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Highlights 14 

 Ultra-deep metaproteomics reveals high protein-level functional redundancy in the human 15 

gut microbiome 16 

 Within-sample proteomic content networks display universal topology 17 

 Various environmental factors influence the redundancy of expressed functions 18 

 Functional hub genera are present across different datasets 19 

Summary 20 

Functional redundancy is a key property of ecosystems and represents the fact that phylogenetically 21 

unrelated taxa can play similar functional roles within an ecosystem. The redundancy of potential 22 

functions of human microbiome has been recently quantified using metagenomics data.  Yet, the 23 

redundancy of functions which are actually expressed within the human microbiome remains largely 24 

unexplored. Here, we quantify the protein-level functional redundancy in the human gut microbiome 25 

using metaproteomics and network approaches. In particular, our ultra-deep metaproteomics 26 

approach revealed high protein-level functional redundancy and high nestedness in proteomic 27 

content networks - bipartite graphs that connect taxa with their expressed functions. We further 28 

examined multiple metaproteomics datasets and showed that various environmental factors, 29 
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including individuality, biogeography, xenobiotics, and disease, significantly altered the protein-level 1 

functional redundancy. Finally, by projecting the bipartite proteomic content networks into unipartite 2 

weighted genus networks, functional hub genera across individual microbiomes were discovered, 3 

suggesting that there may be a universal principle of functional organization in microbiome assembly. 4 

Introduction 5 

The human gut microbiome is a complex ecosystem harboring trillions of microorganisms. Its 6 

taxonomic composition, functional activity and ecosystem processes have important consequences 7 

on human health and disease. It is crucial to study the human gut microbiome in the context of 8 

ecological communities (Gilbert and Lynch, 2019). Currently, the organizational principles and 9 

ecosystem functioning of the human gut microbiome remain under-investigated. 10 

Structure-function relationships are a determining factor of ecological properties in the human gut 11 

microbiome (Vieira-Silva et al., 2016). Functional redundancy (FR) is considered to be one of the key 12 

ecological properties in microbial communities (Loreau, 2004). As a classical notion in community 13 

ecology, FR is closely related to the concept of ecological guilds, stating that species are grouped 14 

together based on the similarities of how they function in the community (Root, 1967; Wu et al., 15 

2021). A high level of FR implies that members in a community maybe substitutable with little impact 16 

on the overall ecosystem functionality (Lawton and Brown, 1993). 17 

Recently, a quantitative measure of FR for microbiome samples based on metagenomics data and the 18 

notion of genomic content network (GCN) was proposed (Tian et al., 2020). It was reported that the 19 

high level of FR in the human gut microbiome is related to a few topological features (e.g., the highly 20 

nested structure) of the GCN. Importantly, by definition, GCN-based FR calculations are derived from 21 

measuring the gene composition of a microbiome, without any regard for whether these genes are 22 

actually expressed. In other words, the within-sample FR calculated from the GCN only represents the 23 

redundancy of potential functions of a microbiome sample (i.e., the DNA-level FR), rather than the 24 

redundancy of actually expressed functions (e.g., protein-level FR).  25 

Here we seek to quantify the redundancy of expressed functions for microbiome samples. To achieve 26 

that, functional microbiome profiling that can universally capture the expressed functions from 27 

microbes is required. Metaproteomics is a powerful tool that can bring microbiome studies to a level 28 

permissible to measuring expressed functions (Kleiner, 2019; Li and Figeys, 2020; Salvato et al., 29 

2021). It identifies proteins and quantifies their abundances from microbiome samples based on 30 
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liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. In the last few years, 1 

metaproteomics has experienced an exponential growth in its identification coverage (Zhang et al., 2 

2017), providing invaluable deep insights into the expressed functional activities of microbiomes. In a 3 

typical metaproteomics analysis, quantified proteins are used to determine the functional 4 

composition, taxonomic origins of the expressed functions, and to identify functional pathway 5 

changes through multivariate statistical analysis (Salvato et al., 2021; Zhang and Figeys, 2019).  6 

In this study, we quantified the redundancy of expressed functions in the human gut microbiome 7 

based on ultra-deep metaproteomics data. Following the GCN approach (Tian et al., 2020), we 8 

constructed a proteomic content networks (PCN) for each microbiome sample by linking the taxa 9 

(identified from metaproteomics data) to their expressed proteins. Using tools from network science, 10 

we investigated the topological properties of these PCNs, and compared their matched GCNs from 11 

shotgun metagenomics. We next examined whether the topological properties of the PCNs are 12 

similar in metaproteomics datasets obtained by different analytical workflows and instrument 13 

platforms. Finally, we computed the associations between the protein-level FR and various host 14 

factors such as disease status and xenobiotics stimulation. 15 

Results 16 

Proteomic content networks are highly nested 17 

We first constructed sample-specific PCNs using a dataset generated by an in-depth metaproteomics 18 

approach. Briefly, aliquots from four individuals’ ascending colon microbiome samples were 19 

subjected to protein extraction and digestion, followed by a high-pH reversed-phase fractionation 20 

(Batth et al., 2014) and a LC-MS/MS analysis (Figure 1). Metaproteomics RAW files were analyzed by 21 

our MetaPro-IQ approach (Zhang et al., 2016) using the integrated gene catalog (IGC) database of the 22 

human gut microbiome (Li et al., 2014). On average, 69,280 unique peptides and 30,686 protein 23 

groups were quantified per sample. The depth of peptide and protein quantification increased 54% 24 

and 49%, respectively, compared to our previously reported deep metaproteomics approach (Zhang 25 

et al., 2017) (Supplementary Figure S1). Using a “protein-peptide bridge” method (Figure 1 and 26 

Supplementary Notes), functions that were annotated by protein groups and taxonomy that were 27 

identified by unique peptides were linked to construct the sample-specific PCN. These four 28 

microbiome samples were previously analyzed by metagenomics in the MetaPro-IQ study (Zhang et 29 

al., 2016). The metagenomics data were searched against the IGC database to construct the GCNs 30 
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(see Methods). The PCNs achieved a reasonable depth and correlationship with the corresponding 1 

GCNs (Supplementary Figure S2). 2 

We emphasize that those sample-specific GCNs can be combined to form a reference GCN for any 3 

given population, because the genomic content of a taxon should not be sample-dependent (Tian et 4 

al., 2020). By contrast, sample-specific PCNs cannot be combined to form a reference PCN, because 5 

the expressed protein content of any taxon is context-dependent. In that light, here we compare the 6 

GCN and PCN of each sample separately (Figure 2). Figure 2B shows a tripartite plot connecting 7 

microbial phyla and functional categories indicated from gene and proteins from one individual 8 

microbiome (HM454). This demonstrated that while some functional categories (e.g., energy 9 

production and conversion (C), carbohydrate metabolism and transport (G) etc.) showed expression 10 

from predicted functions in most phyla, there are functions (e.g., RNA processing and modification 11 

(A), mobilome (X) etc.) that were rarely expressed from the genes. Similar results were found for 12 

other samples (Supplementary Figures S4-S6). Due to the fact that some protein or peptide 13 

sequences are shared between two or more organisms in complex microbial communities, as a trade-14 

off between depth and coverage, we analyzed the PCN at the genus level. The PCNs of individual 15 

microbiomes showed highly nested structures (Figure 2A). Nestedness metric based on Overlap and 16 

Decreasing Fill (NODF) showed that the PCNs in the four individuals’ microbiomes are highly nested 17 

networks (NODF = 0.42 ± 0.01, Mean ± SD, N = 4). 18 

We then calculated the degree distributions of genera and COGs in the PCNs and the GCNs, 19 

respectively. On the functional dimension, similar to previous observations in GCNs (Tian et al., 2020), 20 

the degree distributions of COGs in both the GCN and PCN have fat tails, representing COGs 21 

associated with a high number of taxa (Figure 2C). We performed enrichment analyses using the top-22 

200 most linked COG nodes in the PCN incidence matrices, and discovered highly enriched functional 23 

categories of carbohydrate, amino acid and nucleotide metabolism, as well as energy production and 24 

conversion (Supplementary Figure S3). On the taxonomic dimension, in comparison to the PCN, the 25 

GCN had a relatively larger number of genera with high degrees (Figure 2C). This could be due to the 26 

fact that although many genera encoded genes for complex functional capacities, only a small 27 

subgroup were actually expressing these genes and thus actually playing complex functional roles. 28 

Redundancy differs between potential and expressed functions 29 
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We next compared the within-sample FR calculated from the metagenome (functional potentials) 1 

and the metaproteome (expressed functions), denoted as FRg and FRp, respectively. Following 2 

the definition of within-sample FR as previously described (Tian et al., 2020), we have  3 

FR ≡ TD − FD =  ∑ ∑(1 − 𝑑𝑖𝑗)𝑝𝑖𝑝𝑗

𝑁

𝑗≠𝑖

𝑁

𝑖=1

                                       (1) 4 

where TD = 1 − ∑ 𝑝𝑖
2𝑁

𝑖=1 = ∑ ∑ 𝑝𝑖𝑝𝑗
𝑁
𝑗≠𝑖

𝑁
𝑖=1  is the taxonomic diversity measured by the Gini-5 

Simpson index, FD = ∑ ∑ 𝑑𝑖𝑗𝑝𝑖𝑝𝑗
𝑁
𝑗≠𝑖

𝑁
𝑖=1  is the functional diversity measured by Rao’s quadratic 6 

entropy, 𝑝𝑖  is the relative abundance of taxon i in a community/sample of N taxa, 𝑑𝑖𝑗  denotes the 7 

functional distance between taxa i and j measured by the weighted Jaccard distance between their 8 

genomic (or proteomic) contents (see Methods).  9 

We emphasize that FR of a microbiome sample, as defined in Eq.(1), can be interpreted as the 10 

average functional similarity (or overlap) of two randomly chosen members in the sample. Since a 11 

potential function of any member in the microbiome sample may or may not be expressed under a 12 

certain environmental condition, we anticipate that the protein-level FR (i.e., FRp) of any microbiome 13 

sample should be no greater than its DNA-level FR (i.e., FRg).  Indeed, as shown in Figure 3A-B, for 14 

each of the four individual microbiomes, we have FRp < FRg and nFRp < nFRg, where nFR =15 

FR/TD is the normalized FR. Interestingly, the FD (or TD) calculated from metagenomics and 16 

metaproteomics were comparable to each other (Figure 3C-D).  17 

Next, we investigated the functional distance dij between different taxa. For a metaproteome (or 18 

metagenome), dij ∈ [0, 1] represents the dissimilarity of expressed functions (or functional 19 

capacities) between taxon-i and taxon-j, respectively. We calculated the dij values between those 20 

genera that contributed to 95% of the genus-level protein biomass in the dataset. Interestingly, dij 21 

values in the metagenomes were highly variable among individual microbiomes. By contrast, in the 22 

metaproteomes, dij values between genera were more consistent (Figure 3E). We then compared the 23 

dij values by individual microbiomes. dij in metagenomics and metaproteomics were not linearly 24 

related (Radj
2 = 0.47 ± 0.10, Mean ± SD, N = 4; Supplementary Figure S7). It was evident that the dij 25 

distributions in the metagenomes varied dramatically across samples, whereas in the metaproteomes 26 

the dij distributions were similar (Figure 3E). To quantify the variations, we performed pairwise 27 

comparisons between dij distributions in the samples using Jensen-Shannon divergence. Result shows 28 

that the dij distributions in metaproteomes were much more similar across individuals than in the 29 
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metagenomes (Figure 3F). The similarity of dij  distributions in individual metaproteomes suggested 1 

that gut environments play an important role in shaping the microbial functional activities in an 2 

organized manner.  3 

Conserved PCN topology across metaproteomics platforms 4 

We wondered whether different metaproteomic approaches could recapitulate the network 5 

properties of gut microbiomes’ PCNs. Routine metaproteomic analysis are often performed without 6 

fractionation. In addition, samples are analyzed with different analytical protocols, different 7 

parameters and using different models of LC-MS/MS platforms, etc. Here, we compared the 8 

topological properties of PCNs in four of our previously published datasets, briefly referred to as 9 

SISPROT (Zhang et al., 2017), RapidAIM (Li et al., 2020b), Berberine (Li et al., 2020a) and IBD (Zhang et 10 

al., 2018a) datasets, respectively. These four datasets vary considerably in the metaproteomic 11 

approaches used and in the types of environmental factors (xenobiotics, biogeography, diseases 12 

status etc.) being interrogated (see details in Supplementary Table S1). 13 

It was notable that identification depths of these four datasets vary markedly, from 5,612 protein 14 

groups and 4,345 peptides per sample (Berberine) to 44,955 unique peptides and 20,558 protein 15 

groups per sample (SISPRORT)(Supplementary Table S1). We found that PCNs in all the four datasets 16 

displayed very similar topological structures with our new deep metaproteomics dataset (see Figure 17 

1), i.e., highly nested structure, and heterogeneous degree distributions of both taxa and functions 18 

(Figure 4).  19 

Redundancy of expressed functions is altered by environmental factors 20 

Given that the PCN topological structures appeared to be universal across the four metaproteomic 21 

datasets, we can calculate and compare their protein-level functional redundancy FRp. The results 22 

showed that within-sample nFRp values in these datasets were comparable to the previous deep 23 

metaproteomics data (Figure 5A-D versus Figure 3A). We performed within-dataset comparisons of 24 

nFRp in response to different environmental factors. Significant inter-individual differences in nFRp 25 

levels were observed (Wilcoxon rank-sum test; Figure 5A-C). In the RapidAIM and Berberine datasets, 26 

several xenobiotic compounds reduced nFRp levels (Figure 5E and G). Among which, the antibiotic 27 

rifaximin showed the most impact on the individual microbiomes with nFRp values decreasing 28 

22.5 ± 9.4% (Mean ± SD, N = 5). Two-way ANOVA suggested that both inter-individual variation and 29 

effect of compounds significantly contributed to nFRp variance (Supplementary Tables S2-S3). In 30 
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patients diagnosed with inflammatory bowel disease (IBD), nFRp levels were significantly lower than 1 

that of the non-IBD control individuals. There was no significant difference between the two different 2 

IBD subtypes Crohn’s disease (CD) and ulcerative colitis (UC) (Figure 5D).  A significant decrease in 3 

nFRp was found in inflamed regions from the terminal ileum (Figure 5F). Two-way ANOVA suggested 4 

significant contributions to nFRp values by the diagnosis factor, as well as the inflammation factor 5 

which was nested in the biogeography factor (Supplementary Table S4). 6 

Despite global similarities of network properties across different individual samples and different 7 

metaproteomic approaches, we examined whether environmental factors had an impact on the 8 

nestedness of the PCNs. Similar to the nFRp results, significant inter-individual differences in NODF 9 

values were observed (Supplementary Figure S8 A-C). Several compounds significantly decreased the 10 

NODF (Supplementary Figure S8 E and G). Patients diagnosed with IBD, as well as those with 11 

inflamed terminal ileums and/or ascending colons showed significantly decreased nestedness 12 

(Supplementary Figure S8 D and F). The agreement between within-sample nFRp and NODF 13 

decrease in response to diseases and xenobiotic compounds further suggests that a nested 14 

topological structure is the key to high functional redundancy in a microbiome. 15 

Dissimilarity of functional expression between taxa is altered by xenobiotic compounds 16 

To further elucidate the system-level functional mechanism behind the response of within-sample 17 

nFRp to environmental alterations, we examined the metaproteomic functional distance dij of 18 

different taxa. In the RapidAIM dataset, clear inter-individual differences could be found with 19 

principal component analysis (PCA) performed using dij values (Figure 6A). Overall, under each drug 20 

treatment the dij distributions appeared to be similar across the individual microbiomes (Figure 6B), 21 

and the dij distribution (mean value across individual microbiomes, N=5) shifted upon treatment with 22 

several compounds as compared to the DMSO control (Supplementary Figure S9). Using a 23 

Permutation Multivariate Analysis of Variance (PERMANOVA) test, significant contributions from 24 

inter-individual difference, compound effects as well as individual-compound interactions were 25 

observed (p < 0.001; Supplementary Table S5). We quantified the dissimilarity of dij distributions 26 

between drug treatments and the DMSO control using Kullback–Leibler (K-L) divergence. These 27 

results showed that ciprofloxacin, berberine, rifaximin, FOS, metronidazole, isoniazid, diclofenac and 28 

flucytosine significantly increased K-L divergence with the DMSO when compared to most other 29 

compounds (Figure 6C). This was in agreement with our previous findings that seven of these 30 

compounds (except flucytosine) resulted in global alterations in individual microbiome functionality 31 
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(Li et al., 2020b). Similar findings were observed in the Berberine dataset, in which compounds that 1 

were previously found to alter microbiome functionalities (Li et al., 2020a) resulted in significant 2 

alterations in dij distributions (Supplementary Figure S10 and Supplementary Table S6). 3 

 4 

We further visualized the responses of dij values using heatmaps (Supplementary Figures S11 and 5 

S12). Certain genus pairs had similar dij values under different drug treatments (in other words, 6 

consistently shown by a certain color range).  By performing hierarchical clustering on the compound 7 

dimension, we observed different patterns of dij responses. For example, in the RapidAIM dataset, 8 

antibiotics rifaximin, ciproflocaxin and metronidazole resulted in similar increases in functional 9 

distances between some pairs of genera. Several genera pairs e.g. Prevotella vs. Subdoligranulum and 10 

Butyricicoccus vs. Clostridium etc. showed larger functional distances compared to the cluster 11 

containing DMSO control; whereas genera pairs e.g. Collinsella vs. Faecalibacterium showed closer 12 

functional distance compared to other groups (Supplementary Figure S11). In the Berberine dataset, 13 

the dij values between Akkermansia and a few other genera were increased by eight of the tested 14 

compounds (Supplementary Figure S12). We previously observed responses of Akkermansia to six of 15 

these compounds by differential protein analysis (Li et al., 2020a). However, response of 16 

Akkermansia in the presence of 6-ethoxysanguinarine (EOSANGR) and sanguinarine (SANGR) was not 17 

discovered before. This suggests that a system-level analysis of functional relationships between 18 

microbial taxa could sensitively provide a novel layer of information on microbial interrelations.  19 

Dissimilarity of functional expression between taxa is broadly increased by disease status 20 

Similarly, we analyzed the metaproteomic functional distance between taxa using the IBD dataset. 21 

Clustering the data revealed that a subgroup of samples (the vertical cluster marked with red lines) 22 

showed an overall increase of dij values between all visualized genera pairs (Figure 7A). These 23 

samples were mostly taken from the inflamed region of patients diagnosed with UC or CD. 24 

PERMANOVA test showed that dij values differed significantly between diagnosed patients (especially 25 

inflamed regions) and the non-IBD controls (Supplementary Table S7). Overall, the dij distributions in 26 

both UC and CD samples showed a rightward shift from the control samples (Figure 7B). Moreover, 27 

there was a rightward shift of the dij distribution from healthy to inflamed gut regions (Figure 7C). 28 

These results explained why nFRp was lower in diseased samples (Figure 5D and F).  Interestingly, in 29 

a previous study based on function capacities inferred from 16S rRNA gene sequencing data, the dij 30 

distribution (calculated at the OTU level) did not show a difference between IBD and control 31 
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microbiomes (Tian et al., 2017). Volcano plot further showed that most of the dij values between 1 

genera pairs were increased in the presence of inflammation (Figure 7D). This is different from 2 

compounds that affect specific pairs of genera in the microbiomes (described in the previous section) 3 

and suggests that inflammation disturbs the gut microbiomes’ functional organization by extensively 4 

weakening of the functional interrelations among microbes. 5 

Global pattern of between-taxa functional association across datasets 6 

Subsequently, we explored whether there was a universal pattern of functional interrelationships of 7 

protein expressions across individual gut microbiomes in our datasets. Thirteen abundant bacteria 8 

genera were consistently found in the five datasets (our in-depth dataset plus the four cross-platform 9 

datasets), i.e. Bacteroides, Bifidobacterium, Blautia, Clostridium, Collinsella, Coprococcus, Dorea, 10 

Eubacterium, Faecalibacterium, Parabacteroides, Phascolarctobacterium, Roseburia and 11 

Ruminococcus. We computed the functional distance (dij values) between these genus pairs (Figure 12 

8A) and used an Empirical Bayesian approach to correct for batch effects across platforms 13 

(Supplementary Figure S13). Box plots showed agreement of between-genera dij values across all 14 

datasets (Figure 8A). Based on mean values of the functional distances (dij cutoff <0.90), we 15 

constructed a global unipartite network of functional interrelations between microbial genera across 16 

the datasets (Figure 8B).  Eubacterium, Faecalibacterium, Ruminococcus, Bacteroides, Clostridium and 17 

Coprococcus showed high number of linkages, suggesting that these “global hub genera” may play 18 

their roles as functional hubs in microbiomes. To validate this finding, we analyzed samples from 19 

another individual microbiome (not included in the above datasets) using our in-depth 20 

metaproteomics approach (Supplementary Figure S1). The functional interrelation network from this 21 

sample showed that most of our “global hub genera” had high degrees of connection in this new 22 

graph (Figure 8C). 23 

Discussion 24 

A systems-oriented approach to understanding high-dimensional microbiome data can be employed 25 

by constructing of ecological networks (Angulo et al., 2019; Tian et al., 2020; Xiao et al., 2017). 26 

Network science (Barabási, 2013) provides a quantitative framework for representing and analyzing 27 

the principles underlying microbiome organization. Nevertheless, there has been a substantial gap 28 

between understanding microbiome assemblage and how its functionality is organized, which could 29 

not solely be examined by networks constructed from metagenomics. In this study, we demonstrated 30 

the usefulness of metaproteomics in gaining a system-level understanding of microbiome 31 
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functionality by an in-depth investigation into the metaproteome network topology, functional 1 

redundancy and its contributing factors.  2 

Using an in-depth metaproteomics approach, we showed that the human gut microbiome’s taxon-3 

function networks at both the proteome and genome levels (i.e. PCN and GCN) are highly nested. In a 4 

microbiome PCN, the network being highly nested implies that specialist taxa tend to be playing 5 

functional roles that are a subset of active functions from generalist taxa (Bascompte and Jordano, 6 

2007; Bascompte et al., 2003). Such functional network structures have been frequently found in 7 

macro-ecosystem networks of mutualistic interactions (food-webs) (Kondoh et al., 2010). Despite 8 

similarity in network topology between a microbiome’s metagenome and metaproteome, we found 9 

that the within-sample FR profiles differed markedly between expressed functions and functional 10 

capacities. The functional interrelationship of expressed proteomes between taxa appeared to be 11 

more robust across microbiomes, compared to that of the functional genomes. The COG degree 12 

distribution revealed that several functions were expressed in a high number of genera. These highly 13 

connected functions were enriched in metabolism of carbohydrates and amino acids, suggesting that 14 

microbial acquisition of nutrients from the environment and trophic interactions (Wang et al., 2019) 15 

between microbes could be major factors that shape their active functional organization. The 16 

nutrient-rich environment and mucosal immunity in the human gut provide a naturally selective 17 

growth condition for the microbes. Studies have shown that different host gut environments (human, 18 

mouse, rat and non-human primates) have distinct microbiome signatures (Nagpal et al., 2018; 19 

Nguyen et al., 2015). In human subjects, environmental factors such as diet and medication also 20 

significantly shape microbial community composition in the gut (Rothschild et al., 2018). Our result 21 

showing the robustness of between-taxa functional distances across individual microbiomes implies a 22 

more fundamental mechanism that underlies in the selective organization of microbiome 23 

functionalities by the environment. 24 

Further, we found that taxon-function networks in metaproteomes showed universal properties: 25 

networks built with datasets generated by shallower metaproteomics approaches still capture the 26 

highly nested topology. This allowed us to make use of routinely generated metaproteomics datasets 27 

to observe the effects of multiple environmental factors, such as inter-individual variation, 28 

xenobiotics, disease and biogeography on the functional redundancy of the gut microbiome.  We first 29 

showed that compounds with pharmacological activity can affect the redundancy of expressed 30 

functions in individual microbiomes. Overall distributions of functional distance between genera pairs 31 
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were changed in response to some compounds, which was related to changes in a subset of 1 

between-genera functional distances. This suggests that xenobiotic compounds may affect functional 2 

redundancy by partially modifying the functional interrelationship between taxa. 3 

Despite strong inter-individual signatures, we observed a universal pattern of between-taxa 4 

functional distances (dij) across all analyzed datasets. Notably, this pattern was fully shifted by a 5 

global increase in dij values and subsequently a significant decrease of the nFR in a subset of IBD 6 

samples mostly obtained from inflamed areas. Interestingly, this subset of samples still showed their 7 

own within-subset consistency in the distribution dij values. This finding may support, from a 8 

functional angle, the hypothesis that there are alternative stable states (bi-stability or multi-stability) 9 

in the gut ecosystem(Gonze et al., 2017; Van de Guchte et al., 2020). One frequently discussed 10 

mechanism behind these alternative states has been the continuous exposure of the microbiome to a 11 

altered environmental parameter (Stein et al., 2013). An inflamed area in the gut will have a reduced 12 

mucus layer (van der Post et al., 2019) and elevated host defense responses(Zhang et al., 2018a). The 13 

host mucus layer is a nutritional source of cross-feeding in the gut microbiome(Bunesova et al., 2018; 14 

Kosciow and Deppenmeier, 2020; Schroeder, 2019). Loss of this layer may firstly affect the network 15 

hub functions of carbohydrate and amino acid metabolism, and subsequently affect the functional 16 

interactions in the whole community. In addition, host defense responses attenuate microbial 17 

oxidative stress responses(Zhang et al., 2018a), which has been associated to microbiome 18 

dysfunction (Luca et al., 2019). Decrease of within-sample FR has been associated with impaired 19 

microbiome stability and resilience(Moya and Ferrer, 2016). Resilient microbiota resist external 20 

pressures (e.g. antibiotics/dietary shifts) and return to their original state. Being non-resilient, a 21 

microbiome is likely to shift its composition permanently and stay at an altered new state instead of 22 

restoring to its original state of equilibrium(Dogra et al., 2020; Folke et al., 2004). Collectively, we 23 

disassembled the FR into one-to-one comparisons of between-taxa functional activities, and found 24 

that a global shift in functional roles of microbes towards a more heterogeneous pattern was a factor 25 

driving the decrease of FR and alteration of states in inflamed area in IBD patients. 26 

Finally, the global pattern of between-genera functional distance across different metaproteomics 27 

datasets suggest that there may be universal community assemblage rules driven by the functional 28 

organization. In microbial community networks, highly linked nodes identified by a degree-based 29 

inference are often referred to as keystone taxa or hubs (Banerjee et al., 2018; Wang et al., 2017). 30 

Here, we refer such nodes observed in our PCNs as functional hubs. Across all metaproteomics 31 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.15.452564doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452564


 12 

datasets, Eubacterium, Faecalibacterium, Ruminococcus, Bacteroides, Clostridium and Coprococcus 1 

were found to be the most frequent functional hubs. Different approaches have been applied to 2 

identify keystone taxa in microbiomes with several agreements with our functional hubs(Fisher and 3 

Mehta, 2014; Ze et al., 2012). Such keystone taxa have been discussed as putative drivers of 4 

microbiome structure and function (Banerjee et al., 2018). Our current finding highlights the value of 5 

further investigation into functional hubs and hub functions in microbiome PCNs. This will provide a 6 

unique and systematic insight for the prediction of community functional responses, or for the 7 

manipulation of microbiome functioning. 8 

 9 
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Methods 1 

KEY RESOURCES TABLE 2 

Reagent or Resource Source Identifier 

Biological samples 

‘MetaPro-IQ’ samples Lavage sample aliquots 
preserved at -80 oC 

(Zhang et al., 2016) 

‘pepFunk’ samples Cultured microbiome aliquots 
preserved at -80 oC 

(Simopoulos et al., 2020) 

Metaproteomics reagents 

Ammonium formate Sigma-Aldrich 70221 

cOmplete™ mini tablet Roche C764L27 

Dithiothreitol Sigma-Aldrich 43815 

Formic acid Sigma-Aldrich F0507 

Hydrochloric acid Fisher Chemical A114S-500 

Iodoacetamide Sigma-Aldrich I1149 

Sep-Pak C18 1 cc Vac Cartridge Waters WAT054955 

TRIS (hydroxymethyl aminomethane) OmniPur® 9230 

Trypsin 
Worthington Biochemical 
Corp., Lakewood, NJ 

L5003740 

Urea Sigma-Aldrich U5378 

Critical commercial assays 

DC™ protein assay reagents Bio-Rad 500-0113, 500-0114 and 500-0115 

Software and algorithms 

R (versions 3.6.1 and 4.0.4) R Foundation http://www.r-project.org  

Python (version 3.6) Python https://www.python.org  

X!Tandem (version 2015.12.15.2) X! Search Engine 
Development 

https://www.thegpm.org/tandem/  

MaxQuant (version 1.5.2.8) MaxQuant https://www.maxquant.org  

MetaLab (version 1.2.0) iMetaLab Suite https://imetalab.ca/  

DIAMOND (version 0.8.35) DIAMOND https://github.com/bbuchfink/ 
diamond/releases/tag/v0.8.35 

MOCAT (version 1.3) MOCAT http://www.bork.embl.de/mocat/  

MEGAN (version 6.7.0) MEGAN https://www.wsi.uni-
tuebingen.de/lehrstuehle/ 
algorithms-in-
bioinformatics/software/megan6/ 

MetaPhlAn3 MetaPhlAn https://huttenhower.sph.harvard.edu/  

 3 

Resource availability 4 

Lead Contact 5 

Further information and requests for resources and reagents should be directed to the Lead Contact, 6 

Dr. Daniel Figeys (dfigeys@uottawa.ca). 7 

Materials availability 8 
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The study did not generate new unique reagents.  1 

Data and code availability 2 

The ultra-deep metaproteomics datasets were deposited to the ProteomeXchange Consortium 3 

(http://www.proteomexchange.org) via the PRIDE partner repository. Database search outputs from 4 

the SISPROT (Zhang et al., 2017), RapidAIM(Li et al., 2020b), Berberine (Li et al., 2020a) and IBD 5 

(Zhang et al., 2018a) studies have been previously deposited to the ProteomeXchange Consortium 6 

with the dataset identifiers PXD005619, PXD012724, PXD015934 and PXD007819, respectively. 7 

Experimental subject details 8 

Please refer to supplementary Table S1 in the  MetaPro-IQ study (Zhang et al., 2016) for clinical 9 

details of the experimental subjects HM454, HM455, HM466 and HM503.  10 

Method details 11 

Protein extraction and digestion 12 

Protein extraction and digestion of the individual gut aspirate samples were performed as described 13 

previously(Zhang et al., 2018b), with minor modifications. Frozen aliquots of aspirate samples were 14 

thawed and subjected to differential centrifugation for microbial cell purification: the samples were 15 

first centrifuged at 300 g, 4 °C for 5 min to remove debris; the resulting supernatant was centrifuged 16 

at 14,000 g for 20 min to pellet microbial cells; the pellets were then washed three times by 17 

resuspending in cold phosphate-buffered saline (PBS) and centrifuging at 14,000 g, 4 °C for 20 min. 18 

Next, the washed microbial cell pellets were resuspended in a cell lysis buffer containing 4% sodium 19 

dodecyl sulfate (w/v), 8 M urea, 50 mM Tris-HCl (pH = 8.0), and one Roche cOmplete™ mini tablet per 20 

10 mL buffer, followed by ultra-sonication (30 s on, 1 min off, amplitude of 25%, two rounds) using a 21 

Q125 Sonicator (Qsonica, LLC). Cell debris was then removed by a centrifugation at 16,000 g, 4 °C for 22 

10 min. 23 

Each of the protein extract was then precipitated in five times its volume of precipitation solution 24 

(acetone : ethanol : acetic acid = 49.5 : 49.5 : 1, v:v:v) at −20 °C overnight. The precipitated proteins 25 

were pelleted by centrifuging at 16,000 g, 4 °C for 20 min, followed by being washed with ice-cold 26 

acetone for three times to remove excess SDS that may affect trypsin activity. Next, the washed 27 

proteins were resuspended in a buffer containing 6M urea and 1M Tris-HCl (pH = 8.0). Protein 28 

concentration was determined by the DC™ assay (Bio-Rad Laboratories, Canada) following the 29 

manufacturer’s manual. 30 
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Finally, proteins were subjected to an in-solution tryptic digestion. The samples were reduced in 10 1 

mM dithiothreitol (DTT) at 56 °C for 30 min, then were alkylated by 20 mM iodoacetamide (IAA) at 2 

room temperature in dark for 40 min. The samples were then diluted 10 times with 1 M Tris-HCl 3 

buffer (pH = 8.0), followed by trypsin digestion (at a concentration of 1 μg trypsin per 50 μg proteins) 4 

at 37 °C for 24 hours. The digests were then acidified to pH = 3 using 10% formic acid, followed by a 5 

desalting step using Sep-Pak C18 Cartridge (Waters, Milford, MA, USA). The cartridges were first 6 

activated using 100% acetonitrile, and then equilibrated using 0.1% formic acid (v/v) before passing 7 

samples through the columns for three times. Samples bonded to the cartridges were then washed 8 

using 0.1% formic acid (v/v), and finally the samples were eluted from the cartridges using the elution 9 

solution containing 80% acetonitrile and 0.1% formic acid (v/v).  10 

High-pH reversed phase fractionation 11 

Eluted samples were evaporated in a SAVANT SPD1010 SpeedVac Concentrator (Thermo Fisher 12 

Scientific, USA), and resuspended in 0.1% formic acid (v/v) to a concentration of 1 μg/μL for high-pH 13 

reversed phase fractionation following a previous workflow(Batth et al., 2014), with minor 14 

adaptations: 30 μL sample were loaded to a ZORBAX Bonus-RP column (with 3.5 µm C18 resins, ID 15 

2.1 mm, length 50 mm; Agilent Technologies, USA), and fractionated with a Agilent 1200 series HPLC 16 

System (Agilent Technologies, Germany). A 60-min gradient consisting of 5 - 35% buffer B (v/v) in 17 

1 - 42 min, and 35 - 50% buffer B in 42 - 45 min at a flow rate of 100 μL/min was used for the 18 

fractionation. Here, 10 mM ammonium formate was used as buffer A, and 10 mM ammonium 19 

formate with 90% acetonitrile (v/v) was used as buffer B. Ammonium hydroxide was used to adjust 20 

the pH of both buffers A and B to 10. Sample fractions were continuously collected into 96 well plates 21 

by an Agilent 1100 Series Micro-FC G1364D micro fraction collector (Agilent Technologies, Germany). 22 

For each sample, 48 fractions were collected into different wells at 1 min intervals over the first 48 23 

min. The samples were then pooled by combining four fractions at an interval of 12 wells, resulting in 24 

12 fractionated samples per individual microbiome (Figure 1A).  25 

HPLC-ESI-MS/MS analysis 26 

After evaporation and resuspension in 0.1% formic acid, each fraction was analysed by HPLC-ESI-27 

MS/MS consisting of an UltiMate 3000 RSLCnano system (Thermo Fisher Scientific, USA) and an 28 

Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific, USA). A 60-min gradient of 5 to 29 

35% (v/v) buffer B at a 300 μL/min flow rate was used to separate the peptides on a tip column 30 

(75 μm inner diameter × 10 cm) packed with reverse phase beads (3 μm/120 Å ReproSil-Pur C18 31 
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resin, Dr. Maisch GmbH, Ammerbuch, Germany). Here, 0.1% formic acid (v/v) was used as buffer A, 1 

and 0.1% formic acid with 80% acetonitrile (v/v) was used as buffer B. The MS full scan ranging from 2 

350 – 1400 m/z was recorded in profile mode with the resolution of 60,000. Data-dependent MS/MS 3 

scan was performed with the 12 most intense ions with the resolution of 15,000. Dynamic exclusion 4 

was enabled for duration of 30 s with a repeat count of one. 5 

Database search 6 

Database search for the fractionated metaproteomics samples was performed based on the 7 

MetaPro-IQ workflow(Zhang et al., 2016). Briefly, a two-step database search was first performed 8 

using X!Tandem (version 2015.12.15.2). All sample fractions were searched against the integrated 9 

gene catalog (IGC) of human gut microbiome (http://meta.genomics.cn/)(Li et al., 2014) to generate a 10 

reduced database, then a classical target-decoy database search was performed using the reduced 11 

database to generate confidently identified peptide and protein lists based on a strict filtering criteria 12 

of FDR = 0.01. The protein lists for all sample fractions were then combined, and duplicated proteins 13 

were removed to generate a combined non-redundant FASTA database using an in-house PERL script. 14 

Next, MaxQuant (version 1.5.2.8) was used to generate quantified protein groups and peptides in 15 

each sample using the combined non-redundant FASTA database. Carbamidomethylation of cysteine 16 

was set as a fixed modification, oxidation of methionine and N-terminal acetylation were set as 17 

potential modifications. The maximum missed cleavages of trypsin was set as two. The resulting 18 

peptide and protein group lists from MaxQuant were then inputted to MetaLab (version 1.2.0) for 19 

taxonomic analysis and functional annotation(Cheng et al., 2017). For the taxonomic analysis, 20 

identified peptides were mapped to taxonomic lineages based on a built-in pep2tax database in 21 

MetaLab. Functional annotation to COG was performed against a database generated by mapping 22 

proteins in the IGC database to clusters of orthologous groups (COGs) using Diamond (version0.8.35). 23 

The dataset was deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) 24 

via the PRIDE partner repository. We directly used MetaPro-IQ or MetaLab (which automates 25 

MetaPro-IQ) database search outputs from the SISPROT (Zhang et al., 2017), RapidAIM(Li et al., 26 

2020b), Berberine (Li et al., 2020a) and IBD (Zhang et al., 2018a) studies. They have been previously 27 

deposited to the ProteomeXchange Consortium with the dataset identifiers PXD005619, PXD012724, 28 

PXD015934 and PXD007819, respectively. 29 

For the metagenomics analysis, data were obtained from the previous MetaPro-IQ study (Zhang et 30 

al., 2016), accessible from the NCBI sequence read archive (SRA) under the accession of SRP068619. 31 

To enable the comparison between GCN and PCN, here we reanalysed the raw metagenomics reads 32 
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by searching against the IGC database. First, the raw reads were processed using MOCAT for 1 

trimming and quality filtering, and for human reads removal as previously described (Zhang et al., 2 

2016). Next, the cleaned/non-human paired end reads were used for DIAMOND against the IGC 3 

database. DIAMOND results of paired end reads were then merged, an annotation was confirmed 4 

only when both R1 and R2 were matched to the same protein or proteins. Finally, the result of each 5 

sample was summarized to generate a list of proteins and their corresponding read numbers.  6 

Metaproteomic and metagenomic content networks 7 

For the generation of metaproteomic content networks (PCNs), a ‘peptide-protein bridge’ approach 8 

(see details in Supplementary Note) was used to match functions to taxa based on the database 9 

search output files, i.e. peptides, protein groups, taxonomy and function. The protein groups table 10 

(generated by MaxQuant) contains information on the identified proteins, and identifiers of peptide 11 

sequence associated to each protein group. The taxonomy table generated by MetaLab contains 12 

peptide sequences and their corresponding lowest common ancestor (LCA) taxa. The function table 13 

contains identified proteins and their corresponding functional annotations. Therefore, at we first 14 

matched the protein groups to taxa through the peptides. Next, functions of the proteins were 15 

combined to the list to generate a taxon-to-function table that was bridged by the peptide-protein 16 

identification relationship. Protein group intensity was used as the quantification information in 17 

PCNs. Then, a PCN of N taxa and M functions can then be represented by an N × M incidence matrix 18 

𝐏  =   [Pia], where Pia ≥ 0 is the total intensity of proteins of function-a in taxon-i normalized by the 19 

total intensities of functional proteins in taxon-i.  20 

To generate GCNs from the IGC search result, the same functional annotation database as in MetaLab 21 

was used to annotate identified proteins to COGs. The taxonomic information of proteins was 22 

obtained by searching against an in-house database, which was generated by querying IGC proteins 23 

against the NCBI non-redundant (nr) database (downloaded 2/3/2016) using DIAMOND, and 24 

outputting the taxonomic lineages using MEGAN (version 6.7.0). The count of raw reads 25 

corresponding to each protein was used as the quantification information in GCNs. Similarly, the GCN 26 

can then be represented as 𝐆  =   [Gia], where Gia ≥ 0 is the raw read counts of proteins of function-27 

a in taxon-i normalized by the total counts of raw reads in taxon-i. 28 

Calculation of functional distance and functional redundancy 29 

Weighted Jaccard distance dij between metagenomic (or metaproteomic) contents of taxon-i and j 30 

can then be calculated with the GCN and PCN profiles 𝐆 and 𝐏, respectively, as described previously 31 

(Tian et al., 2020). For GCN, we have 32 
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 𝑑𝑖𝑗 = 1 − 
∑ min(𝐺𝑖𝑎,𝐺𝑗𝑎)𝑎

∑ max(𝐺𝑖𝑎,𝐺𝑗𝑎)𝑎
 , (2) 1 

and for PCN, we have 2 

 𝑑𝑖𝑗 = 1 − 
∑ min(𝑃𝑖𝑎,𝑃𝑗𝑎)𝑎

∑ max(𝑃𝑖𝑎,𝑃𝑗𝑎)𝑎
 . (3) 3 

The relative abundance of taxon-i in each community was denoted as 𝑝𝑖. In each metagenomics 4 

sample, 𝑝𝑖 was quantified using MetaPhlAn3 with default settings. In each metaproteomics sample, 5 

𝑝𝑖 was quantified using the total abundances of unique peptides corresponding to taxon-i.  6 

With the 𝑑𝑖𝑗  and 𝑝𝑖  values, within-sample FR of the metagenomic and the metaproteomic profiles, 7 

denoted as FRg and FRp, respectively, were then calculated according to equation (1) given in the 8 

Results section. 9 

Statistical analysis and visualization 10 

The statistical details of analysis can be found in the figure legends and in the main texts, including 11 

the statistical tests used and significance criteria. Computation of GCN, PCN and functional 12 

redundancy were performed using in-house Python codes. NODF values were computed using the R 13 

package RInSp. Jensen-Shannon divergence and Kullback–Leibler divergence were calculated using 14 

the R package LaplacesDemon. Two-way ANOVA was performed using R function aov(). PERMANOVA 15 

tests were performed using R packages “vegan” and “BiodiversityR”. Kruskal-Wallis and Wilcoxon 16 

rank sum tests were performed using R functions kruskal.test() and wilcox.test(), respectively. 17 

Network incidence matrices, degree distributions, bar plots, box plots, and violin plots were 18 

visualized using the R package ggplot2. Unipartite networks were visualized using the R package 19 

igraph. Tripartite networks were visualized using the R package networkD3. Heatmaps were 20 

visualized using the R package pheatmap. Volcano plot was analyzed by MetaboAnalyst (version 4.0) 21 

under non-parametric test setting. The interactive webpage 22 

(https://shiny2.imetalab.ca/shiny/rstudio/PCN_visualizer/) for visualization of all GCNs and PCNs 23 

analyzed in this paper was created using the R packages shiny and shinydashboard. 24 

 25 

  26 
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 1 

Figure 1. Generation of proteomic content network (PCN) using ultra-deep metaproteomics 2 

A.  Each individual’s gut microbiome sample was subjected to protein extraction. Then, purified proteins were 3 

digested by trypsin. B. The resulting peptides were fractionated using a high-pH reversed-phase approach. C. 48 4 

micro-fractions were combined into 12 samples prior to LC-MS/MS analysis (D.). E. The LC-MS/MS *.RAW files 5 

were searched against the IGC database using MetaPro-IQ workflow and MetaLab. F.  A protein-peptide bridge 6 

approach was used for generating the PCN (G.) from metaproteomics database search result files (see Methods 7 

and Supplementary Note). 8 
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 1 

Figure 2. Proteomic content networks (PCNs) and genomic-content networks (GCNs) of individual 2 

microbiomes 3 

A. Taxon-function incidence matrix of the PCN at the genus-COG level in the four individual 4 

microbiome samples. Here we used the classical Nestedness metric based on Overlap and Decreasing 5 

Fill (NODF) to characterize and visualize the nested structures of the bipartite taxon-function network, 6 

as described previously (Tian et al., 2020). The presences of genus-COG connections were shown in 7 

yellow points. B. A tripartite plot showing taxonomic and functional relationships between GCN and 8 

PCN in individual sample HM454. Letters represent different functional categories in the Clusters of 9 

Orthologous Groups (COGs) database. Similar results of the other three individual microbiomes are 10 

shown in Supplementary Figure S4-S6. C. The unweighted degree distribution of COGs in PCNs (first 11 

row), that of genera in PCNs (second row), that of COGs in GCNs (third row), and that of genera in 12 

GCNs (fourth row) in the four individual microbiomes.   13 
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 1 

Figure 3. Redundancies of expressed functions and functional potentials. 2 

A. Within-sample functional redundancy (FR) in the metagenomes versus in the metaproteomes of 3 

the individual microbiomes. B. Within-sample FR normalized by taxonomic diversity (nFR) in the 4 

metagenomes versus in the metaproteomes of the individual microbiomes. C. Functional diversity 5 

(FD) in the metagenomes versus in the metaproteomes. D. Taxonomic diversity (TD) in the 6 

metagenomes versus in the metaproteomes. E. Functional distance (dij value) between different pairs 7 

of genera in the metagenomes versus in the metaproteomes. F. Distribution of functional distance in 8 

the metagenomes versus in the metaproteomes in each individual microbiome. G. Pairwise 9 

comparisons of dij distributions between individual microbiomes using Jensen-Shannon divergence. D-10 

F were compared based on microbial genera of the top 95% overall protein biomass in the dataset.  11 
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 1 

Figure 4. PCNs and corresponding degree distributions in different metaproteomics datasets 2 

A-D. Taxon-function incidence matrix of the PCN corresponding to each metaproteomics dataset. The 3 

presences of genus-COG connections are shown as yellow dots. E-H. Unweighted degree distribution 4 

of COGs corresponding to each metaproteomics dataset. I-L. Unweighted degree distribution of 5 

genera corresponding to each metaproteomics dataset. Each vertical panel (gray-line box) represents 6 

the PCN of the first sample (by alphabet order) in each dataset. We also visualized the incidence 7 

matrices and degree distributions of all samples here: 8 

https://leyuan.shinyapps.io/pcn_visualization3/ 9 

 10 
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 1 

Figure 5. Functional redundancy comparisons in different metaproteomics datasets. 2 

A. nFRp values by individual microbiomes in the SISPROT dataset. B. nFRp values by individual 3 

microbiomes in the RapidAIM dataset. C. NODF values by individual microbiomes in the Berberine 4 

dataset. D. nFRp values by diagnosis in the IBD dataset. E. nFRp values by the presence of 5 

compounds in the Berberine dataset. F. nFRp values by inflammation and gut region in the IBD 6 

dataset. G. nFR values by the presence of compounds in the RapidAIM dataset. Significance of 7 

differences between-groups were examined by Wilcoxon rank-sum test, *, **, *** and **** indicate 8 

statistical significance at the FDR-adjusted p < 0.05, 0.01, 0.001 and 0.0001 levels, respectively. 9 
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 1 

Figure 6. Between-genera functional distances in the RapidAIM dataset. 2 

A. Principal component analysis based on between-genera functional distances in individual 3 

metaproteomes. B. dij distribution by the presence of different compounds and by different individual 4 

microbiomes. C. K-L divergence between the dij distribution in the control (DMSO) and that of the 5 

other compounds. Kruskal-Wallis test result indicates that overall the compounds had heterogeneous 6 

levels of K-L divergence with the DMSO. Between-compound comparisons of the K-L divergence 7 

values were performed by a Pairwise Wilcoxon Rank Sum Tests, * indicates statistical significance at 8 
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the FDR-adjusted p < 0.05 level. The results were based on microbial genera of the top 95% overall 1 

protein biomass in the dataset. 2 

 3 

 4 

Figure 7. Between-genera functional distances in the IBD dataset. 5 

A. Heatmap showing dij values between genera across samples in the IBD dataset. B. Distribution of dij 6 

values by diagnosis. C. Distribution of dij values by inflammation. D. Volcano plot showing altered dij 7 

values between inflamed and non-inflamed sampling sites. The results were based on microbial 8 

genera of the top 95% overall protein biomass in the dataset. 9 
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 1 

Figure 8. Comparison of between-genera dij values across metaproteomics datasets. 2 

A. Comparison of dij values across the five metaproteomics datasets in this study. Comparison was 3 

based on thirteen abundant microbial genera that were commonly found in these datasets. B. An 4 

average unipartite network projected from the taxon-function bipartite network based on the 5 

functional distances between microbial genera. A mean dij values less than 0.9 across all data (N = 6 

533) were shown as a linkage between two nodes. Size of a node corresponds to its degree. C. A 7 

unipartite network with an additional individual microbiome. The network was projected from the 8 

taxon-function bipartite network based on the functional distances between microbial genera. dij 9 

value of 0.88 was used as the cut-off threshold on this graph. Size of a node corresponds to its 10 

degree. 11 
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