# **1** Revealing Protein-Level Functional Redundancy in the Human Gut

# 2 Microbiome using Ultra-deep Metaproteomics

- 3 Leyuan Li<sup>1</sup>, Zhibin Ning<sup>1</sup>, Xu Zhang<sup>1</sup>, James Butcher<sup>1</sup>, Caitlin Simopoulos<sup>1</sup>, Janice Mayne<sup>1</sup>, Alain Stintzi<sup>1</sup>,
- 4 David R. Mack<sup>2</sup>, Yang-Yu Liu<sup>3,\*</sup>, Daniel Figeys<sup>1,\*</sup>

## 5 Affiliations

- 6 <sup>1</sup> Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology,
- 7 Faculty of Medicine, University of Ottawa, Ottawa, Canada
- 8 <sup>2</sup> Department of Paediatrics, Faculty of Medicine, University of Ottawa and Children's Hospital of
- 9 Eastern Ontario Inflammatory Bowel Disease Centre and Research Institute, 401 Smyth Road, Ottawa,
- 10 ON, K1H 8L1, Canada
- <sup>3</sup> Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital
- 12 and Harvard Medical School, Boston, Massachusetts 02115, USA
- 13 \*Correspondence, D.F.: <u>dfigeys@uottawa.ca</u>; Y-Y.L.: <u>yyl@channing.harvard.edu</u>

## 14 Highlights

- Ultra-deep metaproteomics reveals high protein-level functional redundancy in the human
   gut microbiome
- Within-sample proteomic content networks display universal topology
- 18 Various environmental factors influence the redundancy of expressed functions
- 19 Functional hub genera are present across different datasets

## 20 Summary

21 Functional redundancy is a key property of ecosystems and represents the fact that phylogenetically

- 22 unrelated taxa can play similar functional roles within an ecosystem. The redundancy of potential
- 23 functions of human microbiome has been recently quantified using metagenomics data. Yet, the
- 24 redundancy of functions which are actually expressed within the human microbiome remains largely
- 25 unexplored. Here, we quantify the protein-level functional redundancy in the human gut microbiome
- 26 using metaproteomics and network approaches. In particular, our ultra-deep metaproteomics
- 27 approach revealed high protein-level functional redundancy and high nestedness in proteomic
- 28 content networks bipartite graphs that connect taxa with their expressed functions. We further
- 29 examined multiple metaproteomics datasets and showed that various environmental factors,

1 including individuality, biogeography, xenobiotics, and disease, significantly altered the protein-level

2 functional redundancy. Finally, by projecting the bipartite proteomic content networks into unipartite

- 3 weighted genus networks, functional hub genera across individual microbiomes were discovered,
- 4 suggesting that there may be a universal principle of functional organization in microbiome assembly.

#### 5 Introduction

- 6 The human gut microbiome is a complex ecosystem harboring trillions of microorganisms. Its
- 7 taxonomic composition, functional activity and ecosystem processes have important consequences
- 8 on human health and disease. It is crucial to study the human gut microbiome in the context of
- 9 ecological communities (Gilbert and Lynch, 2019). Currently, the organizational principles and
- 10 ecosystem functioning of the human gut microbiome remain under-investigated.

Structure-function relationships are a determining factor of ecological properties in the human gut microbiome (Vieira-Silva et al., 2016). Functional redundancy (FR) is considered to be one of the key ecological properties in microbial communities (Loreau, 2004). As a classical notion in community ecology, FR is closely related to the concept of ecological guilds, stating that species are grouped together based on the similarities of how they function in the community (Root, 1967; Wu et al., 2021). A high level of FR implies that members in a community maybe substitutable with little impact on the overall ecosystem functionality (Lawton and Brown, 1993).

18 Recently, a quantitative measure of FR for microbiome samples based on metagenomics data and the 19 notion of genomic content network (GCN) was proposed (Tian et al., 2020). It was reported that the 20 high level of FR in the human gut microbiome is related to a few topological features (e.g., the highly 21 nested structure) of the GCN. Importantly, by definition, GCN-based FR calculations are derived from 22 measuring the gene composition of a microbiome, without any regard for whether these genes are 23 actually expressed. In other words, the within-sample FR calculated from the GCN only represents the 24 redundancy of *potential* functions of a microbiome sample (i.e., the DNA-level FR), rather than the 25 redundancy of actually expressed functions (e.g., protein-level FR).

26 Here we seek to quantify the redundancy of expressed functions for microbiome samples. To achieve

- that, functional microbiome profiling that can universally capture the expressed functions from
- 28 microbes is required. Metaproteomics is a powerful tool that can bring microbiome studies to a level
- 29 permissible to measuring expressed functions (Kleiner, 2019; Li and Figeys, 2020; Salvato et al.,
- 30 2021). It identifies proteins and quantifies their abundances from microbiome samples based on

1 liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques. In the last few years,

- 2 metaproteomics has experienced an exponential growth in its identification coverage (Zhang et al.,
- 3 2017), providing invaluable deep insights into the expressed functional activities of microbiomes. In a
- 4 typical metaproteomics analysis, quantified proteins are used to determine the functional
- 5 composition, taxonomic origins of the expressed functions, and to identify functional pathway
- 6 changes through multivariate statistical analysis (Salvato et al., 2021; Zhang and Figeys, 2019).
- 7 In this study, we quantified the redundancy of expressed functions in the human gut microbiome
- 8 based on ultra-deep metaproteomics data. Following the GCN approach (Tian et al., 2020), we
- 9 constructed a proteomic content networks (PCN) for each microbiome sample by linking the taxa
- 10 (identified from metaproteomics data) to their expressed proteins. Using tools from network science,
- 11 we investigated the topological properties of these PCNs, and compared their matched GCNs from
- 12 shotgun metagenomics. We next examined whether the topological properties of the PCNs are
- 13 similar in metaproteomics datasets obtained by different analytical workflows and instrument
- 14 platforms. Finally, we computed the associations between the protein-level FR and various host
- 15 factors such as disease status and xenobiotics stimulation.

#### 16 **Results**

#### 17 Proteomic content networks are highly nested

18 We first constructed sample-specific PCNs using a dataset generated by an in-depth metaproteomics 19 approach. Briefly, aliquots from four individuals' ascending colon microbiome samples were 20 subjected to protein extraction and digestion, followed by a high-pH reversed-phase fractionation (Batth et al., 2014) and a LC-MS/MS analysis (Figure 1). Metaproteomics RAW files were analyzed by 21 22 our MetaPro-IQ approach (Zhang et al., 2016) using the integrated gene catalog (IGC) database of the 23 human gut microbiome (Li et al., 2014). On average, 69,280 unique peptides and 30,686 protein 24 groups were quantified per sample. The depth of peptide and protein quantification increased 54% 25 and 49%, respectively, compared to our previously reported deep metaproteomics approach (Zhang 26 et al., 2017) (Supplementary Figure S1). Using a "protein-peptide bridge" method (Figure 1 and 27 Supplementary Notes), functions that were annotated by protein groups and taxonomy that were 28 identified by unique peptides were linked to construct the sample-specific PCN. These four 29 microbiome samples were previously analyzed by metagenomics in the MetaPro-IQ study (Zhang et 30 al., 2016). The metagenomics data were searched against the IGC database to construct the GCNs

(see Methods). The PCNs achieved a reasonable depth and correlationship with the corresponding
 GCNs (Supplementary Figure S2).

3 We emphasize that those sample-specific GCNs can be combined to form a reference GCN for any 4 given population, because the genomic content of a taxon should not be sample-dependent (Tian et 5 al., 2020). By contrast, sample-specific PCNs cannot be combined to form a reference PCN, because 6 the expressed protein content of any taxon is context-dependent. In that light, here we compare the 7 GCN and PCN of each sample separately (Figure 2). Figure 2B shows a tripartite plot connecting 8 microbial phyla and functional categories indicated from gene and proteins from one individual 9 microbiome (HM454). This demonstrated that while some functional categories (e.g., energy 10 production and conversion (C), carbohydrate metabolism and transport (G) etc.) showed expression 11 from predicted functions in most phyla, there are functions (e.g., RNA processing and modification 12 (A), mobilome (X) etc.) that were rarely expressed from the genes. Similar results were found for 13 other samples (Supplementary Figures S4-S6). Due to the fact that some protein or peptide 14 sequences are shared between two or more organisms in complex microbial communities, as a trade-15 off between depth and coverage, we analyzed the PCN at the genus level. The PCNs of individual 16 microbiomes showed highly nested structures (Figure 2A). Nestedness metric based on Overlap and 17 Decreasing Fill (NODF) showed that the PCNs in the four individuals' microbiomes are highly nested 18 networks (NODF =  $0.42 \pm 0.01$ , Mean  $\pm$  SD, N = 4).

19 We then calculated the degree distributions of genera and COGs in the PCNs and the GCNs,

20 respectively. On the functional dimension, similar to previous observations in GCNs (Tian et al., 2020),

21 the degree distributions of COGs in both the GCN and PCN have fat tails, representing COGs

associated with a high number of taxa (Figure 2C). We performed enrichment analyses using the top-

23 200 most linked COG nodes in the PCN incidence matrices, and discovered highly enriched functional

24 categories of carbohydrate, amino acid and nucleotide metabolism, as well as energy production and

conversion (Supplementary Figure S3). On the taxonomic dimension, in comparison to the PCN, the

26 GCN had a relatively larger number of genera with high degrees (Figure 2C). This could be due to the

27 fact that although many genera encoded genes for complex functional capacities, only a small

subgroup were actually expressing these genes and thus actually playing complex functional roles.

29 Redundancy differs between potential and expressed functions

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452564; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 We next compared the within-sample FR calculated from the metagenome (functional potentials)

- 2 and the metaproteome (expressed functions), denoted as  $FR_g$  and  $FR_p$ , respectively. Following
- 3 the definition of within-sample FR as previously described (Tian et al., 2020), we have

4

$$FR \equiv TD - FD = \sum_{i=1}^{N} \sum_{j \neq i}^{N} (1 - d_{ij}) p_i p_j$$
(1)

where  $\text{TD} = 1 - \sum_{i=1}^{N} p_i^2 = \sum_{i=1}^{N} \sum_{j \neq i}^{N} p_i p_j$  is the taxonomic diversity measured by the Gini-5 Simpson index,  $FD = \sum_{i=1}^{N} \sum_{j \neq i}^{N} d_{ij} p_i p_j$  is the functional diversity measured by Rao's quadratic 6 7 entropy,  $p_i$  is the relative abundance of taxon *i* in a community/sample of *N* taxa,  $d_{ii}$  denotes the 8 functional distance between taxa i and j measured by the weighted Jaccard distance between their 9 genomic (or proteomic) contents (see Methods). 10 We emphasize that FR of a microbiome sample, as defined in Eq.(1), can be interpreted as the 11 average functional similarity (or overlap) of two randomly chosen members in the sample. Since a 12 potential function of any member in the microbiome sample may or may not be expressed under a 13 certain environmental condition, we anticipate that the protein-level FR (i.e.,  $FR_n$ ) of any microbiome 14 sample should be no greater than its DNA-level FR (i.e.,  $FR_g$ ). Indeed, as shown in **Figure 3A-B**, for 15 each of the four individual microbiomes, we have  $FR_p < FR_g$  and  $nFR_p < nFR_g$ , where nFR =16 FR/TD is the normalized FR. Interestingly, the FD (or TD) calculated from metagenomics and 17 metaproteomics were comparable to each other (Figure 3C-D).

18 Next, we investigated the functional distance  $d_{ii}$  between different taxa. For a metaproteome (or 19 metagenome),  $d_{ii} \in [0, 1]$  represents the dissimilarity of expressed functions (or functional capacities) between taxon-*i* and taxon-*j*, respectively. We calculated the  $d_{ij}$  values between those 20 21 genera that contributed to 95% of the genus-level protein biomass in the dataset. Interestingly,  $d_{ii}$ 22 values in the metagenomes were highly variable among individual microbiomes. By contrast, in the 23 metaproteomes,  $d_{ij}$  values between genera were more consistent (Figure 3E). We then compared the 24  $d_{ii}$  values by individual microbiomes.  $d_{ii}$  in metagenomics and metaproteomics were not linearly related ( $R_{adi}^2 = 0.47 \pm 0.10$ , Mean  $\pm$  SD, N = 4; Supplementary Figure S7). It was evident that the  $d_{ij}$ 25 26 distributions in the metagenomes varied dramatically across samples, whereas in the metaproteomes the  $d_{ii}$  distributions were similar (**Figure 3E**). To quantify the variations, we performed pairwise 27 comparisons between  $d_{ii}$  distributions in the samples using Jensen-Shannon divergence. Result shows 28 29 that the  $d_{ii}$  distributions in metaproteomes were much more similar across individuals than in the

- 1 metagenomes (**Figure 3F**). The similarity of  $d_{ij}$  distributions in individual metaproteomes suggested
- 2 that gut environments play an important role in shaping the microbial functional activities in an
- 3 organized manner.

### 4 Conserved PCN topology across metaproteomics platforms

5 We wondered whether different metaproteomic approaches could recapitulate the network 6 properties of gut microbiomes' PCNs. Routine metaproteomic analysis are often performed without 7 fractionation. In addition, samples are analyzed with different analytical protocols, different 8 parameters and using different models of LC-MS/MS platforms, etc. Here, we compared the 9 topological properties of PCNs in four of our previously published datasets, briefly referred to as 10 SISPROT (Zhang et al., 2017), RapidAIM (Li et al., 2020b), Berberine (Li et al., 2020a) and IBD (Zhang et al., 2018a) datasets, respectively. These four datasets vary considerably in the metaproteomic 11 12 approaches used and in the types of environmental factors (xenobiotics, biogeography, diseases 13 status etc.) being interrogated (see details in Supplementary Table S1).

14 It was notable that identification depths of these four datasets vary markedly, from 5,612 protein

- 15 groups and 4,345 peptides per sample (Berberine) to 44,955 unique peptides and 20,558 protein
- 16 groups per sample (SISPRORT) (**Supplementary Table S1**). We found that PCNs in all the four datasets
- 17 displayed very similar topological structures with our new deep metaproteomics dataset (see Figure
- 18 1), i.e., highly nested structure, and heterogeneous degree distributions of both taxa and functions
- 19 (Figure 4).

### 20 Redundancy of expressed functions is altered by environmental factors

- 21 Given that the PCN topological structures appeared to be universal across the four metaproteomic
- 22 datasets, we can calculate and compare their protein-level functional redundancy FR<sub>p</sub>. The results
- 23 showed that within-sample  $nFR_p$  values in these datasets were comparable to the previous deep
- 24 metaproteomics data (Figure 5A-D versus Figure 3A). We performed within-dataset comparisons of
- 25 nFR<sub>n</sub> in response to different environmental factors. Significant inter-individual differences in nFR<sub>n</sub>
- 26 levels were observed (Wilcoxon rank-sum test; Figure 5A-C). In the RapidAIM and Berberine datasets,
- 27 several xenobiotic compounds reduced nFR<sub>p</sub> levels (Figure 5E and G). Among which, the antibiotic
- rifaximin showed the most impact on the individual microbiomes with nFR<sub>p</sub> values decreasing
- 29 22.5 ± 9.4% (Mean ± SD, N = 5). Two-way ANOVA suggested that both inter-individual variation and
- 30 effect of compounds significantly contributed to  $nFR_p$  variance (Supplementary Tables S2-S3). In

patients diagnosed with inflammatory bowel disease (IBD), nFR<sub>p</sub> levels were significantly lower than
that of the non-IBD control individuals. There was no significant difference between the two different
IBD subtypes Crohn's disease (CD) and ulcerative colitis (UC) (Figure 5D). A significant decrease in
nFR<sub>p</sub> was found in inflamed regions from the terminal ileum (Figure 5F). Two-way ANOVA suggested
significant contributions to nFR<sub>p</sub> values by the diagnosis factor, as well as the inflammation factor
which was nested in the biogeography factor (Supplementary Table S4).

7 Despite global similarities of network properties across different individual samples and different

- 8 metaproteomic approaches, we examined whether environmental factors had an impact on the
- 9 nestedness of the PCNs. Similar to the nFR<sub>p</sub> results, significant inter-individual differences in NODF

10 values were observed (Supplementary Figure S8 A-C). Several compounds significantly decreased the

11 NODF (Supplementary Figure S8 E and G). Patients diagnosed with IBD, as well as those with

12 inflamed terminal ileums and/or ascending colons showed significantly decreased nestedness

13 (Supplementary Figure S8 D and F). The agreement between within-sample  $nFR_p$  and NODF

14 decrease in response to diseases and xenobiotic compounds further suggests that a nested

15 topological structure is the key to high functional redundancy in a microbiome.

### 16 Dissimilarity of functional expression between taxa is altered by xenobiotic compounds

17 To further elucidate the system-level functional mechanism behind the response of within-sample nFR<sub>p</sub> to environmental alterations, we examined the metaproteomic functional distance d<sub>ij</sub> of 18 19 different taxa. In the RapidAIM dataset, clear inter-individual differences could be found with 20 principal component analysis (PCA) performed using  $d_{ii}$  values (**Figure 6A**). Overall, under each drug 21 treatment the  $d_{ii}$  distributions appeared to be similar across the individual microbiomes (Figure 6B), 22 and the d<sub>i</sub> distribution (mean value across individual microbiomes, N=5) shifted upon treatment with 23 several compounds as compared to the DMSO control (Supplementary Figure S9). Using a 24 Permutation Multivariate Analysis of Variance (PERMANOVA) test, significant contributions from 25 inter-individual difference, compound effects as well as individual-compound interactions were 26 observed (p < 0.001; **Supplementary Table S5**). We quantified the dissimilarity of d<sub>ii</sub> distributions 27 between drug treatments and the DMSO control using Kullback–Leibler (K-L) divergence. These 28 results showed that ciprofloxacin, berberine, rifaximin, FOS, metronidazole, isoniazid, diclofenac and 29 flucytosine significantly increased K-L divergence with the DMSO when compared to most other 30 compounds (Figure 6C). This was in agreement with our previous findings that seven of these 31 compounds (except flucytosine) resulted in global alterations in individual microbiome functionality

(Li et al., 2020b). Similar findings were observed in the Berberine dataset, in which compounds that
 were previously found to alter microbiome functionalities (Li et al., 2020a) resulted in significant
 alterations in d<sub>ii</sub> distributions (Supplementary Figure S10 and Supplementary Table S6).

3 4

5 We further visualized the responses of d<sub>ii</sub> values using heatmaps (Supplementary Figures S11 and 6 **\$12**). Certain genus pairs had similar  $d_{ii}$  values under different drug treatments (in other words, 7 consistently shown by a certain color range). By performing hierarchical clustering on the compound 8 dimension, we observed different patterns of d<sub>ij</sub> responses. For example, in the RapidAIM dataset, 9 antibiotics rifaximin, ciproflocaxin and metronidazole resulted in similar increases in functional 10 distances between some pairs of genera. Several genera pairs e.g. Prevotella vs. Subdoligranulum and 11 Butyricicoccus vs. Clostridium etc. showed larger functional distances compared to the cluster 12 containing DMSO control; whereas genera pairs e.g. Collinsella vs. Faecalibacterium showed closer 13 functional distance compared to other groups (Supplementary Figure S11). In the Berberine dataset, the d<sub>ii</sub> values between Akkermansia and a few other genera were increased by eight of the tested 14 15 compounds (Supplementary Figure S12). We previously observed responses of Akkermansia to six of 16 these compounds by differential protein analysis (Li et al., 2020a). However, response of 17 Akkermansia in the presence of 6-ethoxysanguinarine (EOSANGR) and sanguinarine (SANGR) was not discovered before. This suggests that a system-level analysis of functional relationships between 18 19 microbial taxa could sensitively provide a novel layer of information on microbial interrelations.

### 20 Dissimilarity of functional expression between taxa is broadly increased by disease status

- 21 Similarly, we analyzed the metaproteomic functional distance between taxa using the IBD dataset.
- 22 Clustering the data revealed that a subgroup of samples (the vertical cluster marked with red lines)
- showed an overall increase of d<sub>ij</sub> values between all visualized genera pairs (Figure 7A). These
- samples were mostly taken from the inflamed region of patients diagnosed with UC or CD.
- 25 PERMANOVA test showed that d<sub>ij</sub> values differed significantly between diagnosed patients (especially
- inflamed regions) and the non-IBD controls (**Supplementary Table S7**). Overall, the d<sub>ij</sub> distributions in
- both UC and CD samples showed a rightward shift from the control samples (Figure 7B). Moreover,
- there was a rightward shift of the d<sub>ij</sub> distribution from healthy to inflamed gut regions (**Figure 7C**).
- 29 These results explained why  $nFR_p$  was lower in diseased samples (Figure 5D and F). Interestingly, in
- 30 a previous study based on function capacities inferred from 16S rRNA gene sequencing data, the d<sub>ij</sub>
- 31 distribution (calculated at the OTU level) did not show a difference between IBD and control

1 microbiomes (Tian et al., 2017). Volcano plot further showed that most of the d<sub>ij</sub> values between

2 genera pairs were increased in the presence of inflammation (Figure 7D). This is different from

- 3 compounds that affect specific pairs of genera in the microbiomes (described in the previous section)
- 4 and suggests that inflammation disturbs the gut microbiomes' functional organization by extensively
- 5 weakening of the functional interrelations among microbes.

### 6 Global pattern of between-taxa functional association across datasets

- 7 Subsequently, we explored whether there was a universal pattern of functional interrelationships of
- 8 protein expressions across individual gut microbiomes in our datasets. Thirteen abundant bacteria
- 9 genera were consistently found in the five datasets (our in-depth dataset plus the four cross-platform
- 10 datasets), i.e. Bacteroides, Bifidobacterium, Blautia, Clostridium, Collinsella, Coprococcus, Dorea,
- 11 Eubacterium, Faecalibacterium, Parabacteroides, Phascolarctobacterium, Roseburia and
- 12 Ruminococcus. We computed the functional distance (d<sub>ij</sub> values) between these genus pairs (Figure
- 13 8A) and used an Empirical Bayesian approach to correct for batch effects across platforms
- 14 (Supplementary Figure S13). Box plots showed agreement of between-genera d<sub>ij</sub> values across all
- datasets (**Figure 8A**). Based on mean values of the functional distances (d<sub>ii</sub> cutoff <0.90), we
- 16 constructed a global unipartite network of functional interrelations between microbial genera across
- 17 the datasets (Figure 8B). Eubacterium, Faecalibacterium, Ruminococcus, Bacteroides, Clostridium and
- 18 *Coprococcus* showed high number of linkages, suggesting that these "global hub genera" may play
- 19 their roles as functional hubs in microbiomes. To validate this finding, we analyzed samples from
- 20 another individual microbiome (not included in the above datasets) using our in-depth
- 21 metaproteomics approach (**Supplementary Figure S1**). The functional interrelation network from this
- 22 sample showed that most of our "global hub genera" had high degrees of connection in this new
- 23 graph (Figure 8C).

#### 24 Discussion

- 25 A systems-oriented approach to understanding high-dimensional microbiome data can be employed
- by constructing of ecological networks (Angulo et al., 2019; Tian et al., 2020; Xiao et al., 2017).
- 27 Network science (Barabási, 2013) provides a quantitative framework for representing and analyzing
- 28 the principles underlying microbiome organization. Nevertheless, there has been a substantial gap
- 29 between understanding microbiome assemblage and how its functionality is organized, which could
- 30 not solely be examined by networks constructed from metagenomics. In this study, we demonstrated
- 31 the usefulness of metaproteomics in gaining a system-level understanding of microbiome

functionality by an in-depth investigation into the metaproteome network topology, functional
 redundancy and its contributing factors.

3 Using an in-depth metaproteomics approach, we showed that the human gut microbiome's taxon-4 function networks at both the proteome and genome levels (i.e. PCN and GCN) are highly nested. In a 5 microbiome PCN, the network being highly nested implies that specialist taxa tend to be playing 6 functional roles that are a subset of active functions from generalist taxa (Bascompte and Jordano, 7 2007; Bascompte et al., 2003). Such functional network structures have been frequently found in 8 macro-ecosystem networks of mutualistic interactions (food-webs) (Kondoh et al., 2010). Despite 9 similarity in network topology between a microbiome's metagenome and metaproteome, we found 10 that the within-sample FR profiles differed markedly between expressed functions and functional 11 capacities. The functional interrelationship of expressed proteomes between taxa appeared to be 12 more robust across microbiomes, compared to that of the functional genomes. The COG degree 13 distribution revealed that several functions were expressed in a high number of genera. These highly 14 connected functions were enriched in metabolism of carbohydrates and amino acids, suggesting that 15 microbial acquisition of nutrients from the environment and trophic interactions (Wang et al., 2019) 16 between microbes could be major factors that shape their active functional organization. The 17 nutrient-rich environment and mucosal immunity in the human gut provide a naturally selective 18 growth condition for the microbes. Studies have shown that different host gut environments (human, 19 mouse, rat and non-human primates) have distinct microbiome signatures (Nagpal et al., 2018; 20 Nguyen et al., 2015). In human subjects, environmental factors such as diet and medication also significantly shape microbial community composition in the gut (Rothschild et al., 2018). Our result 21 22 showing the robustness of between-taxa functional distances across individual microbiomes implies a 23 more fundamental mechanism that underlies in the selective organization of microbiome 24 functionalities by the environment.

25 Further, we found that taxon-function networks in metaproteomes showed universal properties:

26 networks built with datasets generated by shallower metaproteomics approaches still capture the

27 highly nested topology. This allowed us to make use of routinely generated metaproteomics datasets

28 to observe the effects of multiple environmental factors, such as inter-individual variation,

29 xenobiotics, disease and biogeography on the functional redundancy of the gut microbiome. We first

30 showed that compounds with pharmacological activity can affect the redundancy of expressed

31 functions in individual microbiomes. Overall distributions of functional distance between genera pairs

1 were changed in response to some compounds, which was related to changes in a subset of

2 between-genera functional distances. This suggests that xenobiotic compounds may affect functional

3 redundancy by partially modifying the functional interrelationship between taxa.

4 Despite strong inter-individual signatures, we observed a universal pattern of between-taxa 5 functional distances  $(d_{ij})$  across all analyzed datasets. Notably, this pattern was fully shifted by a 6 global increase in d<sub>ii</sub> values and subsequently a significant decrease of the nFR in a subset of IBD 7 samples mostly obtained from inflamed areas. Interestingly, this subset of samples still showed their 8 own within-subset consistency in the distribution  $d_{ii}$  values. This finding may support, from a 9 functional angle, the hypothesis that there are alternative stable states (bi-stability or multi-stability) 10 in the gut ecosystem(Gonze et al., 2017; Van de Guchte et al., 2020). One frequently discussed 11 mechanism behind these alternative states has been the continuous exposure of the microbiome to a 12 altered environmental parameter (Stein et al., 2013). An inflamed area in the gut will have a reduced 13 mucus layer (van der Post et al., 2019) and elevated host defense responses(Zhang et al., 2018a). The host mucus layer is a nutritional source of cross-feeding in the gut microbiome(Bunesova et al., 2018; 14 15 Kosciow and Deppenmeier, 2020; Schroeder, 2019). Loss of this layer may firstly affect the network hub functions of carbohydrate and amino acid metabolism, and subsequently affect the functional 16 17 interactions in the whole community. In addition, host defense responses attenuate microbial 18 oxidative stress responses(Zhang et al., 2018a), which has been associated to microbiome 19 dysfunction (Luca et al., 2019). Decrease of within-sample FR has been associated with impaired 20 microbiome stability and resilience(Moya and Ferrer, 2016). Resilient microbiota resist external pressures (e.g. antibiotics/dietary shifts) and return to their original state. Being non-resilient, a 21 22 microbiome is likely to shift its composition permanently and stay at an altered new state instead of 23 restoring to its original state of equilibrium(Dogra et al., 2020; Folke et al., 2004). Collectively, we 24 disassembled the FR into one-to-one comparisons of between-taxa functional activities, and found 25 that a global shift in functional roles of microbes towards a more heterogeneous pattern was a factor 26 driving the decrease of FR and alteration of states in inflamed area in IBD patients.

Finally, the global pattern of between-genera functional distance across different metaproteomics
datasets suggest that there may be universal community assemblage rules driven by the functional
organization. In microbial community networks, highly linked nodes identified by a degree-based
inference are often referred to as keystone taxa or hubs (Banerjee et al., 2018; Wang et al., 2017).
Here, we refer such nodes observed in our PCNs as functional hubs. Across all metaproteomics

1 datasets, Eubacterium, Faecalibacterium, Ruminococcus, Bacteroides, Clostridium and Coprococcus

- 2 were found to be the most frequent functional hubs. Different approaches have been applied to
- 3 identify keystone taxa in microbiomes with several agreements with our functional hubs(Fisher and
- 4 Mehta, 2014; Ze et al., 2012). Such keystone taxa have been discussed as putative drivers of
- 5 microbiome structure and function (Banerjee et al., 2018). Our current finding highlights the value of
- 6 further investigation into functional hubs and hub functions in microbiome PCNs. This will provide a
- 7 unique and systematic insight for the prediction of community functional responses, or for the
- 8 manipulation of microbiome functioning.
- 9

### 10 Acknowledgement

- 11 This work was partially funded by the Government of Canada through Genome Canada and the
- 12 Ontario Genomics Institute (OGI-149) and the Ontario Ministry of Economic Development and
- 13 Innovation (Project 13440). Y.-Y.L. acknowledges grants from National Institutes of Health
- 14 (R01Al141529, R01HD093761, RF1AG067744, UH3OD023268, U19Al095219 and U01HL089856). The
- 15 shotgun metagenomic analysis presented here was enabled in part by WestGrid (<u>www.westgrid.ca</u>)
- 16 and Compute Canada (<u>www.computecanada.ca</u>). D.R.M. is partially supported through University of
- 17 Ottawa Faculty of Medicine Distinguished Clinical Research Chair in Pediatric Inflammatory Bowel
- 18 Disease. The authors acknowledge Ruth Singleton (Clinical Research Coordinator) for participant
- 19 recruitment and data collection.

### 20 Author contributions

- 21 Conceptualization, Y.-Y.L, D.F. and L.L.; Methodology, D.F., Y.-Y.L, L.L. and Z.N.; Formal Analysis: L.L.;
- 22 Investigation L.L. and Z.N.; Resources, D.R.M., A.S., J.B., and J.M.; Data Curation: L.L., J.B., X.Z., Z.N.
- 23 and C.S.; Writing Original Draft, L.L., Y.-Y.L, and D.F.; Writing Review & Editing, J.B., J.M. A.S., C.S.,
- 24 D.R.M., X.Z., and Z.N.; Visualization: L.L. and Z.N.; Supervision: D.F. and Y.-Y.L.
- 25

## 26 Declaration of interests

- 27 D.F., A.S. and D.R.M. have co-founded Biotagenics and MedBiome, clinical microbiomics companies.
- 28 All other authors declare no potential conflicts of interest.
- 29
- 30
- 31
- 32

### 1 Methods

### 2 KEY RESOURCES TABLE

| Reagent or Resource                    | Source                       | Identifier                           |
|----------------------------------------|------------------------------|--------------------------------------|
| Biological samples                     |                              |                                      |
| 'MetaPro-IQ' samples                   | Lavage sample aliquots       | (Zhang et al., 2016)                 |
|                                        | preserved at -80 °C          |                                      |
| 'pepFunk' samples                      | Cultured microbiome aliquots | (Simopoulos et al., 2020)            |
|                                        | preserved at -80 °C          |                                      |
| Metaproteomics reagents                |                              |                                      |
| Ammonium formate                       | Sigma-Aldrich                | 70221                                |
| cOmplete™ mini tablet                  | Roche                        | C764L27                              |
| Dithiothreitol                         | Sigma-Aldrich                | 43815                                |
| Formic acid                            | Sigma-Aldrich                | F0507                                |
| Hydrochloric acid                      | Fisher Chemical              | A114S-500                            |
| Iodoacetamide                          | Sigma-Aldrich                | 11149                                |
| Sep-Pak C18 1 cc Vac Cartridge         | Waters                       | WAT054955                            |
| TRIS (hydroxymethyl aminomethane)      | OmniPur®                     | 9230                                 |
| Trypsin                                | Worthington Biochemical      | L5003740                             |
|                                        | Corp., Lakewood, NJ          |                                      |
| Urea                                   | Sigma-Aldrich                | U5378                                |
| Critical commercial assays             |                              |                                      |
| DC <sup>™</sup> protein assay reagents | Bio-Rad                      | 500-0113, 500-0114 and 500-0115      |
| Software and algorithms                |                              |                                      |
| R (versions 3.6.1 and 4.0.4)           | R Foundation                 | http://www.r-project.org             |
| Python (version 3.6)                   | Python                       | https://www.python.org               |
| X!Tandem (version 2015.12.15.2)        | X! Search Engine             | https://www.thegpm.org/tandem/       |
|                                        | Development                  |                                      |
| MaxQuant (version 1.5.2.8)             | MaxQuant                     | https://www.maxquant.org             |
| MetaLab (version 1.2.0)                | iMetaLab Suite               | https://imetalab.ca/                 |
| DIAMOND (version 0.8.35)               | DIAMOND                      | https://github.com/bbuchfink/        |
|                                        |                              | diamond/releases/tag/v0.8.35         |
| MOCAT (version 1.3)                    | MOCAT                        | http://www.bork.embl.de/mocat/       |
| MEGAN (version 6.7.0)                  | MEGAN                        | https://www.wsi.uni-                 |
|                                        |                              | tuebingen.de/lehrstuehle/            |
|                                        |                              | algorithms-in-                       |
|                                        |                              | bioinformatics/software/megan6/      |
| MetaPhIAn3                             | MetaPhlAn                    | https://huttenhower.sph.harvard.edu/ |

3

## 4 **Resource availability**

### 5 Lead Contact

6 Further information and requests for resources and reagents should be directed to the Lead Contact,

- 7 Dr. Daniel Figeys (<u>dfigeys@uottawa.ca</u>).
- 8 Materials availability

1 The study did not generate new unique reagents.

#### 2 Data and code availability

- 3 The ultra-deep metaproteomics datasets were deposited to the ProteomeXchange Consortium
- 4 (http://www.proteomexchange.org) via the PRIDE partner repository. Database search outputs from
- 5 the SISPROT (Zhang et al., 2017), RapidAIM(Li et al., 2020b), Berberine (Li et al., 2020a) and IBD
- 6 (Zhang et al., 2018a) studies have been previously deposited to the ProteomeXchange Consortium
- 7 with the dataset identifiers PXD005619, PXD012724, PXD015934 and PXD007819, respectively.

#### 8 Experimental subject details

- 9 Please refer to supplementary Table S1 in the MetaPro-IQ study (Zhang et al., 2016) for clinical
- 10 details of the experimental subjects HM454, HM455, HM466 and HM503.

#### 11 Method details

#### 12 Protein extraction and digestion

- 13 Protein extraction and digestion of the individual gut aspirate samples were performed as described
- 14 previously(Zhang et al., 2018b), with minor modifications. Frozen aliquots of aspirate samples were
- 15 thawed and subjected to differential centrifugation for microbial cell purification: the samples were
- 16 first centrifuged at 300 g, 4 °C for 5 min to remove debris; the resulting supernatant was centrifuged
- 17 at 14,000 g for 20 min to pellet microbial cells; the pellets were then washed three times by
- resuspending in cold phosphate-buffered saline (PBS) and centrifuging at 14,000 g, 4 °C for 20 min.
- 19 Next, the washed microbial cell pellets were resuspended in a cell lysis buffer containing 4% sodium
- 20 dodecyl sulfate (w/v), 8 M urea, 50 mM Tris-HCl (pH = 8.0), and one Roche cOmplete<sup>™</sup> mini tablet per
- 21 10 mL buffer, followed by ultra-sonication (30 s on, 1 min off, amplitude of 25%, two rounds) using a
- 22 Q125 Sonicator (Qsonica, LLC). Cell debris was then removed by a centrifugation at 16,000 g, 4 °C for
- 23 10 min.
- 24 Each of the protein extract was then precipitated in five times its volume of precipitation solution
- 25 (acetone : ethanol : acetic acid = 49.5 : 49.5 : 1, v:v:v) at −20 °C overnight. The precipitated proteins
- were pelleted by centrifuging at 16,000 g, 4 °C for 20 min, followed by being washed with ice-cold
- 27 acetone for three times to remove excess SDS that may affect trypsin activity. Next, the washed
- 28 proteins were resuspended in a buffer containing 6M urea and 1M Tris-HCl (pH = 8.0). Protein
- 29 concentration was determined by the DC<sup>™</sup> assay (Bio-Rad Laboratories, Canada) following the
- 30 manufacturer's manual.

1 Finally, proteins were subjected to an in-solution tryptic digestion. The samples were reduced in 10 2 mM dithiothreitol (DTT) at 56 °C for 30 min, then were alkylated by 20 mM iodoacetamide (IAA) at 3 room temperature in dark for 40 min. The samples were then diluted 10 times with 1 M Tris-HCl 4 buffer (pH = 8.0), followed by trypsin digestion (at a concentration of 1  $\mu$ g trypsin per 50  $\mu$ g proteins) 5 at 37 °C for 24 hours. The digests were then acidified to pH = 3 using 10% formic acid, followed by a 6 desalting step using Sep-Pak C18 Cartridge (Waters, Milford, MA, USA). The cartridges were first 7 activated using 100% acetonitrile, and then equilibrated using 0.1% formic acid (v/v) before passing 8 samples through the columns for three times. Samples bonded to the cartridges were then washed 9 using 0.1% formic acid (v/v), and finally the samples were eluted from the cartridges using the elution 10 solution containing 80% acetonitrile and 0.1% formic acid (v/v).

### 11 High-pH reversed phase fractionation

12 Eluted samples were evaporated in a SAVANT SPD1010 SpeedVac Concentrator (Thermo Fisher

- 13 Scientific, USA), and resuspended in 0.1% formic acid (v/v) to a concentration of  $1 \mu g/\mu L$  for high-pH
- 14 reversed phase fractionation following a previous workflow(Batth et al., 2014), with minor
- 15 adaptations: 30 μL sample were loaded to a ZORBAX Bonus-RP column (with 3.5 μm C18 resins, ID
- 16 2.1 mm, length 50 mm; Agilent Technologies, USA), and fractionated with a Agilent 1200 series HPLC
- 17 System (Agilent Technologies, Germany). A 60-min gradient consisting of 5 35% buffer B (v/v) in
- 18 1 42 min, and 35 50% buffer B in 42 45 min at a flow rate of 100  $\mu$ L/min was used for the
- 19 fractionation. Here, 10 mM ammonium formate was used as buffer A, and 10 mM ammonium
- 20 formate with 90% acetonitrile (v/v) was used as buffer B. Ammonium hydroxide was used to adjust
- 21 the pH of both buffers A and B to 10. Sample fractions were continuously collected into 96 well plates
- by an Agilent 1100 Series Micro-FC G1364D micro fraction collector (Agilent Technologies, Germany).
- 23 For each sample, 48 fractions were collected into different wells at 1 min intervals over the first 48
- 24 min. The samples were then pooled by combining four fractions at an interval of 12 wells, resulting in
- 25 12 fractionated samples per individual microbiome (Figure 1A).

#### 26 HPLC-ESI-MS/MS analysis

- 27 After evaporation and resuspension in 0.1% formic acid, each fraction was analysed by HPLC-ESI-
- 28 MS/MS consisting of an UltiMate 3000 RSLCnano system (Thermo Fisher Scientific, USA) and an
- 29 Orbitrap Exploris 480 mass spectrometer (Thermo Fisher Scientific, USA). A 60-min gradient of 5 to
- 30 35% (v/v) buffer B at a 300  $\mu$ L/min flow rate was used to separate the peptides on a tip column
- 31 (75 μm inner diameter × 10 cm) packed with reverse phase beads (3 μm/120 Å ReproSil-Pur C18

1 resin, Dr. Maisch GmbH, Ammerbuch, Germany). Here, 0.1% formic acid (v/v) was used as buffer A,

2 and 0.1% formic acid with 80% acetonitrile (v/v) was used as buffer B. The MS full scan ranging from

3 350 – 1400 m/z was recorded in profile mode with the resolution of 60,000. Data-dependent MS/MS

4 scan was performed with the 12 most intense ions with the resolution of 15,000. Dynamic exclusion

5 was enabled for duration of 30 s with a repeat count of one.

### 6 Database search

7 Database search for the fractionated metaproteomics samples was performed based on the 8 MetaPro-IQ workflow(Zhang et al., 2016). Briefly, a two-step database search was first performed 9 using X!Tandem (version 2015.12.15.2). All sample fractions were searched against the integrated 10 gene catalog (IGC) of human gut microbiome (http://meta.genomics.cn/)(Li et al., 2014) to generate a 11 reduced database, then a classical target-decoy database search was performed using the reduced 12 database to generate confidently identified peptide and protein lists based on a strict filtering criteria 13 of FDR = 0.01. The protein lists for all sample fractions were then combined, and duplicated proteins 14 were removed to generate a combined non-redundant FASTA database using an in-house PERL script. 15 Next, MaxQuant (version 1.5.2.8) was used to generate quantified protein groups and peptides in 16 each sample using the combined non-redundant FASTA database. Carbamidomethylation of cysteine 17 was set as a fixed modification, oxidation of methionine and N-terminal acetylation were set as potential modifications. The maximum missed cleavages of trypsin was set as two. The resulting 18 19 peptide and protein group lists from MaxQuant were then inputted to MetaLab (version 1.2.0) for 20 taxonomic analysis and functional annotation(Cheng et al., 2017). For the taxonomic analysis, 21 identified peptides were mapped to taxonomic lineages based on a built-in pep2tax database in 22 MetaLab. Functional annotation to COG was performed against a database generated by mapping 23 proteins in the IGC database to clusters of orthologous groups (COGs) using Diamond (version0.8.35). 24 The dataset was deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) 25 via the PRIDE partner repository. We directly used MetaPro-IQ or MetaLab (which automates 26 MetaPro-IQ) database search outputs from the SISPROT (Zhang et al., 2017), RapidAIM(Li et al., 27 2020b), Berberine (Li et al., 2020a) and IBD (Zhang et al., 2018a) studies. They have been previously 28 deposited to the ProteomeXchange Consortium with the dataset identifiers PXD005619, PXD012724, 29 PXD015934 and PXD007819, respectively. 30 For the metagenomics analysis, data were obtained from the previous MetaPro-IQ study (Zhang et 31 al., 2016), accessible from the NCBI sequence read archive (SRA) under the accession of SRP068619.

32 To enable the comparison between GCN and PCN, here we reanalysed the raw metagenomics reads

1 by searching against the IGC database. First, the raw reads were processed using MOCAT for

- 2 trimming and quality filtering, and for human reads removal as previously described (Zhang et al.,
- 3 2016). Next, the cleaned/non-human paired end reads were used for DIAMOND against the IGC
- 4 database. DIAMOND results of paired end reads were then merged, an annotation was confirmed
- 5 only when both R1 and R2 were matched to the same protein or proteins. Finally, the result of each
- 6 sample was summarized to generate a list of proteins and their corresponding read numbers.

### 7 Metaproteomic and metagenomic content networks

- 8 For the generation of metaproteomic content networks (PCNs), a 'peptide-protein bridge' approach 9 (see details in Supplementary Note) was used to match functions to taxa based on the database 10 search output files, i.e. peptides, protein groups, taxonomy and function. The protein groups table 11 (generated by MaxQuant) contains information on the identified proteins, and identifiers of peptide 12 sequence associated to each protein group. The taxonomy table generated by MetaLab contains 13 peptide sequences and their corresponding lowest common ancestor (LCA) taxa. The function table 14 contains identified proteins and their corresponding functional annotations. Therefore, at we first 15 matched the protein groups to taxa through the peptides. Next, functions of the proteins were 16 combined to the list to generate a taxon-to-function table that was bridged by the peptide-protein 17 identification relationship. Protein group intensity was used as the quantification information in PCNs. Then, a PCN of N taxa and M functions can then be represented by an  $N \times M$  incidence matrix 18 19  $\mathbf{P} = [\mathbf{P}_{ia}]$ , where  $\mathbf{P}_{ia} \ge 0$  is the total intensity of proteins of function-*a* in taxon-*i* normalized by the 20 total intensities of functional proteins in taxon-i.
- 21 To generate GCNs from the IGC search result, the same functional annotation database as in MetaLab
- 22 was used to annotate identified proteins to COGs. The taxonomic information of proteins was
- 23 obtained by searching against an in-house database, which was generated by querying IGC proteins
- 24 against the NCBI non-redundant (nr) database (downloaded 2/3/2016) using DIAMOND, and
- 25 outputting the taxonomic lineages using MEGAN (version 6.7.0). The count of raw reads
- 26 corresponding to each protein was used as the quantification information in GCNs. Similarly, the GCN
- 27 can then be represented as  $\mathbf{G} = [G_{ia}]$ , where  $G_{ia} \ge 0$  is the raw read counts of proteins of function-
- 28 *a* in taxon-*i* normalized by the total counts of raw reads in taxon-*i*.
- 29 Calculation of functional distance and functional redundancy
- 30 Weighted Jaccard distance *d<sub>ij</sub>* between metagenomic (or metaproteomic) contents of taxon-*i* and *j*
- 31 can then be calculated with the GCN and PCN profiles **G** and **P**, respectively, as described previously
- 32 (Tian et al., 2020). For GCN, we have

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452564; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

3

$$d_{ij} = 1 - \frac{\sum_{a} \min(G_{ia}, G_{ja})}{\sum_{a} \max(G_{ia}, G_{ja})}, \qquad (2)$$

2 and for PCN, we have

$$d_{ij} = 1 - \frac{\sum_{a} \min(P_{ia}, P_{ja})}{\sum_{a} \max(P_{ia}, P_{ja})}.$$
(3)

4 The relative abundance of taxon-*i* in each community was denoted as  $p_i$ . In each metagenomics

5 sample,  $p_i$  was quantified using MetaPhlAn3 with default settings. In each metaproteomics sample,

6  $p_i$  was quantified using the total abundances of unique peptides corresponding to taxon-*i*.

7 With the  $d_{ii}$  and  $p_i$  values, within-sample FR of the metagenomic and the metaproteomic profiles,

8 denoted as  $FR_g$  and  $FR_p$ , respectively, were then calculated according to equation (1) given in the

9 Results section.

### 10 Statistical analysis and visualization

11 The statistical details of analysis can be found in the figure legends and in the main texts, including

12 the statistical tests used and significance criteria. Computation of GCN, PCN and functional

13 redundancy were performed using in-house Python codes. NODF values were computed using the R

14 package RInSp. Jensen-Shannon divergence and Kullback–Leibler divergence were calculated using

15 the R package LaplacesDemon. Two-way ANOVA was performed using R function aov(). PERMANOVA

16 tests were performed using R packages "vegan" and "BiodiversityR". Kruskal-Wallis and Wilcoxon

17 rank sum tests were performed using R functions kruskal.test() and wilcox.test(), respectively.

18 Network incidence matrices, degree distributions, bar plots, box plots, and violin plots were

19 visualized using the R package ggplot2. Unipartite networks were visualized using the R package

20 igraph. Tripartite networks were visualized using the R package networkD3. Heatmaps were

visualized using the R package pheatmap. Volcano plot was analyzed by MetaboAnalyst (version 4.0)

22 under non-parametric test setting. The interactive webpage

23 (https://shiny2.imetalab.ca/shiny/rstudio/PCN\_visualizer/) for visualization of all GCNs and PCNs

24 analyzed in this paper was created using the R packages shiny and shinydashboard.

25

26



### 2 Figure 1. Generation of proteomic content network (PCN) using ultra-deep metaproteomics

A. Each individual's gut microbiome sample was subjected to protein extraction. Then, purified proteins were
digested by trypsin. B. The resulting peptides were fractionated using a high-pH reversed-phase approach. C. 48
micro-fractions were combined into 12 samples prior to LC-MS/MS analysis (D.). E. The LC-MS/MS \*.RAW files
were searched against the IGC database using MetaPro-IQ workflow and MetaLab. F. A protein-peptide bridge
approach was used for generating the PCN (G.) from metaproteomics database search result files (see Methods
and Supplementary Note).

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452564; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



## 2 Figure 2. Proteomic content networks (PCNs) and genomic-content networks (GCNs) of individual

### 3 microbiomes

- 4 A. Taxon-function incidence matrix of the PCN at the genus-COG level in the four individual
- 5 microbiome samples. Here we used the classical Nestedness metric based on Overlap and Decreasing
- 6 Fill (NODF) to characterize and visualize the nested structures of the bipartite taxon-function network,
- 7 as described previously (Tian et al., 2020). The presences of genus-COG connections were shown in
- 8 yellow points. B. A tripartite plot showing taxonomic and functional relationships between GCN and
- 9 PCN in individual sample HM454. Letters represent different functional categories in the Clusters of
- 10 Orthologous Groups (COGs) database. Similar results of the other three individual microbiomes are
- 11 shown in Supplementary Figure S4-S6. C. The unweighted degree distribution of COGs in PCNs (first
- 12 row), that of genera in PCNs (second row), that of COGs in GCNs (third row), and that of genera in
- 13 GCNs (fourth row) in the four individual microbiomes.





### 2 Figure 3. Redundancies of expressed functions and functional potentials.

3 A. Within-sample functional redundancy (FR) in the metagenomes versus in the metaproteomes of

4 the individual microbiomes. B. Within-sample FR normalized by taxonomic diversity (nFR) in the

5 metagenomes versus in the metaproteomes of the individual microbiomes. C. Functional diversity

- 6 (FD) in the metagenomes versus in the metaproteomes. D. Taxonomic diversity (TD) in the
- 7 metagenomes versus in the metaproteomes. E. Functional distance (d<sub>ij</sub> value) between different pairs
- 8 of genera in the metagenomes versus in the metaproteomes. F. Distribution of functional distance in
- 9 the metagenomes versus in the metaproteomes in each individual microbiome. G. Pairwise
- 10 comparisons of *d<sub>ij</sub>* distributions between individual microbiomes using Jensen-Shannon divergence. D-
- 11 F were compared based on microbial genera of the top 95% overall protein biomass in the dataset.

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452564; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



#### 2 Figure 4. PCNs and corresponding degree distributions in different metaproteomics datasets

3 A-D. Taxon-function incidence matrix of the PCN corresponding to each metaproteomics dataset. The

4 presences of genus-COG connections are shown as yellow dots. E-H. Unweighted degree distribution

5 of COGs corresponding to each metaproteomics dataset. I-L. Unweighted degree distribution of

- 6 genera corresponding to each metaproteomics dataset. Each vertical panel (gray-line box) represents
- 7 the PCN of the first sample (by alphabet order) in each dataset. We also visualized the incidence
- 8 matrices and degree distributions of all samples here:
- 9 https://leyuan.shinyapps.io/pcn\_visualization3/

10

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.15.452564; this version posted July 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.



### 2 Figure 5. Functional redundancy comparisons in different metaproteomics datasets.

A.  $nFR_p$  values by individual microbiomes in the SISPROT dataset. B.  $nFR_p$  values by individual microbiomes in the RapidAIM dataset. C. NODF values by individual microbiomes in the Berberine dataset. D.  $nFR_p$  values by diagnosis in the IBD dataset. E.  $nFR_p$  values by the presence of compounds in the Berberine dataset. F.  $nFR_p$  values by inflammation and gut region in the IBD dataset. G. nFR values by the presence of compounds in the RapidAIM dataset. Significance of differences between-groups were examined by Wilcoxon rank-sum test, \*, \*\*, \*\*\* and \*\*\*\* indicate statistical significance at the FDR-adjusted p < 0.05, 0.01, 0.001 and 0.0001 levels, respectively.

10

11



1

### 2 Figure 6. Between-genera functional distances in the RapidAIM dataset.

- 3 A. Principal component analysis based on between-genera functional distances in individual
- 4 metaproteomes. B. d<sub>ij</sub> distribution by the presence of different compounds and by different individual
- 5 microbiomes. C. K-L divergence between the d<sub>ij</sub> distribution in the control (DMSO) and that of the
- 6 other compounds. Kruskal-Wallis test result indicates that overall the compounds had heterogeneous
- 7 levels of K-L divergence with the DMSO. Between-compound comparisons of the K-L divergence
- 8 values were performed by a Pairwise Wilcoxon Rank Sum Tests, \* indicates statistical significance at

1 the FDR-adjusted *p* < 0.05 level. The results were based on microbial genera of the top 95% overall









- 6 A. Heatmap showing d<sub>ii</sub> values between genera across samples in the IBD dataset. B. Distribution of d<sub>ii</sub>
- 7 values by diagnosis. C. Distribution of d<sub>ij</sub> values by inflammation. D. Volcano plot showing altered d<sub>ij</sub>
- 8 values between inflamed and non-inflamed sampling sites. The results were based on microbial
- 9 genera of the top 95% overall protein biomass in the dataset.



1

### 2 Figure 8. Comparison of between-genera d<sub>ij</sub> values across metaproteomics datasets.

3 A. Comparison of  $d_{ii}$  values across the five metaproteomics datasets in this study. Comparison was based on thirteen abundant microbial genera that were commonly found in these datasets. B. An 4 5 average unipartite network projected from the taxon-function bipartite network based on the functional distances between microbial genera. A mean d<sub>ii</sub> values less than 0.9 across all data (N = 6 7 533) were shown as a linkage between two nodes. Size of a node corresponds to its degree. C. A 8 unipartite network with an additional individual microbiome. The network was projected from the 9 taxon-function bipartite network based on the functional distances between microbial genera. d<sub>ij</sub> 10 value of 0.88 was used as the cut-off threshold on this graph. Size of a node corresponds to its 11 degree.

12

# 1 References

| 2  | Angulo, M.T., Moog, C.H., and Liu, YY. (2019). A theoretical framework for controlling complex                 |
|----|----------------------------------------------------------------------------------------------------------------|
| 3  | microbial communities. Nature Communications 10, 1045.                                                         |
| 4  | Banerjee, S., Schlaeppi, K., and van der Heijden, M.G.A. (2018). Keystone taxa as drivers of                   |
| 5  | microbiome structure and functioning. Nature Reviews Microbiology 16, 567-576.                                 |
| 6  | Barabási, AL. (2013). Network science. Philosophical Transactions of the Royal Society A:                      |
| 7  | Mathematical, Physical and Engineering Sciences 371, 20120375.                                                 |
| 8  | Bascompte, J., and Jordano, P. (2007). Plant-Animal Mutualistic Networks: The Architecture of                  |
| 9  | Biodiversity. Annual Review of Ecology, Evolution, and Systematics 38, 567-593.                                |
| 10 | Bascompte, J., Jordano, P., Melián, C.J., and Olesen, J.M. (2003). The nested assembly of plant-animal         |
| 11 | mutualistic networks. Proceedings of the National Academy of Sciences 100, 9383-9387.                          |
| 12 | Batth, T.S., Francavilla, C., and Olsen, J.V. (2014). Off-Line High-pH Reversed-Phase Fractionation for        |
| 13 | In-Depth Phosphoproteomics. Journal of Proteome Research 13, 6176-6186.                                        |
| 14 | Bunesova, V., Lacroix, C., and Schwab, C. (2018). Mucin Cross-Feeding of Infant Bifidobacteria and             |
| 15 | Eubacterium hallii. Microbial Ecology 75, 228-238.                                                             |
| 16 | Cheng, K., Ning, Z., Zhang, X., Li, L., Liao, B., Mayne, J., Stintzi, A., and Figeys, D. (2017). MetaLab: an   |
| 17 | automated pipeline for metaproteomic data analysis. Microbiome 5, 157.                                         |
| 18 | Dogra, S.K., Doré, J., and Damak, S. (2020). Gut Microbiota Resilience: Definition, Link to Health and         |
| 19 | Strategies for Intervention. Frontiers in Microbiology 11.                                                     |
| 20 | Fisher, C.K., and Mehta, P. (2014). Identifying Keystone Species in the Human Gut Microbiome from              |
| 21 | Metagenomic Timeseries Using Sparse Linear Regression. PLOS ONE 9, e102451.                                    |
| 22 | Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C.S. (2004).     |
| 23 | Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annual Review of Ecology,                 |
| 24 | Evolution, and Systematics 35, 557-581.                                                                        |
| 25 | Gilbert, J.A., and Lynch, S.V. (2019). Community ecology as a framework for human microbiome                   |
| 26 | research. Nature Medicine 25, 884-889.                                                                         |
| 27 | Gonze, D., Lahti, L., Raes, J., and Faust, K. (2017). Multi-stability and the origin of microbial              |
| 28 | community types. The ISME Journal 11, 2159-2166.                                                               |
| 29 | Kleiner, M. (2019). Metaproteomics: Much More than Measuring Gene Expression in Microbial                      |
| 30 | Communities. mSystems 4, e00115-00119.                                                                         |
| 31 | Kondoh, M., Kato, S., and Sakato, Y. (2010). Food webs are built up with nested subwebs. Ecology 91,           |
| 32 | 3123-3130.                                                                                                     |
| 33 | Kosciow, K., and Deppenmeier, U. (2020). Characterization of three novel $\beta$ -galactosidases from          |
| 34 | Akkermansia muciniphila involved in mucin degradation. International Journal of Biological                     |
| 35 | Macromolecules 149, 331-340.                                                                                   |
| 36 | Lawton, J.H., and Brown, V.K. (1993). Redundancy in Ecosystems, Vol 99.                                        |
| 37 | Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., Kultima, J.R., Prifti, E., Nielsen, |
| 38 | T., et al. (2014). An integrated catalog of reference genes in the human gut microbiome. Nature                |
| 39 | Biotechnology 32, 834-841.                                                                                     |
| 40 | Li, L., Chang, L., Zhang, X., Ning, Z., Mayne, J., Ye, Y., Stintzi, A., Liu, J., and Figeys, D. (2020a).       |
| 41 | Berberine and its structural analogs have differing effects on functional profiles of individual gut           |
| 42 | microbiomes. Gut Microbes 11, 1348-1361.                                                                       |
| 43 | LI, L., and Figeys, D. (2020). Proteomics and Metaproteomics Add Functional, Taxonomic and Biomass             |
| 44 | Dimensions to Modeling the Ecosystem at the Mucosal-Iuminal Interface. Molecular & Cellular                    |
| 45 | Proteomics <i>19</i> , 1409-1417.                                                                              |

Li, L., Ning, Z., Zhang, X., Mayne, J., Cheng, K., Stintzi, A., and Figeys, D. (2020b). RapidAIM: a culture-1 2 and metaproteomics-based Rapid Assay of Individual Microbiome responses to drugs. 3 Microbiome 8, 33. Loreau, M. (2004). Does functional redundancy exist? Oikos 104, 606-611. 4 5 Luca, M., Di Mauro, M., Di Mauro, M., and Luca, A. (2019). Gut Microbiota in Alzheimer's Disease, 6 Depression, and Type 2 Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and 7 Cellular Longevity 2019, 4730539. 8 Moya, A., and Ferrer, M. (2016). Functional Redundancy-Induced Stability of Gut Microbiota 9 Subjected to Disturbance. Trends Microbiol 24, 402-413. Nagpal, R., Wang, S., Solberg Woods, L.C., Seshie, O., Chung, S.T., Shively, C.A., Register, T.C., Craft, S., 10 11 McClain, D.A., and Yadav, H. (2018). Comparative Microbiome Signatures and Short-Chain Fatty 12 Acids in Mouse, Rat, Non-human Primate, and Human Feces. Frontiers in Microbiology 9. 13 Nguyen, T.L.A., Vieira-Silva, S., Liston, A., and Raes, J. (2015). How informative is the mouse for 14 human gut microbiota research? Disease Models & amp; amp; Mechanisms 8, 1. 15 Root, R.B. (1967). The Niche Exploitation Pattern of the Blue-Gray Gnatcatcher. Ecological 16 Monographs 37, 317-350. 17 Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P.I., Godneva, 18 A., Kalka, I.N., Bar, N., et al. (2018). Environment dominates over host genetics in shaping human 19 gut microbiota. Nature 555, 210-215. 20 Salvato, F., Hettich, R.L., and Kleiner, M. (2021). Five key aspects of metaproteomics as a tool to 21 understand functional interactions in host-associated microbiomes. PLOS Pathogens 17, 22 e1009245. 23 Schroeder, B.O. (2019). Fight them or feed them: how the intestinal mucus layer manages the gut 24 microbiota. Gastroenterology Report 7, 3-12. 25 Simopoulos, C.M.A., Ning, Z., Zhang, X., Li, L., Walker, K., Lavallée-Adam, M., and Figeys, D. (2020). pepFunk: a tool for peptide-centric functional analysis of metaproteomic human gut microbiome 26 27 studies. Bioinformatics 36, 4171-4179. 28 Stein, R.R., Bucci, V., Toussaint, N.C., Buffie, C.G., Rätsch, G., Pamer, E.G., Sander, C., and Xavier, J.B. 29 (2013). Ecological Modeling from Time-Series Inference: Insight into Dynamics and Stability of 30 Intestinal Microbiota. PLOS Computational Biology 9, e1003388. 31 Tian, L., Wang, X.-W., Wu, A.-K., Fan, Y., Friedman, J., Dahlin, A., Waldor, M.K., Weinstock, G.M., 32 Weiss, S.T., and Liu, Y.-Y. (2020). Deciphering functional redundancy in the human microbiome. 33 Nature Communications 11, 6217. 34 Tian, L., Wu, A.-K., Friedman, J., Waldor, M.K., Weiss, S.T., and Liu, Y.-Y. (2017). Deciphering 35 Functional Redundancy in the Human Microbiome. bioRxiv, 176313. 36 Van de Guchte, M., Burz, S.D., Cadiou, J., Wu, J., Mondot, S., Blottière, H.M., and Doré, J. (2020). 37 Alternative stable states in the intestinal ecosystem: proof of concept in a rat model and a 38 perspective of therapeutic implications. Microbiome 8, 153. 39 van der Post, S., Jabbar, K.S., Birchenough, G., Arike, L., Akhtar, N., Sjovall, H., Johansson, M.E.V., and 40 Hansson, G.C. (2019). Structural weakening of the colonic mucus barrier is an early event in 41 ulcerative colitis pathogenesis. Gut 68, 2142-2151. 42 Vieira-Silva, S., Falony, G., Darzi, Y., Lima-Mendez, G., Garcia Yunta, R., Okuda, S., Vandeputte, D., 43 Valles-Colomer, M., Hildebrand, F., Chaffron, S., et al. (2016). Species-function relationships 44 shape ecological properties of the human gut microbiome. Nature Microbiology 1, 16088. 45 Wang, H., Wei, Z., Mei, L., Gu, J., Yin, S., Faust, K., Raes, J., Deng, Y., Wang, Y., Shen, Q., et al. (2017). 46 Combined use of network inference tools identifies ecologically meaningful bacterial 47 associations in a paddy soil. Soil Biology and Biochemistry 105, 227-235.

| 1  | Wang, T., Goyal, A., Dubinkina, V., and Maslov, S. (2019). Evidence for a multi-level trophic                               |
|----|-----------------------------------------------------------------------------------------------------------------------------|
| 2  | organization of the human gut microbiome. PLOS Computational Biology 15, e1007524.                                          |
| 3  | Wu, G., Zhao, N., Zhang, C., Lam, Y.Y., and Zhao, L. (2021). Guild-based analysis for understanding gut                     |
| 4  | microbiome in human health and diseases. Genome Medicine 13, 22.                                                            |
| 5  | Xiao, Y., Angulo, M.T., Friedman, J., Waldor, M.K., Weiss, S.T., and Liu, YY. (2017). Mapping the                           |
| 6  | ecological networks of microbial communities. Nature Communications 8, 2042.                                                |
| 7  | Ze, X., Duncan, S.H., Louis, P., and Flint, H.J. (2012). Ruminococcus bromii is a keystone species for the                  |
| 8  | degradation of resistant starch in the human colon. The ISME Journal 6, 1535-1543.                                          |
| 9  | Zhang, X., Chen, W., Ning, Z., Mayne, J., Mack, D., Stintzi, A., Tian, R., and Figeys, D. (2017). Deep                      |
| 10 | Metaproteomics Approach for the Study of Human Microbiomes. Analytical Chemistry 89, 9407-                                  |
| 11 | 9415.                                                                                                                       |
| 12 | Zhang, X., Deeke, S.A., Ning, Z., Starr, A.E., Butcher, J., Li, J., Mayne, J., Cheng, K., Liao, B., Li, L. <i>, et al</i> . |
| 13 | (2018a). Metaproteomics reveals associations between microbiome and intestinal extracellular                                |
| 14 | vesicle proteins in pediatric inflammatory bowel disease. Nature Communications 9, 2873.                                    |
| 15 | Zhang, X., and Figeys, D. (2019). Perspective and Guidelines for Metaproteomics in Microbiome                               |
| 16 | Studies. Journal of Proteome Research 18, 2370-2380.                                                                        |
| 17 | Zhang, X., Li, L., Mayne, J., Ning, Z., Stintzi, A., and Figeys, D. (2018b). Assessing the impact of protein                |
| 18 | extraction methods for human gut metaproteomics. Journal of Proteomics 180, 120-127.                                        |
| 19 | Zhang, X., Ning, Z., Mayne, J., Moore, J.I., Li, J., Butcher, J., Deeke, S.A., Chen, R., Chiang, CK., Wen,                  |
| 20 | M., et al. (2016). MetaPro-IQ: a universal metaproteomic approach to studying human and                                     |
|    |                                                                                                                             |

21 mouse gut microbiota. Microbiome 4, 31.

22

23