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Abstract 33 

The coronavirus disease 2019 (COVID-19) pandemic has affected tens of millions of 34 

individuals and caused hundreds of thousands of deaths worldwide. Due to its rapid 35 

surge, there is a shortage of information on viral behavior and host response after 36 

SARS-CoV-2 infection. Here we present a comprehensive, multiscale network analysis 37 

of the transcriptional response to the virus. We particularly focus on key-regulators, cell-38 

receptors, and host-processes that are hijacked by the virus for its advantage. ACE2-39 

controlled processes involve a key-regulator CD300e (a TYROBP receptor) and the 40 

activation of IL-2 pro-inflammatory cytokine signaling. We further investigate the age-41 

dependency of such receptors and identify the adipose and the brain as potentially 42 

contributing tissues for the disease's severity in old patients. In contrast, several other 43 

tissues in the young population are more susceptible to SARS-CoV-2 infection. In 44 

summary, this present study provides novel insights into the gene regulatory 45 

organization during the SARS-CoV-2 infection and the tissue-specific age dependence 46 

of the cell receptors involved in COVID-19. 47 

 48 

GLOSSARY 49 

BALF  Bronchoalveolar lavage fluid 50 

CoV  Coronavirus 51 

COVID-19 Coronavirus disease 2019 52 

CRS  Composite receptor score 53 

DEG  Differentially expressed gene 54 

FC  Fold change 55 

FDR  False discovery rate 56 

FET  Fisher’s exact test 57 

IFN  Interferon 58 

ISG  Interferon stimulated gene 59 

NHBE  Normal human bronchial epithelial (cells) 60 

PRR  Pattern recognition receptor 61 
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STSPR  SARS-CoV-2 triggered surface protein receptor 62 

STSPR-DEAD STSPR differential expression and age dependence (score) 63 

 64 

Introduction 65 

On December 31, 2019, the WHO was notified about a cluster of novel 66 

pneumonia cases in Wuhan City, Hubei Province of China. The causative agent was 67 

linked to a novel by Chinese authorities on January 7, 2020, inducing the activation of 68 

the R&D Blueprint as part of WHO’s response to the outbreak. Coronaviruses (CoVs) 69 

belong to the group of enveloped, single, positive-stranded RNA viruses causing mild to 70 

severe respiratory illnesses in humans1. In the past two decades, two worldwide 71 

outbreaks have originated from CoVs (SARS, MERS) capable of infecting the lower 72 

respiratory tract, resulting in heightened pathogenicity and high mortality rates2. We are 73 

currently amid a third pandemic caused by a new CoV strain, the severe acute 74 

respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus 75 

disease 2019 (COVID-19). In the majority of cases, patients exhibit either no or mild 76 

symptoms, whereas in more severe cases, patients may develop severe lung injury and 77 

die from respiratory failure2,3.  78 

A viral infection generally triggers a physiological response at the cellular level 79 

after the initial replication of the virus4. The cellular system has an arsenal of pattern 80 

recognition receptors (PRRs)5 at its deposal that guard against various microbes inside 81 

and outside of the cell. PRRs bind distinct structural features that are conserved among 82 

different pathogens6. In a viral infection, intracellular PRRs are detecting viral RNA 83 

defective particles that are often formed during virus replication7. Pathogen detection 84 

assembles the initial steps of a signaling cascade to activate downstream transcription 85 
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factors, such as interferon regulator factors (IRFs) and nuclear factor kB (NF-kB)6,8, 86 

which causes the activation of two general antiviral processes6. The first, predominantly 87 

intracellular, process initiates cellular defenses via transcriptional induction of type I and 88 

III interferons (IFN-I and IFN-III, respectively). Subsequently, IFN upregulates IFN-89 

stimulated genes (ISGs) with antiviral properties9. The second, inter-cellular cascade of 90 

antiviral counteraction refers to the recruitment and coordination of a multitude of 91 

leukocytes. Chemokine secretion10,11 orchestrates this concerted action of immune-92 

system countermeasures. The selection pressure induced by such a broad antiviral 93 

response of the host and the evolvability of viruses has resulted in countless viral 94 

countermeasures12. Thus, the host response to a virus is generally not uniform. Viral 95 

infections can cause a spectrum of various degrees of morbidity and mortality.  96 

Indeed, additional factors, such as sex, age, other genetic factors, contribute to 97 

the diversity of immune response. Concerning COVID-19, age has been identified as 98 

the most significant risk factor in the mortality of patients. The overall symptomatic case 99 

fatality risk (the probability of dying after developing symptoms) of COVID-19 in Wuhan 100 

was 1.4% (0.9–2.1%) as of February 29, 2020. Compared to those aged 30–59 years, 101 

those aged below 30 and above 59 years were 0.6 (0.3–1.1) and 5.1 (4.2–6.1) times 102 

more likely to die after developing symptoms13. Similar data were reported for the 103 

United States. From February 12 to March 16, 2020, the Center for Disease Control 104 

(CDC) estimated a case-fatality rate of patients 55-64 years old with 1.4 – 2%. This rate 105 

was 10.4 – 27.3% for patients 85 years or older14. 106 

To better understand the disease's molecular basis, we sought to characterize 107 

the transcriptional response to infection in both in vitro cell systems (tissue cultures and 108 
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primary cells) and in vivo samples derived from COVID-19 patients. We employed an 109 

integrative network-based approach to identify host response co-expression networks in 110 

SARS-CoV-2 infection. In particular, we investigated functional processes and key 111 

regulators affected by this specific virus, receptors used for entry, and processes 112 

hijacked for enabling viral life cycles. We further studied the age-dependence of targets, 113 

mainly receptors that the virus utilizes for entry and its life cycle. 114 

 115 

Results 116 

RNA-seq data from cell lines (NHBE, Normal Human Bronchial Epithelial cells, A549, 117 

adenocarcinomic human alveolar basal epithelial cells, and Calu-3, lung 118 

adenocarcinoma epithelial cells) and lung biopsies of two patients infected by SARS-119 

CoV-2 were recently made available on NCBI/GEO (GSE147507)6. A second, clinical, 120 

transcriptomic dataset for a cohort of COVID-19 patients together with uninfected 121 

controls has recently been published15. Data were obtained from bronchoalveolar 122 

lavage fluid (BALF) and PBMCs (10 samples total: 3 PBMC control, 2x2 BALF infected, 123 

3 PBMC infected). RNA-seq data is available through the Beijing Institute of Genomics 124 

(BIG) Data Center (https://bigd.big.ac.cn/) under the accession number: CRA002390. 125 

We have combined the BALF with the lung biopsy datasets after batch correction, 126 

yielding datasets containing a total of 11 samples (6 infected and five control). These 127 

datasets were processed by an integrative network analysis approach. Data from 128 

PBMCs and cell lines were excluded. For validation purposes, we have further secured 129 

data from a second cohort of 142 patients from the NYU Langone Health Manhattan 130 

campus that required invasive mechanical ventilation16. 131 
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 132 

Integrative network biology analysis of the β-coronavirus – host system 133 

The basis of our prediction of SARS-CoV-2 processes and the host response is an 134 

integrative network analysis approach that combines network inference and network 135 

topological methods with molecular signatures. We first identified differentially 136 

expressed genes (DEGs) in each dataset that showed significant changes during 137 

SARS-CoV-2 infection. The biological functions of DEG signatures from each dataset 138 

were assessed by gene-set enrichment methods. Given the particular interest of human 139 

patients' COVID-19 response, we used a corresponding subset of transcriptome data to 140 

infer multiscale gene co-expression MEGENA networks. We ranked MEGENA network 141 

modules based on their enrichment for DEGs. MEGENA modules were functionally 142 

assessed by GO, MSigDB, and blood cell-type-specific gene-sets. We also investigated 143 

the underlying network topological structure by testing the network neighborhood of 144 

target genes for enrichment by SARS-CoV-2 DEGs and signatures responding to ACE2 145 

overexpression. Finally, we analyzed the age-dependency of molecular processes 146 

during SARS-CoV-2 infection by employing a linear regression model on baseline gene 147 

expression using Genotype-Tissue Expression (GTEx) data. 148 

 149 

Molecular signatures of SARS-CoV-2 infection 150 

We have identified 572 up-, and 1338 downregulated DEGs from patient-derived lung 151 

biopsy, as well as 3,573 up- and 1,630 downregulated DEGs from human patient BALF 152 

expression data. 2,382 DEGs are upregulated, and 2,526 DEGs are downregulated in 153 
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A549 cell lines (2,017 up- and 2,354 downregulated in Calu3 cell lines, resp.). The 154 

exceptions are the NHBE and the first batch (Series 2) of the A549 data (GSE147507), 155 

which yielded a fraction of significant DEGs, with 144 genes up- and 55 genes 156 

downregulated in NHBE cells as well as 88 genes up- and 14 genes downregulated in 157 

A549 (Series 2). All datasets have comparable numbers of samples. DEGs were 158 

considered significant with FDR ≤ 0.05 and a fold change of 1.5 or higher.  159 

 As others have already noted6, there is a lack of ACE2 expression in cell line 160 

data. A key-protein relevant for SARS-CoV-2 entry as well as an ISG, ACE2 is not 161 

significantly expressed in cell lines (S5_A549: 3.2 fold, FDR = 0.15; Calu3: 0.77 fold, 162 

FDR = 0.12; NHBE: 1.2 fold, FDR = 0.52). Only in the lung biopsy (27.6 fold, FDR = 163 

3.70 e-06) and in BALF (50.5 fold, FDR = 0.066), we were able to identify significant 164 

expression fold change between healthy/Mock control and infection. According to GTEx 165 

data, ACE2 baseline expression is observed in the small intestine (Terminal Ileum), 166 

female breast, thyroid, subcutaneous adipose tissue, testis, and coronary artery (Table 167 

S1). A detailed, single-cell-based study identified that ACE2 and TMPRSS2 are 168 

primarily expressed in bronchial transient secretory cells17. TMPRSS2 expression is 169 

inconsistent in our datasets. It is highly upregulated in BALF (47.2 fold, FDR = 2.98 e-170 

04) and upregulated in Calu3 cells (2.13 fold, FDR = 2.71 e-03), but downregulated in 171 

lung biopsy samples (0.16 fold, FDR = 8.91 e-07). As we are mostly interested in an 172 

organismal response, our primary focus is on samples of human patients. 173 

To validate our findings, we compared DEGs called during our analysis of human 174 

patients samples and results from the NYU COVID-19 study16. For this purpose, we 175 

employed Super Exact Test18, a generalization of Fisher’s Exact Test to evaluate the 176 
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set-overlap of multiple sets. BALF and lung biopsy data show significant overlap with 177 

NYU COVID-19 data (Figure S1). 178 

 179 

Receptors, host-factors and biological processes required for the viral life cycle   180 

Given that ACE2 is essential for SARS-CoV-2 entry19, and further, the viral life 181 

cycle, we hypothesize that ACE2 expression may trigger other processes relevant to the 182 

viral life cycle. As we have established in the previous section that ACE2 is indeed 183 

upregulated in human lung samples (both BALF and lung biopsy), we were interested in 184 

the effect of ACE2 expression. To determine which receptors and targets are involved in 185 

such processes, we performed a network enrichment analysis using the ACE2 186 

overexpression signatures from the Blanco-Melo et al. dataset6 and identified genes 187 

that potentially serve as novel host receptors and targets facilitating the entry of the 188 

SARS-CoV-2 into the host cell. For this purpose, we constructed a multiscale co-189 

expression network to investigate co-expression and co-regulation relationships among 190 

genes underlying SARS-CoV-2 infection. In particular, we were interested in the 191 

organismal response from patients infected by SARS-CoV-2. Thus, we combined the 192 

available datasets from BALF and lung biopsies to construct a multiscale co-expression 193 

network of 13,398 genes and 35,483 interactions using MEGENA20 (Figure 1A). This 194 

co-expression network includes 900 modules. The majority of the top-ranked modules 195 

(using DEGs from both patient and cell data by excluding the ACE2 overexpression 196 

(ACE2oe) dataset; see methods section) are enriched for well-known biological 197 

functions related to viral infection, including cell cycle, ribosome/translation, NF-κB 198 

canonical pathway, or cytokine signaling. The 20 top-ranked modules are shown in 199 
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Figure 1B as a sector of a circus plot, together with information on enrichment for up 200 

and downregulated DEGs and signature sets (MSigDB, blood cells, ARCHS4 tissues, 201 

and cell lines, SARS-CoV-2 life cycle genes, inflammasome, ISGs, transcription factors, 202 

miRNA targets). A few of these modules are enriched for MSigDB functions (Figure 203 

1C). As expected, we have identified a variety of cell types from the ARCHS4 database 204 

accordant to the infection scenario, ranging from lung tissue and epithelial cells (Figure 205 

1D), aveolar macrophages as well as lymphocytes (Figure 1D).The enrichment for the 206 

two main DEG signature sets, BALF and human lung biopsy are shown in Figures 1E 207 

and 1F. Although there are differences in the DEGs between these two DEG sets, we 208 

have identified common DEG enrichment in modules M2, M9, M12, M66, M68 and 209 

M400. Most of these modules are related to translation and the ribosome. 210 

Figure 2A shows a heat map of the 30 best-ranked receptors, along with fold 211 

change (FC) of expression during SARS-CoV-2 infection in lung samples and cell lines. 212 

All the targets are members of the M2-M10-M77 branch, except for BTK and THEMIS2 213 

(M2-M8-M59 branch) and EXOC7 and PTPRM (M3-M20-M203 branch). Module M10, 214 

together with ACE2oe signature genes, is shown in Figure 2B (Figure S2 depicts 215 

parent module M2). As shown in Figure 1B, M2, M10 and M77 are highly enriched for 216 

the ACE2oe signature with FET P-value = 1.20e-95 (1.7 Fold enrichment (FE)), 1.54e-217 

20 (2.1FE) and 7.88e-13 (2.7 FE). All three modules are further enriched for lung tissue 218 

signatures after ARCHS4 tissues. Other modules such as M4, M9, M66, M69, M265, 219 

and M450 are also significantly enriched for ACE2oe signature (Figure 2C). M2 (rank 1)  220 

and M4 (rank 3) are the two largest modules associated with SARS-CoV-2 infection. 221 

They are associated with different biological functions such as ribosome (M2) and 222 
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transcription (M4) (Table S2). M2 and M4 are the parents of several daughter modules. 223 

For example, in addition to the modules mentioned above, M10 (rank 35. Figure 3A) 224 

and M77 (rank 38, Figure 3B), M2’s daughter modules include highly ranked M7 (rank 225 

14), M9 (rank 5, Figure 3C), M66 (rank 4, Figure 3D), M68 (rank 8), M400 (rank 9), 226 

M450 (rank 12), and M1201 (rank 13). A few of these modules are enriched for MSigDB 227 

functions (Figure 1C). Module M7 is enriched for phenylalanine metabolism, M9 for 228 

epithelium development and IL-2 signaling, M10 developmental biology, M68 meiotic 229 

recombination, and nucleosome assembly. Although M66, M400, M450, and M1201 are 230 

best-ranked and enriched for SARS-CoV-2 signatures, they are not significantly 231 

enriched for any known biological functions. Thus, these modules potentially indicate 232 

novel biological processes relevant to COVID-19. For example, the fourth-ranked M66 233 

is driven by downregulated key regulators DOHH, TMEM201 (or SAMP1), TNFRSF25, 234 

and ZNF419, as well as upregulated ENTPD3 and IFITM1 (Figure 3D).TMEM201 is 235 

required for mitotic spindle assembly and γ-tubulin localization. The depletion of 236 

TMEM201 results in aneuploidy phenotypes, i.e., the presence of an abnormal number 237 

of chromosomes in a cell, yielding bi-nucleated cells, and failed cytokinesis21. 238 

TNFRSF25 is a member of the TNF-receptor family. This receptor has been shown to 239 

stimulate NF-κB activity and regulate cell apoptosis. TNFRSF25 is further thought to be 240 

involved in controlling lymphocyte proliferation induced by T-cell activation. Thus, M66 241 

likely plays a role in cytokinesis and cell proliferation. Concerning M4, highly ranked 242 

sub-modules (children) are M27 (rank 6, Figure 3E), M265 (rank 7), M276 (rank 2, 243 

Figure 3F). M276, with 81 genes, includes upregulated hemoglobin subunits δ, γ1, and 244 

μ (HBD, HBG1, HBM), which form part of the hemoglobin complex (FET P-value = 0.05, 245 
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62.1 FE). M276 is potentially responsible for oxygen transport (FET P-value = 0.089, 246 

49.7 FE). M27 and M265 are not significantly enriched for any biological function 247 

(Figure 1A shows the M4-M27-M276 branch).  248 

The best-ranked ACE2oe network enriched targets are CLOCK, CD300e, CD81, 249 

C14orf119, and CTSZ.  All but C14orf119 are in the immediate network neighborhood of 250 

CD81 (see Figure 3F). Clock circadian regulator (CLOCK) plays a central role in the 251 

regulation of circadian rhythms. CLOCK, a transcription factor, is upregulated in BALF 252 

and A549 samples.CD300e is a member of the CD300 glycoprotein family of 253 

transmembrane cell surface proteins expressed on myeloid cells. It is upregulated in 254 

lung samples. The protein interacts with the TYRO protein tyrosine kinase binding 255 

protein (TYROBP) and is thought to act as an activating receptor. Activation via CD300e 256 

provided survival signals that prevented monocyte and Myeloid dendritic cells 257 

apoptosis, triggered the production of pro‐inflammatory cytokines, and upregulated the 258 

expression of cell surface co‐stimulatory molecules in both cell types22. The expression 259 

and function of human CD300 receptors on blood circulating mononuclear cells are 260 

distinct in neonates and adults23, potentially contributing to the difference in clinical 261 

outcome after COVID-19 infection. Zenarruzabeitia et al. reported a stark down-262 

regulation of CD300e on monocytes in patients with severe disease. However, we 263 

cannot confirm this finding in our BALF validation data. In the NYU COVID-19 study, 264 

CD300e is upregulated 1.6 fold in patients with severe diseases compared to patients 265 

with a mild outcome. Another ACE2oe network enriched target is CD81, with down-266 

regulation in lung samples and cell-lines. CD81 is an entry co-receptor for the Hepatitis 267 

C virus. CD81 is the only ACE2oe target which network neighborhood is significantly 268 
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enriched for SARS-CoV-2 signatures, yielding a rank of 79 based on NWes. 269 

Furthermore, CD81 is a key regulator in the M2-M10-M77 branch (Figures S2, 3A, and 270 

3B). Thus, CD81 is potentially a novel host cell receptor that SARS-CoV-2 requires for 271 

entry and, therefore, a therapeutic target. Cathepsin Z (CTSZ) is a lysosomal cysteine 272 

proteinase and member of the peptidase C1 family. It is downregulated in lung samples 273 

and slightly upregulated in A549. Similar to CD81, CTSZ is a key regulator in M2-M1-274 

M77. Singh et al., 2020 hypothesized that cathepsins are among other factors 275 

facilitating SARS-CoV-2 entry into the host cell24. The epidermal growth receptor EGFR 276 

is a transmembrane glycoprotein and present on the cell surface of epithelial cells. It is 277 

significantly upregulated in lung samples, A549, and Calu3 cells. EGFR is a host factor 278 

for hepatitis C virus entry25. Respiratory viruses induce EGFR activation, suppressing 279 

IFN regulatory factor (IRF) 1–induced IFN-λ, and antiviral defense in airway 280 

epithelium26. Thus, EGFR may not be required for SARS-CoV-2 entry, but it may be a 281 

potential host factor for the viral life cycle.  282 

We validated our findings with results derived from the NYU COVID-19 cohort. 283 

Figure S3A shows a heatmap of 20 best ranked modules enriched for DEG signatures 284 

identified in this manuscript and deduced from the NYU COVID-19 cohort. Although the 285 

majority of modules is enriched for the combined lung and BALF data set, we can 286 

identify significant enrichment for best-ranked modules, in particular, for NYU COVID-19 287 

DL and HL signatures. We further evaluated the similarity in gene content between 288 

modules from this study and modules derived from the NYU COVID-19 cohort (Figure 289 

S3B). In particular, best-ranked modules show significant overlap, validating the 290 

findings.  291 
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We have further investigated other cell-surface proteins, in particular cell surface 292 

receptors. For this purpose, we use data on experimentally verified high-confidence cell 293 

surface receptors from the cell surface protein atlas27 and data from the in silico human 294 

surfaceome28 – an extension from the protein atlas by using the measured protein data 295 

as a learning set for in silico prediction. From 2800 surface proteins, 1199 are classified 296 

as receptors by Surfaceome28, capable of transducing signals triggered by binding 297 

ligands or, hypothetically, surface proteins of the SARS-CoV-2 virion. Similar to the 298 

behavior of ACE2, we hypothesize that the expression of genes coding for such surface 299 

proteins can be triggered by the infection. We further hypothesize that such surface 300 

proteins mediate the transcriptomic response of downstream genes. Thus we expect 301 

up-regulation of the surface protein-coding genes and enrichment of DEGs in such 302 

receptors’ network neighborhood. Out of the 1199 receptors from the Surfaceome, 413 303 

are in the MEGENA network. We identified further candidates in addition to the above-304 

discussed surface receptors and key regulators CD81, CD300E, and EGFR. We 305 

expanded our criteria and included surface proteins that are significantly expressed 306 

across all datasets (employing ACAT, an aggregated Cauchy association test29). 307 

Surface proteins with the lowest aggregated P-value that are upregulated in most 308 

datasets were chosen. The highest-ranked candidate is lysosome-associated 309 

membrane glycoprotein 3 (LAMP3), followed by EGFR, as discussed above. LAMPs 310 

family plays a critical role in the autolysosome fusion process. LAMP3 is expressed 311 

explicitly in lung tissues and is involved in influenza A virus replication in A549 cells30. It 312 

activates the PI3K/AKT pathway required for the influenza life cycle and necessary for 313 

SARS-CoV to establish infection, as demonstrated in Vero E6 cells31. Third-best ranked 314 
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surface protein is CEA cell adhesion molecule 1 (CEACAM1). Multiple cellular activities 315 

have been attributed to the encoded protein, including roles in the differentiation and 316 

arrangement of three-dimensional tissue structure, angiogenesis, apoptosis, tumor 317 

suppression, metastasis, and the modulation of innate and adaptive immune responses. 318 

Both CEACAM1 and LAMP3 are members of the M4-M27 branch. 319 

 320 

SARS-CoV-2 triggered surface protein receptors expression show clear tissue-321 

specific age-dependency 322 

We were also interested in the age-dependency of the molecular processes involved in 323 

SARS-CoV-2 infection. A significant age disparity for severe cases, often causing death, 324 

has been widely reported for COVID-19. Being highly disproportional, more elderly 325 

patients experience severe symptoms and die due to this particular disease. We 326 

hypothesize that many host factors required for the virus life cycle have an age-327 

dependent expression. By filtering in the genes upregulated in at least two of the SARS-328 

CoV-2 studies, we obtained 213 genes encoding cell-surface proteins. These surface 329 

proteins are involved in transmembrane transport of small molecules (MSigDB c2.cp 330 

enrichment: P = 3.38e-08, 4.3 fold), ERBB(4) network pathway (P = 7.46e-08, 5.5 fold), 331 

neuroactive ligand-receptor interaction (P = 8.51e-05, 4.7 fold) or cytokine-cytokine 332 

receptor interaction (P = 1.22e-04, 4.2 fold). The tissue-specific age-dependency of 333 

these genes' baseline expression was calculated by a linear model using data from 334 

GTEx (see Methods). We examined correlations between the expression of these 335 

SARS-CoV-2 triggered surface protein receptors (STSPRs) with chronological age 336 

using GTEx v8 data covering 46 tissues (Table S3). A large number of these surface 337 
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protein receptors have their gene expression levels associated with age in many 338 

tissues, especially in the tibial artery, tibial nerve, and visceral fat. More than 70 339 

receptors were significantly correlated with age. In contrast, very few receptors were 340 

associated with age in the liver, coronary artery, and brain substantia nigra (<5 341 

receptors). Moreover, in most cases, the gene expression levels of these receptors 342 

were increased with age (Table S4).  343 

We further examined the overall correlation between STSPRSTSPRs expression 344 

and age in a tissue-specific manner. Specifically, we first computed a composite 345 

receptor score (CRS) for each tissue of each sample in GTEx by summarizing the 346 

normalized expression values of the STSPRSTSPRs and then assessed the correlation 347 

between CRS and age (see Methods for details; Figure 4). Three tissues, including the 348 

tibial artery, skeletal muscle, and subcutaneous fat, show the strongest positive 349 

correlations between their respective CRS and age. On the other hand, the whole 350 

blood,  the frontal cortex (BA9), the ovary, and the cerebellum have the strongest 351 

negative correlations. Interestingly, the lung is ranked 31 out of 46 tissues, indicating 352 

that COVID-19 may impact far more tissues in different age populations than what we 353 

observed. As expected, the top-ranked tissues have a large number of significantly age-354 

correlated receptors, consistent with the direction of the overall correlation. For 355 

example, in the tibial artery, which has a significant positive CRS-age correlation, 94 356 

STSPRSTSPRs are significantly positive, and nine STSPRSTSPRs are significantly 357 

negatively correlated with age. Whereas in the frontal cortex, 56 STSPRs are 358 

significantly negative, and two STSPRs are significantly positively correlated with age, 359 

respectively (Figure 4A). The age effect on various disease pathologies is known for 360 
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some of these tissues, with significant correlations between CRS and age. For example, 361 

age is a known risk factor for adverse outcomes in peripheral artery disease. The risk of 362 

severe limb ischemia, the sudden loss of blood flow to a limb caused by embolism or 363 

thrombosis, significantly increases with age32. Thrombosis and microvascular injury 364 

have been identified as an implication of severe COVID-19 infection33. Another example 365 

is skeletal muscles with well-studied age-related wasting and weakness. Cellular and 366 

molecular mechanisms contributing to a decline in muscular function involve 367 

neuromuscular factors, hormones, testosterone or growth hormone, insulin, myogenic 368 

regulatory factors (MRFs), the Notch signaling pathway, as well as cytokines and 369 

inflammatory pathways34. A cytokine storm and robust production of cytokines6 are 370 

known to contribute to the severity of COVID-19 infections35, potentially inducing 371 

systemic effects across many tissues and organs.  372 

Among the STSPRs, ectodysplasmin A2 receptor (EDA2R) is significantly 373 

correlated with age in 39 of the 46 tissues in GTEx analyzed here. Its gene expression 374 

level is consistently increased with age across all these tissues (Table S5). EDA2R is a 375 

TNF receptor family member associated with the Nuclear Factor Kappa B (NF-ĸB) and 376 

p53 signaling pathways36. EDA2R has been identified as a strong candidate gene for 377 

lung aging in the context of COPD with additional age association in adipose tissue, 378 

artery, heart, muscle, and skin tissue37.  It is also a target of ACE2 overexpression. 379 

Among the STSPRs, EDA2R shows the most significant positive correlation in 24 380 

tissues in GTEx, including the tibial artery, subcutaneous fat, tibial nerve, adipose 381 

visceral (omentum), or the frontal cortex. EDA2R is a member of the M4-M26 module 382 

branch and key regulator in the daughter module M1602. 383 
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Other age-associated receptors are SLC22A15, PSEN1, CD69, and ENTPD3.  384 

SLC22A15 is positively and negatively correlated with age in 13 and 6 tissues, 385 

respectively. It is a member of the prototypical carnitine and ergothioneine 386 

transporters38 and is associated with many complex lipids that are not characteristic of 387 

any other SLC22 transporter39. SLC22A15 facilitates tumorigenesis in colorectal cancer 388 

cells. Overexpression of SLC22A15 leads to an increase in cell proliferation and cell 389 

colony formation capacity40. Presenilin 1 (PSEN1) mutations have been linked to an 390 

inherited form of Alzheimer’s disease. PSEN1 is negatively correlated with age in 16 391 

tissues but positively correlated with age in two brain tissues, the amygdala, and the 392 

hippocampus. Presenilins potentially regulate amyloid precursor protein (APP) by 393 

modulating gamma-secretase, an enzyme that cleaves APP. It is further known that the 394 

presenilins function in the cleavage of the Notch receptor. CD69, a member of the 395 

calcium-dependent lectin superfamily of type II transmembrane receptors, is only 396 

positively correlated with age in 17 tissues. CD69 is an early activation marker 397 

expressed in hematopoietic stem cells, T cells, and many other cell types in the immune 398 

system. Expression of the encoded protein is induced upon activation of T lymphocytes 399 

and may play a role in proliferation. Furthermore, the protein may act to transmit signals 400 

in natural killer cells and platelets. CD69 mRNA expression is only positively correlated 401 

with age. Thus, we would expect an increased expression with age. However, CD69 402 

expression and its age-dependency are controversial. CD4+ and CD8+ lymphocytes 403 

derived from elderly persons had reduced CD69 surface expression compared to young 404 

persons41. On the other hand, CD69 enhances the immunosuppressive function of 405 

regulatory T-cells in an IL-10 dependent manner42. This behavior would fit the 406 
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hypothesis of a compromised immune response in the elderly. Ectonucleoside 407 

triphosphate diphosphohydrolase 3 (ENTPD3) is another gene with age-dependent 408 

expression. Its expression is positively correlated with age in the tibial artery and 409 

skeletal muscle and negatively correlated in 14 tissues. ENTPD3 encodes a plasma 410 

membrane-bound divalent cation-dependent E-type nucleotidase. The encoded protein 411 

is involved in regulating extracellular levels of ATP by its hydrolysis (to ADP) and other 412 

nucleotides. ENTPD3 is a key regulator in the M2-M9-M66 branch of modules. Number 413 

4 ranked module M66 (Figure 3D) is enriched for macrophages/neutrophils (ARCHS4 414 

FET P-value = 0.014, 1.6 FE). 415 

 416 

Age dependency of a systemic SARS-CoV-2 response 417 

Network neighborhoods of several STSPRs such as ENTPD3, GABRP, and 418 

EPHA6 are enriched for the SARS-CoV-2 induced DEG signatures from human patient 419 

lung samples. The GABRP mRNA level is positively correlated with age in three tissues 420 

(subcutaneous fat, lung, minor salivary gland) and negatively correlated with age in 421 

three other tissues (tibial nerve, not sun-exposed skin, small intestine terminal ileum). 422 

EPHA6, a member of the M2-M9 branch (Figure 1A and Figure 3C), promotes 423 

angiogenesis43 and regulates neuronal and spine morphology44. The network 424 

neighborhood of EPHA6 is enriched for pentose and glucuronate interconversion, 425 

glucuronidation, and systemic lupus erythematosus (FET P-values < 7.5e-03). EPHA6 426 

mRNA level increases with age in six tissues (artery aorta, cerebellar brain hemisphere, 427 

brain cerebellum, esophagus gastroesophageal junction, esophagus mucosa, and 428 

ovary). It decreases in four tissues (brain amygdala, brain cortex, brain hippocampus, 429 
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and brain hypothalamus). Interestingly, ACE2 mRNA level increases with age in five 430 

tissues (adrenal gland, lung, ovary, stomach, and uterus tissue) and decreases in three 431 

tissues (aorta artery, minor salivary gland, and tibial nerve) (Table S3).  432 

We further investigated the potential age dependencies of STSPRs in biological 433 

processes realized by MEGENA co-expression modules. For this purpose, we have 434 

identified network modules enriched for tissue-specific age-correlated STSPR. The 435 

3,227 strong generic transcription module M4 is enriched for both positive and negative 436 

correlated STSPRs. M4 is enriched for positive age-correlated STSPR in prostate (FET 437 

P-value = 0.015, 1.85 FE) and for negative age-correlated STSPR in liver (FET P-value 438 

= 0.0015, 2.77 FE). We have identified the M4-M27 branch with signaling functions 439 

underlying COVID-19 (Figure 1A shows the M4-M27-M276 branch). Using blood cell 440 

type signatures, we found that M4 is enriched for neutrophils (FET P-value = 0.037, 3.0 441 

FE). Neutrophil-mediated innate immune responses against pathogens in the lungs 442 

determine the outcome of infection; insufficient neutrophil recruitment can lead to life-443 

threatening infection, although an extreme accumulation of neutrophils can result in 444 

excessive lung injury associated with inflammation45. Such a massive intra-alveolar 445 

neutrophilic infiltration has been observed in COVID-19 patients with a longer clinical 446 

course, likely due to superimposed bacterial pneumonia46. 447 

Other enriched modules involve number 66 ranked M26 (positive age-correlated 448 

STSPRs in adrenal gland: FET P-value = 1.32e-04, 6.88 FE), and number 35 ranked 449 

M10 (negative age-correlated STSPRs in mammary breast tissue: FET P-value = 0.069, 450 

6.10 FE). M26 is another child of M4 with cell cycle (M/G1 transition) function.  451 
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We also analyzed the dependence of the STSPRs on age in each tissue in the 452 

GTEx by computing correlations between differential expression of the STSPRs in 453 

COVID-19 and correlations between the STSPRs and age in each tissue in the GTEx 454 

(termed STSPR differential expression and age dependence (STSPR-DEAD) score; 455 

see details in Methods and Table S6). The subcutaneous fat, tibial artery, the 456 

substantia nigra, esophagus gastroesophageal junction, and liver show the strongest 457 

STSPR-DEAD score. A heatmap of STSPR-DEAD scores between 46 tissues and 7 458 

sample types is shown in Figure 5A. Many tissues have negative STSPR-DEAD 459 

scores. Examples are tibial artery (ρ = 0.32, p=0.029; Figure 5B), liver (ρ = 0.38, 460 

p=4.4e-05; Figure 5C) and esophagus gastroesophageal junction (ρ = -0.39, p=1.4e-461 

03; Figure 5D). The substantia nigra has the strongest positive STSPR-DEAD score 462 

and possesses the highest correlation coefficient in absolute terms with DEGs (DEGs 463 

from combined BALF and lung biopsies, ρ = -0.32, not shown).  464 

We have further validated the dependence of the STSPRs on age in GTEx 465 

tissues with data from the NYU COVID-19 cohort. Figure S4A shows the heatmap 466 

between 46 tissues, 3 sample types, and one combined data set (Xsq), corresponding 467 

to Figure 5A. Figure S4B depicts a plot between STSPR-DEAD and DEGs of 468 

esophagus gastroesophageal junction against HL (ρ = -0.49, p=3.2e-05) corresponding 469 

to Figure 5D. 470 

To explore the gene expression changes of STSPRs with age, we have 471 

separated GTEx donors into two cohorts: a young (≤ 45yrs) cohort and an old cohort (≥ 472 

60yrs). Gene expression was then adjusted to compare the difference between these 473 

two cohorts (see methods). In subcutaneous fat and tibial artery, the young cohort 474 
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showed a lower gene expression level, while a higher level of gene expression in the 475 

elder cohort. This pattern can also be seen in the esophagus gastroesophageal 476 

junction, skeletal muscle (Figure S5). 477 

Overall, we found a clear age-effect of genes coding for cell surface proteins and 478 

receptors that are potentially utilized by SARS-CoV-2. In particular, we have identified 479 

that STSPRs showed stronger age-dependency in the tibial artery, skeletal muscle, 480 

adipose, and brain tissues. Such an age-dependent effect could potentially contribute to 481 

the elevated severity of COVID-19 in the elderly. 482 

 483 

Discussion 484 

In the present study, we focus on the biological processes and key regulators 485 

modulating the host response to SARS-CoV-2 infections. Our multiscale network 486 

analysis of the gene expression data from both patient samples and cell lines has 487 

revealed network structures and key regulators underlying the host response to SARS-488 

CoV-2 infection.  489 

Essential aspects in the COVID-19 pathology are the biological processes 490 

hijacked by the virus for its advantage. Expression of the ACE2 receptor on the host cell 491 

and binding of the viral Spike protein for cell entry are among the first steps. Other 492 

processes beneficial for the virus may be staged by ACE2 expression and triggered by 493 

the binding process. CD300e and its interacting partner TYROBP trigger pro-494 

inflammatory cytokines and prevent apoptosis, an essential process controlled by many 495 

viruses. On the other hand, severe inflammation significantly contributes to the 496 

pathology of COVID-19 disease. Other potential surface protein host-factors are CD81 497 
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and EGFR. Additional surface proteins are CEACAM1 and LAMP3. Multiple cellular 498 

activities have been attributed to CEACAM1, including differentiation and arrangement 499 

of three-dimensional tissue structure, angiogenesis, apoptosis, tumor suppression, 500 

metastasis, and the modulation of innate and adaptive immune responses. LAMP3, 501 

however, plays a critical role in the autolysosome fusion process. It activates the 502 

PI3K/AKT pathway, which is necessary for SARS-CoV to establish infection. 503 

We have further investigated the age-dependence of receptors’ expression as 504 

clinicians have observed a severe disparity in survival between old and young COVID-505 

19 patients. We have identified a strong correlation between tissue age-dependency 506 

and SARS-CoV-2 infection-induced receptor expression in subcutaneous fat, tibial 507 

artery, brain substantia nigra, esophagus gastroesophageal junction, and liver. 508 

However, the exact contribution of specific receptors' age-dependency on the disease’s 509 

pathology requires additional investigation. We have also identified specific genes 510 

potentially related to age-specific expression and response in SARS-CoV-2 infections. 511 

EDA2R expression is significantly positively correlated with age in 24 of 46 tissues in 512 

GTEx, including the tibial artery, subcutaneous fat, tibial nerve, adipose visceral 513 

(omentum), the frontal cortex, or lung. Concerning lung, EDA2R has been associated 514 

with aging in the context of the chronic inflammatory disease COPD37. This particular 515 

gene is another target of ACE2 overexpression, potentially affected as a response to 516 

SARS-CoV-2 infection. Other targets with age-dependent expression are CD69, 517 

ENTPD3, EPHA6, GABRP, PSEN1, and SLC22A15. Noteworthy are CD69 and 518 

ENTPD3. As a surface receptor on immune cells and involved in signal transduction, 519 

CD69 is an integral component of immune system functions.  With its positive 520 
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correlated, age-dependent expression and its known modulation of immunosuppressive 521 

function of regulatory T-cells42, CD69 may contribute to compromising immune 522 

response in the elderly during SARS-CoV-2 infection. The ectonucleotidase ENTPD3 523 

shows a protective role in intestinal inflammation47 and maybe another factor of the age-524 

dependent immune reaction during COVID-19. It is a key regulator with a network 525 

neighborhood enriched for genes responding to ACE2 overexpression. 526 

In conclusion, our analyses presented here suggest that SARS-CoV-2 utilizes 527 

multiple novel receptors for entry and spawns a unique response in the host system. 528 

Novel hypotheses involving the utilization of cell surface receptors and their age-529 

dependent expression offer new insights into the molecular mechanisms of SARS-CoV-530 

2 infection and pave the way for developing new therapeutic intervention against 531 

COVID-19. 532 

 533 

Methods 534 

RNAseq Analysis. Raw reads were obtained from the Beijing Institute of Genomics 535 

(BIG) Data Center (https://bigd.big.ac.cn/) under the accession number CRA002390. 536 

BALF RNAseq data from healthy subjects were obtained from NCBI/SRA 537 

(SIB028/SRR10571732, SIB030/ SRR10571730, and SIB036/ SRR10571724). The 538 

RNAseq data were aligned to the Homo sapiens reference genome GRCh38/hg19 539 

using the Star aligner v2.7.0f with modified ENCODE options, according to Xiong et 540 

al..15 Raw read counts were calculated using featureCounts v2.0.1. Raw read counts 541 

after Star alignment and featureCounts, as well as obtained from GSE147507, were 542 

normalized using edgeR/voom (v3.32.1 with R v4.0.0).  543 
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Identification of differentially expressed genes. We used the negative binomial 544 

models together with the empirical Bayes approach as implemented in the edgeR-545 

package48 to identify differentially expressed genes (DEGs). We considered an absolute 546 

fold change of 1.5 or higher and an FDR ≤ 0.05 as significant throughout the paper. 547 

Gene co-expression network analysis. Multiscale Embedded Gene Co-Expression 548 

Network Analysis (MEGENA) 20 was performed to identify host modules of highly co-549 

expressed genes in SARS-CoV-2 infection. The MEGENA workflow comprises four 550 

major steps: 1) Fast Planar Filtered Network construction (FPFNC), 2) Multiscale 551 

Clustering Analysis (MCA), 3) Multiscale Hub Analysis (MHA), 4) and Cluster-Trait 552 

Association Analysis (CTA). The total relevance of each module to SARS-CoV-2 553 

infection was calculated by using the Product of Rank method with the combined 554 

enrichment of the differentially expressed gene (DEG) signatures as implemented: 555 

𝐺𝑗 = ∏ 𝑔𝑗𝑖𝑖 , where, 𝑔𝑗𝑖 is the relevance of a consensus j to a signature i; and 𝑔𝑗𝑖 is 556 

defined as (𝑚𝑎𝑥𝑗(𝑟𝑗𝑖) + 1 − 𝑟𝑗𝑖) ∑ 𝑟𝑗𝑖𝑗⁄ , where 𝑟𝑗𝑖 is the ranking order of the significance 557 

level of the overlap between the module j and the signature. 558 

Identification of enriched pathways and key regulators in the host modules. To 559 

functionally annotate gene signatures and gene modules identified in this study, we 560 

performed an enrichment analysis of the established pathways and 561 

signaturesincluding the gene ontology (GO) categories and MSigDBand the subject 562 

area-specific gene setsincluding, Inflammasome, Interferome, and InnateDB. The hub 563 

genes in each subnetwork were identified using the adopted Fisher’s inverse Chi-564 

square approach in MEGENA; Bonferroni-corrected p-values smaller than 0.05 were set 565 

as the threshold to identify significant hubs.  566 
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Network enrichment. Fisher’s Exact Test (FET) was performed to determine the 567 

overlap between network neighborhoods of potential key regulators (target) and an 568 

input DEG signature. For each target in the network in the 95 percentile of node 569 

strength after MEGENA, the genes in the network neighborhoods between one and four 570 

steps away from the target were intersected with the DEG signature. MEGENA 571 

networks were tested with DEGs of all systems for further analysis (see the main text). 572 

Cumulative network enrichment scores 𝑠 = 1/𝑛 ∙ ∑ − log10 𝑃𝑖𝑖  based on individual FET 573 

P-values for each target were calculated. 𝑛 is the number of realizations (i.e., the 574 

number of different neighborhoods and systems used to calculate the particular score).  575 

GTEx data preprocessing. We downloaded GTEx v8 data49 from the Database of 576 

Genotypes and Phenotypes (dbGaP) under accession phs000424.v8.p2. For all the 577 

available tissues, we selected those with at least 80 samples and samples with more 578 

than 20 million mapped reads and greater than a 40% mapping rate. Cell line data were 579 

removed from our analysis. Only genes with expression > 0.1 Transcripts Per Million 580 

(TPM) and aligned read count of 5 or more in more than 80% samples within each 581 

tissue were used for aging gene identification. Expression measurements for each gene 582 

in each tissue were subsequently inverse-quantile normalized to the standard normal 583 

distribution to reduce the potential impact of outlier gene expression values. Our final 584 

dataset included samples from 46 tissue types. The sample size for each tissue ranged 585 

from 114 to 706, with an average of 315 samples. 586 

Linear regression model for age and sex-associated gene detection. We 587 

implemented a linear regression model to identify age-associated gene expression (Eq. 588 

1) 50. 589 
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𝑌𝑖𝑗 = 
𝑗

+ 
𝑗
𝐴𝑔𝑒𝑖 + 𝑗𝑆𝑒𝑥𝑖 + ∑ 

𝑗𝑘
𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑖𝑘

5
𝑘=1 + ∑ 𝛼𝑗𝑘𝑃𝐶𝑖𝑘

𝑁
𝑘=1 + 𝜃𝑗𝑅𝐼𝑁𝑖 + 𝑗𝑃𝑀𝐼𝑖 +  𝑖𝑗 590 

(Eq. 1). In this model, 𝑌𝑖𝑗 is the expression level of gene j in sample i, 𝐴𝑔𝑒𝑖 denotes the 591 

donor age of sample i, 𝑆𝑒𝑥𝑖 denotes the donor sex for sample i,  𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒𝑖𝑘(𝑘 ∈592 

(1,2,3,4,5)) denotes the value of the k-th principal component value of the genotype 593 

profile for the i-th sample, 𝑃𝐶𝑖𝑘(𝑘 ∈ (1, … , 𝑁) denotes the value of the k-th principal 594 

component value of gene expression profile for the i-th sample, N is the total number of 595 

top PCs under consideration, 𝑅𝐼𝑁𝑖 denotes the RIN score of sample i, 𝑃𝑀𝐼𝑖 denotes the 596 

PMI of sample i, 𝑖𝑗 is the error term, 
𝑗
, 𝑗, 

𝑗𝑘
, 𝛼𝑗𝑘, 𝜃𝑗 , 𝑗 are the regression coefficients 597 

for each covariate. The corresponding correlation coefficients and p-values (adjusted 598 

with BH 51 method) were then calculated for all genes; FDR values < 0.05 were 599 

considered as significant age-associated genes. Several covariates (such as genotype 600 

PCs and PEER factors) we adjusted in the regression model were selected following 601 

the method used by GTEx consortium 49. From the consortium’s analysis, the top five 602 

genotype PCs were considered sufficient to capture the major population structure in 603 

the GTEx dataset and were used for the consortium paper.  604 

Adjust gene expression for age analysis. We used a linear regression model to 605 

adjust gene expression (Eq. 2).𝑌𝑖𝑗 = 
𝑗

+ 𝑗𝑆𝑒𝑥𝑖 + 
𝑗
𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑖 + 𝜃𝑗𝑅𝐼𝑁𝑖 + 𝑗𝑃𝑀𝐼𝑖 +  𝑖𝑗 606 

(Eq. 2). We regressed out the following confounding factors to obtain adjusted gene 607 

expression, which include 𝑆𝑒𝑥𝑖: the sex of donor for sample i, 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑖: the value of 608 

the platform for the i-th sample, 𝑅𝐼𝑁𝑖 : the RIN score of sample i, and  𝑃𝑀𝐼𝑖 : the PMI of 609 

sample i. 610 

Expression measurements for each gene in each tissue were inverse-quantile 611 

normalized to follow the standard normal distribution to reduce the potential impact of 612 
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outlier gene expression values. Composite receptor score (CRS) was then calculated 613 

for each receptor in each sample (Eq.3). 𝐶𝑅𝑆(𝑌𝑖) = 𝑠𝑢𝑚{𝑠𝑖𝑔𝑛(𝑋𝑖𝑗, 𝜏)}  where 614 

𝑠𝑖𝑔𝑛(𝑋𝑖𝑗, 𝜏) = {
0, 𝑖𝑓 𝑋𝑖𝑗 < 𝜏

1, 𝑖𝑓 𝑋𝑖𝑗 ≥ 𝜏
 (Eq. 3). In this equation, CRS(𝑌𝑖) is the composite score of 615 

sample i, 𝑋𝑖𝑗 is the expression level of gene j in sample i, 𝜏 is the test score. We have 616 

tested 𝜏 with -0.25, 0, 0.25, 0.5, 0.75, and 1, spearman correlation coefficients and p-617 

values (adjusted with BH method) were subsequently calculated between CRS score 618 

and age. 𝜏 = 0.25 showed the overall best correlation and p-value between CRS and 619 

age (Table S6). We termed this correlation coefficient between SARS-CoV-2 surface 620 

protein receptors (STSPRs) CRS and age, STSPR differential expression, and age 621 

dependence (STSPR-DEAD) score. 622 
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 762 

 763 
Figure 1. Gene co-expression modules associated with SARS-CoV-2 infection.  764 

(A) A global MEGENA network. Different colors represent the modules at one particular 765 

compactness scale. (B) The top 20 MEGENA modules most enriched for the SARS-766 

CoV-2 up- and downregulated DEG signatures are shown (outer rings: “DEGs up” and 767 

“DEGs dn,” resp.). The center rings (“Sign.”) show additional signatures, including 768 
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biological processes, cells, and tissues, as well as SARS-CoV-2 host factors based on 769 

PPI. (C) A Sunburst plot of all 934 modules enriched for MSigDB canonical processes 770 

(C2.CP) is shown. (D) The module enrichment for 25 lung pathology-related tissue 771 

signatures after the “ARCHS4” database52 is depicted.  (E, F) Sunburst plots of module 772 

enrichment for DEGs concerning (E) BALF and (F) lung biopsy tissues are displayed. 773 

The color bars in (C, E, and F) show the negative decadic logarithm of the adjusted P-774 

values. 775 
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777 
Figure 2. Network neighborhood and network enrichment for gene signatures and 778 

key regulators.  779 

(A) Top-scored targets after network enrichment by ACE2 overexpression signatures 780 

together with their directional response are shown. Many of these targets are members 781 

of M10 (B). The color tiles refer to network enrichment scores. The “-log10(P)” color 782 

scale on the right refers to the cumulative P-value used for ranking. Dark red color 783 

denotes a higher rank. The bubble plot denotes up- (red) and downregulated (blue) 784 

genes. The color of the circles refers to the fold change of expression between virus-785 

infected and mock-infected samples. The size indicates the FDR as –log10(qval). (C) 786 

The number 35 ranked module M10 is depicted, which is significantly enriched for 787 

ACE2oe signatures. The node color indicates a directional response. Red nodes are 788 

upregulated, blue nodes are downregulated after infection. Diamond-shaped nodes 789 

indicate key regulators. The nodes with a black border denote genes significantly 790 

responding to ACE2 overexpression with fold change (FC) of 1.5 or higher. Purple 791 

borders indicate ACE2oe responding genes with FC ≥ 2. (E) A sunburst plot of the 792 

modules with ACE2oe enrichment is shown. 793 
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 795 
Figure 3. Gene co-expression modules associated with SARS-CoV-2 infection.  796 

(A) With rank 35, M10 is not among the best 20 ranked modules. It is potentially 797 

responsible for cellular stress response/Golgi apparatus/antigen processing and 798 

presentation and is enriched for DEGs, ACE2oe, and bulk lung tissue signatures. (B) 799 

Number 38 ranked module M77 is a daughter module of M10. M77 potentially functions 800 

for the regulation of cell adhesion. Like its parent module M10, M777 is enriched for 801 

DEGs, ACE2oe, and bulk lung tissue signatures. (C) M9 is the parent of M66 and 802 

ranked number 5, and is enriched for DEGs and ACE2oe signatures. Similar to M66, it 803 

is enriched for macrophages/neutrophils tissue signature. (D) Ranked fourth and 804 
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second-ranked module with less than 100 genes is M66, which is enriched for DEGs 805 

and ACE2oe signatures. M66 is enriched for macrophages/neutrophils ARCHS4 806 

signature. (E) M27 is the parent of M276 and ranked sixth. It is enriched for DEGs, 807 

ACE2oe, and blood PBMC signatures. (F) The top-ranked module with less than 1000 808 

genes, M276, is highly enriched for upregulated DEGs. M276 is among the smallest 809 

top-ranked modules with 81 genes. – Node colors refer to the direction of regulation. 810 

Upregulated genes are red, and downregulated genes are blue. Diamond-shaped 811 

nodes denote key regulators. The size of the nodes refers to the connectivity in the 812 

network. (A, C, E) The subnetworks with orange edges refer to the corresponding 813 

daughter modules shown in (B, D, F). 814 
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 816 
Figure 4. The number of receptors significantly correlated with age in the GTEx 817 

data.  818 

(A) The range of significant individual receptor/age correlation ρ is shown for each 819 

tissue. Numbers next to the bars denote the number of receptors that are significantly 820 

positively (red bars) or negatively (green bars) associated with age, respectively. 821 

Missing bars indicate the absence of a significant correlation. (B) The age dependency 822 

of gene expression between tissues and composite receptor score (CRS) based on the 823 

genes coding for cell surface proteins (rows) are shown. Tissues are ranked based on 824 

correlation significance with parameter τ = 0.25. Colors refer to the positive (red) and 825 

the negative (blue) correlation between age and CRS. The size denotes the FDR in –826 

log10(adj. P-Value). 827 
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 829 
Figure 5. Correlation between the surface receptors’ differential expression in 830 

SARS-Cov-2 infection and their tissue-specific age dependence.  831 

(A) A heatmap of correlation coefficients after tissue age effect (STSPR-DEAD, see 832 

text) and DEGs correlation is shown. Only the correlation coefficients with nominal P ≤ 833 

0.05 are shown. The top color bar indicates the direction of the STSPR-DEADs, with red 834 

denoting positive STSPR-DEADs and blue referring to negative STSPR-DEADs. Tiles 835 

with cyan boundary indicate select tissue/DEG pairs. (B-D) Dot plots between STSPR-836 

DEAD and DEGs of select tissues with best correlation coefficients are shown: (B) 837 

Artery tibia against combined BALF/lung biopsy DEGs, (C) Liver against BALF, and (D) 838 

Esophagus Gastroesophageal Junction against BALF. 839 
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