. Kuijjer3,4,
Dawn L. DeMeo2, John Quackenbush1,2,*

1 Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA.

2 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s
Hospital and Harvard Medical School

3 Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo,
Norway

4 Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands

* To whom correspondence should be addressed. Email: johnq@hsph.harvard.edu.

ABSTRACT
Gene regulatory network inference allows for the study of transcriptional control to identify the
alteration of cellular processes in human diseases. Our group has developed several tools to
model a variety of regulatory processes, including transcriptional (PANDA, SPIDER) and post-
transcriptional (PUMA) gene regulation, and gene regulation in individual samples (LIONESS).
These methods work by performing repeated operations on data matrices in order to integrate
information across multiple lines of biological evidence. This limits their use for large-scale
genomic studies due to the associated high computational burden. To address this limitation, we
developed gpuZoo, which includes GPU-accelerated implementations of these algorithms. The
runtime of the gpuZoo implementation in MATLAB and Python is up to 61 times faster and 28
times less expensive than the multi-core CPU implementation of the same methods. gpuZoo
takes advantage of the modern multi-GPU device architecture to build a population of sample-
specific gene regulatory networks with similar runtime and cost improvements by combining GPU
acceleration with an efficient on-line derivation. Taken together, gpuZoo allows parallel and on-
line gene regulatory network inference in large-scale genomic studies with cost-effective
performance.
gpuZoo is available in MATLAB through the netZooM package
https://github.com/netZoo/netZooM and in Python through the netZooPy package
https://github.com/netZoo/netZooPy.

INTRODUCTION

Gene regulation plays an important role in defining cell phenotypes and controlling cellular
functions (1). Transcription factors (TFs) are regulatory proteins that bind promoter and enhancer
regions near a gene to control its transcription and, ultimately, to mediate cellular processes (2,3).
Several methods have been developed to infer gene regulatory networks from gene expression

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

data and other data types (4-7). PANDA (Passing Attributes between Networks for Data
Assimilation) (8,9) is an algorithm that estimates gene regulatory networks that are comprised of
the collection of interactions between transcription factors and their target genes. Calculating such
networks for individual phenotypes allows us to compare networks between phenotypes and
understand changes in regulatory processes linked to health and disease. PUMA (10) estimates
miRNA regulation (1) by seeding PANDA with miRNA estimated targets, while SPIDER (11)
integrates DNase-seq data into the PANDA process to improve the accuracy of the network by
restricting TF binding to open chromatin regions. LIONESS (12) makes iterative calls by
embedding aggregate network reconstruction approaches such as PANDA or PUMA, in a loop
and uses linear interpolation to calculate sample-specific gene regulatory networks for each
member of a study population. Computing sample-specific networks informs us about gene
regulation in various biological states by measuring heterogeneity within a population. These
methods have proven quite useful, providing insight into, for example, tissue-specific gene
regulation (13), explain sex-specific response to cancer drugs (14), and altered pathways in
ovarian cancer (15).

Despite the success of these methods, one factor limiting the broader use of PANDA, PUMA,
SPIDER, and LIONESS is the considerable memory space and computational time these
algorithms require. As detailed below, PANDA, PUMA, SPIDER, and LIONESS perform a large
number of matrix operations that were, until recently, reliant on CPUs composed of a relatively
small number of computing cores that can maximally account for a few simultaneous software
threads.

Graphics processing units (GPUs) offer an attractive alternative to CPUs, handling these
repetitive matrix calculations in a faster and more efficient fashion. GPUs have hundreds of cores
designed to handle many threads and thus support the efficient implementation of highly parallel
computation in genomics (16) and in network inference (5). Since PUMA and SPIDER run on the
same computational backend as PANDA, we will refer to the implementation of PANDA, PUMA,
and SPIDER on the GPU as gpuPANDA. Therefore, gpuZoo consists of gpuPANDA which is a
fast implementation of PANDA optimized to take advantage of the GPU architecture, and
gpuLIONESS that implements LIONESS on multi-GPU devices to parallelize the required iterative
computation of sample-specific networks. A cost-performance analysis found gpuPANDA to be
up to 61 times faster and 28 times less expensive than running multi-threaded CPU
implementations of PANDA, with similar performance improvements for gpuLIONESS of about
10x speedup for network modeling on a population of 127 individuals.

MATERIAL AND METHODS

The serial implementation of PANDA, PUMA, SPIDER, and LIONESS

Each cell contains proteins called transcription factors (TFs) that bind to specific DNA sequences
to regulate gene expression. These transcription factors often work together to collectively
regulate gene expression (3). These interactions can be represented in networks. We also know
that genes that are regulated by the same transcription factors generally display similar patterns

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

of expression. To capture these interactions, PANDA takes as input three “seed” matrices
representing the networks of potentially “interacting” and co-regulated elements.

The first of these is a transcription factor-by-gene regulatory matrix (W0) that can be constructed
by connecting TFs to their target genes based on mapping each TF’s known regulatory motif to
the genome and identifying transcription factor binding sites (TFBS) within a window surrounding
the transcription start site of each gene. This is based on our understanding that TFs often
regulate gene expression by binding to the promoter region of their target genes.

The second matrix is a TF-by-TF cooperativity network (P0) that is based on “protein-protein
interaction” (PPI) data collected from various sources such as in vitro experiments, text mining,
and computational inference. Therefore, PPI data consists of pairs of proteins that interact with
each other, for example, through physical binding. This matrix represents the network of proteins
that may interact with each other to form multi-protein, i.e., multi-TF, complexes that together
regulate specific genes. The use of PPI data in PANDA allows the algorithm to consider both
direct regulation mediated by TFs binding to motifs on the DNA as well as indirect regulation by
TFs that bind to other TFs that themselves bind to the DNA.

The final input matrix is the expression co-regulatory matrix (C0). The elements of this gene-by-
gene matrix are pairwise Pearson Correlation Coefficients (PCC) between the corresponding
gene pairs. PANDA integrates this correlation network with W0 based on the hypothesis that
genes co-regulated by the same transcription factors should have correlated patterns of gene
expression.

Because the regulatory network (W0), the cooperativity network (P0), and the co-regulatory matrix
(C0) have different scales, the entries of each are Z-score standardized across both rows and
columns. PANDA then iteratively optimizes the consistency between the three input matrices. It
first calculates “Responsibility” and “Availability” values for each TF-gene edge and combines
these values to update W. Next, it updates the values in P and C. Each of these updates uses a
function based on a modified Tanimoto similarity for continuous variables, which we refer to as
the Tfunction; the Tfunction can be conceptualized in terms of large matrix operations, making it
amenable to significant improvement using GPU computing (see below and Supplementary
methods).

PANDA (8) computes a final regulatory network (Wf) (Figure S1-B) using a step-wise approach
defined by a learning rate (𝛼) (Supplementary methods). To better interpret performance gains
from GPU computing, in addition to the Tfunction, we also included seven commonly used
similarity metrics (Euclidean, squared Euclidean, standardized Euclidean, City block, Chebychev,
Cosine, and PCC) as alternatives for benchmarking purposes (see Supplementary methods).

PANDA has recently been extended to incorporate additional regulatory mechanisms. PUMA (10)
estimates the regulation of target genes by miRNAs by seeding a modified version of the PANDA
algorithm with an estimate of miRNA target predictions in the W0 matrix. SPIDER (11) improves
the accuracy of PANDA networks by integrating DNase-seq data to identify open chromatin

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

regions where TFs are likely to bind. This is done by filtering W0 edges to the ones where the
chromatin is in the open state.

In addition to aggregate methods that compute a context-specific network using several gene
expression samples, we developed LIONESS (12) as an algorithm that uses linear interpolation
to estimate single-sample networks. LIONESS first calculates a model (W) for the entire
population of NS samples. Then, it iteratively leaves out single samples, calculates a model for
the population deprived of the ith sample (W(i)), and uses the difference between these two models
to estimate the network for the ith sample (𝑊#) using equation 4 in (12).
In our previous work, we have applied LIONESS to aggregate network models calculated using
PANDA (14,17,18). In this case, computing a LIONESS network requires the following steps:

1- Compute a PANDA network (W) for all samples using PPI, motif, and gene coexpression.
These three networks are normalized as a preprocessing step.

2- For a given sample i, compute gene coexpression using all samples but sample i, then
normalize this matrix. PANDA is called on the newly obtained gene coexpression, motif,
and PPI networks.

3- A GRN for sample i is derived by linear interpolation (12).
4- Step 2-3 are repeated for all the samples in the gene expression dataset.

In general, the slowest step in this process is computing and normalizing gene coexpression for
every sample. However, since we are only interested in computing gene coexpression deprived
of sample i, we can optimize the algorithm by computing gene coexpression on-line, i.e., by
inferring the sample-deprived gene coexpression 𝐶(#) from computing three initial variables: m, a
vector representing the mean expression of genes across all samples; s, a vector representing
the standard deviation in the expression of genes across all samples; and Cov, a matrix
representing the covariance in expression between pairs of genes across all samples.
First, we use m to compute a vector representing the mean expression of genes across all
samples except for sample i:

𝐸𝑞1:	𝑚(#) = .
(/0.)

(𝑛 ∗ 𝑚 − 𝐺#)

with n the number of samples and 𝐺# the expression of genes in sample i. Next, we use s and m(i)
to compute the standard deviation of genes across all samples except for sample i:

𝐸𝑞2:	𝑠(#) = 7(𝑠8 − .
/
∗ (𝑠 −𝑚(#))8 ∗ /0.

/08
)

Third, we use Cov and m to compute the covariance matrix across all samples except for sample
i:

𝐸𝑞3:	𝐶𝑜𝑣(#) = .
/08

∗ (𝐶𝑜𝑣 ∗ (𝑛 − 1) −	 /
/0.

∗ (𝐺# −𝑚(#)) ∗ (𝐺# −𝑚(#))′)
Finally, the sample-deprived co-expression matrix can be computed as follows:

𝐸𝑞4:	𝐶(#) =
𝐶𝑜𝑣(#)

𝑠(#) ∗ 𝑠(#)′

Computing the mean, standard deviation, and covariance only one time in step 1 allows us to
infer the coexpression matrix for all samples in step 2. It avoids having to compute gene co-
expression estimates independently for hundreds of samples.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

gpuPANDA and gpuLIONESS

Briefly, gpuPANDA implements network inference in parallel by first broadcasting data matrices
to the GPU device and then performing all of the computation steps of the algorithm in the GPU
device by distributing element-wise matrix operations, such as additions and multiplications
(Figure S1-A), across hundreds of GPU cores using CUDA (19). For example, to determine the
potential for a regulatory interaction between a TF and gene, PANDA computes the similarity
t(x,y) between the target profile of the TF and the coexpressed partners of the target gene, as
represented by in the matrices W and C. For each TF and gene pair, represented by row x of W
and column y of C, the similarity is computed as follows:

𝑡(𝑥, 𝑦) = BCD
EBBDFCCD0|BCD|

In CPU, the similarity between each TF-gene pair is computed sequentially. In GPU, each core
computes the similarity for a single TF-gene pair. This means that the GPU/CPU speedup factor
can be, in theory, of the order of the number of GPU cores (Figure S1-A), although in reality, GPU
cores are much slower than CPU cores, and CPU cores can be multithreaded. In the end, the
resulting network is sent back from the GPU to local memory and reduced to the final result
(Figure S1-B). The gpuPANDA implementation has additional features such as the option to
optimize GPU memory by considering only half of symmetrical coexpression matrices. In order to
avoid memory transfer overhead, communication with the CPU was reduced to the case of device
failure to save intermediary results and restart from the last iteration.

gpuLIONESS, which is essentially a series of batch calls to another network reconstruction
approach, such as gpuPANDA, takes advantage of the architecture of multi-GPU devices, such
as the NVIDIA TESLA K80 and NVIDIA TESLA P100, by assigning the computation of each
single-sample network to an individual GPU device in parallel. gpuLIONESS uses the MATLAB
and Python interfaces to embed CUDA (19) processes for each NVIDIA GPU in a Message
Passing Interface (MPI) process (20) to compute single-sample networks in parallel. This hybrid
structure provides two levels of parallelism that ensures message passing of computation results
between non-shared memory processes and within each CUDA process.

gpuZoo which consists of gpuPANDA and gpuLIONESS was implemented in MATLAB (2019a,
version 9.6.0, The MathWorks Inc., Natick, Massachusetts, USA) as part of the netZooM package
(https://github.com/netZoo/netZooM; version 0.5.2) and in Python (version 3.7) as part of the
netZooPy package (https://github.com/netZoo/netZooPy; version 0.6.2).

Benchmarking procedure

The runtime and cost of network generation for the CPU and GPU implementations of PANDA
and LIONESS were compared using networks of three sizes: 652 TFs by 1000 genes, 652 TFs
by 27,149 genes, and 1603 TFs by 43,698 transcripts. These roughly correspond to the sizes of
a small network, protein-coding genes network, and transcript network, respectively.

The small size network was derived from the input data used by Lopes-Ramos and colleagues
(21) to construct lymphoblast cell line (LCL) regulatory networks using i) expression data from

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

GTEx (22), ii) PPI data from STRINGdb (23), and iii) TF binding predictions derived using FIMO
(24) to scan the promoter regions of all gene sequences defined as TSS +/-750bp in the human
genome (hg38) for matches to human PWMs from CIS-BP (3). To create the small network from
these data, we restricted the TF binding network to the first 1000 genes. In the data pre-
processing step, we took the intersection of these three input data sources, i.e., the intersection
of the TFs in PPI and TF binding motif matrices and the intersection of the genes in the gene
coexpression and the TF binding motif matrices; this resulted in W, P, and C matrices that
included data for 652 TFs and 1000 genes.

The protein-coding gene network was also derived from GTEx LCL cell line data, but in the data
pre-processing step we did not restrict to 1000 genes and used the union of the three complete
input data sets, which still had 652 TFs but which increased the number of target genes to 27,149.

Finally, to test the maximal capacity of the GPU hardware, we computed a large network
consisting of all the known TFs and individual gene transcripts. These individual transcripts reflect
the alternative splicing process in which each gene can code for several transcripts. This model
was called the transcript network. The transcript network was based on THP-1 Leukemic
monocyte cell line (25), gene expression data from GEO (26) processed in ARCHS4 (27) to obtain
transcript levels, a PPI network of 1603 TFs encoded in the human genome from STRINGdb (23),
and the same set of TF binding predictions used in the protein-coding gene network. In the data
pre-processing step, we used the union of the three data sources which resulted in a data set
consisting of 1603 TFs and 43,698 transcripts.

In addition to the default Tfunction similarity metric and default learning rate (⍺=0.1), we ran
PANDA using seven commonly used similarity metrics that can be computed on the GPU
(Supplementary Material) and two additional learning rates (⍺=0.2 and ⍺=0.3) and compared them
in terms of computational speed and cost. Two reasons motivated the expansion to additional
parameters. First, we wanted to show that GPU versus CPU results are consistent across different
parameters. Second, although we successfully used the similarity metric Tfunction with a learning
rate of 0.1 in earlier studies (13,14,21), the cost-effective acceleration provided by gpuPANDA
enables the exploration of additional parameter combinations. Therefore, we wanted to make sure
that performance gains were guaranteed beyond the standard parameter values.

We wanted to assess the runtime and cost performance of PANDA and gpuPANDA as well as
LIONESS and gpuLIONESS, first using MATLAB and then Python implementations. We used two
CPU configurations (compute optimized CPU1 and memory optimized CPU2) and three GPU
configurations (NVIDIA TESLA V100-GPU1, NVIDIA P100-GPU2 and a smaller NVIDIA K80-
GPU3); the configurations are shown in detail in Table 1. To reduce the number of comparisons,
our approach was to benchmark the transcript model in GPU1 because it could not be loaded in
other devices, and to benchmark the coding-genes model in GPU1 and GPU2 for the same
reasons. Finally, we benchmarked the small model on GPU2 and GPU3 because with larger
devices, the initialization time could exceed the computation time.
All analyses were performed on Amazon Web Services (AWS) running the MATLAB (version
2019a) distribution in Ubuntu 18.04 and Windows 10 that enables MATLAB memory

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

benchmarking, and Python (version 3.7). The cost was computed as the cost of the instance on
AWS multiplied by the runtime in seconds, since AWS EC2 bills by second.

RESULTS

We first ran the MATLAB implementations of PANDA and gpuPANDA on our three test networks
using three learning rate values (⍺=0.1, ⍺=0.2, ⍺=0.3) with calculations in single and double
precision; we also ran these methods with each of the eight similarity metrics.

For the small network that includes 652 TFs and 1000 genes, both PANDA on CPU1 and CPU2
and gpuPANDA running on the GPU2 and GPU3 platforms were able to infer gene regulatory
network models that were identical to one another as determined by the absolute value of the
largest difference (Figure S2). This was true using all eight similarity metrics and running in both
single and double precision. However, gpuPANDA demonstrated significant advantages in both
runtime (up to 7-fold; Table S1-2) and cost (up to 15-fold; Figure 1-A, Table S3-4). In comparison
to PANDA on CPU1, the rate of decrease of gpuPANDA runtime outpaced the decrease in cost
for both GPU2 and GPU3 (Figure 1-B). However, since small networks do not require large device
memory, gpuPANDA was more efficient with the smaller GPU3 and provided a decrease in cost
at a larger rate than the decrease in runtime in comparison to CPU2.

For the network modeled on protein-coding genes, GPU acceleration was possible in GPU1 but
only in single precision with GPU2 due to memory limitations. gpuPANDA had up to ninefold
decrease in runtime and sevenfold decrease in cost when comparing GPU2 and the compute-
optimized device CPU1 (Figure 2-A). For the memory-optimized CPU2, the increase reached up
to 26-fold for the runtime and we saw a decrease in cost of up to 15-fold (Figure 2-A). This was
particularly clear with the modified Tanimoto (Tfunction) similarity metric at the default learning
rate of 0.1. An analysis of cost fold change rates as a function of runtime fold change rates (Figure
2-B) showed that GPU2/CPU1 and GPU2/CPU2 performance growth evolved in a regimen where
runtime decrease had a faster rate than the cost decrease. Similarly, GPU1 was up to 12 times
faster than CPU1 and up 61 times faster than CPU2 particularly in double precision computation
using the Euclidean distance, which corresponded to a 7-fold and 28-fold reduction in costs.

We designed the GPU code to optimize memory usage. Specifically, we measured the memory
requirements of PANDA and gpuPANDA across six sampling points after the function call (Figure
3-A) and found a 2.6-fold decrease in memory usage with the GPU implementation. However,
despite this improvement, neither the GPU2 and GPU3 configuration had sufficient memory to
load the input matrices of the transcript network and perform operations using either single or
double precision (Figure 3-B). In addition, we could only load the network on GPU1 on single
precision only for Tfunction similarity metric. Benchmarking against CPU1 and CPU2 in this
setting revealed a 24-fold decrease in runtime (Figure 3-C) and 11-fold decrease in cost (Figure
3-D).

In addition to testing the MATLAB code, we tested the Python implementations of PANDA and
gpuPANDA on the small network. We found similar results to those described above that were

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

based on the MATLAB implementation. For example, calculating single precision networks using
PANDA on CPU2 and gpuPANDA on GPU3, gpuPANDA was more than 10 times faster than the
CPU implementation. We also found the output networks to be identical, with the largest absolute
difference in edge weights equal to 3.5×10-5 (Figure S3).

Finally, we tested LIONESS and gpuLIONESS in MATLAB. Both LIONESS and gpuLIONESS
perform a series of batch calls, in our case to PANDA and gpuPANDA, respectively. In estimating
127 single precision individual sample networks based on the small network dataset, we found
gpuLIONESS to be 10 times faster when running on GPU2 compared to LIONESS running on
CPU2 and 24 times faster when running on GPU1 in the same configuration (Figure S4); the
largest absolute difference between the CPU and GPU network edge weights was 0.015, which
was less than 0.01% of that edge weight, while the average absolute difference was 6.5×10-5. We
have also combined GPU speedup with an additional algorithmic improvement consisting of
deriving the coexpression matrix on-line (Eq1-Eq4) without having to recompute it for every
sample (Figure S4), however, this approach did not further increase the speedup.

DISCUSSION

As the sample sizes for genomic and multi-omic data studies grow, we have the opportunity to
develop increasingly accurate models of the potential causes of various diseases and phenotypic
traits. However, the computational complexity, time, and cost of building such models has become
a limiting factor in many applications. The development of PANDA, PUMA, SPIDER, and
LIONESS as techniques for inferring accurate regulatory models has allowed the exploration of
gene regulation in health and disease, but the use of these models has been limited by the
availability of computational resources. For example, using PANDA and LIONESS to generate
more than 9,435 individual sample networks (17) using data from GTEx v6 initially took multiple
months running on a conventional multi-CPU cluster; rerunning those networks in response to a
question from referees took more than six weeks (after having optimized the CPU code). Our
interest in repeating this analysis with GTEx v8, and with other large datasets, underscores the
need for additional computational improvements.

Fortunately, PANDA, PUMA, and SPIDER are implemented as a series of matrix operations that
make them particularly amenable to implementation on GPUs (9). gpuPANDA represents an
adaptation of these methods that parallelizes the large matrix operations in each iteration of the
network inference and refinement process. The implementation of gpuLIONESS extends this
further by distributing the calculation of PANDA networks for each leave-one-out data subset
across the available GPU devices, such that the computation of each individual sample network
is distributed across the cores available within each device.

Improving runtime was a major motivation for creating GPU implementations of PANDA and
LIONESS. By taking advantage of Python and MATLAB GPU interfaces to CUDA (19),
gpuPANDA reduced memory use by 2.6-fold relative to the CPU implementation, in part because
it is able to take advantage of symmetries in the coexpression matrix (which is generally the
largest matrix used in PANDA). We recognize that we might be able to further reduce memory

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

usage by sending intermediate results to RAM to free space for the next iteration. However, we
chose not to do so because the associated I/O would increase computation time and,
consequently, cost.

Despite these improvements, neither of the GPU devices, including the larger memory GPU1 (32
GB), was able to load the data for the largest transcript network in double precision (43,698
transcripts and 1,603 TFs, Figure 3-D). This is not surprising, given the size of the coexpression
matrix. However, it should not pose a major barrier to the use of gpuZoo since most network
inference modeling only includes the 20,000-30,000 protein-coding genes. Additionally, most
pipelines would further eliminate genes not expressed in a particular tissue during data
preprocessing. In addition, the majority of our earlier investigations (13,14,17) fall within the size
of the protein-coding genes network, for which the computations carried with the modified
Tanimoto similarity (Tfunction) had the largest speedup with gpuPANDA. With GPU3, gpuZoo
was not able to load the protein-coding genes network (652 TFs and 27,149 genes), and with
GPU2 it was only able to load it in single precision. However, the loss of double precision in the
matrix calculations does not produce major changes in the overall network estimation and likely
has a much less significant effect than noise in measurements of gene expression (Figure S5).

Computing 127 single-precision, sample-specific networks using gpuLIONESS for the protein-
coding genes network was 10-fold faster using GPU2. When inferring a sample-specific network
using PANDA together with LIONESS, there is an additional step that requires recomputing and
normalizing the gene co-expression matrix for each sample, which requires large memory
resources due to the size of the matrix. When benchmarking GPU2 and due to memory
constraints, this step was performed in CPU and then sent to GPU. In GPU1, this step could be
performed on device, which improved the speedup to 24-fold. We also investigated combining
GPU acceleration with computing gene coexpression on-line. We did not see an improvement in
the total runtime in the context of our tested networks. However, we have investigated whether
this approach could be beneficial when the number of samples increases relative to the number
of genes. Running a comparison between coexpression and on-line coexpression on a 1,000
variable random matrix showed similar performance (Figure S6) when the number of samples
was 0.5% the number of genes, which is about the ratio used in our study (127 samples and
27,149 genes). However, increasing the percentage indicated a 2.45 speedup when the number
of samples was equal to number of genes, with benefits starting at 50% (1.5 speedup) and
possibly even for lower ratios. In a recent work, we computed sample-specific gene regulatory
networks using data from the Connectivity Map across 170,013 experiments on 12,328 genes in
four days by combining acceleration from GPU and on-line coexpression. This would have
required several weeks using classical approaches.
The largest absolute difference between the edge weights of single-sample gpuLIONESS
networks was 0.015 which is larger than the difference between PANDA and gpuPANDA
networks in single precision (~1x10-5). However, the average error was equal to 6.5×10-5, which
is within the order of single precision computation.

For the small network, despite a greater increase in network inference speed with GPU2, the
smaller GPU3 was more cost-effective for a similar performance (Figure 2-A, Table S1, Table

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

S3). In particular, computing gene regulatory networks using the similarity metric Tfunction on
GPU2 was less efficient than GPU3 and CPU1, because initializing a large device requires more
time than the computation itself.

Comparing inference of regulatory networks using gpuPANDA on three GPU architectures and
PANDA on two CPUs, each with different specifications, allowed us to understand the effects of
clock speed and memory access on the final runtime and cost. In particular, the CPU machines
on which we ran PANDA were significantly different: CPU1, the compute-optimized machine has
a faster processing speed but relatively limited RAM (96 GB) while the memory-optimized CPU2
has slower CPUs but far greater and faster accessible memory (256 GB) (Table 1).

The main drawback of these implementations is that they are unable to process networks with
more than 20,000 genes in double precision. However, we found that the differences between
single precision and double precision networks remain within the order of single precision, which
indicates that neither hardware specifications nor the software implementation account for
additional deviation in precision than what is expected (Figure S5). Therefore, computing in single
precision when GPU memory is lacking could be a viable approach for networks that cover more
than protein-coding genes.

Taken together, gpuZoo offers a fast and less computationally expensive option for the estimation
of batches of gene regulatory networks. These implementations allow the estimation of gene
regulation in large-scale genomics studies such as TCGA (28), the Connectivity Map (29), and
the GTEx project (22). The fast development of GPU devices (30) will soon enable large-scale
network inference in double precision. Finally, gpuZoo tools are enabling biological discovery by
providing a computational engine that supports our recent endeavor to reconstruct gene
regulatory networks across human conditions (31) (https://grand.networkmedicine.org).

DATA AVAILABILITY
gpuZoo (gpuPANDA, gpuPUMA, gpuSPIDER, and gpuLIONESS) is available through the
Network Zoo package (netZoo; netzoo.github.io) in MATLAB (netZooM v0.5.2) at
https://github.com/netZoo/netZooM with a step-by-step tutorial
https://github.com/netZoo/netZooM/tree/master/tutorials, and in Python (netZooPy v0.6.2)
https://github.com/netZoo/netZooPy with a tutorial
https://github.com/netZoo/netZooPy/tree/master/tutorials.
The code of the benchmarks is available at https://github.com/QuackenbushLab/gpuzoo, and
the corresponding data is available at https://netzoo.github.io/zooanimals/gpuzoo/.

SUPPLEMENTARY DATA
Supplementary data consists of one supplementary file and four supplementary tables.

FUNDING
M.L.K. is supported by grants from the Norwegian Research Council, Helse Sør-Øst, and the
University of Oslo through the Centre for Molecular Medicine Norway (187615), the Norwegian
Research Council (313932) and the Norwegian Cancer Society (214871). KG is supported by
K25HL133599 from the National Heart, Blood, and Lung Institute at the National Institutes of

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

Health. DLD is supported by P01 HL132825, R21 HL156122, an Alpha-1 Foundation Award, and
a BWH Connors Center IGNITE First in Women Precision Medicine Award. MBG and JQ are
supported by a grant from the National Cancer Institute, National Institutes of Health, R35
CA220523; and by U24 CA231846.

CONFLICT OF INTEREST
None declared.

REFERENCES

 1. Hobert, O. (2008) Gene regulation by transcription factors and microRNAs. Science,

319, 1785-1786.
2. Zeitlinger, J. (2020) Seven myths of how transcription factors read the cis-regulatory

code. Current Opinion in Systems Biology.
3. Lambert, S.A., Jolma, A., Campitelli, L.F., Das, P.K., Yin, Y., Albu, M., Chen, X., Taipale,

J., Hughes, T.R. and Weirauch, M.T. (2018) The Human Transcription Factors. Cell,
175, 598-599.

4. Irrthum, A., Wehenkel, L. and Geurts, P. (2010) Inferring regulatory networks from
expression data using tree-based methods. PloS one, 5, e12776.

5. He, J., Zhou, Z., Reed, M. and Califano, A. (2017) Accelerated parallel algorithm for
gene network reverse engineering. BMC systems biology, 11, 85-97.

6. Haury, A.-C., Mordelet, F., Vera-Licona, P. and Vert, J.-P. (2012) TIGRESS: trustful
inference of gene regulation using stability selection. BMC systems biology, 6, 1-17.

7. Ruyssinck, J., Geurts, P., Dhaene, T., Demeester, P. and Saeys, Y. (2014) NIMEFI:
gene regulatory network inference using multiple ensemble feature importance
algorithms. PLoS One, 9, e92709.

8. Glass, K., Huttenhower, C., Quackenbush, J. and Yuan, G.C. (2013) Passing messages
between biological networks to refine predicted interactions. PLoS One, 8, e64832.

9. Glass, K., Quackenbush, J. and Kepner, J. (2015), 2015 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, pp. 1-6.

10. Kuijjer, M.L., Fagny, M., Marin, A., Quackenbush, J. and Glass, K. (2020) PUMA:
PANDA Using MicroRNA Associations. Bioinformatics, 36, 4765-4773.

11. Sonawane, A.R., DeMeo, D.L., Quackenbush, J. and Glass, K. (2020) Constructing
Gene Regulatory Networks using Epigenetic Data. bioRxiv.

12. Kuijjer, M.L., Tung, M.G., Yuan, G., Quackenbush, J. and Glass, K. (2019) Estimating
Sample-Specific Regulatory Networks. iScience, 14, 226-240.

13. Sonawane, A.R., Platig, J., Fagny, M., Chen, C.Y., Paulson, J.N., Lopes-Ramos, C.M.,
DeMeo, D.L., Quackenbush, J., Glass, K. and Kuijjer, M.L. (2017) Understanding
Tissue-Specific Gene Regulation. Cell Rep, 21, 1077-1088.

14. Lopes-Ramos, C.M., Kuijjer, M.L., Ogino, S., Fuchs, C.S., DeMeo, D.L., Glass, K. and
Quackenbush, J. (2018) Gene Regulatory Network Analysis Identifies Sex-Linked
Differences in Colon Cancer Drug Metabolism. Cancer Res, 78, 5538-5547.

15. Glass, K., Quackenbush, J., Spentzos, D., Haibe-Kains, B. and Yuan, G.C. (2015) A
network model for angiogenesis in ovarian cancer. BMC Bioinformatics, 16, 115.

16. Taylor-Weiner, A., Aguet, F., Haradhvala, N.J., Gosai, S., Anand, S., Kim, J., Ardlie, K.,
Van Allen, E.M. and Getz, G. (2019) Scaling computational genomics to millions of
individuals with GPUs. Genome biology, 20, 1-5.

17. Lopes-Ramos, C.M., Chen, C.Y., Kuijjer, M.L., Paulson, J.N., Sonawane, A.R., Fagny,
M., Platig, J., Glass, K., Quackenbush, J. and DeMeo, D.L. (2020) Sex Differences in

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

Gene Expression and Regulatory Networks across 29 Human Tissues. Cell Rep, 31,
107795.

18. Lopes-Ramos, C.M., Belova, T., Brunner, T., Quackenbush, J. and Kuijjer, M.L. (2021)
Regulation of PD1 signaling is associated with prognosis in glioblastoma multiforme.
bioRxiv.

19. Nickolls, J., Buck, I., Garland, M. and Skadron, K. (2008) Scalable Parallel Programming
with CUDA. Queue, 6, 40–53.

20. Forum, M.P. (1994). University of Tennessee.
21. Lopes-Ramos, C.M., Paulson, J.N., Chen, C.Y., Kuijjer, M.L., Fagny, M., Platig, J.,

Sonawane, A.R., DeMeo, D.L., Quackenbush, J. and Glass, K. (2017) Regulatory
network changes between cell lines and their tissues of origin. BMC Genomics, 18, 723.

22. Consortium, G.T., Laboratory, D.A., Coordinating Center -Analysis Working, G.,
Statistical Methods groups-Analysis Working, G., Enhancing, G.g., Fund, N.I.H.C.,
Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida et al. (2017) Genetic effects on gene expression
across human tissues. Nature, 550, 204-213.

23. Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J.,
Simonovic, M., Doncheva, N.T., Morris, J.H., Bork, P. et al. (2019) STRING v11: protein-
protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res, 47, D607-D613.

24. Grant, C.E., Bailey, T.L. and Noble, W.S. (2011) FIMO: scanning for occurrences of a
given motif. Bioinformatics, 27, 1017-1018.

25. Bosshart, H. and Heinzelmann, M. (2016) THP-1 cells as a model for human monocytes.
Annals of translational medicine, 4.

26. Edgar, R., Domrachev, M. and Lash, A.E. (2002) Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic acids research, 30, 207-210.

27. Lachmann, A., Torre, D., Keenan, A.B., Jagodnik, K.M., Lee, H.J., Wang, L., Silverstein,
M.C. and Ma’ayan, A. (2018) Massive mining of publicly available RNA-seq data from
human and mouse. Nature communications, 9, 1-10.

28. Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K.,
Shmulevich, I., Sander, C. and Stuart, J.M. (2013) The cancer genome atlas pan-cancer
analysis project. Nature genetics, 45, 1113-1120.

29. Subramanian, A., Narayan, R., Corsello, S.M., Peck, D.D., Natoli, T.E., Lu, X., Gould, J.,
Davis, J.F., Tubelli, A.A., Asiedu, J.K. et al. (2017) A Next Generation Connectivity Map:
L1000 Platform and the First 1,000,000 Profiles. Cell, 171, 1437-1452 e1417.

30. Bridges, R.A., Imam, N. and Mintz, T.M. (2016) Understanding GPU Power: A Survey of
Profiling, Modeling, and Simulation Methods. ACM Comput. Surv., 49, Article 41.

31. Guebila, M.B., Lopes-Ramos, C.M., Weighill, D., Sonawane, A., Burkholz, R., Shamsaei,
B., Platig, J., Glass, K., Kuijjer, M.L. and Quackenbush, J. (2021) GRAND: A database
of gene regulatory network models across human conditions. bioRxiv.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

TABLE AND FIGURE LEGENDS
Table 1 - Specification of the hardware units used for benchmarking. All the CPU cores are
used to perform computations because MATLAB enables hyperthreading by default. EC2 cost
corresponds to AWS On-Demand price. *p3dn.24xlarge has 8 Tesla P100 Tensor Core, the
original cost of 31.218 was divided by 8 to estimate the cost of one unit.

Unit AWS
reference

Price
($/hr)

Manufacturer
reference

Number
of cores

Clock
speed
(Ghz)

Memory
(GB)

Specific
ations

CPU1 c5d.12xlarg
e

2.304 2nd generation
Intel Xeon
Scalable
Processors

48 3.6-3.9 96 compute
-
optimize
d

CPU2 r5a.8xlarge 1.808 AMD EPYC 7000 32 2.5 256 memory-
optimize
d

GPU1 p3dn.24xlar
ge

3.902
*

Nvidia Tesla
V100 Tensor
Core

5120 1.53 32 Largest
GPU

GPU2 p3.2xlarge 3.06 Nvidia Tesla
P100

3584 1.19 16 Large
GPU

GPU3 p2.xlarge 0.9 Nvidia Tesla K80 2496 0.52 12 Smaller
GPU

Figure 1 - Runtime and cost performance of gpuPANDA in the small network. A- Runtime
(first row) and cost (second row) fold change between CPU1, CPU2, GPU2, and GPU3. B-Rate
of cost fold change as an effect of runtime fold change in small models in single and double
precision. The blue area represents an increase in cost and/or runtime of GPU computation over
CPU.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

Figure 2 - Runtime and cost performance of GPUs and CPUs on the protein coding-genes
model. A-Fold change of runtime as a function of cost between CPU1 and GPU2 and CPU2 and
GPU2 in single precision and for three values of learning rate (α). B- Effect of runtime fold change
on cost fold change between CPU1 and GPU2 (top panel) and CPU2 and GPU2 (bottom panel).

Figure 3 – GPU performance on transcript model and memory benchmark. A-Memory usage
of GPU implementation in comparison to CPU implementation. B-Precision capabilities for the
tested hardware using the small network, protein-coding genes network, and transcript regulatory
gene network. C-Runtime and D-cost of running transcript model on GPU1, CPU1, and CPU2 in
single precision. *Single precision computation on GPU1 converges with Tfunction only.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

10

10

10

10105

10
5

y=x

Fold change of:

CPU2/GPU3 fold changeCPU2/GPU2 fold changeCPU1/GPU3 fold changeCPU1/GPU2 fold change

1 1 1
1111

C
os

t

Runtime fold change
20

20

15 15

15

1

15

10

10

CPU2/GPU3

CPU2/GPU2

CPU1/GPU3

CPU1/GPU2

Tfunction

Correlation

Cosine

Chebychev Std. Euclidean

Sqd.
Euclidean

Cityblock

Euclidean

Tfunction

Correlation

Cosine

Chebychev Std. Euclidean

Sqd.
Euclidean

Cityblock

Euclidean

C
os

t
R

un
tim

e

double
precision

single
precision

α = 0.1 α = 0.2 α = 0.3

10

5

0

10

5

0

10

5

0

10

5

0

10

5

0

0

5

15

10

A

B

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

CPU1/GPU2 fold change

1510

1

1 50

5

10

15
CPU2/GPU2 fold change

CPU1/GPU2 fold change

Tfunction

PCC

Cosine

Chebychev Std. Euclidean

Sqd.
Euclidean

Cityblock

Euclidean

C
os

t
R

un
tim

e

α = 0.1 α = 0.2 α = 0.3

A B

C
os

t

30

1

20

40

0
Runtime

C
os

t

40201 30

CPU2/GPU2 fold change

y=x

cost(CPU2)

y=x

cost(GPU2)m=

cost(CPU1)
cost(GPU2)m=

speed > cost

cost > speed

Runtime

CPU2/GPU1 fold change

CPU1/GPU1 fold change

double

single
precision

Tfunction

PCC

Cosine

Chebychev Std. Euclidean

Sqd.
Euclidean

Cityblock

Euclidean

20
10

40

60

20
10

40

60

20
10

40

60

10

20

30

10

20

30

10

20

30

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

M
od

el
 s

iz
e

Does not load on memory

Single precision

Single+double precision

GPU2 GPU3 CPU1 CPU2

Transcript

Coding-genes

Small
1 2 3 4 5 6

0

1

2

3

C
P

U
/G

P
U

 m
em

or
y

ra
tio

Sampling points
function endfunction call

GPU1

A B

peak memory usage

*
R

un
tim

e
(s

)

C
os

t (
$)

C D

Alpha Alpha

GPU1

CPU1

CPU2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.13.452214doi: bioRxiv preprint

https://doi.org/10.1101/2021.07.13.452214
http://creativecommons.org/licenses/by/4.0/

