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Abstract

The hippocampus has been a focus of memory research since H.M’s surgery in 1953 abolished

his ability to form new memories, yet its mechanistic role in memory is still debated. Here, we

identify a novel, systems-level candidate memory mechanism: an anticipatory hippocampal

“convergence state”, observed while awaiting valuable information, that both predicts later

memory, and accounts for the relationship between midbrain activation and enhanced learning.

To reveal this state, we leveraged endogenous neuromodulation associated with motivation:

During fMRI, participants viewed trivia questions eliciting high or low curiosity, each followed

seconds later by its answer. We reasoned that memory encoding success requires a

convergence of factors, and as such, hippocampal states associated with remembered trials

would be less variable than forgotten ones. Using a novel multivariate approach, we measured

convergence by quantifying the typicality of spatially distributed patterns. We found that during

anticipation of trivia answers, hippocampal states showed greater convergence under high than

low curiosity. Crucially, convergence in the hippocampus increased with greater midbrain

activation and uniquely accounted for the association between midbrain activation and

subsequent memory recall. We propose that this novel convergence state in the hippocampus

reflects a mechanism of its contribution to long term memory formation and that engagement of

this convergence state completes the cascade from motivation to midbrain activity to memory

enhancement.

2

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452391doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452391
http://creativecommons.org/licenses/by-nc/4.0/


Introduction
The mysterious translation of daily life into the faulty record of memory has long

compelled human wonder, and conflict. A growing literature has shown that, while some kinds of

events are inherently more memorable, our ongoing motivational states are important

determinants of whether and how experience is remembered (Apitz and Bunzeck, 2012;

Bunzeck et al., 2009; Forkmann et al., 2013; Kennedy and Shapiro, 2009; Kentros et al., 2004;

Murty and Adcock, 2014). It has been known for decades that neurotransmitters associated with

motivation influence neural plasticity (Jay, 2003; Frey et al., 1990; O’Carroll and Morris, 2004; Li

et al., 2003; Otmakhova and Lisman, 1996). More recent research has identified network

relationships between nuclei that release these neurotransmitters and the hippocampus, long

implicated in memory formation, to show that these relationships predict memory formation

(Murty and Adcock, 2017; Murty and Dickerson, 2016). These studies have traced the cascade

from motivational state, to engagement of neuromodulatory nuclei, to activation of hippocampal

systems, concluding that neuromodulation helps the hippocampus create memories. However,

they do not answer the question of how: what computations or operations are altered to create a

state conducive to memory formation. This is perhaps unsurprising given that despite its

remarkable anatomy and physiological specializations, researchers still debate the canonical

function of the hippocampus and its role in memory (Basile et al., 2020; Gaffan, 1997, 2002;

Graham et al., 2010; Turk-Browne, 2019)

The mesolimbic dopamine system is the major neuromodulatory system implicated in

motivated learning of valuable information (Shohamy and Adcock, 2010). It has been proposed

that the motivation to learn engages mesolimbic dopaminergic circuits to support plasticity in the

hippocampus (Adcock et al., 2006; Gruber et al., 2014). Consistent with this account, fMRI

studies in humans have shown that the motivation to learn, inspired by both intrinsic and

extrinsic rewards, is accompanied by increased anticipatory activation in the dopaminergic

midbrain (Adcock et al., 2006), and greater functional connectivity between the midbrain and

regions in the medial temporal lobe, including the hippocampus (HPC) (Adcock et al., 2006;

Gruber et al., 2014; Wittmann et al., 2007). Intriguingly, in one such study where participants

were motivated by intrinsic curiosity, memory was enhanced not only for the information of

interest, but also for temporally proximal irrelevant information(Gruber et al., 2014), suggesting a

sustained state of enhanced encoding.

Independent lines of work suggest on the one hand that the hippocampus can express

different functional states that reflect neuromodulation, and on the other that these may manifest

as physiological signatures associated with distinct patterns of activity in the hippocampus. First,
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the hippocampus receives inputs from the dopaminergic midbrain, including ventral tegmental

area (VTA) (Gasbarri et al., 1994; Swanson, 1982; Zubair et al., 2021), and midbrain projections

modulate hippocampal physiology and influence performance on memory tasks (Gasbarri et al.,

1996; Lisman and Grace, 2005; Lisman et al., 2011; McNamara et al., 2014; Wang and Morris,

2010). Studies of place cells in rodents have also shown that place field stability is influenced by

task goals, dependent on VTA modulation (Kentros et al., 2004; Martig and Mizumori, 2011).

Such shifts in response properties and circuit function have physiological signatures that could

manifest in BOLD activation patterns. Indeed, in humans, dopamine receptor density has been

associated with variability in the BOLD signal intensity in the hippocampus (Guitart-Masip et al.,

2016). The anatomical separation of mesolimbic terminals relative to dopamine receptors in the

hippocampus is ill-suited to temporally precise signals (Shohamy and Adcock, 2010) and further

suggests that midbrain dopamine regulates expression of sustained functional states in the

hippocampus conducive to encoding (Shohamy and Adcock, 2010; Murty et al., 2016).

Second, motivational and goal states have been shown to modulate memory-related

patterns of activity in the hippocampus, detectable using multivoxel pattern analysis (MVPA) of

fMRI data (Aly and Turk-Browne, 2015, 2016; Wolosin et al., 2013; Zeithamova et al., 2018).

With MVPA, patterns of activity across spatially distributed voxels can be formulated as points

within a high dimensional state space, with activity in each voxel constituting a single dimension.

Multivoxel patterns in the hippocampus differentiate reward contexts and predict individual

differences in reward-related memory benefits (Wolosin et al., 2013). When selective attention

was manipulated by changing task goals, the stability of goal-related representations in the

hippocampus predicted memory for the goal category (Aly and Turk-Browne, 2015). In addition

to representations of contexts and goals, multivoxel patterns in the hippocampus have also

been shown to differentiate processes associated with encoding or retrieval (Richter et al.,

2016). Taken together, these findings suggest that variations in the hippocampal state space

may reflect not only information content, but also signatures of neuromodulation.

Here, we test the premise that hippocampal state spaces reflect neuromodulation, linking

hippocampal memory-related states to activation of the dopaminergic midbrain ventral

tegmental area by motivation. We posit that a hippocampal state associated with successful

memory formation would fall within an optimal subspace conducive for subsequent encoding. To

identify the optimal subspace, we can exploit the fact that the successful formation of new

memories is likely to require the convergence of multiple cognitive and physiological factors. If

so, the lack of any factor could impede memory formation, yielding multiple ways to fail. An

intuition for this  convergence principle is captured in the opening of Leo Tolstoy’s novel Anna
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Karenina - “All happy families are alike; each unhappy family is unhappy in its own way”. The

‘Anna Karenina principle’ has been applied to the study of dynamical systems (e.g. Zaneveld et

al., 2017), including the examination of human brain networks (Finn et al., 2020).  Related lines

of work on spontaneous brain dynamics have consistently shown better perceptual processing

with reduced neural variability in sensory cortices (Arazi et al., 2019; Schurger et al., 2015).

Here, we apply similar logic to identification of brain states conducive to successful memory

formation. To the extent that signatures of hippocampal neuromodulation by the VTA reflect the

engagement of neural states conducive to memory formation, it should be expected that they

would be less variable compared to states associated with failed encoding. Thus, we

hypothesized the existence of a convergence state predicting successful memory formation,

when the motivation to learn is high, and reflecting midbrain neuromodulation.

In the current study, we sought to investigate relationships among motivation, midbrain

activation, anticipatory hippocampal convergence states, and subsequent memory formation. To

characterize convergence states, we devised a novel MVPA approach to measure trial-level

variation in spatially distributed patterns. Briefly, the activation pattern for each trial is

operationalized as a point in an N-dimensional state space (with N voxels). The convergence for

each trial was quantified using the distance between the activation pattern and an independently

defined centroid. The centroid can be thought of as a point defining the ‘average’ neural state,

such that patterns closer to the centroid are considered to be more convergent than patterns

further from the centroid. Higher convergence thus indicates lower variability. We applied

convergence analysis to fMRI data acquired while participants engaged in a trivia quiz paradigm

designed to elicit anticipatory states associated with either high or low motivation to learn, here

curiosity. Replicating findings from prior work (Adcock et al., 2006; Gruber et al., 2014), we

found that high motivation was associated with better subsequent recall, and with greater

activation in the midbrain VTA during anticipation of answers. Using our novel analysis, we

showed that anticipatory convergence in the hippocampus, but not in the medial temporal

cortex, was strongly modulated by curiosity state. Higher anticipatory convergence in the

hippocampus was also predictive of better subsequent recall. Critically, hippocampal

convergence was strongly associated with trial-by-trial anticipatory VTA activation, and uniquely

accounted for the significant association between greater VTA activation and greater

subsequent memory recall. Together, our findings suggest that neuromodulation from the VTA

supports memory formation by sustaining a convergence state in the HPC that is optimal for

creating memories.
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Results
Memory recall was better for high-curiosity than low-curiosity trivia

During an fMRI session, participants viewed trivia questions they had previously rated as

eliciting different levels of curiosity, each followed by its answer after a variable time interval

(Figure 1A). Only trivia questions that the participant indicated not knowing the answer to were

included for the fMRI session (see “Trivia question stimulus screening” in the Methods section

for details). In a memory test following the fMRI session, participants were presented with the

trivia questions, and were required to recall the associated answer. Consistent with the

expectation of enhanced learning in a motivated state, participants recalled more answers to

trivia questions that had previously elicited higher levels of curiosity than those eliciting lower

levels of curiosity (t(22) = 9.32, p < .001, d = 1.94, mean difference = .23, 95% CI = [.18 .28],

High Curiosity: M = .63, SD = .17; Low Curiosity: M = .40, SD = .16, Figure 1B).
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Figure 1. Task schematics & Memory performance. (A) Prior to fMRI scanning, participants
were shown a series of trivia questions. For each, they were told to indicate the likelihood that
they knew the answer, and how curious they were about it. Questions were excluded if
participants indicated a high likelihood of knowing the answer. The included questions were
separated into tertile with the 1st and 3rd tertile categorized as Low and High Curiosity
questions respectively (72 questions each). During fMRI scanning, participants were shown
each trivia question along with a colored rectangle that indicated the duration and action
contingency of the trial. On action-contingent trials, an arrow was presented after a 9s or 13s
delay. Participants indicated the direction of the arrow with a button press. This was followed by
the presentation of the trivia answer. On non-action contingent trials, the trivia answer was
presented immediately after the delay interval. Following the scan, participants were shown
each trivia question and were required to recall its associated answer. Analyses of answer
anticipation were based on activity evoked by the Question (the Question Interval). Analyses of
encoding were based on activity evoked by the Answer (Answer Interval, including the response
on action-contingent trials). (B) Box plots for memory recall performance across each condition.
The upper and lower hinges of each box correspond to the first and third quartiles, while the
whiskers correspond to the largest and smallest values within 1.5 times of the interquartile
range. Each dot corresponds to the recall performance of each participant. *** p < .001.
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VTA activation during anticipation of answers increased after high-curiosity questions
and predicted better recall

We used mixed-effects models to examine if trivia questions eliciting higher curiosity also

evoked greater anticipatory activation in the mesolimbic midbrain, hippocampus, and the medial

temporal cortices, regions that have been associated with enhanced learning in a motivated

state (Figure 2; refer to “Univariate analysis - Effects of Curiosity on anticipatory activity” in the

Methods section for model specifications). In line with evidence of midbrain engagement during

motivated learning, anticipatory activation in the VTA was greater following the presentation of

high curiosity questions than following the presentation of low curiosity questions (β = .099, SE

= .045, p = .026).  In the medial temporal cortices, the perirhinal cortex showed a similar effect

of curiosity (β = .085, SE = .036, p = .017), with greater anticipatory activation for high curiosity

than low curiosity questions. While this trend was also observed in the parahippocampal cortex,

it did not reach statistical significance (β = .08, SE = .042, p =.056). In contrast to the medial

temporal cortices, anticipatory activity in the hippocampus was not significantly different

between curiosity states (β = .019, SE = .040, p = .63).

To examine whether anticipatory activation was related to memory for subsequently

presented trivia answers, we used a mixed-effects logistic regression approach with trial-level

univariate activation of all ROIs included as predictors of subsequent recall (i.e. a separate

regressor for each ROI). This approach allows the identification of variance that is uniquely

accounted for by each of the ROIs (Figure 3). Consistent with prior findings, VTA was a

significant predictor of subsequent recall, such that greater VTA activation was associated with a

greater likelihood of recall (β = .121, SE = .049, p = .015). Univariate activation in all other ROIs

was not a significant predictor of memory outcome. To ensure that this was not simply driven by

greater univariate activity for the High curiosity questions, a model comparison was performed

comparing model fit between a model with and without an interaction term for the Curiosity

condition. The inclusion of an interaction term for VTA activation and Curiosity did not result in a

better model fit (χ2 = 1.72, p = .190) , suggesting that fluctuations in anticipatory VTA activation

are related to subsequent recall performance regardless of curiosity states.
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Figure 2. Curiosity increased univariate activation in VTA and Perirhinal cortex during
anticipation of trivia answers. Anticipatory BOLD activation (i.e., during the Question interval
preceding each trivia answer) was greater after High- versus Low-Curiosity trivia questions in
the midbrain VTA and perirhinal cortex (PRC). Hippocampus (HPC) and parahippocampal
cortex (PHC) activation did not differentiate curiosity states. Medial temporal lobe regions of
interest (ROIs), included anticipatory BOLD activation (arbitrary units, a.u.) for the VTA.  Red
overlays on the brain images demarcate the ROIs. The large dots in each panel represent the
group mean; small dots represent mean activation for each participant. Error bars represent the
SEM. * p < .05.
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Figure 3. VTA univariate activation during anticipation of trivia answers uniquely
explains subsequent recall. Anticipatory BOLD activation (i.e., during the Question interval
preceding each trivia answer) in the VTA and medial temporal lobe ROIs was used to predict
memory outcome for each trial in a mixed-effects logistic regression model. This method allows
the identification of variance that is uniquely accounted for by each of the ROIs.  Bar graphs in
each panel represent the parameter estimate for each ROI in the full model. Among the ROIs,
VTA activation was the only statistically significant predictor of subsequent recall of answers.
For visualisation, the estimated predicted probability of recall relative to the individual’s mean
probability (delta from within-subject mean, y-axis) is plotted against the univariate signal in
each ROI (arbitrary units, a.u.; x-axis). Light gray lines depict the slope for each participant,
while the solid black line depicts the mean slope across all participants. Error bars represent the
SEM. * p < .05.

Hippocampal convergence during anticipation of answers increased after high-curiosity
questions and predicted better recall

Given our hypothesis that the motivation to learn would bias anticipatory hippocampal

states toward a successful encoding state that followed the Anna Karenina principle, we devised

an approach to characterize hippocampal states based on their pattern ‘convergence’, or the

distance from an ‘average-state’ (Figure 4A; refer to “Multivariate convergence analysis” in the

Methods section for details). For this analysis, we used a leave-one-run out approach where a

cluster centroid was defined using data from N-1 runs. The multivariate activation pattern for

each trial can be operationalized as a point in a high dimensional state space. The centroid is

10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452391doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452391
http://creativecommons.org/licenses/by-nc/4.0/


the point with the shortest distance (Pearson’s correlation distance) to all other points in the

state space. This centroid was then used as the origin to quantify the distance for trials from the

left-out run. This was repeated for all runs, and each trial was assigned a value representing the

distance between the activation pattern for that trial, and an independently defined ‘average’

pattern. In the current formulation, patterns closer to the centroid (i.e. shorter distances), are

considered to exhibit greater convergence than patterns further from the centroid.

We first examined whether the convergence of anticipatory states in the medial temporal

lobe ROIs was influenced by curiosity (Figure 4B). Consistent with the expectation that a

motivation to learn may bias hippocampal state, we observed a significant main effect of

curiosity, such that spatially distributed patterns in the hippocampus showed greater

convergence (i.e. shorter distance to centroid) during high-curiosity anticipation than during

low-curiosity (β = -.017, SE = .007, p =.011). This effect was seen only in the hippocampus, not

in the surrounding parahippocampal (β = -.009, SE = .011, p =.421 ) or perirhinal cortices (β =

.003, SE = .010, p = .788).

To examine whether state convergence during anticipation predicted subsequent recall

(Figure 4C), we used a mixed effect logistic regression. State convergence in the hippocampus

was the only significant predictor of subsequent recall. Thus, anticipatory activation patterns that

were more convergent were also associated with a higher likelihood of successful memory

formation (β = -0.55, SE = .21, p =.008 ). Like the effects of curiosity, the relationship of

anticipatory convergence to memory was also specific to the hippocampus, and not seen in the

surrounding medial temporal cortices (Parahippocampal cortex: β = =.06, p = .622; Perirhinal

cortex: β = .06, p =.634). While anticipatory univariate activation in the hippocampus was not a

significant predictor of subsequent recall, we ran an additional control analysis including

univariate signal in the hippocampus as a covariate to ensure that the pattern convergence

effect was not driven by differences in signal amplitude. Convergence in the hippocampus

remained a significant predictor after controlling for univariate activation (β = -0.55, SE = .21, p =

.008). Moreover, the inclusion of curiosity as an interaction term improved the model fit (χ2 =

191.28, p < .001 ). Posthoc comparisons showed that the slope was significantly greater in the

low curiosity condition than in the high curiosity condition (βDifference = -1.24, SE = .09, p <.001),

suggesting that low anticipatory hippocampal convergence may be particularly damaging to

subsequent memory formation when the motivation to learn is lower.
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Figure 4. Anticipatory state convergence in the hippocampus is uniquely associated with
curiosity and subsequent recall. A) Patterns of activation for each trial were extracted from
each of the ROIs, and convergence is operationalised as the distance between the activation
pattern of each trial and an independently defined centroid (i.e., an ‘average state’). A
leave-one-run-out approach was used where the cluster centroid was identified using data from
N-1 runs. This centroid was then used as the origin to quantify the distance for trials from the
left-out run. Patterns closer to the centroid (shorter distances) are considered to exhibit greater
convergence than patterns further from the centroid. B) During the anticipation of
High-Curiosity trivia answers, patterns of activation in the hippocampus (HPC) exhibited greater
state convergence, but not the surrounding medial temporal lobe cortices (PHC:
Parahippocampal cortex; PRC: Perirhinal cortex). The larger dots in each panel represents the
group mean, while the smaller dots represent the mean distance for each participant. C) We
used a mixed-effects logistic regression model to predict memory outcome for each trial using
the state convergence of the medial temporal lobe ROIs. Hippocampal convergence was the
only significant predictor of subsequent recall. Bar graph of each panel represents the
parameter estimate of each ROI in the full model. For visualisation, the estimated change in
probability of recall (demeaned within subject) is plotted against the distance from centroid for
each ROI. Light gray lines depict the slope for each participant, while the solid black line depicts
the mean slope across all participants. Error bars represent the SEM. ** p < .01.
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Trial-to-trial VTA activation predicted hippocampal convergence during anticipation of
answers

Central to our primary hypothesis, univariate activation in the VTA during anticipation of

answers was a significant predictor of convergence in the hippocampus (β = -.059, SE = .012, p

< .001, Figure 5A), with greater VTA activation associated with greater hippocampal

convergence (i.e. shorter distances). This result remained robust when univariate hippocampal

activity was included as a covariate (β = -.049, SE = .011, p < .001). To ensure that this was not

simply driven by differences between the curiosity states, a model comparison was performed

comparing model fit between models with and without an interaction term for the Curiosity

condition. The inclusion of an interaction term did not result in a better model fit (χ2 = 0.44, p =

.507), suggesting that the association between VTA activation and hippocampal convergence

was not driven by differences across the curiosity states.

To examine whether convergence in the hippocampus was also associated with

univariate activation in other brain regions, we performed an exploratory whole-brain voxel-wise

analysis correlating hippocampal convergence with each voxel’s univariate activation

(controlling for VTA activation). To control for spurious correlations, a null distribution was

generated for each voxel using a permutation-based approach (500 iterations), and the r-value

at the 95th percentile was subtracted from each voxel. This approach ensured that only

correlation values greater than the 95th percentile of the null distribution are positive, and a

one-sample t-test was then performed across subjects to identify regions showing a significant

correlation with hippocampal convergence. At a statistical threshold of p < .05 (FWE-corrected),

we see significant clusters only in the posterior hippocampus (Peak coord: -22, -32, -2, t =

10.90; Figure 5B) and the early visual cortex (Peak Coord: 16, -86, 6, t = 7.49) .
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Figure 5. Anticipatory VTA activation selectively modulates hippocampal state
convergence. (A) Greater activation in the VTA is associated with greater convergence in the
hippocampus during the anticipation of trivia answers. The bar graph represents the parameter
estimate for the association of VTA activation and hippocampal distance. For visualisation, the
predicted distance from centroid for the hippocampus is plotted against univariate VTA BOLD
activation. Light gray lines depict the slope for each participant, while the solid black line depicts
the mean slope across all participants. Convergence is defined as a shorter distance from
centroid. (B) Whole-brain analysis (controlling for univariate VTA activation) showed that
anticipatory univariate activations in clusters that included the visual cortex and posterior
hippocampus are also positively associated with convergence in the HPC. Error bars represent
the SEM. *** p< .001.
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Hippocampal convergence uniquely accounted for the effect of anticipatory VTA
activation on memory recall

Based on our prediction that activity in the VTA influences subsequent learning through

its influence on hippocampal state, we compared mixed-effects logistic regression models that

included either VTA activation, hippocampal convergence, or both terms. Consistent with our

hypothesis, the inclusion of both VTA activation and hippocampal convergence resulted in a

better fit than a model with only VTA activation (χ2 = 5.19, p = .023), but not a model with only

hippocampal convergence (χ2 = 2.81, p = .09). This was further supported by a mediation

analysis showing a significant mediation of VTA activation by hippocampal convergence (pME =

.276, 95% CI = [.028 1.09], p = .032). Together, these findings suggest that the influence of

anticipatory VTA activation on subsequent recall is primarily mediated via specific effects on

neural state in the hippocampus.

Individual differences in VTA activation and Hippocampal convergence
Complementing the intra-individual analyses reported, we also observed a significant

correlation of VTA activation and hippocampal convergence across individuals, where

participants with greater VTA activation showed greater convergence in the HPC (r = -.56, 95%

CI = [-.79 .19], p =.005). This relationship was observed for both the High curiosity (r = -.57,

95% CI = [-.72 -.22], p =.004 ) and Low curiosity conditions (r = -.44, 95% CI = [-.72 -.04], p =

.033), suggesting that beyond intra-individual variation, individual difference in the engagement

of VTA is also associated with hippocampal convergence.

Additionally, we examined if individual difference in memory performance is associated

with curiosity-related modulation of hippocampal convergence. While we did not observe a

significant correlation between the difference in curiosity-related hippocampal convergence (Low

- High curiosity) and memory benefits (r = -.05, 95% CI = [-.45 .37], p = .831), we did observe a

significant correlation between curiosity-related hippocampal convergence and overall memory

performance (across both conditions) whereby a greater curiosity-related hippocampal

convergence was associated with better memory performance (r = .44, 95% CI = [.03 .72], p =

.037).

Encoding-related convergence in the medial temporal cortices during answers predicted
subsequent recall unrelated to curiosity

While our primary focus surrounds the anticipatory state following the presentation of the

trivia questions, for completeness, we conducted the same analyses for activation associated
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with the presentation of trivia answers. High curiosity was associated with a trend towards

greater activation in the VTA  (β = .059, SE = .031, p = .057). None of the medial temporal lobe

ROIs showed a significant effect of curiosity during the presentation of answers (Hippocampus:

β = -.020, SE = .028, p = .481; Parahippocampal cortex: β = -.017, SE = .029, p = .574;

Perirhinal cortex: β = .036, SE = .024, p = .127). Across all ROIs, only activation in the perirhinal

cortex was associated with a greater likelihood of recall (β = .223, SE = .076, p = .003). These

findings held when activation across both intervals (Question & Answers) were included in a

single model (Supplementary Figure 1), suggesting that univariate activation during the

presentation of questions and answers account for unique variance related to memory

outcomes.

We also performed analyses of pattern convergence during the presentation and

encoding of trivia answers (Supplementary Figure 2). Curiosity did not predict state

convergence during answers in any of the medial temporal lobe ROIs (Hippocampus: β = .002,

SE = .008, p =.750 ; Parahippocampal cortex: β =.006, SE = .011, p =.558; Perirhinal cortex: β =

-.009, SE = .010, p = .361). Convergence during answers in the parahippocampal (β = -.500, SE

= .133, p < .001) and perirhinal cortices (β = -.605, SE = .139, p <.001 ) but not the

hippocampus (β =.124, SE = .184, p = .500), significantly predicted subsequent recall, unrelated

to curiosity. This remained significant after controlling for univariate activation in both the

parahippocampal (β = -.379, SE =.132, p = .004) and perirhinal cortices (β = -.558, SE = .137, p

< .001).

Discussion
The present findings identify midbrain VTA neuromodulation of anticipatory hippocampal

state convergence as a candidate mechanism of motivated memory. By using multivoxel pattern

analysis on fMRI data acquired during anticipation of answers associated with high or low

curiosity, we related univariate VTA activation to states in the medial temporal lobe. After trivia

questions eliciting high curiosity, patterns of activation in the hippocampus, but not the

surrounding medial temporal cortices, were biased towards greater convergence (i.e. lower

variability), and anticipatory hippocampal convergence was uniquely associated with later recall

of the anticipated answers. Across individuals, curiosity-related modulation of hippocampal

convergence was correlated with recall. Most importantly, convergence in the hippocampus was

strongly associated with trial-by-trial variation in anticipatory VTA activation and uniquely

accounted for the relationship between VTA activation and subsequent recall. We conclude that

higher curiosity during anticipation of answers engaged VTA activation, stabilized anticipatory
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convergence states specifically in the hippocampus, and thus enhanced memory formation.

This observed cascade offers potential answers to longstanding questions about

neuromodulation of memory and about fundamental hippocampal mechanisms.

Our approach leverages prior work in which fMRI multivoxel pattern analysis was used to

examine representations of content during encoding. In prior studies, similarity in neural

patterns across repeated occurrences of the same stimulus was associated with better memory,

attributed to reinstatement of stimulus specific information (Poh and Chee, 2017; Xue et al.,

2010, 2013). Similar analytical approaches comparing patterns of activation across consecutive

timepoints have also been used to examine temporal dynamics in the hippocampus (Brunec et

al., 2018). Here, we used pattern analysis not to study stimulus representations or temporal

dynamics, but rather to identify consistent engagement of states or cognitive processes

associated with the anticipation of answers and successful memory formation. Our measure,

convergence, is defined based on the distance from an average activation pattern that includes

trials from all conditions, so our finding implies that patterns associated with subsequent

remembering exhibit greater ‘typicality’, while patterns associated with forgetting show greater

variability. This dissociation is consistent with the expectation that successful memory formation

is likely to require the convergence of multiple cognitive operations and physiological conditions,

while memory failures can arise from disruption to any of the component elements, following the

Anna Karenina principle. In the domain of human neuroimaging, this principle has been applied

in large-scale network analysis to examine individual differences (Finn et al., 2020). Here, by

showing that hippocampal convergence was positively associated with both activation in the

midbrain and with subsequent recall (Figure 6), we demonstrate that the Anna Karenina

principle can similarly be applied to examine intra-individual variability in cognitive states to

predict momentary behavior.

18

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452391doi: bioRxiv preprint 

https://paperpile.com/c/YlEKpj/LCJ3j+71COX+9iXYQ
https://paperpile.com/c/YlEKpj/LCJ3j+71COX+9iXYQ
https://paperpile.com/c/YlEKpj/1Exlj
https://paperpile.com/c/YlEKpj/1Exlj
https://paperpile.com/c/YlEKpj/isfsQ
https://doi.org/10.1101/2021.07.15.452391
http://creativecommons.org/licenses/by-nc/4.0/


Figure 6. Schematic depiction of Hippocampal convergence with neuromodulation from
the VTA. During the anticipation of high curiosity answers, neuromodulation by the VTA
promotes the consistent engagement of neural states/processes in the hippocampus that
supports the formation of new memories. This can manifest as greater convergence in
distributed patterns of activity. In the absence of neuromodulatory inputs from the VTA (during
low curiosity), patterns of activity in the hippocampus can show greater variability. This
increased convergence in hippocampal state with VTA neuromodulation may be supported by
the stabilization of specific attractors and the suppression of noise-driven transitions between
different possible attractor states.
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While our current approach is agnostic to underlying processes manifesting in a

convergence state, a central question that remains is how an anticipatory convergence state in

the hippocampus specifically benefits the formation of new memories. We consider two potential

mechanisms. First, it has been suggested that the hippocampus can maintain multiple spatial

maps of the environment, allowing for dynamic switching between spatial frames depending on

the relevant context (Kelemen and Fenton, 2016). Here, a ‘contextual frame’ account would

suggest that convergence in the hippocampus may reflect the instantiation of a ‘motivated

context /map’ that serves as the scaffold in which new memories may be embedded. This

instantiation of a specific reference frame may be akin to processes underlying the ‘Memory

palace’ or the method of loci mnemonic device, where memorization is supported through the

active instantiation and maintenance of a spatial reference frame that accommodates the

‘storage’ of to-be-remembered information. An alternative from dynamic systems is an optimal

subspace account. In studies of voluntary movement, it has been suggested that preparatory

activity in the motor cortex may reflect the initialization of a neural state within an optimal

subspace, while an evolving neural trajectory encodes the motor execution (Churchland et al.,

2006, 2010a). In the memory domain, information to be encoded may be similarly represented

as a neural trajectory that evolves from an anticipatory state, with trajectories originating from an

optimal subspace predicting memory formation. High trial-to-trial variability in initial state could

increase overlap of the subsequent encoding trajectories, reducing the distinctiveness of

memory traces (Zylberberg et al., 2016). Much in the same way that hikers may halt a

conversation when attempting to locate the sound of a flowing stream, a convergent state may

thus reduce noise-driven variability, supporting more efficient encoding of the incoming signal.

Related lines of work on spontaneous brain dynamics have consistently shown that

variability in neural response can be reduced by exogenous stimulus (Churchland et al., 2010b)

or by endogenous allocation of attention (Arazi et al., 2019; Cohen and Maunsell, 2009). This

reduction in neural variability has been associated with enhanced processing of stimulus-related

information (Schurger et al., 2015), and greater sensitivity in perceptual performance (Arazi et

al., 2019). Computational accounts have proposed that the underlying mechanism of such

reduction in neural variability may be the stabilization of specific attractors and the suppression

of noise-driven transitions between different possible attractor states (Deco and Hugues, 2012).

Though it may be tempting to attribute our current observation to similar underlying

mechanisms, there are several key differences that should be noted. While the reduction in

neural variability has been observed across widespread brain regions at different levels of

analysis  (e.g. extracellular recording (Churchland et al., 2010b), MRI (He, 2013), ECoG (He
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and Zempel, 2013), EEG (Arazi et al., 2017)), these are primarily observed in neocortical

regions and it is uncertain if the same phenomenon would manifest in the hippocampus. In our

current study, hippocampal convergence was modulated by curiosity and was predictive of

subsequent recall only during anticipation (Question interval), whereas convergence in the

medial temporal cortices was predictive of memory only during the presentation of information

(Answer interval). These findings are consistent with an account of enhanced information

processing with reduced neural variability, but also raises an intriguing possibility that

convergence in the hippocampus may be more strongly modulated by internal states (curiosity

in this case), whereas convergence in the medial temporal cortices may be more strongly

associated with attention to external stimulus.

The idea that internal motivational states like curiosity modulate hippocampal function

has now been substantiated by accumulating evidence that midbrain dopaminergic circuitry

interacts with the hippocampus across multiple timescales to influence the formation of episodic

memory. Neurobiological mechanisms that have been proposed to explain the effects of

dopamine on memory formation in the hippocampus include meta-plastic changes, such as

lowering the threshold for LTP (Li et al., 2003; Otmakhova and Lisman, 1996), or ‘tagging’ for

subsequent consolidation (Redondo and Morris, 2011). It is unclear how, or whether, such

meta-plastic changes would translate to metabolic demand, and thus changes in univariate

BOLD activity during encoding. However, neuromodulation by dopamine can also alter the

physiological properties of the hippocampus. We reasoned that while an fMRI analytical

approach cannot provide evidence about meta-plastic changes not reflected in BOLD, it is

well-suited to detect modulatory influences that establish a distributed state across the

hippocampus conducive to memory formation, including the convergence state we

hypothesized.

It is known that the hippocampus can exhibit distinct functional states that influence how

information is processed and subsequently encoded (Carr and Frank, 2012; de Chastelaine and

Rugg, 2015; Fell et al., 2011; Guderian et al., 2009; Kennedy and Shapiro, 2009; Richter et al.,

2016; Urgolites et al., 2020; Wolosin et al., 2013; Zeithamova et al., 2018). Computational

models of episodic memory have proposed that the hippocampal memory system may alternate

between functional states supporting encoding or retrieval (Decker and Duncan, 2020;

Hasselmo et al., 1996, 2002; Meeter et al., 2004; Paulsen and Moser, 1998). While alternation

between encoding and retrieval states has been suggested to occur on a rapid timescale based

on theta phase, evidence from both human (Kirov et al., 2009; Long and Kuhl, 2019) and rodent

(Molter et al., 2012) studies have also shown oscillatory signatures of sustained states aligned
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with the timescales of neuromodulatory influence. Such sustained state changes have similarly

been observed using fMRI, where patterns of activation were successfully used to classify

states associated with encoding or retrieval (Richter et al., 2016), and in identifying fluctuation of

network states relating to encoding success (Keerativittayayut et al., 2018). In addition,

behavioral studies have also shown evidence that hippocampal processing can fluctuate

between a bias towards pattern separation or completion over several seconds (Duncan et al.,

2012; Patil and Duncan, 2017). As our current analytical approach focuses on anticipatory

convergence states, it is unclear if our observation corresponds to any of the previously

identified states, or to a theoretical ‘encoding-state’. However, it should be noted that the current

task requires not only encoding of the trivia answer, but also binding of the answer to the

associated question. Although we have no separate measures of item encoding and relational

binding, we saw a dissociation consistent with their distinct roles (Davachi, 2006; Davachi and

Mitchell, 2003; Davachi and Wagner, 2002) in item and relational memory: recall was predicted

by hippocampal convergence bridging the gap between the question and answer, but by

perirhinal convergence during presentation of answers alone. The observation of different

intervals for involvement of hippocampal and perirhinal convergence also speaks against a

purely attentional account of our findings, as the maintenance of attention should be sustained

across time, manifesting in both intervals.

In human fMRI studies, overall increases in activation of the midbrain and the

hippocampus preceding (Adcock et al., 2006; Gruber et al., 2014; Wittmann et al., 2005), during

(Aberg et al., 2020; Loh et al., 2016; Ripollés et al., 2016; Wolosin et al., 2012), and following

encoding (Gruber et al., 2016; Murty et al., 2017; Tompary et al., 2015) have been related to

better subsequent memory performance. While these prior findings are consistent with an

account of dopaminergic neuromodulation, the mechanisms of such effects have remained to be

specified. As discussed above, some known mechanisms of dopamine on hippocampal

plasticity (metaplastic tag and capture, lowered LTP threshold) might not manifest in univariate

BOLD activation. In particular, it was previously unknown how or whether spatially distributed

patterns of activity in the hippocampus are modulated by midbrain activity. Our work bridges

these gaps, further substantiating an account of neuromodulation of the hippocampus by

midbrain activity, by showing a trial-level association between activation in the midbrain and

convergence of distributed patterns in the hippocampus.

In contrast to the results of prior studies showing greater univariate activation in the

hippocampus preceding successful memory formation (Adcock et al., 2006; Gruber et al., 2014),

we observed a relationship between subsequent memory not with univariate signal magnitude,
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but with multivariate pattern convergence. Apart from key differences in experimental design

that could have influenced anticipatory activity in prior studies, such as the use of intentional

encoding (Adcock et al., 2006), or the expectation of irrelevant faces (Gruber et al., 2014),

several analytical decisions may also have contributed to the difference in observations. In

particular, our current univariate analysis is performed on the average signal across all voxels

within our ROI, and was not optimized to isolate localised univariate differences. Additionally, in

both of the prior studies, the mnemonic effect in the hippocampus was specific to the high

motivation condition, whereas here, we showed that multivariate convergence in the

hippocampus was associated with subsequent recall in both the high and low curiosity states,

suggesting that distributed patterns of activity may be more sensitive for the detection of such

mnemonic effects. However, it should be noted that multivariate convergence and univariate

event-related activation can co-occur, as evidenced in the medial temporal cortices during

answer presentation, where both univariate activation and multivariate convergence were

associated with subsequent recall. Furthermore, convergence in medial temporal cortices

remained a significant predictor of recall when controlling for univariate activity, suggesting that

these measures have dissociable mechanisms contributing to memory formation. We did not

observe an association between anticipatory midbrain and anticipatory hippocampal univariate

activation. Prior findings aside, this should not be entirely surprising, because not all

neuromodulatory effects that promote memory formation should be evident in changes in

magnitude of BOLD activation; this premise is a main motivation for the current study. An

optimal subspace account could explain prior findings of increased anticipatory univariate

activation within the hippocampus: Such activation would be expected under conditions where

greater metabolic activity is required to 'shift' ongoing states into the optimal subspace.

Our current contribution focuses on evidence of neuromodulation of the hippocampus by

dopaminergic nuclei in the midbrain. It should be noted that activation of the midbrain is also

associated with the release of other neurotransmitters besides dopamine, and the hippocampus

is also innervated by other major neuromodulatory nuclei including the basal forebrain, the

primary source of cholinergic projections. The release of acetylcholine in the hippocampus has

been shown to promote memory formation, and it has been suggested that the fluctuations in

levels of acetylcholine can drive functional states in the hippocampus, with high acetylcholine

promoting an encoding state and pattern separation, while low acetylcholine may promote a

retrieval state and pattern completion (Decker and Duncan, 2020; Hasselmo, 1999; Hasselmo

et al., 1995). Although our exploratory whole-brain analysis did not reveal a significant

association in the basal forebrain, this could be due to a lack of sensitivity in our current
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approach. It should be noted that the noradrenergic locus coeruleus (LC) has also been shown

to release dopamine in the hippocampus (Kempadoo et al., 2016; Takeuchi et al., 2016), and

recent work in mice has suggested that novelty-enhanced memory may be more strongly

dependent on projections from the LC than the VTA (Takeuchi et al., 2016). While our current

acquisition precludes a precise localization of the LC, future work should also examine if activity

in the LC is similarly associated with hippocampal convergence. If hippocampal convergence is

an outcome of dopaminergic modulation irrespective of its source or dynamics, then many

manipulations, including novelty and prediction error, should all promote greater hippocampal

convergence. We have argued previously that mesolimbic signalling to the hippocampus is

more likely to be sustained than phasic (Shohamy and Adcock, 2010; Murty et al., 2016). An

intriguing possibility is that hippocampal convergence is a memory mechanism specific to

modulation by dopamine from mesolimbic projections.

Finally, while we interpret the VTA-Hippocampal interaction here from a neuromodulatory

perspective, with hippocampal convergence as an outcome of VTA modulation, it should be

noted that activity in the VTA is also influenced, indirectly, by signalling from the hippocampus

(Floresco et al., 2001; Lisman and Grace, 2005). We have previously modeled VTA activation in

fMRI data using this reciprocal relationship (Murty et al., 2016).  Further studies will be

necessary to clarify the directionality and neurotransmitter specificity of these anatomical

relationships. A main contribution of the present work is a candidate physiological manifestation

of neuromodulation, to be tested via further investigation in both human and animal models.

Conclusion
Using a novel systems-level characterization of hippocampal function, a stable

convergence state, we demonstrate a potential mechanism of mesolimbic neuromodulation that

can account for its effects on memory formation. The present study suggests that activation of

the midbrain VTA by curiosity promotes an anticipatory convergence state specific to the

hippocampus that may be optimal for the encoding of new information. These findings set the

stage for future work to understand distinct neural signatures of functional states and

neuromodulatory system effects. Broadly speaking, the concept of a convergence state could

hold promise to not only illuminate modulation of memory, but also potentially unite piecemeal

understanding of individual mechanisms into a cohesive picture of the role of the hippocampus

in memory formation.
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Methods
Subjects

Twenty-five healthy, right-handed young adults were recruited for the study. All

participants provided informed consent for our study protocol approved by the Duke University

Institutional Review Board. Two participants had to be excluded (one participant fell asleep

during the scan, and one did not complete the scanning session), and all remaining 23

participants were included in the analyses (10 female; Mean age = 26.4 years,

Age range = 19-35 years).

Tasks
Trivia question stimulus screening

We selected 360 trivia questions from the stimuli used in the study by Gruber and

colleagues (2014), and a pre-task screening session was used to sort trivia questions into high-

and low- curiosity categories for each participant. For the pre-screening session, participants

were presented with a series of trivia questions and they were required to make self-paced

ratings on a continuous scale. Participants responded to the following questions: 1) “How likely

is it that you know the answer?” and 2) “How curious are you about the answer?”. Trivia

questions were excluded if participants indicated a high likelihood of knowing the answer (>90%

on the scale), and they responded until 216 trivia questions were eligible for inclusion. Included

trivia questions were separated into tertiles based on curiosity ratings (72 questions each), with

questions in the 1st and 3rd tertiles categorized as low and high curiosity respectively. Twelve

questions from the 2nd tertile were used as catch trials during encoding and were not included

in any analysis.

Incidental encoding of trivia questions and answers

Participants performed the encoding task during fMRI scanning where they were shown the

trivia questions (Question Interval) and were presented with the associated answer (Answer

Interval) after a variable delay interval. During the question presentation, participants were

shown a single trivia question together with a colored rectangle for 4 seconds. The colored

rectangle indicated the duration and action contingency for the upcoming trial, whereby the

length of the rectangle indicated the duration of the anticipation period (9s or 13s), and the color

indicated if participants were required to make a button press to see the trivia answer. On trials

that required a button press, a green arrow appeared on the left or right side of the screen, and

participants made a button press to indicate the side that the arrow was presented on. For
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action contingent trials, the trivia answer was shown only if the participants responded correctly

or the string ‘XXXXX’ would be presented (Participants were highly accurate and saw the trivia

answer for most trials (M = 98.6%, SD = 0.4). Only trials that were correctly responded to were

included for subsequent analyses).  On non-action contingent trials, the trivia answer was

shown at the end of the anticipation period. The manipulation of action-contingency was

performed for the investigation of a separate research question that would be elaborated on in a

separate communication. The trivia answer was presented for 1 second, following which,

participants performed an active baseline task where they were required to count backward

from different starting numbers for a duration between 1 to 20 seconds. To encourage

compliance with the active baseline task, catch trials occurred at random intervals, and

participants were required to indicate whether their current count was above or below a given

number. There were a total of 12 catch trials and trivia questions presented following the catch

trials (taken from the 2nd tertile) were not included in the analysis.

Participants underwent a total of 6 scanning runs (10 mins each), with 12 high curiosity

trials, 12 low curiosity trials, and 2 catch trials presented within each run. Within each curiosity

condition, there was an equal number of action contingent and non-action contingent trials.

Condition onset and trial intervals were optimized using OptSeq2 (Dale, 1999).

Surprise Recall

Immediately following the scan, participants were given a surprise recall test for the trivia

questions. Participants were shown all 144 (72 High and 72 Low curiosity) trivia questions in

random order, and were required to type out the correct answer for each question. Participants

were told not to make any guesses if they were unable to remember the correct answer.

MRI Data Acquisition
MRI data were acquired on a 3T GE Signa MRI scanner at the Duke Brain Imaging and

Analysis Center. fMRI data for each participant were acquired using an echo-planar imaging

(EPI) sequence (TE = 27ms, flip angle = 77 degrees, TR = 2000ms, voxel size = 3.75mm x

3.75mm)  with 34 axial slices (slice thickness = 3.8mm). Participants completed a total of 6

functional scan runs each consisting of 298 fMRI volumes. Cardiac and respiratory physiological

data were also collected during functional scans using BioPac. Prior to the functional scans,

whole-brain, inversion recovery, spoiled gradient high resolution anatomical image (voxel size =

1mm isotropic) was collected for spatial normalization.
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fMRI Preprocessing

Preprocessing of the fMRI data was performed using fMRI Expert Analysis Tool (FEAT)

Version 6.00 implemented on FSL 5.0.8 (www.fmrib.ox.ac.uk/fsl). The first 6 volumes from each

scan run were discarded to allow for signal stabilization. Physiological noise correction was

performed using the Physiological Noise Modeling toolbox in FSL. Skull stripping was performed

using BET (Jenkinson et al., 2005), and images were realigned within-run, intensity normalized

by a single multiplicative factor, spatially smoothed with a 4 mm full-width half-maximum

(FWHM) kernel, and subjected to a high-pass filter (80s). The 4mm smoothing kernel was

chosen to optimize the differentiation of midbrain and hippocampal signals (Adcock et al., 2006).

Spatial normalization was performed using a two-step procedure using FLIRT, where mean EPI

from each run was co-registered to the high-resolution anatomical image, which was followed by

the normalization of the high-resolution anatomical image to MNI space using a nonlinear

transformation with a 10mm warp resolution.

Defining regions-of-interest

To examine how activity in the midbrain interacts with the medial temporal lobe (MTL),

we identified regions of interest which included the midbrain VTA and regions within the MTL.

The VTA was defined using a probabilistic atlas thresholded at 50% (Murty et al., 2014). Three

separate ROIs were defined within the medial temporal lobe, which included the hippocampus

proper, perirhinal cortex and parahippocampal cortex. The hippocampus was defined using the

Harvard-Oxford structural atlas, while the perirhinal and parahippocampal cortex were defined

using anatomical mask from (Ritchey et al., 2015). All ROIs were defined in MNI space.

Analysis
Due to a programming error, trivia questions for one participant were not correctly

selected (based on screening), and 62 trials were removed from subsequent analysis. Statistical

analysis was performed using linear and logistic mixed-effects modeling using the lme4 (Bates

et al., 2015) and lmerTest (Kuznetsova et al., 2017) packages in R (R Core Team, 2020). Data

visualization was generated using the ggplot2 package (Wickham, 2016).

Behavioral Analysis of Memory performance

Memory performance was analyzed using a paired t-test comparing recall rates between

the high and low curiosity condition. An additional analysis was also conducted using repeated

measure ANOVA with curiosity and action-contingency as factors. Post-hoc comparisons were
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conducted based on the contrast of estimated marginal means, and recall rate was greater for

the high curiosity condition across both levels of action-contingency.

fMRI Analysis

To capture trial-level estimates, we used the Least-squares separate approach (Mumford

et al., 2012) to estimate the betas associated with each condition at each trial. Briefly, each trial

is estimated using a separate model where the trial of interest is modeled as a separate

regressor from all other trials. Separate parameter estimates were obtained for the question

interval and during the answer interval, resulting in a total of 288 separate models (144 trials x 2

intervals). Parameter estimates were converted to t-values and normalized to z-values. Voxel

values from the z-maps were used for both univariate and multivariate analyses.

Univariate analysis - Effects of Curiosity on anticipatory activity

Univariate analyses were conducted using the mean value across all voxels within each

ROI during the anticipation of trivia answers (following Question presentation). Linear-mixed

effects analysis was conducted for each ROI with curiosity state as fixed effect, and subjects as

random effect. As previously mentioned, the manipulation of action-contingency was performed

for the investigation of a separate research question, and for the current study,

action-contingency was omitted from all models to increase statistical power given the limited

number of trials. However, it should be noted that there was neither a main effect nor interaction

of action-contingency in any of our ROIs, and the inclusion of action-contingency as a covariate

did not alter any of our findings. Post-hoc comparisons were performed on the estimated

marginal means using the emmeans package.

Multivariate convergence analysis

For the proposed analysis, patterns of activation in the ROIs are operationalised as

points in an N-dimensional space, with N being the number of voxels in each ROI. Distance in

the current analysis was measured using correlation distance (1 - Pearson’s r), a distance

metric commonly used in multivoxel pattern analysis. To examine the association between VTA

activity and neural state in the medial temporal lobe, we devised an approach to quantify the

trial-by-trial variation in neural state based on their distance from an independently defined

centroid. The cluster centroid is a point with the shortest distance to all other points in high

dimensional state space, and can be thought of as an ‘average-state’. We defined the centroid

using a leave-one-run-out approach, where the cluster centroid was identified, with a k-means
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algorithm, using data from N-1 runs. This centroid was then used as the origin to quantify the

distance for trials from the left-out run. Centroids for the analysis of the anticipatory period were

defined using activation patterns from the Question interval, while analysis for the encoding of

answers were defined using activation patterns from the Answer interval. This was repeated for

all runs and was performed independently for each subject. The convergence for each trial was

quantified based on their distance from the independently defined centroid. As the trials being

measured do not contribute to the definition of the centroid (which they are measured relative

to), this approach ensures the independence of the tested trials and the centroid-defining

samples. Additionally, this also ensures that the quantification of convergence is not confounded

by temporal correlation (since the centroid is defined using data from a different scanning run).

In the current formulation, patterns closer to the centroid (i.e. shorter distance) are considered to

exhibit greater convergence than patterns further from the centroid. This operationalization is

similar to measures of neural variability, whereby a larger absolute difference from the average

signal amplitude is considered to reflect greater trial-to-trial variability (e.g. He and Zempel,

2013). In contrast to a conventional linear classification approach, which would be suboptimal

given the small number of datapoints and the imbalance between conditions in the current study

(between number of Remembered and Forgotten trials), this approach also capitalizes on the

expectation that successful memory formation is likely to require the consistent convergence of

multiple factors, while the lack of any could impede memory formation.

Relating univariate activity and multivariate convergence

To examine if multivariate convergence in the hippocampus is associated with univariate

activity in the midbrain VTA, a linear mixed effects model was implemented with trial-level

univariate activation as a predictor of hippocampal convergence. The model included subjects

as random intercepts, and VTA activity as a random slope. Mediation analysis was performed

using the mediation package.

To examine if convergence in the hippocampus is also associated with univariate

activation in other brain regions, we performed an exploratory whole-brain voxel-wise analysis

correlating hippocampal convergence with each voxel’s univariate activation (controlling for VTA

activation). To control for spurious correlations, a null distribution was generated for each voxel

using a permutation-based approach (500 iterations), and the r-value at the 95th percentile was

subtracted from each voxel. This approach ensured that only correlation values greater than the

95th percentile of the null distribution are positive. A  one-sample t-test was implemented using

SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), to identify regions showing a significant correlation
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with HPC convergence across all subjects. Significant voxels were identified using a threshold

of FWE p <.05.

Relating brain activity and memory outcomes

To examine the behavioral relevance of univariate and multivariate measures of brain

activity,  mixed effects logistic regression was performed with trial-level brain measures (i.e.

univariate activation or multivariate state convergence) of all ROIs included as predictors of

subsequent recall. By including all ROIs in a single model, this approach allows the identification

of variance that is uniquely accounted for by the activity of each ROIs. For all mixed-effects

models, subjects were included as random intercepts, and random slopes were included if it

generated a better model fit based on model comparisons evaluated using a likelihood ratio test.

Data and code availability
Matlab code used for convergence analyses will be made available at -

https://github.com/JiaHou-Poh/ConvergenceState. The dataset for the current study is available

upon reasonable request.
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Supplementary Materials

Supplementary Figure 1. Parameter estimates for the logistic regression of memory recall
with univariate activation across both the Question and Answer intervals. Anticipatory
BOLD activation (during both the Question and Answer interval) in the VTA and medial temporal
lobe ROIs was used to predict memory outcome for each trial in a mixed-effects logistic
regression model. This method allows the identification of variance that is uniquely accounted
for by each of the ROIs across both intervals. During the Question interval VTA activation was
the only statistically significant predictor of subsequent recall of answers, while during the
Answer interval PRC activation was the only statistically significant predictor of subsequent
recall of answers. Error bars represent the SEM. * p < .05, ** p < .01.
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Supplementary Figure 2. State convergence in the medial temporal lobe during the
presentation of answers. A) During the presentation of trivia answers, curiosity did not
influence convergence in any of the medial temporal lobe ROIs. The larger dots in each panel
represents the group mean, while the smaller dots represent the mean distance for each
participant. B) We used a mixed-effects logistic regression model to predict memory outcome
for each trial using the state convergence of the medial temporal lobe ROIs. Convergence in the
medial temporal cortices (PHC & PRC), but not the Hippocampus, were significant predictors of
subsequent recall. Bar graph of each panel represents the parameter estimate of each ROI in
the full model. For visualisation, the estimated change in probability of recall (demeaned within
subject) is plotted against the distance from centroid for each ROI. Light gray lines depict the
slope for each participant, while the solid black line depicts the mean slope across all
participants. Error bars represent the SEM. *** p < .001
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