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Abstract 
 
Cancer genomic medicine relies on targeting driver genes. However, current catalogues of 
cancer drivers are mostly based on indirect measurements of mutation frequencies, 
positions or types, rather than their effect on clonal expansions in vivo. Moreover, non-
genetic drivers are largely unknown, as are the epigenetic and transcriptomic effects of 
genetic drivers. Here we perform spatial computational inference on multiomic data with 
matched whole-genome sequencing, ATAC-seq and RNA-seq. Using 436 samples, we 
directly quantify the contribution, or lack thereof, of putative driver genes to subclonal 
expansions in vivo in 30 colorectal carcinomas (4-33 samples per patient, median=15). 
Although subclonal neutral evolution was widespread (13/26 cases with sufficient data), 
there were cases with clear evidence of subclonal selection (6/26) in which we measured 
epigenetic and transcriptomic differences between subclones in vivo. In 7/26 cases we 
could not distinguish between neutral or selective evolution with the available data. We 
identified expanding subclones that were not driven by known genetic alterations, and 
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propose candidate epigenetic drivers. We identified the distinguishing patterns of genomic 
heterogeneity produced in fast, exponentially growing tumours (7/26) versus neoplasms 
growing only at the periphery (19/26), as well as identifying clonally intermixed (16/28 
cases with sufficient data) versus segregated malignancies (10/28). Our model-based 
approach measures genetic and non-genetic subclonal selection, or lack thereof, in space 
and time and allows in vivo comparisons of the emergent phenotypic properties of 
subclones within human tumours. 
 

Introduction 
 
Identification of somatic DNA mutations in cancer driver genes is at the core of genomic 
medicine and precision oncology (Velden et al., 2019). Seminal contributions have led to 
the generation of compendia of curated cancer drivers (Martínez-Jiménez et al., 2020; 
Sondka et al., 2018) that inform clinical trials and drug development. Although these 
efforts are a fundamental part of cancer research, most cancer driver genes are not 
identified by measuring their functional impact in vivo in humans. Instead, sophisticated 
statistical analyses discover driver gene candidates based on the frequency of genetic 
mutations within the gene (i.e., if a gene is mutated more often than expected by chance in 
a cohort), the clustering of mutations along the gene length (i.e., if mutations in the gene 
accumulate in specific hotspots) and predicted damaging/functional effects on the specific 
protein that the gene encodes (i.e., if mutations are predicted to substantially change the 
protein function). So far, relatively few cancer driver genes have been validated 
functionally in experimental systems (Bailey et al., 2018)], and moreover methods that 
evaluate what cancer driver gene mutations actually do in vivo during human 
tumourigenesis are lacking. For example, only very recently has the mechanism of 
selective advantage provided by APC mutation – the gatekeeper mutation for colorectal 
carcinogenesis discovered more than three decades ago (Kinzler et al., 1991) – been 
elucidated (Flanagan et al., 2021; Neerven et al., 2021). Moreover, potential epigenetic 
drivers of subclonal expansions have received comparably little attention, and there are 
calls for the field to move beyond the genome in the study of intra-tumour heterogeneity 
(Black and McGranahan, 2021). 
 
In many cancer evolution studies, it is typical to specify a list of driver genes a priori is 
applied and annotate alterations to these genes upon phylogenetic trees that give the 
impression of functional evolution (Gundem et al., 2015; Noorani et al., 2020; Yates et al., 
2015, 2017). However, this does not correspond to a direct measurement of the effects of 
the driver on the cellular population. Convergence of multiple driver mutations in the same 
gene in a patient are a strong sign of selection (Gerlinger et al., 2012, 2014), but such 
events are not very common and often arise in the context of therapy, where extremely 
strong selective pressures are present (Parikh et al., 2019). Moreover, due to the high 
mutation rate of copy number alterations (CNAs) (Burrell et al., 2013; Dijk et al., 2021), 
convergence of chromosomal arm events should not be considered a likely sign of 
selection since the same CNAs could occur multiple times independently (Williams et al., 
2021). Therefore, it is likely that a proportion of reported drivers may be false positives, 
due to incorrect normalisation for confounding factors in genetic analyses, or by 
assumption that driver status of a particular gene is maintained across tissues. More 
importantly, some genes may behave as drivers in one patient, but not in another. 
 
We previously demonstrated that colorectal cancers, after malignant transformation, often 
grow as a single ‘Big Bang’ expansion of clones under weak or without subclonal selection 
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(Sottoriva et al., 2015), an observation that was corroborated in subsequent studies (Cross 
et al., 2018; Sun et al., 2017). This model also predicts clonal intermixing, where samples 
in distant regions of the tumour are more closely related to nearby samples due to the 
effect of early disordered growth. Big Bang dynamics have also been identified in other 
cancer types (Gaiti et al., 2019; Gao et al., 2016; Ling et al., 2015; Sun et al., 2018). Intra-
tumour genetic heterogeneity in ‘Big Bang’ cancers is largely driven by neutral evolution 
(Kimura, 1984), which can be verified through detection of a characteristic pattern of 
mutation allele frequencies in bulk sequencing of single samples (Williams et al., 2016, 
2018) as well as the pattern of intra-tumour heterogeneity in multi-region and longitudinal 
sampling (Caravagna et al., 2020a). Notably the Big Bang model, unlike a strict model of 
neutrality, does allow for the presence of weakly selected subclones that do not grow 
rapidly enough to substantially change the clonal makeup of the tumour. 
 
Here we use colorectal carcinogenesis as a model system to evaluate the selective 
advantage of putative driver mutations. We delineate the evolutionary dynamics of primary 
colorectal malignancies using a multi-region approach based on single-gland sequencing 
of multiple distant tumour regions, making use of a novel phylogenetic approach that, 
unlike single bulk sample strategies (Dentro et al., 2021), has good power to detect 
positively-selected subclonal expansions. Marrying this sensitive detection of subclonal 
selection together with an assessment of the genetic makeup of subclones, enables us to 
assess the functional impact of putative cancer driver gene mutations – measured in terms 
of the fitness advantage bestowed to the mutant clone - in vivo in patients. The same 
approach enables us to detect candidate driver epigenetic modifications. Further, we 
leverage matched ATAC-seq and RNA-seq data to functionally characterise the epigenetic 
and transcriptomic identity of positively-selected subclones. 

Results 
 
Darwinian selection on DNA mutations in cancer driver genes 
 
We implemented a single-clone multiomic profiling protocol that allows concomitant 
assessment of single nucleotide variants (SNVs), copy number alterations (CNAs), 
chromatin accessibility changes and transcriptomic profiles in many samples from the 
same patient (data generation described in our associated paper EPIGENOME). 
Specifically, from 30 primary colorectal cancers and 8 concomitant adenomas we 
generated deep whole-genome sequencing (WGS, median depth 35x) in 3-15 samples 
per patient (median=9), low-pass whole genome sequencing (lpWGS, median depth 1.2x) 
in 0-22 samples per patient (median=8), and chromatin characterisation with ATAC-seq in 
18-61 samples per patient (median=42). We also generated 297 whole-transcriptomes (1-
40 samples per patient, median=7) with many overlapping the WGS dataset, the ATAC-
seq dataset or both.  
 
We leveraged the large number of samples per patient profiled with whole-genome 
sequencing to accurately identify clonal and subclonal somatic variants in each case. The 
IntOGen list (Martínez-Jiménez et al., 2020) of 72 colorectal cancer driver genes is the 
gold standard compendium of putative drivers in intestinal malignancies. We discarded 
from the list three genes that are likely false positives, LRP1B, KMT2C and PARP4, due to 
mappability issues in their highly repetitive regions, passenger hotspots, and dN/dS~1 
(see below) in the TCGA colorectal cancer cohort. In our cohort, we annotated clonal and 
subclonal coding mutations and indels in the remaining 69 genes (Figure 1A), illustrating 
an apparent plethora of cancer driver gene mutations in our cohort. 
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Figure 1. Clonal and subclonal colorectal cancer drivers from spatial genomic 
profiling. (A) Nonsynonymous somatic mutations and indels in IntOGen colorectal cancer 
driver genes, with clonality status indicated. (B) dN/dS analysis on clonal versus subclonal 
driver gene mutations, divided between MSS (Microsatellite Stability) and MSI 
(Microsatellite Instability) cases. (C) Per-gene missense mutations dN/dS and (D) per-
gene truncating mutations dN/dS for the 69 IntOGen drivers in TCGA colon and rectal 
cohorts, many genes have dN/dS value ~1 indicating lack of evidence for positive 
selection. (E) In this MSI case C516, the cancer (region A and B) and the adenoma 
(regions C and D) formed a large mass and were physically adjacent to one another. (F) 
The precursor adenoma shared a mismatch repair mutation in MSH2 with the cancer but 
displayed early divergence. (G) Case C551 presented with a cancer and a concomitant 
adenoma that were very distant, pointing at two independent events. (H) The phylogenetic 
tree was characterised by clonal intermixing of diverging lineages collocated in the same 
region (e.g., some lineages from regions A, B and C were genetically close). Subclonal 
drivers of unknown significance were present, including a non-expressed variant in USP6 
and an ARID1A mutation. Early divergence between the cancer and the adenoma F was 
evident, with no shared drivers between the two lesions. (I) Case C561 presented with a 
large cancer mass and multiple small concomitant adenomas. (J) Again, there was no 
significant somatic alteration in common between the different lesions. The cancer showed 
clonal amplification of MYC and only a benign subclonal mutation in FAT4.  
 
 
We found that the most frequently mutated drivers in colorectal cancer, such as APC, 
KRAS, TP53, and SOX9, as well as other known drivers such as PTEN, EGFR, CCDC6, 
PCBP1, ATM and CTNNB1 are invariably clonal in cancers, with the exception of one 
single case with a subclonal KRAS mutation. These findings are consistent with previous 
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multi-region sequencing studies (Cross et al., 2018)but contradict claims of frequent 
subclonality of these genes in single-sample bulk data (Dentro et al., 2021), highlighting 
the need for properly powered analyses to assess intra-tumour heterogeneity (Caravagna 
et al., 2020a). 
 
We then assessed the strength of evolutionary selection with dN/dS analysis 
(Martincorena et al., 2017; Zapata et al., 2018) which quantifies the excess of non-
synoymous mutations in driver genes. We compared dN/dS values measured in the whole 
coding genome (‘all’), in a list of pan-cancer driver genes (Martincorena et al., 2017) and in 
the IntOGen colorectal cancer genes from Figure 1A. We split the cohort between cases 
characterized by microsatellite stability (MSS) versus instability (MSI) to account for the 
very different mutation rates in these two groups (in line with previous analyses 
(Martincorena et al., 2017). We found clear evidence of selection for clonal missense and 
truncating mutations in MSS cancers, with dN/dS values significantly larger than one, in 
both lists of putative cancer drivers (Figure 1B). The dN/dS value is higher for the IngoGen 
list, confirming the list is highly enriched for genes that are true drivers in this colorectal 
cancer cohort. We found no evidence of subclonal selection for truncating variants. 
Moreover, missense mutations showed slightly higher than 1 dN/dS values although non-
significant, suggesting that only a small subset of subclonal IntOGen driver mutations are 
likely to be under positive selection. For the MSI cases selection was less evident from 
dN/dS, likely due to the higher mutation rate generating a much larger number of neutral 
mutations in cancer driver genes, thus diluting the dN/dS signal, but nevertheless selection 
for clonal truncating mutations was significant in MSI cancers (Figure 1B). 
 
We then examined the dN/dS values for each of the colorectal IntOGen drivers, including 
the three genes we discarded, to assess the evidence of positive selection in the TCGA 
colon and rectal cancer cohorts combined with additional data(Giannakis et al., 2016; 
Vasaikar et al., 2019) using SOPRANO (Zapata et al., 2018) for a total of n=1,253 
colorectal cancer cases analysed. This large number of cases allows calculating dN/dS 
per each driver gene, rather than in sets of genes. The results are shown in Figure 1C for 
missense mutations and in Figure 1D for nonsense variants. Clearly, most genes in the list 
show no evidence of selection, with the majority of the top genes being the “usual suspect” 
colorectal cancer drivers (Cross et al., 2018) We confirmed that both missense and 
nonsense mutations in PARP4 and KMT2C had dN/dS~1, as did missense mutations in 
LRP1B (we only find missense subclonal mutations in this gene in our cohort). 
 
The values of dN/dS for subclonal mutations being ~1 are consistent with extensive 
neutral evolution ongoing at the subclonal level in these tumours. Although dN/dS 
measurements are powerful tools to assess selection, both positive and negative (Zapata 
et al., 2018), they have the limitation that they provide an ‘average’ estimate of selection 
across a group of patients (Heide et al., 2018), and dN/dS on driver genes cannot be 
estimated from a single patient. Further, we note that theory predicts dN/dS to be less 
sensitive to detect subclonal selection than clonal selection (Williams et al., 2020). 
Subclonal expansions are likely to be few and rare, but nevertheless very important 
(Turajlic et al., 2019). Recognition that most intra-tumour heterogeneity in colorectal 
cancers is the consequence of neutral evolution provides a tractable “null hypothesis” 
against which deviations due to clonal selection can be robustly identified (Williams et al., 
2016, 2018) Neutral evolution is a simple evolutionary scenario to simulate, and this 
simplicity allows for the design of robust statistical methods to detect the action of 
selection through deviations from the expectation provided by neutral evolution 
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(Caravagna et al., 2020a, 2020b; Durrett, 2013; Kessler and Levine, 2013, 2014; Williams 
et al., 2016, 2018).  
 
We next sought to identify which subclones were selected, and which ones were not ,in 
our cohort, on a patient by patient basis. 
 
Measuring evolution with spatial profiling and phylogenetics 
 
Phylogenetics relates the genetic variation amongst individuals to their shared genetic 
ancestry (Yang and Rannala, 2012). Phylogenetic methods have been extensively applied 
to cancer data (Schwartz and Schäffer, 2017). Phylodynamics extends this methodology to 
incorporate “demographic” mathematical models of the underlying stochastic birth and 
death process of lineage evolution (Stadler et al., 2021). Phylodynamics provides an 
explicit means to model mutation, trait evolution through Darwinian selection, and spatial 
processes. The methodology has been extensively applied in animals (Gaggiotti et al., 
2002), viruses (Suchard et al., 2018) and cancer (Alves et al., 2019; Lote et al., 2017; 
Stadler et al., 2021). In the context of cancer, clonal (often also referred as ‘truncal’) 
mutations have undergone selection and clonal expansion in the past and are now ‘fixed’ 
in the population. These contain no phylodynamic information on how the population is 
currently evolving. Instead, intra-tumour heterogeneity data from multi-region profiling 
documents selection “in action” (Williams et al., 2019). Moreover, when a subclone is 
“caught in the act” of expanding but it has not yet reached fixation, it provides a unique 
opportunity to functionally characterise the genetic and epigenetic alterations driving its 
expansion. Whereas single-sample clonal driver mutations are a black and white ‘photo’ of 
what happened in the past, multi-region sequencing provides more of a ‘movie’ of ongoing 
tumour evolution (Swanton, 2012; Turajlic et al., 2019). 
 
Here, we combine multi-region single gland whole-genome sequencing with the spatial 
information we retained from our sampling strategy (Figure S1) to reconstruct the 
phylogenetic trees for each patient initially using a maximum parsimony ‘model-free’ 
approach. Our single-clone tissue collection with monoclonal glands makes the task easier 
than using large bulks of tissue as subclonal deconvolution is not required (Alves et al., 
2017).  
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Figure 2. Phylogenetic reconstruction of all cancers and adenomas. Putative cancer 
driver genes from the IntOGen set were reported in each branch. For MSI cases we report 
only a subset of most relevant genes (note “…”). For subclonal drivers, we report whether 
the variant was expressed (bold), not expressed or benign (grey), and if the per-gene 
dN/dS value was ~1. 
 
We reconstructed the phylogenetic history of each tumour using SNVs from single glands 
and minibulks. Each sample was imaged (Figure S2) and whole-genome data was used to 
call copy number alterations (Figure S3), mutations and indels (Figure S4) (see related 
EPIGENOME manuscript for methods). Histograms of the variant allele frequency (VAF) 
for each sample is reported in Figure S5. We also developed a method to genotype sets of 
SNVs present in different branches of the tree on lpWGS samples and hence position 
those in the tree (see Material and Methods). This allowed us to construct large 
phylogenetic trees that informed on the population structure of each cancer and 
concomitant adenoma, and to link clades on the phylogenetic tree to the geographical 
location where the samples were taken (Figure 1E-J). This was done for the whole cohort 
(Figure 2, see Figure S6 for bootstrapping values confirming tree robustness).  
 
We found that the large majority of the trees were balanced, with similar branch lengths 
between different samples and regions. A clear outlier was case C539 where the tree 
contains a particularly large clade that expanded recently and spans multiple geographical 
regions of the tumour (all A and part of B). These patterns are expected when subclonal 
selection is active (Chkhaidze et al., 2019). Indeed, the expanded clade contained a KRAS 
G12C mutation. 
 
Distinctive pattern of clonal intermixing of genetically divergent samples that ended up in 
geographical proximity was evident in 16/28 (57%) of cases (Figure 1E-J, 2 and 3A). We 
previously reported the surprising finding that samples from distant tumour regions were 
more related to each other than nearby samples, and argued through simulations that this 
was predicted by ‘Big Bang’ dynamics and was a sign of early malignant potential 
(Sottoriva et al., 2015; Sun et al., 2017). Other cancers were spatially well organised, with 
all samples from one region being genetically similar (e.g., cases C525 and C532). These 
patterns of intermixing clearly split cancers into two groups, one characterised by 
subclonal intermixing, and one by subclonal segregation (Figure 3A). 
 
We then annotated the 44 subclonal colorectal cancer driver variants we find in our cohort 
from IntOGen list from Figure 1A onto the phylogenetic trees (excluding adenomas). We 
noted that 7/44 subclonal drivers were from MSI cases, which showed dN/dS in subclonal 
mutations of ~1 (Figure 1B), suggesting that most the majority of these 7 putative driver 
mutations were actually neutral. 
 
We further examine the PolyPhen (Adzhubei et al., 2010) functional score of each 
mutation and found that 10/44 (22.7%) mutations were identified as putatively benign 
SNVs (marked in grey in Figure 1E-J and 2). We also leveraged on the whole-
transcriptome information to verify the expression of mutated transcripts, and we found 
that for 7/44 (15.9%) driver mutations only wild-type reads were detected (also marked in 
grey). We could not assess mutant transcript expression for 29/44 mutations (65.9%) 
because of missing RNA data or lack of reads covering the variant location. Of those, 
13/29 (45%) were in genes with dN/dS~1 in the TCGA COAD and READ cohorts. We also 
report in bold the 6/44 (13.6%) variants identified as deleterious and also found expressed 
by RNA-seq.  
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Together, these analyses revealed that of the large number of putative driver events 
identified in our cohort (Figure 1A) most showed no evidence of being under selection: 
38.6% of variants were either benign or not expressed in the cancer (and we note 
expression could not be assessed for two thirds of variants), and another 29.5% of 
variants were in genes with dN/dS~1.  
 
To further dissect which subclonal cancer driver genes are actually driving a subclonal 
expansion and which ones are effectively neutral, we perform further analysis of the 
topology of the reconstructed phylogenies. The trees in Figures 1E-J and 2 provided good 
estimates of time of emergence of different lineages (their Most Recent Common Ancestor 
– MRCA) measured relative to the total age of the tumour from trunk to leaves, calculated 
as the mean number of SNVs per lineage in the clade divided by mean SNVs per from root 
to leaf for every lineage. Moreover, for each lineage we had a good estimate of its clade 
size because of the many samples per clade. Under neutral evolution, only early diverging 
lineages lead to large clade sizes, and in general clade sizes are predicted to follow a 
power-law ~1/f distribution generating more and more lineages at smaller and smaller 
frequency as the tumour expands. In comparison, positive selection causes late emerging 
lineages to undergo subclonal expansion, reaching clade sizes that are larger than 
expected under neutral evolution. The clearest example of this phenomenon in our cohort 
is case C539, where a late arriving subclonal lineage in region A underwent a large 
expansion (Figure 2). The relationship between MRCA time 𝑡"#$% (how far into the 
tumour’s past that a subclone was generated) and the size of the clade 𝑓 (expressed as 
the proportion of samples within the mutated clade) should follow under neutrality as: 
 
𝑡"#$% = − )*	(-	.)

0
  (1) 

 
Where 𝜋 is the copy number of the locus and 𝜆 is the tumour growth rate, assuming 
exponential growth N(t) = 𝑒06. We calculated 𝑡"#$% vs 𝑓 for every gene mutation, dividing 
into five categories:  
 

• non-cancer gene mutations (background) 
• synonymous mutations driver genes 
• missense mutations in driver genes scored as functionally benign by PolyPhen 
• missense mutations in driver genes scored as functionally deleterious by PolyPhen 
• truncating mutations in driver genes 

 
When examining our data, we found that the large majority of mutations in driver genes 
behaves evolutionarily as the predicted from neutral theory (equation 1; Figure 3B). In 
particular, mutations in benign missense mutations as expected behave as neutral, as do 
truncating mutations which were indeed found to have dN/dS~1. A few noticeable 
exceptions of functionally deleterious missense mutations (which indeed showed slightly 
higher dN/dS) show sign of deviating from the neutral expectation, most of all KRAS G12C 
in C539, but also a subset of the subclonal PIK3CA mutations. Evidently, putative drivers 
such as FAT3 and FAT4, which are very large genes that show often benign mutations 
behave largely neutral, are unlikely to be true drivers in colorectal cancer. 
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Figure 3. Clonal intermixing, subclone dynamics and essentiality. (A) Subclonal 
intermixing between genetically divergent lineages in the same geographical region was 
common, with 16/28 cases showing this pattern. (B) Relative clade size vs relative age of 
MRCA for each putative driver variant versus background (non-cancer genes) shows that 
probably only RNF43 in truncating mutations, and a few variants in KRAS and PIK3CA 
show clear signs of deviating from the neutral expectation in red. (C) Indeed, essentiality 
scores from the cancer dependency map (DepMap) of many putative driver genes we find 
subclonal are not significant across hundreds of cancer cell lines, and are not significantly 
different across mutant versus wild-type subpopulations of cell-lines (which would be 
consistent with oncogenic function), with the exception of KRAS and PIK3CA. Orange 
lines denote the significance thresholds of the essentiality score as defined by DepMap, 
i.e. half of the median essentiality scores observed for prior known essential genes ( = -1). 
 
We attempted to estimate the functionality of the subclonal mutations in our cohort using 
an orthogonal data type. To this aim, we mined gene essentiality scores assembled within 
the cancer dependency map (DepMap) project and quantifying the functional 
consequences (in terms of cellular viability reduction) of CRISPR-Cas9 gene targeting, at 
a genome wide level, across hundreds of immortalised human cancer cell lines (Pacini 
2021). Most CRC candidate drivers showed no evidence of essentiality (scaled essentiality 
score > -0.5, with -1 = median essentiality score for prior known essential genes) across 
the CRC cell lines of the DepMap dataset, whereas the two genes most likely under strong 
selection in our cohort, KRAS and PIK3CA, were significantly essential in many CRC cell 
lines and found significantly differentially essential when contrasting mutant versus wild-
type CRC cell lines (Student’s t-test p-value  < 10-13, Figure 3C). 
 
These results provide, through statistical measurements on mutations and tree, an intuitive 
assessment of the evolutionary dynamics individual cases. Further, they illustrate of how 
“driverness” of candidate driver mutations can be determined by using phylogenetic 
analysis to assess the evolutionary consequence of driver mutation acquisition.  
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Quantification of cancer evolutionary dynamics with spatial inference 
 
The above analyses neglect the potentially confounding influence of the spatial structure 
of the tumour on our assessments of selection. The trees presented in Figures 1 and 2 
were constructed with a maximum parsimony approach that is ‘model-free’. We 
hypothesised that explicit assessment of spatial structures together with phylogenetic 
history (a phylodynamics approach) would yield additional information on the birth, death 
and spatial growth patterns of tumour subclones. The phylogenomics field has developed 
excellent methods for this task, including Maximum Likelihood (Alves et al., 2019) and 
Bayesian (Reis et al., 2016) phylogenetic frameworks. Within a Maximum Likelihood 
framework, the aim is, given a model of evolution M with parameters q, and given the data 
D, to find the tree that maximises the likelihood ℒ(𝐷|𝑀, 𝜃). However, current 
likelihood/Bayesian methods for phylogenomics like BEAST (Drummond et al., 2012; 
Suchard et al., 2018), assume well mixed non-spatial population models that do not 
capture the spatial structure of an expanding solid tumour, and therefore did not make 
maximal use of the spatial data available in our cohort. 
 
To quantify more accurately the evolutionary dynamics from the genomic data we setup a 
computational inference framework. We previously presented a spatial model of cancer 
growth that could be directly employed to perform inference on spatial multi-region 
sequencing data (Chkhaidze et al., 2019).  
 
We substantially extended this model to incorporate more realistic spatial growth 
conditions, as well as cell replication, death and branch overdispersion (Figure 4A; 
Material and Methods). The model was able to produce characteristic clonal patterns both 
for neutrally expanding tumours (Figure 4B) as well as for malignancies with one (Figure 
4C) or two subclones under positive selection (Figure 4D). Our model simulated the 
accumulation of somatic mutations in each lineage, both neutral and selected, allowing to 
compare lineages accumulating passenger variants (Figure 4B-D, bottom) versus lineages 
that were phenotypically distinct in terms of growth (Figure 4B-D, top). In the model we 
also simulated tumours with spatial constrains where growth could only occur at the 
periphery, versus malignancies where all cells grow, leading to exponential growth. The 
balance between these two scenarios was described with a parameter dpush that 
determined the distance which a cell could push neighbouring cells outwards and generate 
space to divide, even when entirely surrounded by other cells. These different spatial 
dynamics produced radically distinct subclonal patterns, with peripheral growth (low dpush) 
displaying segregating lineages (Figure 4E and S7), and with more increasing clonal 
intermixing as larger proportions of cells everywhere in the tumour had the ability to grow.  
 
We implemented the simulation of our empirical spatial sampling scheme as in Figure 2 
and S1, where for every patient we generate synthetic data by sampling the simulated 
tumour as the real tumour was sampled (Figure 4F). We simulated the accumulation of 
mutations across the whole-genome in each sampled lineage. This generated realistic 
appearing whole-genome sequencing data that we then used to reconstruct the a 
(synthetic) phylogenetic tree to match the real tree (Figure 4G). The model parameters 
that matched the synthetic trees to the empirical tree were estimated on a patient-by-
patient basis using Bayesian inference. 
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Figure 4. Bayesian inference framework for cancer dynamics in space and time. (A) 
Schematic representation of the spatial cellular automaton model of tumour growth. (B) 
Instance of simulation of a neutrally expanding cancer with a single ‘functional’ clone (blue, 
top), and corresponding neutral mutation lineages (bottom). (C) Simulation of a tumour 
containing a differentially selected subclone (red, top) and corresponding neutral mutation 
lineages (bottom). (D) Simulation with two branching subclonal selection events. (E) In this 
neutral simulation we illustrate peripheral versus exponential growth and the effects on 
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lineage mixing. (F) Spatial sampling annotated during tissue collection for case C539 and 
corresponding simulated spatial sampling. (G) Real data from patient C539 (top) versus 
simulated data from an instance selected by the inference framework (bottom). (H) 
Inference framework based on Approximate Bayesian Computation - Sequential Monte 
Carlo (ABC-SMC) allows for model selection and posterior parameter estimation given the 
data. In this case birthrates.2 is the birth rate of the selected subclone, clone_start_times.2 
is the time when the subclone arose during the growth of the tumour, push_power.1 is the 
coefficient of boundary driven growth and mutation_rate is the rate of accumulation of 
mutations per genome per division. 
 
Specifically, we used Approximate Bayesian Computation based on Sequential Monte 
Carlo (ABC-SMC) (Moral et al., 2012) to infer the model parameters from the data and 
perform model selection between neutral evolution, selection with one subclone, and 
selection with two distinct subclones (Figure 4H, see Material and Methods and Figures S8 
and S9 for details on inference). In the example of case C539 (Figure 5A), we compared 
the three models, which have distinct number of parameters k, and calculate the negative 
log-likelihood from the inference. We then regularise with Akaike Information Criterion 
(AIC) to identify the best model that fit the data. Importantly, we also plot the difference in 
the AIC values, where for DAIC values <4 we considered two models having both 
substantial evidence for, and hence making it impossible to select one in favour of another 
(Burnham and Anderson, 2004). We also report the AIC value for increasingly low values 
of distance between simulation and target data e performed during the SMC-ABC 
inference process (Figure 5B), showing the preferred model as the simulations get closer 
and closer to the data. We then calculated the posterior predictive p-value to assess how 
often does the selected model predict the data well if we consider stochastic fluctuations 
(Figure 5C). In this case the inference rejects the neutral model and identifies either 
selection with one or selection with two subclones as the best model. In Figure 5D we can 
see the comparison between the phylogenetic tree from the real data and the best inferred 
tree (Figure 5E). The inference identifies a clearly selected clade in A, where indeed we 
find a KRAS G12C subclonal mutation. The model with two selected subclones also 
identifies a possible selected event in the ancestral branch of C and D. Simulation of bulk 
sequencing of the whole tumour shows the subclonal cluster from selected events as well 
as the expected neutral tail of passenger mutations within each subclone (Caravagna et 
al., 2020a, 2020b). Figure 5G shows the spatial sampling of a selected simulation with two 
subclones coloured in the spatial structure, showing divergent evolution of the two 
selected events. 
 
Differently, for case C548 the inference identified neutral subclonal evolution as the best 
model (Figure 5H-J). Indeed, the target tree (Figure 5K) and best simulation tree (Figure 
5L) are remarkably similar, producing a characteristic neutral bulk sequencing pattern of 
1/f tail (Figure 5M). Matched spatial sampling of selected simulation is reported in Figure 
5N. Indeed, no subclonal driver events were identified in this case (Figure 2). 
 
In the inference we also incorporate sampling variability to account for sampling biases 
during tissue collection in terms of relative (Figure 5O) and absolute distance (Figure 5P) 
from the centre, as well as angle (Figure 5Q) and confirm that prior expected sampling 
variability was consistent with the data, showing that no unexpected variability in sampling 
occurred. Sampling points of selected simulations for this case of C548 are reported in 
Figure 5R. 
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Figure 5. Example results from the inference of evolutionary dynamics. (A) Model 
selection analysis considers the number k of parameters for each model, the negative log-
likelihood (NLL) to calculate AIC. Models with AIC differences (DAIC) >4 should be 
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considered the preferred model that explains the data. (B) AIC value with respect to the 
distance from the data e for each of the model. Dotted line is distance used for ABC-SMC. 
Dashed line is average distance to trees with random uniform noise (*0.5-2). (C) Posterior 
predictive p-value. Red line is the average distance of the target to simulated trees. (D) 
Target (real) phylogenetic tree for C539. (E) Simulated phylogenetic tree for C539 from a 
simulation identified by the inference. (F) Simulated 100x whole-genome sequencing of a 
hypothetical sampling of the whole tumour. (G) Spatial patterns of the simulation that 
generated the matched data with corresponding sampled regions. (H) Model selection for 
C548. (I) AIC value vs e. (J) Posterior predictive p-value. (K) Target (real) phylogenetic 
tree for C539. (L) Simulated phylogenetic tree for C548 from a simulation identified by the 
inference. (M) Simulated 100x whole-genome sequencing of a hypothetical sampling of 
the whole tumour. (N) Spatial patterns of the simulation that generated the matched data 
with corresponding sampled regions. (O) Posterior of sampling bias for relative distance 
from the centre and (P) absolute distance from the centre. (Q) Posterior of sampling bias 
for relative angle of sampling. (R) Simulated sampling bias in different regions of the 
tumour. 
 
When we considered the whole cohort (Figure S10), we found strong evidence of 
subclonal selection by DAIC>4 in 6/26 samples (Figure 6A). In 4/6 cases a known 
subclonal driver mutation was present in the selected clade and the variant was expressed 
in the RNA (subclone drivers are listed Table SX and highlighted with a box in Figure 2). 
Those were C525 with subclonal selection in C driven by PIK3CA missense mutation 
Q546P, C538 with subclonal selection in D driven by RNF43 nonsense mutation Q153*, 
C539 with subclonal selection in A and part of B driven by KRAS missense mutation 
G12C, and C531 with subclonal selection in B driven by SMAD4 missense mutation 
A118V. Corroborating our previous analysis, RNF43 in C538 was the subclonal truncating 
variant with the highest divergence from the neutral expectation (Figure 3B), and subclonal 
events in C525 and C539 were also amongst the most divergent from the neutral 
expectation. Two other cases had strong signs of subclonal selection but did not show 
evidence of known driver genes.  
 
In other 13/26 cases we found strong evidence for the neutral model to be supportive of 
the data. In another 7/26 cases DAIC could not identify a best model. Considering only 
AIC, we found 12/26 with selection as the slightly preferred model suggesting that the 
effects of selection in these cases may be weak. Evidence of selection in the phylogenetic 
trees included a significantly longer branch containing the selected event (e.g., Figure 5E 
– selection event 1), or two distinct regions having a more recent common ancestor with 
respect to the others (e.g., Figure 5E – selection event 2). In 7/12 selected cases, we 
found a driver event in the corresponding selected clade, although in 3 cases with low 
DAIC the effects on the clonal expansion of the subclonal driver were small. In the other 
14/26 cases, the preferred model was neutral (Figure 6A). Number of samples per case 
(i.e., more extensive tumour sampling) did not confound model selection (Figure 6B). 
 
We then sought orthogonal validation of the inference results. Indeed, splitting the cohort 
into neutral vs non-neutral based on AIC and recalculating subclonal dN/dS for IntOGen 
drivers showed increased values of dN/dS in the selected cohort, and values of dN/dS=1 
for the neutral cases (Figure 6C). This analysis also supports the absence of subclonal 
selection even in small clades that may not have undergone sufficient expansion to be 
detectable by our inference method.  
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.451265doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.451265
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6D reports the posterior distributions of all the cases, split by neutral vs selected by 
AIC. We found relatively low overdispersion D of branch lengths in the majority of cases. 
Median inferred mutation rates were 9.8´10-9 muts/bp/division in MSS cases and 68.7´10-

9 muts/bp/division in MSI cases, consistent with previous measurements (Werner et al., 
2020). 
 
The dpush parameter clearly distinguished fast, exponentially driven tumours that grew 
throughput their mass, from boundary-driven cancers that only grow at the periphery. The 
formers were enriched for neutrally expanding cancers. We were able to estimate the 
increased growth rate of selected subclones, which was at time even 20 times higher than 
the background clone. The majority of clones also originated relatively early during the 
expansion of the tumour, when the tumour mass was <50,000 cells.   
 
Hence, selected events significantly driving subclonal expansions seem to arrive early 
during tumour growth and have high selective coefficients. As a consequence, most bulk 
sequencing of a single biopsy, generally collected from a single region of the tumour, was 
unlikely to contain multiple selected subclones and hence neutrality fully explained the 
data. Moreover, even with considerable spatial sampling, neutral evolution was 
widespread in colorectal cancer, with half of more cases lacking subclonal selection 
entirely, and the rest mostly containing a single subclonal driver.  
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Figure 6. Quantification of evolutionary dynamics across the EPICC cohort. (A) 
Proportion of the cases inferred to contain subclones under selection versus cases 
explained by neutrality alone. AIC and DAIC values are reported, with the latter indicating 
that a good proportion of cases can be explained by both models. (B) The number of 
samples per tumour was not associated with a greater frequency of tumours called as 
having selection. (C) Subclonal dN/dS values for the cohort split between selected and 
neutral by AIC. (D) Posterior distributions of the parameters for all cases, split by neutral 
(green), selected (orange) and selected x 2 (purple). 
 
Non-genetic drivers and in vivo characterisation of the epigenome and 
transcriptome of selected subclones 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2021. ; https://doi.org/10.1101/2021.07.14.451265doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.14.451265
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subclone evolution within a primary human malignancy is a natural “competition 
experiment” between human cells with the same genetic background in the same 
microenvironment. It can be seen as a controlled experiment to assess the phenotypic 
differences between subclones and the consequences of driver alterations. 
 
We exploited the matched ATAC-seq and RNA-seq data from the same clades to measure 
the epigenetic and transcriptomic differences between the selected subclone and the 
background cell population in the 5 cases with sufficient matched ‘omics data where we 
had inferred subclonal selection was acting, 2 of which had no known driver event. 
 
Enrichment analysis of differentially expressed genes between the subclone and the 
background clone highlighted consistent dysregulation of focal adhesion pathways for 
C531, C542 and C559. We also found EMT upregulated in C524, C542 and C551 
whereas MYC+E2F targets were upregulated in C524, C531 and C551 (Figure 7A and 
S11). 
 
We also performed differential ATAC-seq peak analysis between subclone and 
background clone to identify potential non-genetic drivers, in particular in those cases that 
lack a subclonal driver event. The results for the four cases with no genetic driver (all but 
C516 for which we had not enough ATAC samples from the two clones) are represented in 
Figure 7A. Amongst interesting candidates we found promoter loss of accessibility of 
PPP2R5C, a regulator of TP53 and ERK. 

 
Figure 7. Differential gene expression and chromatin accessibility between detected 
subclone and backgound clone. (A) Differential gene expression between the subclone 
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and background clone for all cases with selection (AIC) for which there was sufficient 
samples. (B) Differential ATAC peak between subclone and background clone for those 
cases with no detected genetic driver. 

Discussion 
 
Here we directly quantify, with spatial multi-region sequencing and inference, the extent of 
subclonal selection in colorectal cancer. We also measure subclonal characteristics with 
matched epigenetic and transcriptomic information. We found that colorectal malignancies 
could be clearly delineated based on their evolutionary dynamics, namely by the presence 
or absence of subclonal selection, the mode of expansion (peripheral vs exponential 
growth) and the degree of clonal intermixing. All these are not static molecular features, 
such as a gene mutation, but instead are measures of the dynamics of how the tumour 
was changing. These may be predictive of unseen metastatic deposits in primary 
colorectal cancers, as well as being prognostic and predictive evolutionary biomarkers. We 
are now following these patients longitudinally to prospectively identify those that relapse 
with metastatic disease within the following five years, versus those that are effectively 
cured. We will test whether any of the evolutionary measurements above predict such 
transition. 
 
We show how incorporating an assessment of the evolutionary consequence of candidate 
driver mutations, through phylogenetic analysis, provides a means of in vivo human 
assessment of a gene’s “driverness”, which could ultimately assist with prioritisation for 
therapeutic targets. Using this approach, we discovered that many putative driver 
mutations do not in fact contribute to clonal expansions, and so are unlikely to be drivers 
of untreated disease. Using matched multi-omic data we also investigated what is the 
phenotypic change experienced by a subclone with a driver event, both in terms of its 
epigenome and its transcriptome. We also found that multiple cases of subclonal 
expansion were not driven by existing candidate genetic drivers, implicating epigenetic 
events as possible alternative driver alterations. 
 
Overall, we show that assessment of intra-tumour heterogeneity can serve as a ‘controlled 
experiment’, enabling quantitative measurement of ongoing evolutionary competition 
within the human body between different lineages with distinct subclonal mutations.  
 

Materials and Methods 
Tumour collection and generation of molecular data is described in the accompanying 
manuscript (PROTOCOL). Processing of DNA and ATAC-seq data is described in the 
accompanying manuscript (EPIGENOME), and RNAseq data in (TRANSCRIPTOME).  
 
Inference of evolutionary dynamics using spatially-resolved genomic data was performed 
by Bayesian fitting of a spatial agent-based model of clonal evolution to the observed 
molecular data. The model described growth, death, physical dispersion and mutation of 
individual tumour glands, and was a substantial modification of the framework previously 
described in (Chkhaidze et al., 2019). Full details are provided in the supplementary 
mathematical note. 
 
For the gene essentiality analysis, cancer dependency profiles were downloaded from 
https://depmap.org/broad-sanger/ (version used: CRISPRcleanR_FC.txt) and scaled as 
described in PMID: 29083409, i.e. making the median essentiality scores of prior known 
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essential and non-essential genes equal to -1 and 0, respectively. The mutational status of 
selected putative cancer driver genes used to produce the box plots in Figure 3C and to 
test differential gene essentiality across mutant versus wild-type cell lines, was obtained 
from the Cell Model Passports (PMID: 30260411). 
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