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Abstract

Single-cell RNA sequencing (scRNAseq) offers an unprecedented potential for scrutinizing complex
biological systems at single cell resolution. One of the most important applications of scRNAseq is to
cluster cells into groups of similar expression profiles, which allows unsupervised identification of novel cell
subtypes. While many clustering algorithms have been tested towards this goal, graph-based algorithms
appear to be the most effective, due to their ability to accommodate the sparsity of the data, as well
as the complex topology of the cell population. An integral part of almost all such clustering methods is
the construction of a k-nearest-neighbor (KNN) network, and the choice of k, implicitly or explicitly, can
have a profound impact on the density distribution of the graph and the structure of the resulting clusters,
as well as the resolution of clusters that one can successfully identify from the data. In this work, we
propose a fairly simple but robust approach to estimate the best k for constructing the KNN graph while
simultaneously identifying the optimal clustering structure from the graph. Our method, named scQcut,
employs a topology-based criterion to guide the construction of KNN graph, and then applies an efficient
modularity-based community discovery algorithm to predict robust cell clusters. The results obtained from
applying scQcut on a large number of real and synthetic datasets demonstrated that scQcut—which does
not require any user-tuned parameters—outperformed several popular state-of-the-art clustering methods
in terms of clustering accuracy and the ability to correctly identify rare cell types. The promising results
indicate that an accurate approximation of the parameter k, which determines the topology of the network,
is a crucial element of a successful graph-based clustering method to recover the final community structure
of the cell population.
Keywords: scRNA-seq, graph-based clustering, community discovery, number of clusters
Availability: ScQcut is written in both Matlab and Python and maybe be accessed through the links below.
Matlab version: cs.utsa.edu/ jruan/scQcut
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1 Introduction
Single-cell RNA sequencing (scRNA-seq) is a powerful high
throughput technology enabling transcriptome profiling at single
cell resolution. This unique capability of studying cells at single
cell level allows researchers to investigate cellular heterogeneity
and discover trajectories for different cell developmental
stages [30, 35, 10]. These goals are not however being readily
achieved by traditional profiling techniques that assess bulk
populations. This powerful and versatile sequencing technique can
bring unprecedented insight into complex biological systems, such
as cancer genomics, by enabling us to uncover the heterogeneity
inherited in complex systems [27, 34]. As much as the data
acquired from scRNA-seq is rich and full of potential, yet
in order to convert them into meaningful knowledge, it is
indispensable to employ effective computational approaches to

reveal hidden patterns in the raw datasets. This computational
step is increasingly both instrumental and challenging in the
context of single-cell technology given the nuances of scRNAseq
data including but not limited to being sparse, high dimensional,
and noisy. One particular component of the abovementioned
computational efforts is clustering, which aims at grouping a
set of cells based on their transcriptome similarity. The outcome
of such successful clustering will not only serve as a basis for
additional downstream analysis (e.g. differential gene expression)
but also provides a reference to build a comprehensive cell atlas
with numerous applications in disease studies [4, 23, 17, 20].

A literature survey suggests that the existing clustering
methods devoted to the problem of single-cell analysis can be
categorized into three distinct groups: (i) approaches that are in
fact variations of k-means tailored to deal with the characteristics
of scRNAseq data (e.g., [8]). Although these methods offer
scalability needed to study large datasets, one of the main
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drawbacks associated with these kinds of methods is that they
have poor performance in identifying clusters with variable sizes,
densities, or shapes, which are evidently prevalent in single-cell
datasets [8, 25, 13]. Moreover, these methods ask for number
of clusters as a priori while this information is seldom known;
(ii) the second group of methods utilize hierarchical clustering
which is an iterative strategy to sequentially combine individual
cells into large clusters. This approach has been used in methods
such as BackSPIN [39] and pcaReduce [40]. A major limitation
of hierarchical clustering is the cost of time and memory which
makes it prohibitively expensive to be applied on large scale
scRNAseq data; In addition, hierarchical clustering methods are
typically performed in a bottom-up fashion, which can lead to poor
quality of the global clusters. (iii) the third category is based on
graph-based clustering, which is a promising approach to deal
with the pitfalls of the previous two categories. Most graph-
based approaches start with transforming the data into a graph
(weighted or unweighted), where each node of the graph represents
an instance of the data matrix, followed by solving an eigenvalue
problem of the adjacency matrix of the graph, and cluster the nodes
in the eigen space. In single-cell domain, a particular type of graph
clustering algorithms, called community discovery, which aims to
identify densely connected subgraphs by optimizing a so-called
modularity function, has received the most attention due to the
ability to determine the number of clusters (after a graph has been
obtained).

Since this paper focuses on a graph-based clustering method
we will first critically discuss , SNN-Cliq [36], SIMLR [12],
and Seurat[26]the state-of-the-art methods in this category. SNN-
Cliq first creates a shared nearest neighbor (SNN) network in
which nodes represent cells and the weighted edges between
nodes stand for their similarity defined as the number of common
neighbors shared by the two adjacent cells it is connecting together.
SNN-Cliq applies a greedy algorithm to find maximal quasi-
cliques representing clusters of nodes in the SNN graph. Since
cliques are often rare in sparse graphs, SNN-Cliq detects dense
but not fully connected quasi-cliques in an SNN graph. SIMLR
introduces a framework for learning a cell similarity measure
using rank constraint and graph diffusion. It first generates
multiple kernels to represent approximate cell-cell variability
and then uses a non-convex optimization approach to purify
and integrate these kernels and output a detailed cell-to-cell
similarity matrix. The learned similarity matrix can be used
for spectral clustering and visualization for scRNAseq data.
SIMLR is however computationally expensive and focuses on
learning similarity matrix rather than improving the clustering
technique itself. As the last method discussed here, Seurat starts
with applying the dimension reduction method PCA on most
informative genes, then, uses significant principal components
(PCs) from PCA analysis to determine which cells show similar
expression patterns for clustering. Using a KNN graph it builds
a cell network, with edges drawn between cells sharing similar
gene expression patterns. Subsequently, it refines the edge weights
between any two cells based on the shared overlap in their local
neighborhoods (based on the idea from SNN-Cliq). At the end, it
attempts to partition this graph into highly interconnected quasi-
cliques or communities representing different cell subpopulations.
This algorithm requires the number of nearest neighbors to be
provided by the user through the parameter called resolution.
However, it is often difficult if not impossible, for the user to
determine a good estimate for this parameter. This issue is also
present in SNN-Cliq as well.

Since the number of nearest neighbors plays a key role
in determining the quality of clustering methods, alternative
methods featuring built-in functionalities to automatically attain
the optimum value of this parameter —independent of any user-
defined setting —are much needed. To address this need, in this
study a novel parameter-free graph-based method for clustering
scRNAseq data is introduced. The performance of the method is
evaluated by applying it to a comprehensive set of both synthetic
and real scRNAseq datasets. The results clearly show that our
method outperforms several widely used methods in literature.

2 Methods
The algorithm first computes a distance matrix (or similarity
matrix) using a given distance metric, and then computes a
series of KNN graphs with different values of k. Each of the
KNN graphs is additionally randomly rewired to produce a graph
of the same degree distribution. Optimal community structure
(graph partitions) from each graph is then obtained by maximizing
the well-known modularity (Q) measure. Note that the optimal
modularity for both the real graph and the random graph is a
monotonically decreasing function of k; therefore, the difference
between the modularity of the real and random graph is used to
guide the selection of the optimal KNN graph whose community
structure is returned as the desired clustering of the cells. Fig. 1
illustrates the basic idea of the scQcut algorithm on a toy dataset.

2.1 Community identification via modularity optimization

The modularity function is a measure of the strength of community
structure in networks and is commonly used in optimization
methods for detecting community structure in networks [19].
Given an unweighted network with N vertices and M edges,
and a partition that divides the vertices into c communities, the
modularity function is defined as

Q =

c∑
i=1

(
eii
M
−
( ai

2M

)2
)
, (1)

where eii is the number of edges within community i, and ai is the
total degree for the vertices in community i [18]. The Q function
measures the fraction of edges falling within communities,
subtracted by what would be expected if the edges were randomly
placed. A larger Q value indicates stronger community structures.
If a partition gives no more intra-community edges than would
be expected by chance, then Q ≤ 0. For a trivial partition
with a single cluster, Q = 0. Given the definition of Q, the
community discovery problem is to find a partition of the network
that optimizes Q.

We utilize an improved version of the algorithm Qcut
developed in the lab for optimizing Q [24]. The Qcut algorithm
combines recursive graph partitioning with local search to balance
between efficiency and accuracy. Briefly, Qcut incorporates
two steps, namely, partitioning and refinement. In the first
step, a network or each subnetwork is recursively divided using
2-way and 3-way spectral clustering to the point where no
further improvement on Q can be obtained. In the refinement
step, Qcut further improves Q by considering (1) moving the
vertices from one community to another or (2) merging two
small communities into one, while using various heuristics
and bookkeeping techniques for efficiency and accuracy. These
two steps are alternately performed until neither of them can
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Fig. 1. Illustration of the proposed algorithm.

improve Q. It has been shown that Qcut outperforms several
other modularity-optimization methods in terms of both efficiency
and accuracy [24]. The general idea of Qcut is similar to
another popular modularity optimization algorithm, the Louvain
algorithm [2], which is used in Seurat. Louvain optimizes
modularity in two phases: 1) greedy local moving of nodes
2) aggregation of the network. The two phases are repeated
until the modularity function cannot be improved further. It
was shown Louvain algorithm may sometimes find arbitrarily
badly connected communities, and communities that are internally
disconnected, which is probably more of an implementation issue
than algorithm issue [31]. Some other key differences are that Qcut
considers all possible moves, and alternates between partition and
refinement. In our own evaluation, Qcut and Louvain have about
the same efficiency, and Qcut was often able to identify slightly
better modularity, which, importantly, has led to much more stable
community structure.

It is important to note that by optimizing modularity,
communities smaller than a certain scale tend to be merged
with other communities. This phenomenon has been referred
to as the resolution limit problem. Resolution limit has some
significant impact on single-cell data. First, scRNAseq data often
have diverse subpopulation sizes and some rare cell types may
accidentally connect to another by a few edges due to noise.
If two small communities, whose number of edges are below a
threshold relative to the total number of edges in the graph, are
accidentally connected by a false edge, modularity optimization
methods are unable to separate this communities even if the
communities are perfect cliques. Furthermore, the modularity
function is also limited by the implicit assumption that the entire
community structure of a network has no hierarchy and that a
vertex can freely connect to any other vertex in the network.

But scRNAseq data often have hierarchical structures, and a
cell type may contain several relatively highly interconnected
subpopulations. Optimizing modularity may fail to uncover the
structures of data at a satisfactory resolution. When a graph is
given, resolution limit can be solved by a few different approaches,
such as by applying modularity optimization recursively on the
resulting communities [24]. However, in general, by increasing k,
the resolution limit problem becomes more severe and may not be
able to be completely solved.

Algorithm 1 scQcut
Input: S, similarity matrix
Outputs: k∗, optimal number of neighbors
net∗, optimal network
C∗, final clustering

1: procedure scQcut(S)
2: for i = 1 to blog2 nc do
3: k = 2i;
4: Gk = kNN(S, k);
5: C(Gk)← Qcut(Gk)
6: Randomize G to obtain Gr

k m times;
7: C(Gr

k)← Qcut(Gr
k)

8: ∆Qk = Q(C(Gk), Gk)−Avg(Q(C(Gr
k), Gr

k));
9: end for

10: k∗ = arg maxk ∆Qk;
11: net∗ = kNN(S, k∗);
12: C∗ ← Qcut(net∗)
13: Return k∗, net∗, C∗

14: end procedure

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.15.452521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.15.452521


4 Zand et al.

2.2 Estimating the optimal number of neighbors using a
topology-based approach

The definition of Q per se can be easily extended to weighted
networks, by replacing the vertex degree with total edge weight.
However, Q is ill-defined for weighted and dense networks. This
is because, unlike an unweighted network, a weighted network
cannot be randomly rewired and yet maintain its degree sequence.
Therefore, in a weighted network, the second term in the above
formula would not reflect the expected fraction of edges falling
within communities. This limitation, along with the resolution
limit of the modularity function discussed above, creates a
problem when one wants to identify communities via modularity
optimization from dense weighted networks. Therefore, a k-
nearest neighbors (KNN)-based graph sparsification is usually
needed, assuming a good k can be determined, which is what
we will address in the next.

We consider a rank based approach for constructing a sparse
asymmetric k-nearest neighbors (aKNN) network by following
these steps: Let sij be the similarity between cell i and cell j
measured by Pearson correlation in this work but in practice can
be any other measure deemed suitable by user. We define a network
as G = {V,E}, where V is the set of entities and E is the set
of edges. Alternatively, we represent a network by its adjacency
matrix, W = (wij), where wij = 1 if there is an edge between vi
and vj , and 0 otherwise. Two cells are connected if one is within
the top-k most similar cells of the other. Formally, we let wij = 1
if sij ≥ min{siik , sjjk} or 0 otherwise, where ik is the index of
the cell whose similarity to cell i is smaller than exactly k−1 other
cells. In other words, |x, x 6= i and six > siik | == k − 1.

To identify cell subpopulations we apply Qcut on aKNN
network. However, as the final community structure depends
on the network topology, which is determined by the single
parameter, k, it is critical to determine a good k, preferably in
an automated way. In this work, we propose the following fully
automated approach. Our algorithm, termed scQcut, is illustrated
in Algorithm 1.

The intuition is as follows. When a good k is chosen, there
should be relatively more intra-community edges than would
be expected. Therefore, the modularity score should be high.
On the other hand, it is known that the modularity of sparse
graph is higher than denser graphs, and applying modularity
optimization to even random sparse graphs may result in a high
modularity [9]. Therefore, we search for the k that gives the
largest differential modularity, or (∆Q), defined as the difference
between the optimal modularity of the real network and the optimal
modularity of an appropriate random network. In order to obtain
a random network that has the same density as the real network,
we randomize the real network by randomly shuffle the ends of
all edges. With this approach, not only the random network has
the same overall density as the real network, but each node in
the random network has exactly the same degree as in the real
network. We perform this step m times and calculate the average
modularity for m random networks.

While the definition of Q and ∆Q both involves a random
graph, it is important to note the different purposes. The definition
of Q relies on the difference between the actual number of intra-
community edges in the real graph and the expected number of
intra-community edges in an equivalent random graph, under the
same community structure, i.e., both the real and the random
graphs are partitioned in an identical way. The expected number of
intra-community edges, therefore, can be analytically computed

Table 1. The Splatter parameters used to generate simulated data. All simulated
datasets contain 500 cells and 10000 genes. Other parameters needed to generate
these datasets are set as: de.prob = 0.1, and dropout.type = experiment.

Datasets nGroups group.prob
Sim. 1 2 [0.5,0.5]
Sim. 2 3 [0.4,0.3,0.3]
Sim. 3 4 [0.3,0.3,0.2,0.2]
Sim. 4 5 [0.3,0.2,0.2,0.2,0.1]
Sim. 5 6 [0.3,0.2,0.2,0.1,0.1,0.1]
Sim. 6 7 [0.2,0.2,0.2,0.1,0.1,0.1,0.1]
Sim. 7 8 [0.2,0.2,0.1,0.1,0.1,0.1,0.05,0.05]

Table 2. The experimental scRNAseq datasets used for benchmarking.

Dataset Num. of cells Num. of clusters Accession no. Ref
Darmanis 466 9 GSE67835 [3]
Deng 268 10 GSE45719 [5]
Fan 66 6 GSE53386 [6]
Kolodziejczyk 704 3 E-MTAB-2600 [15]
Pollen 301 11 SRP041736 [21]
Treutlein 80 5 GSE52583 [32]
Usoskin 622 4 GSE59739 [33]
Yan 90 6 GSE36552 [37]
Baron 8569 14 GSE84133 [1]
Romanov 2881 7 GSE74672 [22]
Zeisel 3005 9 GSE60361 [39]
Klein 2717 4 GSE65525 [14]
Marques 5053 13 GSE75330 [16]

given the partitioning of the real graph and the optimization of
Q can be approximated by spectral clustering, which is the base
of most modularity optimization algorithms [28]. On the other
hand, the definition of ∆Q relies on the optimal modularity of
the real graph and the optimal modularity of the random graph;
i.e., the two graphs are partitioned independently to optimize their
modularity measures respectively. The optimal modularity of the
random graph needs to be estimated empirically, using the same
procedure that optimizes the modularity of the real graph.

The runtime of scQcut include (1) time needed to compute
the similarity matrix, which is in the order of Θ(n2d) for n cells
and d genes; (2) time needed to identify k nearest neighbors for
all nodes with a k in the same order of n, which can be done in
Θ(n2 logn) time by sorting the similarity matrix, and (3) time
needed for Qcut to compute Q and ∆Q for each of the networks,
where each run takes time in the order of Θ(m), where m is the
number of edges. For typical dataset size wheren is about the same
or smaller than d, the most time-consuming step is in computing
the similarity matrix. For large datasets, it is recommended that
more efficient algorithms be utilized to construct the KNN graphs
(or approximate k nearest neighbors) [29], which is not considered
here.

2.3 The evaluation measure for clustering

We compute and analyze the adjusted rand index (ARI) of the
clustering results compared to the gold standard [11]. The gold
standard used in this study is the cell labels reported in the
original publications. Given a set of n cells S = s1, s2, ..., sn
, let X = X1, X2, ..., XM and Y = Y1, Y2, ..., YN represent
partitions obtained by clustering method and true partition of the
cells using annotations, respectively, where each cell appears in
X and Y exactly once. Let nij be the number of common objects
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between Xi and Yj . The ARI can then be calculated as:

ARI =

Index︷ ︸︸ ︷∑
ij

(nij

2

)
−

Expected Index︷ ︸︸ ︷
[
∑
i

(ni•

2

)∑
j

(nj•

2

)
]/
(n
2

)
1

2
[
∑
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(ni•
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)
+
∑
j
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)
]

︸ ︷︷ ︸
Max Index

− [
∑
i

(ni•

2

)∑
j

(nj•

2

)
]/
(n
2

)
︸ ︷︷ ︸

Expected Index

(2)

where ni• =
∑

j nij = |Xi| is the size of Xi , and nj• =∑
i nij = |Yj | is the size of Yj .

2.4 Datasets

2.4.1 Simulated data:
Simulated datasets widely assist as ground truth to assess the
ability of different clustering methods in detecting different
cell types. In this work, we simulated seven groups of single-
cell data using Splatter [38], a dedicated tool for scRNAseq
data simulation. Different dataset setups have different number
of groups and cluster distribution. Each simulation setup was
repeated 50 times, for a total of 350 cases, in order to obtain
a statistically average result. To generate the simulated data
splatSimulate() function were utilized using the parameters given
in Table 1. Each of the simulated datasets contains 500 cells
and 10000 genes. Other parameters needed to generate these
datasets were set as: de.prob = 0.1, and dropout.type =
experiment. The parameter that controls the distribution and size
of each cluster is group.prob. For example, group.prob of dataset
Sim.2 is [0.4,0.3,0.3] which means this dataset has three different
clusters containing 40%, 30%, and 30% of overall cell numbers,
respectively. Number of groups and probabilities of groups are
listed in Table 1.

2.4.2 Biological data:
In this study, we apply scQcut along with four other commonly
used clustering methods (Seurat, k-means, SIMLR, and SNN-
Cliq) on 13 publicly available scRNAseq datasets. These datasets
cover a wide range of characteristic attributes of experimental
datasets such as varying number of cells and cell types. More
specifically, these datasets each contain different number of cells
ranging from 66 to 8569. The number of clusters also varies from
three to 14 based on the information reported in corresponding
original publications. These datasets are shown in Table 2.

2.5 Data pre-processing and normalization

ScRNAseq data usually possess a high level of cell to cell variation
in library size (number of observed molecules), which mainly
arises from different sources of technical noise, rather than having
any biological meaning [7]. Therefore, we need to normalize data
based on library size, such that each cell has the same count
number. The normalized count matrix is calculated as follows:
each read count from the expression matrix is divided by the total
reads in that cell, then multiplied by the median of total read
counts across all cells. This way all cells have equal number of
reads. Formally, given expression matrix Em×n the normalized
data matrix is obtained as:

Enorm(i, j) =
E(i, j)∑m

k=1 E(k, j)
×median(libSize)

Sim
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Fig. 2. Comparison of different single-cell clustering methods on simulated data. The
results are average ARI for running each dataset for 50 times. The number of clusters varies
from two to eight moving away from Sim.1 to Sim.7. The details of each dataset are
shown in Table 1

where, libSize = colSum(E) and m and n are number of genes
and cells, respectively. Following this normalization step, we then
apply a log transformation with a pseudo count equal to unity. The
pseudo count is added to avoid infinite values that might appear
otherwise.

2.6 Benchmarking

We compare scQcut against several clustering tools including k-
means, SSN-Cliq, Seurat, and SIMLR. We evaluate the clustering
accuracy on seven groups of simulated data and 13 real datasets
presented in Table 1 and 2. To feed these datasets into our method
and the other four clustering tools we first normalize raw data
using log normalization method explained in Section 2.7. Other
parameter settings for each tool are explained as follows:

Seurat: We download Seurat "3.1.0" from GitHub (https:
//satijalab.org/seurat/). Seurat was run using the
LogNormalize parameter and a resolution between 0.4 and 1.2
with a step size of 0.1. We run Seurat based on proposed pipeline
which includes several steps: FindVariableFeatures, ScaleData,
RunPCA, FindNeighbors, and FindClusters.

SIMLR: We download SIMLR "1.10.0" from bioconductor
( https://bioconductor.org/packages/ release/bioc/html/SIMLR.html).
To run SIMLR-auto the "NUMC" parameter is set to range [2:20]
to estimate the number of clusters. All other parameters are set as
default.

SNN-Cliq: We download SNN-Cliq from GitHub https:
//github.com/BIOINSu/SNN-Cliq. The method for
distance calculation is set to ’correlation’. SNN-Cliq was run using
the "k" parameter of k-nearest neighbors between 3 and 25 to select
the best k that gives the highest ARI.

k-means: The k-means implementation in Matlab 2018a is
used and the number of clusters is set as the number of cell
types reported in original publication. Gap statistics is applied
to estimate the number of clusters for k-means-auto.

3 Results and Discussion

3.1 Performance evaluation using simulated data

To evaluate the performance of scQcut we used Splatter to
generate seven groups of simulated datasets (Table 1), with
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Fig. 3. Comparison of different single-cell clustering methods on small real data. Each
boxplot shows the ARIs obtained for eight small datasets by each method. Dash line
represent the mean value of ARIs. Class I represents parameter-free methods, class II shows
methods in need of knowing the actual number of clusters, class III includes methods with
user tuned parameters.

varying configuration parameters (number of clusters, and cluster
distribution), containing 50 datasets in each group. Note that
as the number of total clusters in a dataset increases, the size
of clusters varies more drastically. For example, in the dataset
with two clusters (i.e. Sim.1), each cluster holds 50% of the
total population, whereas in the dataset with eight clusters (i.e.
Sim.7) there are two small subpopulations that only account for
5% of the total population. These small sized clusters are in fact
commonly present in real scRNAseq datasets, and are defined as
rare cell types. The last simulated data (with eight clusters) will
be studied in more details later in the context of finding rare cell
types. The performance of clustering was evaluated using the ARI
which measures the similarity between cell clusters generated by
a clustering method and the ground truth.

To obtain the ARI, the clustering methods were applied on
both simulated data and the PCA-reduced version of data, and
the best ARI was kept. Fig. 2 shows that as the datasets become
more complex/realistic, the ARI of SNN-Cliq and SIMLR drops
dramatically. In contrast, scQcut and Seurat maintain their high
performance in all datasets, and even outperform k-means which
is given the advantage of knowing the number of clusters as a
priori, as opposed to scQcut and Seurat.

3.2 Performance evaluation using real data

The performance of scQcut is compared against several available
clustering methods in 13 different real datasets, divided into small
and large sized datasets. This collection of real datasets includes
a wide variety of sequencing technologies, tissue of origins, data
units, number of single cells ranging from 66 to 8569, and numbers
of clusters ranging from 3 to 14. To make the comparison more
meaningful and fair, the methods are subsequently divided into
three different classes as follows; (i) class I methods including
scQcut, k-means-auto, Seurat, and SIMLR-auto are those methods
which employ some sort of internal mechanism to estimate
the real number of clusters, thus do not depend on any user-
specified tuning; (ii) class II methods, including k-means-Truek
and SIMLR-Truek, which explicitly require the real number of
clusters to be provided; (iii) class III methods for which some
parameters can be tuned in order to achieve the best performance

Fig. 4. Comparison of different single-cell clustering methods on large real data. Each
boxplot shows the five ARIs obtained for large datasets by each method. Dash line represent
the mean value of ARIs.
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Fig. 5. Maximizing the internal parameter ∆Q leads to an optimal range of best accuracy.

possible. Fig. 3 shows the ARI for all three classes of methods
described above as applied to eight small datasets. In addition, each
boxplot represents the range of ARI calculated for any specific
method as applied to those eight small datasets. It is evident that
our method outperforms all the others in terms of mean ARI, and
more specifically in its competing category, i.e. class I, it offers
a dramatic enhancement in terms of both average and median
performance.

As for the results obtained from analyzing five large datasets,
Fig. 4 demonstrates that our method is much more successful in
identifying cell types than Seurat. Our method also outperforms
k-means-Truek and Seurat-best, which in fact require the real
number of clusters as opposed to our method which does not rely
on this parameter given as a priori. It is worth noting that SNN-
Cliq and k-means-auto failed to cluster these datasets due to their
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Fig. 6. The evaluation of detecting rare cell types on simulated data. In all subplots the style of cells are based on true labels. For the ease of comparison the size of two groups of rare cell
types (triangle-down and pentagon) are scaled. Cells are colored based on predicted cluster labels from different clustering methods.

prohibitively long runtime. Interestingly, while the performance
of SIMLR is poor in small and synthetic datasets, it seems to
perform better in the case of large real datasets and is second only
to scQcut.

3.3 ScQcut finds near optimal aKNN network

As was previously elaborated in the method section of this article,
one key element of the overall procedure of our method is the
hypothesis that a good estimation of the number of neighbors in
the aKNN network can be obtained by maximizing the differential
modularity (∆Q) between the aKNN network and an appropriate
randomized network. To further test that the aKNN network
identified by the maximum ∆Q is “optimal”, we computed a
series of aKNN networks with different values of k, and identified
clusters from each network using scQcut. Fig. 5 shows the ∆Q as a
function of k as well as the corresponding ARI of clusters on each
network, for four selected datasets. As can be seen, the ∆Q shows
a very smooth curve, indicating the robustness of the optimization
procedure. Importantly, a high correlation exists between ∆Q of
the network and the clustering quality measure ARI. Therefore,
the maximum ∆Q is in fact a reliable surrogate for achieving
the highest ARI score. It is worth noting that these “optimal”
networks can also be utilized for other machine learning tasks
such as data visualization and dimension reduction, which often
relies on k-nearest neighbor graphs as an intermediate step.

3.4 Detection of rare cell types

One particularly important aspect of assessing the success of a
given clustering method in dealing with the scRNAseq analysis
is to evaluate the degree of success with which it can detect rare
cell types. To investigate the different clustering methods from

this angle, we applied different methods on dataset Sim.7, a
challenging and complex synthetic dataset resembling real single-
cell datasets with two rare subpopulations each accounting for
less than five percent of the total number of cells (parameters used
to generate this dataset listed in Table 1). The visual display of
clusters using true labels in two-dimensional TSNE is given in
Fig. 6(a). Note that the two rare subpopulations are marked with
pentagon and triangle-down symbols in all the subplots of Fig. 6
which are obtained from applying different clustering methods.
The color assigned to each cell in Fig. 6(b-f) is based on the
predicted cluster labels. It can be clearly observed that while our
method successfully recovers the rare cell types, other methods
either completely mix them with other clusters (SIMLR, k-means,
and SNN-Cliq) or can only partially detect these rare cell types
(Seurat).

In addition to simulated datasets, we further used the Zeisel
dataset to explore the performance of detecting rare cells by
different clustering methods (Fig. 7). Our method identified a
cluster (marked by solid circle) that includes 2.8% of overall
number of cells, which correspond to Microglia cells as reported
in the original study [39].

3.5 Runtime and scalability

Given that the size of typical emerging scRNAseq datasets
can easily exceed hundreds of thousands, the runtime and
computational resources required for utilizing clustering methods
have become vital for assessing the efficiency and scalability of
these methods. Therefore, in Fig. 8 we report the runtime for
different methods as applied to datasets with a wide range of
sizes. The results for SNN-Cliq and k-means-auto are not included
because the runtime was more than two days. One can see that
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Fig. 7. Evaluation of rare cell type detection on Zeisel dataset. Rare cell type is marked by solid circle.
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scQcut requires a reasonably moderate runtime, while SIMLR and
SIMLR-Truek tend to exponentially slow down as the dataset size
blows up. Although Seurat appears comparably faster than scQcut,
its accuracy suffers in large datasets (Fig. 4). Seurat is fast most
likely because it operates on an initially PCA-reduced data. The
expensive cost of implementing SIMLR is probably associated
with the fact that it runs based on an iterative optimization
scheme to learn similarities from different kernels, which is a time
consuming task by its nature. Overall, scQcut appears to not only
perform accurately, but also demands a reasonable computational
resource, making it a good candidate for analyzing much larger
datasets.

4 Conclusion
In this work, we presented scQcut, a novel graph-based
clustering method to analyze single-cell RNA sequencing data.
A pivotal contribution of this work is the introduction of a
topologically-inspired differential modularity measure, which
unambiguously determines the optimal co-expression network,
and subsequently the most appropriate number of clusters.
Comprehensive evaluation results based on a large number
of synthetic and real datasets show that scQcut consistently
outperforms state-of-the-art methods, some of which even were
given the advantage of knowing the true number of clusters.
Additional evaluation shows that the topology-guided network
construction procedure coupled with a community discovery
algorithm achieved near optimum clustering results, is able to
identify rare cell types, and requires only a moderate amount of
computational resource. Overall, we believe that the method put
forward in this work can serve as a valuable tool in analyzing
single-cell data.
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