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ii. 
 
Abstract: 
 
Aging is known to elicit dramatic changes to DNA methylation (DNAm), although the 
causes and consequences of such alterations are not clear and require further 
exploration. Our ability to experimentally uncover mechanisms of epigenetic aging will be 
greatly enhanced by our ability to study and manipulate these changes using in vitro 
models. However, it remains unclear whether the changes elicited by cells in culture can 
serve as a model of what is observed in aging tissues in vivo. To test this, we serially 
passaged mouse embryonic fibroblasts (MEFs) and assessed changes in DNAm at each 
time-point via RRBS. By developing a measure that tracked cellular aging in vitro, we 
tested whether it tracked physiological aging in various mouse tissues and whether anti-
aging interventions modulate this measure. Our measure, termed DNAmCULTURE, was 
shown to strongly increase with age when examined in multiple tissues (liver, lung, 
kidney, blood, and adipose). As a control, we confirmed that the measure was not a 
marker of cellular senescence, suggesting that it reflects a distinct yet progressive cellular 
aging phenomena that can be induced in vitro. Furthermore, we demonstrated slower 
epigenetic aging in animals undergoing caloric restriction and a resetting of our measure 
in lung and kidney fibroblasts when re-programmed to iPSCs. Enrichment and clustering 
analysis implicated SUZ12, EED and Polycomb group (PcG) factors as potentially 
important chromatin regulators in translational culture aging phenotypes. Overall, this 
study supports the concept that physiologically relevant aging changes can be induced in 
vitro and moving forward, used to uncover mechanistic insights into epigenetic aging.  
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iii. 
 
Main text: 
 
Introduction: 
 
Aging is characterized by a progressive decline in cell, tissue and organ integrity that 
manifests as age-related diseases and ultimately death [1,2]. Telomere attrition [3], 
cellular senescence [4-6], DNA damage [7], stem cell exhaustion [8] and epigenetic 
modifications [9] represent just a few molecular and cellular features of the aging process. 
While these hallmarks have been extensively investigated, their interactions, causes, and 
the resulting emergence that leads to the failure of the organism is not well characterized. 
Epigenetic alterations in aging—specifically alterations in DNA methylation (DNAm)—is 
a clear example of a hallmark which has been widely studied, but lacks a conceptual 
mechanistic framework linking its causes and consequences to other hallmarks or 
physiological manifestations with aging.  
 
DNA methylation (DNAm) refers to the addition of a methyl group (CH3) to a CpG 
dinucleotide (5’—C—phosphate—G—3’). In most cases, DNAm is associated with 
transcriptional repression via its effect on chromatin accessibility, and is thought to control 
a number of cellular properties, including differentiation [10], replication [11], X-
inactivation [12], stress response [13], and genomic imprinting [14]. Initially, de novo 
methyltransferases establish methylation patterns that are necessary for organismal 
development [15,16]. These patterns are then modulated by maintenance 
methyltransferases over the course of the lifespan [17,18] during which, subtle changes 
can dramatically alter promoter function [19-21] and distal regulatory elements [22,23]. 
Changes in DNAm with aging were first reported more than three decades ago and now 
occupy a major field in aging research [24]. These changes paint a picture characterized 
by a gain of DNAm at gene promotors and loss of global DNAm, representing trends 
towards hypomethylation in intergenic regions associated with dispersed 
retrotransposons, heterochromatic DNA repeats, and endogenous retroviral elements 
[25]. Given the predictability of these age-related changes, researchers began applying 
machine learning techniques to develop age predictors from DNAm that could serve as 
biomarkers of aging. To date, these so called “epigenetic clocks” have been applied in a 
plethora of tissues across diverse mammalian species and have been shown to be 
predictive of lifespan and health span, above and beyond chorological age [26-30]. 
Although exciting, the mechanistic underpinnings and drivers of epigenetic clocks are 
relatively unknown, limiting the conclusions that can be drawn.  
 
Our lack of mechanistic understanding when it comes to epigenetic clocks likely stems 
from the fact that these models have been almost exclusively applied to in vivo and ex 
vivo blood and tissue samples in humans (and more recently in other mammals) for which 
experimental investigation is limited. Thus, we hypothesize that the use of culture models 
coupled with physiologically relevant tissue samples may greatly facilitate mechanistic 
discovery.  
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Culture aging within the context of cellular biology is extensively examined, presenting a 
model to study mechanisms of epigenetic aging [31,32]. From the time Hayflick proposed 
the theory now known as the Hayflick limit [33], many studies have contributed to 
characterizing exhaustive passaging, providing robust and well characterized culture 
models that can be used to determine the extent culture aging recapitulates physiological 
aging [34-38]. However, none have applied systems-level measures to directly 
demonstrate whether changes that can be induced in culture mimic what happens with 
aging in the organism. Thus, the aims of this paper were i) to better characterize the 
culture aging phenomena by generating a clock based on DNA methylation changes in 
vitro, ii) test whether such culture models of aging capture a physiologically relevant 
signal, and iii) use this data as a first step towards elucidating mechanisms of aging. 
Overall, the results from this study sets the foundation for using culture aging epigenetic 
models as a translational bridge to in vivo biomarker studies.  
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Results: 
 
Developing a measure of culture aging using DNAm: 
 
To explore culture aging, understand its association with the methylome and determine 
the extent culture phenotypes recapitulate physiological aging, we derived a primary 
mouse embryonic fibroblast culture system that was exhaustively passaged to produce 
longitudinal DNAm samples (Figure 1A, Supplemental Figures 1A-D). We selected 
mouse embryonic fibroblasts (MEFs) as our model, given their accelerated aging 
phenotype after relatively few passages (5-7) under normoxic (20%) conditions [35,37]. 
This accelerated aging is hypothesized to occur from extrinsic factors, like oxygen toxicity, 
rather than intrinsic factors like telomere shortening [31]. It is also a distinct phenotype in 
contrast to MEFs grown under physiological conditions of 3% oxygen, which do not 
senesce. Given that genotoxic stress is known to modulate the methylome [39-41], we 
reasoned that this model will enable us to capture the known murine sensitivity to 
oxidative damage using DNAm from serially passaged MEFs under normoxia. 
 
DNAm was assessed at each passage in three biological replicates via reduced 
representation bisulfite sequencing (RRBS) with the goal of utilizing machine learning 
techniques to reduce the highly dimensional DNAm data into a single meaningful 
measure that increases as a function of time in culture (Figure 1B). The primary data used 
to train the culture measure, termed DNAmCULTURE, was obtained from passages 1-6 
of the culture MEF system. Of the three MEF cell lines, two were used in training and the 
third was used for validation. In both cases, passages 5 and 6 were combined during 
sequencing (due to low individual DNA content) and designated as passage 5.5. Thus, 
our training data included samples at passage 1 (N=2), passage 2 (N=1), passage 3 
(N=2), passage 4 (N=2) and passage 5.5 (N=2). 
 
Prior to training DNAmCULTURE, we sub-selected common CpGs between our MEF 
data, Petkovich et. al 2017 [42], and Thompson et. al 2018 [43] to generate a list of 28,323 
common CpG sites (Supplemental Figure 2A). This was done so that our measure could 
be calculated in these external datasets to undergo a robust in vivo validation. Next, we  
conducted principal component analysis (PCA) using the training data and ~28k sub-
selected CpGs. PC1-4 captured greater than 70% of variance, with PC1 and PC2 
exhibiting linear association with passage number (Supplemental Figures 1E-F). Based 
on our previous observations showing that combining PCA with elastic net yields more 
robust and reliable epigenetic age measures, we applied a similar strategy here [44,45]. 
Using all the components output from our PCA, we then combined this with a supervised 
machine learning approach. For instance, elastic net penalized regression was used to 
generate a predictor of passage number, but rather than feeding in CpGs as has been 
traditionally done in epigenetic clock development, we used PCs as predictors in our 
model. We have previously shown that this method is able to dramatically improve test 
re-test reliability and minimizes technical noise, while still capturing the critical signal from 
the data [44,45]. The lambda penalty was chosen via 10-fold cross-validation and resulted 
in a model that included six PCs (PC2, PC4, PC6, PC8, PC9 and PC29) (Supplemental 
Figure 2B-E). Overall, this measure is based on data from all 28,323 CpG sites, but is 
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able to identify and combine the important patterns in genome-wide DNAm to generate a 
single score, DNAmCULTURE.  
 
Our results showed that DNAmCULTURE was highly correlated with passage number in 
both the training data (r=0.97), and in our independent validation samples (r=0.83), 
suggesting the marker is in fact progressively tracking with passage or time in culture 
(Figure 1C). In our training samples, we find that the measure shows a general linear 
increase. However, in the validation, there is a slight attenuation of the effect at the last 
passage. Given that we only have data on one sample at that passage, we cannot 
determine whether the non-linearity is real. One potential biological explanation is that 
there may be a deceleration at later cellular stages due to slowing in the growth rate from 
oxidative damage as cells approach or enter senescence.  
 
Distinguishing senescence from epigenetic aging:  
 
Replicative exhaustion in murine cells under normoxic (20% O2) conditions is a robust 
inducer of cellular senescence and we confirm in our study that MEFs arrest after 6 
passages (Supplemental Figure 1B-D). Based on this, we tested whether our epigenetic 
measure was i) linked to senescence induction, likely as a result of chronic activity of a 
tumor repressor response to genotoxic stress, or ii) reflects aging changes that are 
independent of senescence state. When examining senescence-associated beta-
galactosidase (SA-β-gal) as a function of DNAmCULTURE in passaged cells (Figure 2A), 
we observed a statistically insignificant association (r=0.71, p=0.11). Passaging (time in 
culture) and SA-β-gal activity are strongly associated, thus it is likely that the slight 
association between SA-β-gal activity and DNAmCULTURE is confounded by passage 
number. To test this further, we induced senescence in a passage-independent fashion 
using damaging dosages of irradiation (10 gy), doxorubicin (1 µM) and etoposide (12.5 
µM). We show that each of these inducers elicits increased activity of SA-β-gal 
(Supplemental Figure 3A-B), however, SA-β-gal levels are not related to 
DNAmCULTURE (r=-0.092, p=0.77) (Figure 2B). Altogether, our results demonstrate that 
the extrinsic culture environment induces changes to the methylome in murine cells that 
is dependent on time in culture, rather than acute senescence. 
 
In vivo validation and investigation into anti-aging therapies:  
 
Despite our ability to generate a measure that tracks in vitro aging, it is critical to test 
whether these changes mirror what is observed in aging tissues and cells in vivo. Thus, 
the robustness of DNAmCULTURE and its potential utility as a biomarker of in vitro aging 
was assessed using in vivo multi-tissue mouse DNAm data. When our measure was 
applied to data from Thompson et. al 2018—which included DNAm measured in multiple 
tissues at three timepoints (ages 2, 10 and 20 months) from C57BL/6J mice—we showed 
that DNAmCULTURE significantly increases with age in five of the six tissues: liver 
(r=0.59, p=7.0e-7), lung (r=0.44, p=6.2e-4), kidney (r=0.41, p=2.3e-3), blood (r=0.43, 
p=1.4e-2), and adipose tissue (r=0.27, p=4.4e-2) (Figure 3A-B). A moderate to low age 
increase was observed in skeletal muscle, although it was not significant (r=0.15, p=0.25). 
We next calculated DNAmCULTURE in a larger blood dataset from Petkovich et. al 2017 
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that included C57BL/6J mice between 20-1050 days of age and again observed a strong 
positive correlation with age (r=0.69, p=1.6e-23), adding further evidence that culture-
derived alteration to the methylome are both physiologically relevant and widely 
represented in multiple tissue and cell types across the entire organism (Figure 4A). 
 
Using the Petkovich et. al data, we also found that DNAmCULTURE was responsive to 
dietary intervention (Figure 4B), such that calorically restricted (CR) mice exhibited 
significantly lower DNAmCULTURE scores relative to controls (p=0.00259), perhaps 
highlighting improved cellular maintenance and health from dietary intervention (Figure 
4C). Finally, using the same dataset we showed that DNAmCULTURE also exhibits a 
decrease or re-setting in lung (Figure 4D) and kidney fibroblasts (Figure 4E) upon 
reprogramming to induced pluripotent stem cells (iPSCs) (p=0.0001).  
 
Clustering analysis confirms culture aging exists in physiological context and highlights 
Polycomb group (PcG) factors as important culture aging regulators:  
 
Given that DNAmCULTURE is a composite measure stemming from multiple aspects or 
domains of DNAm changes, we hypothesized that some of the signal it encompasses 
may be physiologically relevant, while others may be culture artifacts. For instance, we 
reasoned that supervised machine learning approaches, like elastic net, will prioritize 
strong signals in our culture models, despite whether they are physiologically relevant, 
limiting our ability to isolate important biological mechanisms. To address this, we applied 
consensus weighted gene correlation network analysis (WGCNA) to identify clusters (or 
modules) of highly co-methylated sites that are conserved across both in vivo [42,43] and 
in vitro data (Figure 5A, Supplemental Figure 4A). We identified 12 CpG modules, ranging 
in size from 105-678 CpGs. Most modules showed bimodal distribution in relation to 
distance from a transcription start sites (TSS), with many showing peaks at +/- 100-1000 
bp (Figure 5B). 
 
Next, we estimate module eigengenes and tested their associations with passage number 
(in vitro MEF data) and age (in vivo tissue data). Eigengenes were calculated as PC1 
estimated from the in vitro data and then applied as validation to the in vivo data (Figure 
5C). Using these values, we observed several modules that appear to be artifacts of in 
vitro aging (turquoise/yellow/red/pink/purple), such that they showed progression with 
passage number in MEFs, but did not track with age in tissues. However, two modules 
(brown and greenyellow) stood out as being potentially translational (culture and tissue). 
For instance, the brown module was strongly correlated with passage number (r=0.88), 
as well as age in liver (r=0.87), lung (r=0.80), blood (r=0.78), adipose (r=0.75). It was also 
moderately correlated with age in kidney (r=0.47) and weakly correlated with age in 
skeletal muscle (r=0.22). The greenyellow module exhibited strong correlations with both 
passage number in vitro (r=0.90) and age in blood (r=0.88), while showing moderate age 
correlations with lung (r=0.60), liver (r=0.55), adipose (r=0.42), and kidney (r=0.33), and 
a weak correlation with age in skeletal muscle (r=0.19). 
 
Finally, to garner more biological insight into potential mechanisms at work in conserved 
modules, we assessed genome enrichment of transcription factor (TF) binding motifs and 
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chromatin regulators using the Cistrome database. This was done by comparing each 
module by TF and chromatin regulator enrichment score (giggle score). The giggle score 
represents a rank of significance between genomic loci shared between query file and 
thousands of genome files from databases like ENCODE. Given that scores tend to 
increase for lists with a greater number of input genomic locations (and thus would be 
biased by module size), we normalized each module prior to determining the enrichment 
score so that only 100 CpG locations were being assessed for each module. For instance, 
we selected the top 100 CpGs with the highest kME values in a given module. kME is 
estimated as the correlation between CpG values and the module eigengene and can be 
used to infer connectivity or identify “hubs” of a module. For the background CpGs, we 
selected 100 CpGs from the 27,035 CpG background at random and used the 
background giggle score to blank any hit overlap from the modules. The final 100 input 
CpGs for each module are reported by genomic partition distribution (Supplemental 
Figure 4B) and scatterplots of each raw Cistrome distribution are reported by module 
(Supplemental Figure 4C). We compared the 10 top GSM_IDs (query datasets) from each 
module to determine the most enriched gene regulators.  
 
The Cistrome analysis (Figure 5D) reveals the novel finding that Polycomb repressive 
complex 1 and 2 (PRC1 and PRC2) networks are highly enriched in translational modules 
(brown and greenyellow), highlighting PcGs as key epigenetic regulators in both culture 
and physiological aging. With almost all of the top hits for greenyellow (9/10) occurring in 
PcGs and the highest giggle enrichment scores occurring in SUZ12 and EED (PRC2 
components) for the brown module, our data suggests PcGs regulate physiologically 
relevant culture aging phenotypes.  
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Discussion: 
 
Consistent evidence supports the notion that DNA methylation is dramatically altered with 
aging [26]. While numerous epigenetic clocks have been derived approximating these 
changes using tissue samples from a variety of mammalian species, the exact drivers of 
epigenetic aging are unknown [26-30]. Likewise, it is unclear how the methylome 
progresses in an artificial aging context, such as in cellular culture. Given that well 
characterized culture systems exist [35], we aimed to classify potential epigenetic drivers 
of culture aging and determine if such changes recapitulate physiological aging in various 
tissues and biofluids. We rationalized that with the widespread use of culture models 
throughout biology and medicine, many fields would greatly benefit from clarifying the 
underlying epigenetic phenotypes that exist in culture and whether relevant markers of 
cellular dysfunction can be trained for use in accelerating mechanistic and drug 
development discoveries.  
 
By exhaustively passaging primary MEFs under normoxic conditions (20% O2), we 
trained a DNAm predictor of passage number (time in culture), called DNAmCULTURE 
and demonstrate that it not only accurately tracks passage number (Figure 1C), but also 
strongly correlates with age in multiple tissues (Figure 3A-B, Figure 4A), is modifiable by 
dietary intervention (Figure 4B-C), and exhibits resetting upon reprogramming to 
pluripotency (Figure 4D-E).  For instance, we found that DNAmCULTURE measured in 
whole blood of C57BL/6 mice was correlated with age (Figure 4A), despite being trained 
using cultured fibroblasts. Similarly, DNAmCULTURE exhibited age-related increases in 
liver, lung, kidney, blood and adipose tissue. Interestingly, it did not strongly correlate with 
age in skeletal muscle (Figure 3B), which may reflect the fact that skeletal muscle remains 
mostly postmitotic in adulthood. The link between proliferation and DNAmCULTURE was 
also observed when comparing the other tissue types. For example, we observed 
differences in both age correlation/slope, and in the absolute scores when comparing 
tissues. Overall, samples from liver and blood appeared to exhibit the highest values 
(Figure 3B), which may reflect the higher proliferative capacity of cells in these samples 
or the renewable nature of both hepatocytes and blood cells, perhaps suggesting that 
lifetime damage is somehow cataloged by the methylome [46-48]. This is also 
substantiated by the observations that epigenetic aging is not linear with time [26]. For 
instance, previous epigenetic clocks have been shown to increase rapidly during 
development and then decelerate after full maturity. We were able to observe this same 
trend in our data. We found that DNAmCULTURE exhibited a sigmoidal function with age, 
characterized by accelerated aging during development, a slower and more linear 
increase after about 150 days, and exponential increases at late life (Figure 4A).   
 
Despite the evidence of a relationship between replication and epigenetic aging, our data 
suggests that this is independent of senescence accumulation. For instance, we showed 
that drug and irradiation induced senescence in MEFs was not associated with changes 
in DNAmCULTURE. Further, replicative senescent MEFs were non-significantly 
associated (Figure 2A-B), suggesting senescence states are related to DNAmCULTURE, 
but only in a passage dependent fashion. One possible explanation is that 
DNAmCULTURE is capturing chronic epigenetic stress from genotoxic damage 
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experienced throughout extended time in culture, rather than acute damage. Previous 
studies provide evidence that MEFs are highly sensitive to genotoxic stress, especially 
when cultured under normoxic conditions (20% O2) [35,39]. The consensus in the field is 
that when MEFs experience much higher O2 tension than what they experience in vivo 
(3% O2), they undergo accelerated oxidative damage and after 5-7 passages they initiate 
replicative senescence programs [35,39]. DNAmCULTURE sheds light on the possibility 
of cell extrinsic factors as drivers of epigenetic aging. A number of previous studies 
provide evidence of this by suggesting that intrinsic drivers, like telomere attrition, are 
unlikely to drive culture phenotypes in accelerated aging murine models, as mice have 
exceptionally long telomeres and only become growth arrested in a telomere dependent 
fashion from loss or deletion of the telomerase RNA component (mTR) and p53 [31,49-
53].  
 
The potential links between epigenetic aging, replication, and genotoxic stress may also 
explain the age-related increase in cancer susceptibility, particularly among highly 
proliferative tissues and cells. For instance, we and others have previously reported that 
epigenetic age changes are also observed at increasing rates in tumors and/or the normal 
(or non-afflicted) tissues of individuals with cancer. We reason that the epigenetic 
changes captured by measures like DNAmCULTURE may underlie susceptibility to 
spontaneous transformation or oncogenicity [54]. Cells that eventually evade senescence 
from mutational events may promote oncogenic states, allowing continued mitotic events 
and increased damage accumulation, as a function of cell turnover [35]. In moving 
forward, it will be critical to utilize future in vitro experiments to determine the mechanisms 
driving epigenetic changes as a function of either mitotic rate (replication “ticking”) and/or 
prolonged exposure to genotoxic stress.   
 
While substantial work has gone into developing biomarkers than enable researchers to 
track aging changes in vivo and in vitro, the ultimate goal is to develop measures that are 
also modifiable to intervention. Using DNAm assessed in blood, we reported the effects 
of two promising interventions in aging— caloric restriction (CR) and cellular 
reprogramming. Our results suggested that DNAmCULTURE showed strong response to 
CR when assessed in blood (Figure 4C). Multiple studies suggest that CR acts by 
reducing DNA damage accumulation and mutations that progress with age [55], where 
others show CR downregulates key growth hubs like the insulin/IGF1 pathway [56]. 
Importantly, IGF1 is a growth factor that stimulates cell proliferation and can promote 
cancer via inhibition of apoptosis [57,58]. Interestingly, CR, without malnutrition, has also 
been shown to reduce cancer incidence and progression in mice [59,60]. Our results 
suggest that CR could be acting via the epigenome to regulate DNA damage 
maintenance by slowing cellular turnover and thus damaged states, or perhaps from 
enhanced DNA repair. Additionally, our results showed that the longer mice underwent 
CR, the more they diverged from normal controls on the basis of DNAmCULTURE. This 
could suggest that prolonged CR does not simply reverse or retard epigenetic aging 
momentarily, but actually decelerates the rate of change with age.   
 
We also report renewal in lung and kidney fibroblasts indicative of naïve culture states 
following reprogramming to iPSCs, supporting the conclusion that DNAmCULTURE can 
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not only be slowed, but actually reversed (Figure 4D-E). For instance, both lung and 
kidney fibroblasts were predicted to be equivalent to cells passaged just over 3 times, 
while all iPSC derivatives were predicted to approximate cells at passage 1. This 
suggests that the major epigenetic changes acquired during culturing and/or tissue aging 
can be reset to some extent. It is unlikely DNA damage and the resulting genome 
instability is reversible, thus we propose that DNAmCULTURE may be capturing transient 
epigenetic programs that control survival, proliferation, and cellular maintenance. In 
moving forward, it will be critical to establish how the epigenome is remodeled during full 
or partial reprogramming. It may also be the case that this rejuvenation phenomena is 
driven by distinct types of epigenetic changes that share specific functional 
characteristics.  Although we and others have demonstrated that classical epigenetic 
clocks (trained on tissues) can capture culture aging changes like reprogramming, it is 
difficult to parse out the functionally relevant mechanisms from the “black box” algorithms 
[44,61]. Moreover, we have previously shown that epigenetic clocks represent 
composites of distinct types of epigenetic phenomena that may not share the same 
mechanistic underpinnings. As such, it is difficult to experimentally test the causes and 
consequences of these clocks, thus limiting their utility as experimental tools in 
translational research. 
 
In the current study, we also tested whether we could distinguish different “types” of 
DNAm changes in our data. To identify the methylation changes in culture aging systems 
that are the most physiologically relevant to aging in tissues, we applied a network-based 
approaches to group CpGs into modules and then assess their relative patterns across 
datasets. Our results clearly demonstrate that in vitro DNAm changes captured by the 
red, yellow and pink modules were not physiologically relevant, suggesting that they may 
be reflective of culturing or MEF-specific artifacts. In contrast, CpGs in the brown and 
greenyellow modules appear to capture a common epigenetic aging phenotype that is 
established in both physiological and culture aging context (Figure 5A-C). To better 
understand the molecular underpinnings of CpGs in these two modules, we used genome 
enrichment analysis to determine potential drivers or regulatory features.  
 
By utilizing the Cistrome database we provide evidence that PcG factors, including both 
PRC1 and PRC2, are key factors in physiologically-relevant culture aging (Figure 5D). It 
is well established that the tri-methylated histone H3 at lysine 27 (H3K27me3) mark 
denotes transcriptional silencing with PRC2 involved in early development and PRC1 
later during aging as the more active maintenance factor [62]. The catalytic subunit of 
PRC2, EZH2, is routinely overexpressed in oncogenesis [63], promoting uncontrolled cell 
growth, as many repressed downstream genes of H3K27me3 are tumor suppressors [64], 
but the role of PRC2 and its domains are conflicted in aging. In certain species and cell 
types, EZH2 mutations reduce H3K27me3 and confer longevity [65,66], although in 
others reduction of H3K27me3 is associated with aging [67]. The relationship between 
the catalytic subunit (EZH2) and its co-factors SUZ12, EED, RbAp48 and AEBP2, which 
are highly involved with allosteric recognition and binding of substrates like S-Adenosyl 
methionine (SAM), is multi-factorial, with many opportunities for perturbations. As an 
example, multiple studies demonstrate EZH2, SUZ12 and EED are essential components 
for proper functioning, but RbAp48 and AEBP2 are not [68,69]. Our reported translational 
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modules (brown/greenyellow) further support the notion that PcGs are important aging 
factors.  
 
Conclusion: 
 
We report a novel mouse epigenetic measure of culture aging, termed DNAmCULTURE, 
that is able to recapitulate epigenetic changes observed in multiple in vivo tissues. We 
confirm that DNAmCULTURE is independent of senescent state, and instead appears to 
capture progressive cellular changes that may confer susceptibility to senescence and/or 
tumorigenesis. We also provide evidence for potential modifiability in the form of 
deceleration as a function of CR or reprogramming. Finally, our results implicate DNAm 
changes that may be functionally related to Polycomb group (PcG) factors like EED and 
SUZ12. Overall, this study demonstrates that physiologically relevant DNAm changes can 
be modeled in vitro, which in the future can be used to interrogate mechanisms involved 
in epigenetic aging and/or facilitate in vivo aging discoveries.  
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Methods: 
 
Experimental: 
Mouse embryonic fibroblast extraction:  
 
Mouse embryonic fibroblasts (MEFs) were harvested at day 12.5 of gestation. Two 
females were used. From the first female, 9 embryos were sacrificed and split into three 
cell lines, MEF1-3 From the second female, 10 embryos were sacrificed and split into 
three cell lines, MEF4-6. 
 
Extraction was achieved by separating embryos into separate wells in a 6 well dish using 
PBS, removing inner embryo and using forceps to carefully remove limbs, head and 
internal organs from dorsal region. The dorsal region was then cut and trypsinized for 10 
minutes at 37°C. To quench reaction cells were transferred to a 15 mL falcon tube and 
spun for 3 minutes at 1200 rpm, then supernatant was aspirated and resuspended with 
10 mL DMEM. P0 cells were split once to expand cell number prior to freezing. 
Approximately 2 mL of cells were incubated overnight with 8 mL DMEM and following 
growth were trypsinized and either passaged for experiments or stored at -80°C in 
DMEM/DMSO (90:10).  
 
Replicative passaging and cell culture: 
 
Cells were split/passaged 6 times, where flow cytometry/confocal microscopy and RRBS 
sequencing were conducted at each passage.  
 
Cells were split according to the following seeding density - p100 - 0.5x106 cells, p60 - 
0.25x106 cells and 6 well - 0.125x106 cells - and were counted using an Invitrogen 
countess and cell counting chamber slide with trypan blue. For media, we used DMEM + 
10% FBS + 1% PENSTREP. Note, later passaged cells had a lower platting efficiency 
when inspected visually 24 hours after seeding, thus we used a cell scraper prior to 
transfer otherwise senescent cells remained attached to the dish. Cells were split at 
approximately 95% confluence which occurred around 3-4 days in P1-3 and 5-8 days in 
P4-6.  
 
Beta-galactosidase flow cytometry and confocal microscopy: 
 
To conduct beta-galactosidase flow cytometry, approximately 0.25x106 cells were seeded 
into p60 dishes and pre-treatment was conducted approximately 16 hours after seeding. 
Cells were first pre-treated with Bafilomycin A1 (Selleckchem: S1413, 622.83 g/mol, 100 
µM stock). Existing DMEM was aspirated, then cells were washed with PBS and replaced 
with treated Bafilomycin A1 DMEM for 30 minutes at a final concentration of 100 nM. 
Following Bafilomycin A1 pre-treatment to normalize lysosome activity, C12FDG 
(Invitrogen: D2893, 853.92 g/mol, 10 mM stock) was added directly to the existing media 
for 90 minutes at a final concentration of 20 µM. Note, due to light sensitivity, exchange 
was conducted in a dark environment.  
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For determining beta-galactosidase activity via flow cytometry, treated cells were 
trypsinized (1 mL-p60) for 5 minutes at 37°C and then quenched using 3 mL DMEM. Note, 
cells were completely detached using a cell scraper prior to transfer otherwise senescent 
cells remained attached to the dish. After thorough resuspension, cells were transferred 
directly to a filter top tube and spun for 3 minutes at 1200 rpm. Supernatant was aspirated 
and cells were resuspended in 100 µL PBS and immediately assayed using a 488 nM 
laser on a StratedigmS1000 benchtop flow cytometer. Fluorescence intensity was 
normalized and baselined using an unstained sample. FlowJo (10.6.1) was used to 
analyze data. Beta-galactosidase activity/senescence activity was determined as 
LogFITC treated geometric mean/control geometric mean after normalizing to untreated 
control.  
 
For determining beta-galactosidase activity via confocal microscopy, cells were split into 
12 well dishes with a glass cover slide at the bottom of each well. Following Bafilomycin 
A1 and C12FDG treatment, media was aspirated and cells were washed with PSB 3x, 
fixed with 4% PFA/PBS (10 minutes), followed by 2x PSB washes and then counter 
stained with DAPI and mounted onto cover slips. Fixed cells were immediately imaged at 
4x, 10x and 40x resolution using a Keyence confocal cytometer.   
 
Senescence induction: 
 
We induced senescence using previously established conditions [48]. In brief, MEFs were 
thawed and allow to expand for one passage, then split to a normalized seeding density 
of 0.25x106 cell/p60 and 0.125x106 cells/6-well and treatment was conducted for 5 days. 
Note, senescence induction experiments were conducted at passage 2. Doxyrubicin 
(Sigma: D1515, 1 µM), Paclitaxel (Sigma: T7402, 50 nM) and Etoposide (Sigma: E1383, 
12.5 µM) were all dosed into DMEM when the cells were split and media was not replaced 
for the duration of the 5-day treatment. We irradiated cells (10 Gy) using cesium irradiation 
and collected these cells after 5 days as well.  
 
DNA preparation and quantification:  
 
DNA was extracted from selected samples prior to RRBS sequencing using a Qiagen 
DNeasy Blood and Tissue extraction kit (69504). Note, samples were treated with 
proteinase K and RNAse A and eluted with 200 µl elution buffer. Following final elution, 
DNA was verified using nanodrop (Thermo Scientific). Spin concentration was used as 
necessary with low DNA content samples. Prior to library preparation we used a qubit 
fluorometer (Thermo Scientific) to quantify the extracted genomic DNA. All samples were 
assigned a single-blinded code and randomized for library preparation and sequencing 
to control for any batch errors. 
 
Library preparation and reduced representation bisulfide sequencing: 
 
Library preparation was conducted using EZ DNA Methylation RRBS Library Prep Kit 
(Zymo: D5461), according to manufacturer’s recommendations. Randomized and pooled 
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samples were sequenced on four Illumina NovaSeq6000 SP lanes (100 bases single-end 
mode). Note, each lane produced more than 400M reads.  
 
Statistical Analysis: 
Data preprocessing:  
 
FastQC (v0.11.8) was used to assess the quality of the raw reads and adapter-trimmed 
reads (cutadapt, version 2.5). Reads were mapped to the GRCm38 RRBS genome using 
BSBolt v0.1.2 (https://github.com/NuttyLogic/BSBolt). Methylation was called and the 
CpG methylation matrix was assembled for CpG sites common to all samples and 
covered by more than 10 reads. The final matrix consisted of 474,128 CpG sites.  
 
Training and Validation of DNAmCULTURE: 
 
R was the primary platform used for statistical analysis. After selecting overlapped CpGs 
between training and all validation studies, PCA (without scaling) was conducted in the 
training sample. Training using PC components was conducted as described previously 
[44,45]. PCs were then fed-into a penalized elastic net regression as variables to train a 
predictor of passage number, called DNAmCULTURE. Lambda penalty represented the 
value with lowest mean-squared error, selected via 10-fold cross-validation. 
 
To validate the measure, PCs were estimated in external datasets using the loading from 
the training sample. These PCs were then incorporated into the selected elastic net 
model. Pearson correlations were used to assess associations between 
DNAmCULTURE and 1) passage number in both the training and validation sample, 2) 
β-gal activity in senescence induced MEFs, and 3) age in multi-tissue in vivo samples. 
Two-tailed t-tests were used to compare significance in iPSC reprogramming and in 
MEF4 validation. To test for associations with CR, OLS regression was used that included 
age, CR and an interaction term (age*CR). 
 
WGCNA and module construction: 
 
Consensus WGCNA [70] was conducted using four input datasets—MEF training samples 
(replicates 1 and 2), and the Thompson et al. data for blood, liver, and adipose. The remaining 
Thompson et al. data (kidney, lung, muscle) was deliberately excluded from WGCNA so as 
to have a true validation. Adjacency was estimated for each dataset based on biweight 
midcorrelations and negative correlations were treated as unconnected in the network 
(signed network). Adjacencies were then converted to Topological Overlap Matrices (TOMs) 
and combined into a single consensus TOM, such that overlap for each CpG pair was 
designated as the minimum dissimilarity score across the four individual TOMs. Hierarchical 
clustering was then conducted with the following parameters: deepSplit=1, cutHeight=0.95, 
minClusterSize=50, and distance=(1-consensus TOM), method=”average). This resulted in a 
network with n=16 modules. Given that similar modules can often be split by WGCNA, we 
next tested whether modules should be merged. This was done by estimating module 
eigengenes and then assessing dissimilarity between modules. Using a cut height of 0.4, the 
16 modules were merged into 13 that served as our final modules for all remaining analyses. 
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One feature of WGCNA is the ability to estimate module eigengenes, which serve as single 
quantitative value meant to represent the core signal of a whole module—that can consist of 
tens to thousands of individual variables. Typically, PC1 from PCA run on all variables in a 
module is used to represent the module eigengene. However, the traditional WGCNA 
package estimates this separately for all dataset meaning that the eigengenes may not be 
based on the same equations across datasets (variables can have different loadings). This 
may cause a bias in results and make validation less straight forward. To overcome this, we 
estimated PC1 for each module using the MEF training data and then applied these loading 
to all other datasets, including those used in WGCNA and thus that were held-out. Finally, 
we tested whether the module eigengene values were associated with either passage number 
(MEF data) or age (multi-tissue data). 
 
Cistrome genome enrichment analysis: 
 
We used the Cistrome gene analysis tool kit (http://dbtoolkit.cistrome.org/) to determine 
enriched genes. We selected the top 1k hits and used the mm10 reference. The outcome 
of the enrichment analysis was reported as a Giggle score, which is a rank of genome 
significance between the input file and thousands of genome files from databases like 
ENCODE. It is important to note, that Cistrome is constantly updating genome files, thus 
the enrichment analysis was conducted at the same time. Additionally, we selected 100 
CpGs from each module using kME to select the most central 100 CpGs. Sub-selected 
CpGs are reported via genomic partition in Supplemental Figure 7A. For selecting the 
background 100 CpGs we randomly selected the 100 CpGs from the cohort of 27,035 
CpGs. For giggle score reporting, we plotted the raw giggle score of each resulting 
module query, although any file (GSM_ID) that was also a background hit was corrected 
using the formula; GSM_ID_Hit-GSM_ID_Background=GSM_ID_Actual. Note, when the 
background GSM_ID was not present there was no correction. We report raw giggle 
scores in a scatterplot format in Supplemental Figure 7B and the corrected values (Top 
10) in Figure 5D. 
 
Genomic partitioning and CpG locations were determined using LolaWeb 
(http://lolaweb.databio.org/) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

iv. 
 
Acknowledgments: 
 
This work was funded by support by the Glenn Foundation (award for Research in 
Biological Mechanisms of Aging) and the National Institute on Aging (R01AG068285 and 
R01AG065403). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

v. 
 
Competing interests: 
 
No competing interests to report.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

vi. 
 
Authors contributions: 
 
Contribution is based on authorship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

vii. 
 
Data availability: 
 
The data that support the findings of this study are available from the corresponding 
author upon reasonable request.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

viii. 
 
References: 
 

(1) Campisi, J., Kapahi, P., Lithgow, G.J., Melov, S., Newman, J.C. and Verdin, E., 2019. From 
discoveries in ageing research to therapeutics for healthy ageing. Nature, 571(7764), pp.183-192. 

(2) Larsson, S.C., Kaluza, J. and Wolk, A., 2017. Combined impact of healthy lifestyle factors on 
lifespan: two prospective cohorts. Journal of internal medicine, 282(3), pp.209-219. 

(3) Blasco, M.A., 2007. Telomere length, stem cells and aging. Nature chemical biology, 3(10), 
pp.640-649. 

(4) Xu, M., Pirtskhalava, T., Farr, J.N., Weigand, B.M., Palmer, A.K., Weivoda, M.M., Inman, C.L., 
Ogrodnik, M.B., Hachfeld, C.M., Fraser, D.G. and Onken, J.L., 2018. Senolytics improve physical 
function and increase lifespan in old age. Nature medicine, 24(8), pp.1246-1256. 

(5) Tchkonia, T., Morbeck, D.E., Von Zglinicki, T., Van Deursen, J., Lustgarten, J., Scrable, H., 
Khosla, S., Jensen, M.D. and Kirkland, J.L., 2010. Fat tissue, aging, and cellular 
senescence. Aging cell, 9(5), pp.667-684. 

(6) Tchkonia, T., Zhu, Y., Van Deursen, J., Campisi, J. and Kirkland, J.L., 2013. Cellular senescence 
and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical 
investigation, 123(3), pp.966-972. 

(7) Hoeijmakers, J.H., 2009. DNA damage, aging, and cancer. New England Journal of 
Medicine, 361(15), pp.1475-1485. 

(8) Oh, J., Lee, Y.D. and Wagers, A.J., 2014. Stem cell aging: mechanisms, regulators and 
therapeutic opportunities. Nature medicine, 20(8), pp.870-880. 

(9) Zhang, Y., Wilson, R., Heiss, J., Breitling, L.P., Saum, K.U., Schöttker, B., Holleczek, B., 
Waldenberger, M., Peters, A. and Brenner, H., 2017. DNA methylation signatures in peripheral 
blood strongly predict all-cause mortality. Nature communications, 8(1), pp.1-11. 

(10) Izzo, F., Lee, S.C., Poran, A., Chaligne, R., Gaiti, F., Gross, B., Murali, R.R., Deochand, S.D., 
Ang, C., Jones, P.W. and Nam, A.S., 2020. DNA methylation disruption reshapes the 
hematopoietic differentiation landscape. Nature Genetics, 52(4), pp.378-387. 

(11) Ferry, L., Fournier, A., Tsusaka, T., Adelmant, G., Shimazu, T., Matano, S., Kirsh, O., Amouroux, 
R., Dohmae, N., Suzuki, T. and Filion, G.J., 2017. Methylation of DNA ligase 1 by G9a/GLP 
recruits UHRF1 to replicating DNA and regulates DNA methylation. Molecular cell, 67(4), pp.550-
565. 

(12) Riggs, A.D., 1975. X inactivation, differentiation, and DNA methylation. Cytogenetic and Genome 
Research, 14(1), pp.9-25. 

(13) Murgatroyd, C., Patchev, A.V., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., Holsboer, F., 
Wotjak, C.T., Almeida, O.F. and Spengler, D., 2009. Dynamic DNA methylation programs 
persistent adverse effects of early-life stress. Nature neuroscience, 12(12), pp.1559-1566. 

(14) Li, E., Beard, C. and Jaenisch, R., 1993. Role for DNA methylation in genomic 
imprinting. Nature, 366(6453), pp.362-365. 

(15) Hata, K., Okano, M., Lei, H. and Li, E., 2002. Dnmt3L cooperates with the Dnmt3 family of de 
novo DNA methyltransferases to establish maternal imprints in mice. Development, 129(8), 
pp.1983-1993. 

(16) Chedin, F., 2011. The DNMT3 family of mammalian de novo DNA methyltransferases. 
In Progress in molecular biology and translational science (Vol. 101, pp. 255-285). Academic 
Press. 

(17) Fuks, F., Burgers, W.A., Brehm, A., Hughes-Davies, L. and Kouzarides, T., 2000. DNA 
methyltransferase Dnmt1 associates with histone deacetylase activity. Nature genetics, 24(1), 
pp.88-91. 

(18) Rhee, I., Bachman, K.E., Park, B.H., Jair, K.W., Yen, R.W.C., Schuebel, K.E., Cui, H., Feinberg, 
A.P., Lengauer, C., Kinzler, K.W. and Baylin, S.B., 2002. DNMT1 and DNMT3b cooperate to 
silence genes in human cancer cells. Nature, 416(6880), pp.552-556. 

(19) Zöchbauer-Müller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F. and Minna, J.D., 2001. 
Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer 
research, 61(1), pp.249-255. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

(20) Shen, L., Kondo, Y., Rosner, G.L., Xiao, L., Hernandez, N.S., Vilaythong, J., Houlihan, P.S., 
Krouse, R.S., Prasad, A.R., Einspahr, J.G. and Buckmeier, J., 2005. MGMT promoter methylation 
and field defect in sporadic colorectal cancer. Journal of the National Cancer Institute, 97(18), 
pp.1330-1338. 

(21) Mette, M.F., Aufsatz, W., Van der Winden, J., Matzke, M.A. and Matzke, A.J.M., 2000. 
Transcriptional silencing and promoter methylation triggered by double-stranded RNA. The 
EMBO journal, 19(19), pp.5194-5201. 

(22) Aran, D., Sabato, S. and Hellman, A., 2013. DNA methylation of distal regulatory sites 
characterizes dysregulation of cancer genes. Genome biology, 14(3), pp.1-14. 

(23) Deng, G., Kakar, S., Tanaka, H., Matsuzaki, K., Miura, S., Sleisenger, M.H. and Kim, Y.S., 2008. 
Proximal and distal colorectal cancers show distinct gene-specific methylation profiles and clinical 
and molecular characteristics. European journal of cancer, 44(9), pp.1290-1301. 

(24) Mays-Hoopes, L.L., 1989. Age-related changes in DNA methylation: do they represent continued 
developmental changes?. In International review of cytology (Vol. 114, pp. 181-220). Academic 
Press. 

(25) Ahuja, N. and Issa, J.P., 2000. Aging, methylation and cancer. 
(26) Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., Hou, L., Baccarelli, 

A.A., Stewart, J.D., Li, Y. and Whitsel, E.A., 2018. An epigenetic biomarker of aging for lifespan 
and healthspan. Aging (Albany NY), 10(4), p.573. 

(27) Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., Hou, L., Baccarelli, A.A., Li, Y., 
Stewart, J.D. and Whitsel, E.A., 2019. DNA methylation GrimAge strongly predicts lifespan and 
healthspan. Aging (Albany NY), 11(2), p.303. 

(28) Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., 
Fan, J.B., Gao, Y. and Deconde, R., 2013. Genome-wide methylation profiles reveal quantitative 
views of human aging rates. Molecular cell, 49(2), pp.359-367. 

(29) Horvath, S., 2013. DNA methylation age of human tissues and cell types. Genome 
biology, 14(10), p.3156. 

(30) Horvath, S. and Raj, K., 2018. DNA methylation-based biomarkers and the epigenetic clock 
theory of ageing. Nature Reviews Genetics, 19(6), p.371. 

(31) Itahana, K., Campisi, J. and Dimri, G.P., 2004. Mechanisms of cellular senescence in human and 
mouse cells. Biogerontology, 5(1), pp.1-10. 

(32) Shay, J.W. and Wright, W.E., 2000. Hayflick, his limit, and cellular ageing. Nature reviews 
Molecular cell biology, 1(1), pp.72-76. 

(33) Hayflick, L., 1965. The limited in vitro lifetime of human diploid cell strains. Experimental cell 
research, 37(3), pp.614-636. 

(34) Bork, S., Pfister, S., Witt, H., Horn, P., Korn, B., Ho, A.D. and Wagner, W., 2010. DNA 
methylation pattern changes upon long-term culture and aging of human mesenchymal stromal 
cells. Aging cell, 9(1), pp.54-63. 

(35) Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S. and Campisi, J., 2003. Oxygen 
sensitivity severely limits the replicative lifespan of murine fibroblasts. Nature cell biology, 5(8), 
pp.741-747. 

(36) Chua, K.F., Mostoslavsky, R., Lombard, D.B., Pang, W.W., Saito, S.I., Franco, S., Kaushal, D., 
Cheng, H.L., Fischer, M.R., Stokes, N. and Murphy, M.M., 2005. Mammalian SIRT1 limits 
replicative life span in response to chronic genotoxic stress. Cell metabolism, 2(1), pp.67-76. 

(37) Di Micco, R., Cicalese, A., Fumagalli, M., Dobreva, M., Verrecchia, A., Pelicci, P.G. and di 
Fagagna, F.D.A., 2008. DNA damage response activation in mouse embryonic fibroblasts 
undergoing replicative senescence and following spontaneous immortalization. Cell cycle, 7(22), 
pp.3601-3606. 

(38) Pospelova, T.V., Leontieva, O.V., Bykova, T.V., Zubova, S.G., Pospelov, V.A. and Blagosklonny, 
M.V., 2012. Suppression of replicative senescence by rapamycin in rodent embryonic cells. Cell 
Cycle, 11(12), pp.2402-2407. 

(39) Liu, Z.G., Baskaran, R., Lea-Chou, E.T., Wood, L.D., Chen, Y., Karin, M. and Wang, J.Y., 1996. 
Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature, 384(6606), 
pp.273-276. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

(40) Colman, M.S., Afshari, C.A. and Barrett, J.C., 2000. Regulation of p53 stability and activity in 
response to genotoxic stress. Mutation Research/Reviews in Mutation Research, 462(2-3), 
pp.179-188. 

(41) Basenko, E.Y., Sasaki, T., Ji, L., Prybol, C.J., Burckhardt, R.M., Schmitz, R.J. and Lewis, Z.A., 
2015. Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective 
growth. Proceedings of the National Academy of Sciences, 112(46), pp.E6339-E6348. 

(42) Petkovich, D.A., Podolskiy, D.I., Lobanov, A.V., Lee, S.G., Miller, R.A. and Gladyshev, V.N., 
2017. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell 
metabolism, 25(4), pp.954-960. 

(43) Thompson, M.J., Chwiałkowska, K., Rubbi, L., Lusis, A.J., Davis, R.C., Srivastava, A., Korstanje, 
R., Churchill, G.A., Horvath, S. and Pellegrini, M., 2018. A multi-tissue full lifespan epigenetic 
clock for mice. Aging (Albany NY), 10(10), p.2832. 

(44) Higgins-Chen, A.T., Thrush, K.L., Wang, Y., Kuo, P.L., Wang, M., Minteer, C.J., Moore, A.Z., 
Bandinelli, S., Vinkers, C.H., Vermetten, E. and Rutten, B.P., 2021. A computational solution for 
bolstering reliability of epigenetic clocks: Implications for clinical trials and longitudinal 
tracking. bioRxiv. 

(45) Levine, M., McDevitt, R.A., Meer, M., Perdue, K., Di Francesco, A., Meade, T., Farrell, C., 
Thrush, K., Wang, M., Dunn, C. and Pellegrini, M., 2020. A rat epigenetic clock recapitulates 
phenotypic aging and co-localizes with heterochromatin. Elife, 9, p.e59201. 

(46) 46-Kim, B., Li, J., Jang, C. and Arany, Z., 2017. Glutamine fuels proliferation but not migration of 
endothelial cells. The EMBO journal, 36(16), pp.2321-2333. 

(47) 47-Doronzo, G., Astanina, E., Corà, D., Chiabotto, G., Comunanza, V., Noghero, A., Neri, F., 
Puliafito, A., Primo, L., Spampanato, C. and Settembre, C., 2019. TFEB controls vascular 
development by regulating the proliferation of endothelial cells. The EMBO journal, 38(3), 
p.e98250. 

(48) Lv, H., Hu, Y., Cui, Z. and Jia, H., 2018. Human menstrual blood: a renewable and sustainable 
source of stem cells for regenerative medicine. Stem cell research & therapy, 9(1), pp.1-11. 

(49) García-Cao, M., Gonzalo, S., Dean, D. and Blasco, M.A., 2002. A role for the Rb family of 
proteins in controlling telomere length. Nature genetics, 32(3), pp.415-419. 

(50) Sherr, C.J. and DePinho, R.A., 2000. Cellular senescence: minireview mitotic clock or culture 
shock?. Cell, 102(4), pp.407-410. 

(51) Wright, W.E. and Shay, J.W., 2000. Telomere dynamics in cancer progression and prevention: 
fundamental differences in human and mouse telomere biology. Nature medicine, 6(8), pp.849-
851. 

(52) Greenberg, R.A., Chin, L., Femino, A., Lee, K.H., Gottlieb, G.J., Singer, R.H., Greider, C.W. and 
DePinho, R.A., 1999. Short dysfunctional telomeres impair tumorigenesis in the INK4aΔ2/3 
cancer-prone mouse. Cell, 97(4), pp.515-525. 

(53) Niida, H., Matsumoto, T., Satoh, H., Shiwa, M., Tokutake, Y., Furuichi, Y. and Shinkai, Y., 1998. 
Severe growth defect in mouse cells lacking the telomerase RNA component. Nature 
genetics, 19(2), pp.203-206. 

(54) Levine, M.E., Leung, D., Minteer, C. and Gonzalez, J., 2019. A DNA Methylation Fingerprint of 
Cellular Senescence. bioRxiv, p.674580. 

(55) Heydari, A.R., Unnikrishnan, A., Lucente, L.V. and Richardson, A., 2007. Caloric restriction and 
genomic stability. Nucleic acids research, 35(22), pp.7485-7496. 

(56) Li, L., Fu, Y.C., Xu, J.J., Chen, X.C., Lin, X.H. and Luo, L.L., 2011. Caloric restriction promotes 
the reproductive capacity of female rats via modulating the level of insulin-like growth factor-1 
(IGF-1). General and comparative endocrinology, 174(2), pp.232-237. 

(57) Kari, F.W., Dunn, S.E., French, J.E. and Barrett, J.C., 1999. Roles for insulin-like growth factor-1 
in mediating the anti-carcinogenic effects of caloric restriction. The journal of nutrition, health & 
aging, 3(2), pp.92-101. 

(58) López-Otín, C., Galluzzi, L., Freije, J.M., Madeo, F. and Kroemer, G., 2016. Metabolic control of 
longevity. Cell, 166(4), pp.802-821. 

(59) Acosta-Rodríguez, V.A., de Groot, M.H., Rijo-Ferreira, F., Green, C.B. and Takahashi, J.S., 2017. 
Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an 
automated feeder system. Cell metabolism, 26(1), pp.267-277. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

(60) Chaix, A., Zarrinpar, A., Miu, P. and Panda, S., 2014. Time-restricted feeding is a preventative 
and therapeutic intervention against diverse nutritional challenges. Cell metabolism, 20(6), 
pp.991-1005. 

(61) Sturm, G., Cardenas, A., Bind, M.A., Horvath, S., Wang, S., Wang, Y., Hägg, S., Hirano, M. and 
Picard, M., 2019. Human aging DNA methylation signatures are conserved but accelerated in 
cultured fibroblasts. Epigenetics, 14(10), pp.961-976. 

(62) Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S. and 
Zhang, Y., 2002. Role of histone H3 lysine 27 methylation in Polycomb-group 
silencing. Science, 298(5595), pp.1039-1043. 

(63) Kim, K.H. and Roberts, C.W., 2016. Targeting EZH2 in cancer. Nature medicine, 22(2), pp.128-
134. 

(64) Bracken, A.P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., 
Theilgaard-Mönch, K., Minucci, S., Porse, B.T., Marine, J.C. and Hansen, K.H., 2007. The 
Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in 
senescent cells. Genes & development, 21(5), pp.525-530. 

(65) Ma, Z., Wang, H., Cai, Y., Wang, H., Niu, K., Wu, X., Ma, H., Yang, Y., Tong, W., Liu, F. and Liu, 
Z., 2018. Epigenetic drift of H3K27me3 in aging links glycolysis to healthy longevity in 
Drosophila. Elife, 7, p.e35368. 

(66) Siebold, A.P., Banerjee, R., Tie, F., Kiss, D.L., Moskowitz, J. and Harte, P.J., 2010. Polycomb 
Repressive Complex 2 and Trithorax modulate Drosophila longevity and stress 
resistance. Proceedings of the National Academy of Sciences, 107(1), pp.169-174. 

(67) Maures, T.J., Greer, E.L., Hauswirth, A.G. and Brunet, A., 2011. The H3K27 demethylase UTX-1 
regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging 
cell, 10(6), pp.980-990. 

(68) van Mierlo, G., Veenstra, G.J.C., Vermeulen, M. and Marks, H., 2019. The complexity of PRC2 
subcomplexes. Trends in cell biology, 29(8), pp.660-671. 

(69) Cao, R. and Zhang, Y.I., 2004. SUZ12 is required for both the histone methyltransferase activity 
and the silencing function of the EED-EZH2 complex. Molecular cell, 15(1), pp.57-67. 

(70) Langfelder, P. and Horvath, S., 2008. WGCNA: an R package for weighted correlation network 
analysis. BMC bioinformatics, 9(1), pp.1-13. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

ix. 
 
Tables: 
 
None to report. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

x. 
 
Figures 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

Figure 1: Development of a DNAm culture aging measure (DNAmCULTURE) in 
mouse embryonic fibroblasts. (A) Schematic displaying exhaustive culturing of 
mouse embryonic fibroblasts under normoxia (20% O2) produces terminally arrested 
cellular states with progressively reduced replicative capacity. (B) Workflow 
demonstrating supervised machine learning computation approach (elastic net 
penalized regression) successfully produced a measure of culture aging from 
longitudinal reduced represented bisulfide sequencing (RRBS) DNA methylation data, 
where it was then was tested for physiological relevance in an aged in vivo cohort. (C) 
Training (MEF1 and MEF2) and validation (MEF3) cell lines used to develop 
DNAmCULTURE, with shading representing predicted culture age in validation data. 
Note, passage 5 and 6 were combined due to low DNA content prior to RRBS 
sequencing and are represented throughout as passage 5.5. Passage correlations and 
statistical significance was determined using Pearson correlations. 
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Figure 2: DNAmCULTURE fails to capture culture phenotypes independent of 
cellular passage. (A) DNAmCULTURE score in MEF3 replicative senescence 
validation samples, organized by Beta-Galactosidase (β-gal) activity. β-gal activity was 
determined by LogFITC fluorescence from C12FDG flow cytometry and normalizing 
geometric mean with negative samples (unstained) and dividing crude fluorescence by 
DMSO or young control, depending on experiment. β-gal activity calculation is further 
outlined in Supplemental Figure 1D. Note, grey=Passage 1, yellow=Passage 2, 
orange=Passage 3, red=Passage 4 and dark red=Passage 5.5. (B) DNAmCULTURE 
measured in irradiation and drug induced senescent samples against DMSO and young 
(Passage 2) controls. Note, Dox=Doxorubicin (1 µM), Eto=Etoposide (12.5 µM) and 
Rad=Irradiation (10 gy). Treatment occurred for 5 days. Senescence induction 
procedures are outlined in the methods. Passage independent experiments were 
conducted in MEF4-6 cell lines, which were validated by comparing passage 2 
DNAmCULTURE score to MEF1 and MEF3 samples (Supplemental Figure 3C). β-gal 
correlations and statistical significance was determined using Pearson correlations. 
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Figure 3: DNAmCULTURE recapitulates physiological aging in multiple tissues. 
(A) Longitudinal RRBS tissue data assayed from Thompson et. al 2018. (B) 
DNAmCULTURE measure determined in liver, lung, kidney, blood, adipose and muscle 
tissue at 2, 10 and 20 months in aged C57BL/6J mice. Age correlations and statistical 
significance was determined using Pearson correlations.  
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Figure 4: DNAmCULTURE predicts naïve culture states in caloric restricted mice 
and re-programmed fibroblasts. (A) DNAmCULTURE age-association determined 
from blood data assayed from a non-longitudinal cohort of aged C57BL/6J mice (20-
1050 days) in Petkovich et. al 2017. (B) DNAmCULTURE age-association determined 
from blood data assayed from a calorie restricted (CR) cohort of aged C57BL/6J mice 
(300-810 days) in Petkovich et. al 2017. Calorie restricted mice began treatment at 14 
weeks of age. Age correlations and statistical significance in (A) and (B) was 
determined using Pearson correlations. (C) Scatterplot demonstrating deceleration of 
culture aging in calorie restricted C57BL/6J mice, when comparing cohorts from (A) and 
(B). Red samples represent normal chow diet and green samples calorically restricted 
diet. Linear modeling demonstrates statistically significant deceleration in culture aging 
in CR samples (p=0.02479) as well as significant modulation in CR treated mice 
compared to normal chow controls (p=0.00259), when corrected by age. iPSC 
reprogramming in (D) Lung and (E) Kidney fibroblasts from Petkovich et. al 2017 
demonstrates erasing of culture signature. Re-programming statistical significance 
calculations were determined via un-paired two-tailed t-test.  
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Figure 5: Clustering analysis confirms culture aging exists in physiological 
context and highlights Polycomb group (PcG) factors as important culture aging 
regulators. (A) Schematic outlining method of using longitudinal aging data (tissue + 
culturing) from Thompson et. al 2018 and the MEF1/MEF2 training data to cluster CpGs 
with WGCNA into distinct modules or ageotypes, which were then compared to in vitro 
passaging data and all tissues via principal component analysis and used to determine 
enriched genes using the Cistrome database. (B) Module distribution as determined by 
distance (per base pair) to transcription start site (TSS), generated using LolaWeb. Raw 
module CpGs were used to determine principal component correlations in (C), where 
kME selected CpGs were used to normalize enriched domains in (D), as further 
explained in Supplemental Figure 4B. (C) PC1 correlations of longitudinal tissue and 
MEF passaging data by module. (D) Module genome enrichment analysis using 
Cistrome database from 100 CpG input selected by kME. Enriched genes were further 
normalized by randomly selecting 100 CpGs from the background 27,035 CpGs used to 
create the modules and correcting each enriched GSM_IDs Giggle score. Note, the 
enrichment analysis is displaying the top normalized GSM_ID Giggle score for each 
enriched gene module relationship. Enriched genes are sorted by decreasing module 
frequency. Giggle score represents a rank of significance between genomic loci shared 
between query file and thousands of genome files from databases like ENCODE. Red 
genes = PRC2 complex or mediator, Orange genes = PRC1 complex or mediator and 
Black genes = non-Polycomb related genes.  
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Supplemental Figure 1: Mouse embryonic fibroblast extraction, passaging and 
validation. (A) Schematic demonstrating MEF extraction, illustrating embryos were 
dorsally derived from 12.5-day gestation C57BL/6 mice, then passaged 6x. Note that 
each biological replicate was composed of 3 embryos. (B) Plot of flow cytometry data 
demonstrating increased Beta-galactosidase (β-gal) activity with passage, measured by 
FITC fluorescence from C12FDG and normalizing geometric mean with negative 
samples (unstained) and dividing crude fluorescence by young control (Passage 1). (C) 
Representative flow cytometry plot demonstrating older MEFs have greater beta-
galactosidase activity. (D) β-gal activity calculation. (E) Plot measuring PCA 
components [PC1-10] from MEF1-3 (passages 1-6) as a function of variance. (F) 
Principal component analysis of all MEF cell lines used for training (MEF1-2) and 
validating (MEF3) DNAmCULTURE. 
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Supplemental Figure 2: DNAmCULTURE construction, PC loading and CpG 
distribution. (A) Common CpGs (28,323) between MEF experimental data, Petkovich 
et. al 2017 and Thompson et. al 2018. (B) Elastic net penalized regression plot 
generating lambda minimum for selecting PCs (PC2, PC4, PC5, PC8, PC9 and PC29) 
for DNAmCULTURE. (C) Histogram of loaded PCs in DNAmCULTURE, plotted by PC 
loading coefficient and frequency of total 28,323 CpGs in measure. Red abline 
represents 0.02 cutoff used to determine CpG drivers of DNAmCULTURE. (D) CpG 
distribution across chromosomes and genomic partitioning of raw 28,323 CpGs used in 
DNAmCULTURE, generated by LolaWeb. (E) CpG distribution across chromosomes 
and genomic partitioning of CpG drivers (N=3087), as determined by 0.02 loading 
coefficient cutoff, also generated by LolaWeb.  
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Supplemental Figure 3: Passage independent senescence induction and MEF 
technical replicate validation. (A) Beta-galactosidase activity measured in MEF4-6 
with various damaging and control conditions. β-gal activity was determined by LogFITC 
fluorescence from C12FDG flow cytometry and normalizing geometric mean with 
negative samples (unstained) and dividing crude fluorescence by DMSO or young 
control, depending on experiment. β-gal activity calculations are further explained in 
Supplemental Figure 1D. (B) Representative confocal microscopy images (40X) using 
C12FDG (green) and counterstained with DAPI (blue), confirming senescence is 
achieved from irradiation and drug treatment (doxorubicin and etoposide). (C) 
DNAmCULTURE measured in all MEF replicates for passage 2 samples under control 
conditions (either Young untreated or DMSO), demonstrating no significant inherent 
variation exist between replicates. Statistical significance calculations were determined 
via un-paired two-tailed t-test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

Supplemental Figure 4: Network construction and Cistrome enrichment analysis. 
(A) Cluster dendrogram demonstrating 12 modules and age/passage associations with 
culture, adipose, blood and liver input data. (B) Genomic partition (generated by 
LolaWeb) of top 100 CpGs, as determined by the most central CpGs by kME, of the 12 
selected WGCNA modules. kME selected CpGs were used to normalize enriched 
domains in (C). (C) Scatterplots of top 20 enriched genes in each module, as 
determined by Cistrome, prior to any background baselining. Note, the top 100 CpGs, 
as determined by kME, were used as the input for each query in order to cross compare 
modules by Giggle score. 100 CpGs were selected at random from the 27,035 
background CpGs that were used as the input for clustering analysis. Giggle score 
represents a rank of significance between genomic loci shared between query file and 
thousands of genome files from databases like ENCODE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073


This is a preliminary report of work that has not been certified by peer review.  
 

xi. 
 
Appendices: 
 
None to report. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2020.09.02.280073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.02.280073

