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Abstract

Data-independent acquisition (DIA) is a powerful mass spectrometry method that promises
higher coverage, reproducibility, and throughput than traditional quantitative proteomics
approaches. However, the complexity of DIA data caused by fragmentation of co-isolating
peptides presents significant challenges for confident assignment of identity and quantity,
information that is essential for deriving meaningful biological insight from the data. To
overcome this problem, we previously developed Avant-garde, a tool for automated signal
refinement of DIA and other targeted mass spectrometry data. AvG is designed to work
alongside existing tools for peptide detection to address the reliability and quantitative suitability
of signals extracted for the identified peptides. While its use is straightforward and offers
efficient refinement for small datasets, the execution of AvG for large DIA datasets is
time-consuming, especially if run with limited computational resources. To overcome these
limitations, we present here an improved, cloud-based implementation of the AvG algorithm
deployed on Terra, a user-friendly cloud-based platform for large-scale data analysis and
sharing, as an accessible and standardized resource to the wider community.

Main Text

Data-independent acquisition (DIA) is a powerful mass spectrometry method that
promises higher coverage, reproducibility, and throughput than traditional quantitative
proteomics approaches 1–3. In DIA mode, the instrument fragments and analyzes all co-isolating
peptides as it cycles through windows of a given m/z range, thereby generating time-resolved
fragment ion spectra for all peptides above the instrument’s limit of detection 2,4–6. In principle,
DIA combines the sensitivity and throughput of targeted methods with the higher proteome
coverage of data-dependent acquisition. However, the complexity of the acquired DIA data,
caused by fragmentation of co-isolating peptides and use of a limited number of fragment ions
for identification (sometimes as few as 4), presents significant challenges for confident
assignment of identity and quantity, information that is essential for deriving biological insight
from the data1,3,6,7. A widely accepted method to address this problem in DIA data analysis is
targeted extraction of fragment ion chromatograms for peptides based on prior observation in a
curated spectral library obtained by deep-scale data-dependent LC-MS/MS analysis 1,3,8–10.
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We previously developed Avant-garde (AvG) 11, a tool for automated signal refinement of
DIA and other targeted mass spectrometry data. AvG is designed to work alongside existing
tools for peptide detection 8,12–15 to address the reliability and quantitative suitability of signals
extracted for the identified peptides. Following targeted chromatogram extraction of identified
peptides, AvG refines chromatographic peak traces by removing interfering transitions, adjusting
integration boundaries, and scoring peaks to control false discovery rate, thereby increasing
confidence in the resultant quantitation11. AvG is not limited to DIA data and can be used to
curate any data that produces fragment-ion chromatograms at the MS2 level, such as Parallel
Reaction Monitoring (PRM).

AvG was initially designed for seamless integration with Skyline 16, a vendor-independent
and user-friendly software for visualization and analysis of targeted proteomics experiments.
AvG is available for download as an external tool in the Skyline Tool Store and can be used
directly within a Skyline document. While the implementation of AvG in Skyline is straightforward
and offers efficient refinement for small datasets (i.e. PRM data or DIA datasets with limited
samples and peptide targets), the execution of AvG for large DIA datasets (i.e. thousands of
peptide targets) is time-consuming, especially if run with limited computational resources.
Motivated by the need to analyze large DIA datasets, we initially implemented the AvG algorithm
locally on a parallel computing platform as described in the original publication11. However, such
large compute clusters may not be commonly accessible and their use requires advanced
technical knowledge.

To overcome these limitations, we present here an improved, cloud-based
implementation of the AvG algorithm deployed on Terra (https://app.terra.bio), a user-friendly
cloud-based platform for large-scale data analysis and sharing, as an accessible and
standardized resource to the wider community. The new AvG workflow is optimized for large
DIA datasets and uses the Terra workflow management to fully automate all processing steps
so that no user interaction is required after uploading the data to be analyzed. Terra provides
workflow management and facilitates the assembly of long-running pipelines comprising a large
number of tasks that typically require days or even weeks to complete. Each step of the AvG
algorithm was implemented as a task, and the workflow represents the series of tasks (a
pipeline) where outputs of a given task are the inputs of the next task. The workflow is written in
the Workflow Description Language (WDL) and executes dockerized R and Python tools for
pre-processing, running the AvG algorithm, and post-processing, all of which are available in a
public docker image (Figure 1 and Supplementary Figure 1).
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Figure 1: Overview of Avant-garde Terra framework. Avant-garde works alongside DIA
identification tools to address the quantitative suitability of signals extracted for the identified
peptides. A. Skyline is used to extract chromatogram data of detected peptides. B. The workflow
consists of 3 separate tasks represented by the solid green outline: pre-processing and
formatting the input dataset, AvG’s genetic algorithm optimization, and post-processing to
finalize results. For the pre-processing step, the user simply provides an input CSV file
containing chromatogram signal information exported from Skyline. The data is transformed into
the Apache Parquet file format for more efficient compression, indexing and partitioning of the
data, allowing for more efficient parallelization and scalability of the AvG algorithm. The AvG
algorithm task is first parallelized onto a user-defined number of virtual machines and further
parallelized on each machine to use all available CPU cores for maximum computing efficiency.
Finally, post-processing combines AvG results across all machines into final CSV reports. All
steps within the green outline are fully automated and require no user interaction
(Supplementary Figure 1). C. AvG curates transitions to reduce noise and remove interference
using a genetic algorithm, assigning a final quality metric to the selected set. It also refines peak
integration boundaries by calculating chromatographic subscores at each time point in the raw
data, and combining them as a weighted product (AvG chromatographic score), where the
maximum value of this score corresponds to the most likely retention time of the analyte. D. The
output of AvG (suitable transitions, chromatographic boundaries and scoring metrics) is
reimported to Skyline to produce curated quantitative data.

The AvG Terra workspace is a self-contained computational sandbox with everything you need
to complete a project. This includes the AvG workflow, user-defined analysis parameters, and
the results. Additionally, reproducible results can be ensured by Terra's version control system
for algorithms, parameters, and results. The cloud-based AvG workflow harnesses the power of
cloud-based computing to provide reproducible, user-friendly, and efficient processing of large
DIA datasets with greater accessibility than our previous workflow. Its distribution on Terra
allows anyone, regardless of coding experience, to perform efficient AvG analysis for large DIA
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datasets without the need to write code, run code locally using unfriendly command-line tools, or
access large-scale on-premises computing resources.

The new cloud-based implementation of AvG consists of the following components:
● A Terra workspace

(https://app.terra.bio/#workspaces/lincs-phosphodia/Avant-garde_Production_v1_0) that
includes the WDL workflow for running  the AvG algorithm.

● A Github repository (https://github.com/broadinstitute/Avant-garde-Terra) with code,
documentation, and description of the Terra workflow.

● A Github repository (https://github.com/SebVaca/avg_utils) for the python package
containing the underlying functions required for the new AvG workflow.

● A tutorial (Suppplementary Information and
https://github.com/broadinstitute/Avant-garde-Terra/wiki/Tutorial) with an accompanying
Terra workspace
(https://app.terra.bio/#workspaces/lincs-phosphodia/Avant-garde_Tutorial) illustrating the
application of Avant-garde to a small spike-in peptide DIA dataset of 96
phosphopeptides x 15 samples11.

The new cloud-based AvG workflow on Terra was applied to three datasets. We first analyzed a
peptide spike-in calibration curve dataset using both the Skyline External Tool version and the
cloud-based Terra version of AvG. The relative quantification of the two datasets matched
(Supplementary figure 2) demonstrating that the two implementations of AvG provide the same
results for the relative quantification across a broad concentration range. We next applied the
AvG Terra workflow to a triple-proteome sample consisting of four mixture samples of three
complex proteomes (Human, E. Coli and Yeast) that was described in the original AvG paper11.
The results of this evaluation show excellent accuracy, as the measured ratios matched very
closely the known protein ratios (Supplementary Figure 3, Supplementary Figure 4 and
supplementary Table 1). Furthermore, we were able to validate more than 34,000 precursors in
the whole dataset (Supplementary Table 1 and 2) and obtained excellent reproducibility
(Supplementary Figure 5 and Supplementary table 2). To further evaluate the confidence of the
results, we searched the same Triple-species proteome samples with a Pyrococcus furiosus
proteome spectral library, which provides a method for detecting random hits17. As expected, no
proteins were identified searching the Pyrococcus furiosus library, and the score distribution of
the Pyrococcus furiosus and the decoy peptides overlapped, demonstrating very low 'intrinsic'
false discovery rate (Supplementary figure 6 and supplementary Table 3).

The Skyline External tool and the new Terra implementation of the Avant-garde algorithm are
complementary to each other and can serve different purposes. The Skyline External tool
version of AvG is ideal for small datasets, especially PRM. The Terra workflow makes AvG
refinement possible on large DIA datasets that would be time-consuming with the Skyline
External tool version, and the scalability potential provided by Terra allows the user to customize
the degree of parallelization in the workflow according to timing and cost restraints
(supplementary Table 4). In the future, the AvG WDL workflow could be easily incorporated into
a larger-scale DIA data analysis pipeline developed on Terra.
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Code availability:

All source code required to run the Avant-garde workflow on Terra (WDL workflow,
Dockerfile, required scripts) can be found on the Avant-garde-Terra Github page at
https://github.com/broadinstitute/Avant-garde-Terra. The python package containing the
underlying functions required for the workflow can be found on Github at
https://github.com/SebVaca/avg_utils (the tar.gz version of this package is located in the src
folder of the Avant-garde-Terra Github page). The docker image that hosts all analysis scripts is
publicly available on DockerHub and can be pulled from
“broadlincsproteomics/avant-garde:v1_0”. The Avant-garde algorithm source code can be found
at https://github.com/SebVaca/Avant_garde. The Terra production workflow can be found and
cloned for use at
https://app.terra.bio/#workspaces/lincs-phosphodia/Avant-garde_Production_v1_0. All
documentation is located on the Avant-garde-Terra Github Wiki page at
https://github.com/broadinstitute/Avant-garde-Terra/wiki. A tutorial for use can be found at
https://github.com/broadinstitute/Avant-garde-Terra/wiki/Tutorial.

Data availability:

The data that support the findings of this study are available from the corresponding author
upon request.
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Figure Legends:
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