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Abstract: Pooling metabolomics data across studies is often desirable to increase the statistical power 
of the analysis. However, this can raise methodological challenges as several preanalytical and 
analytical factors could introduce differences in measured concentrations and variability between 
datasets. Specifically, different studies may use variable sample types (e.g., serum versus plasma) 
collected, treated and stored according to different protocols, and assayed in different laboratories using 
different instruments. To address these issues, a new pipeline was developed to normalize and pool 
metabolomics data through a set of sequential steps: (i) exclusions of the least informative observations 
and metabolites and removal of outliers; imputation of missing data; (ii) identification of the main 
sources of variability through PC-PR2 analysis; (iii) application of linear mixed models to remove 
unwanted variability, including samples’ originating study and batch, and preserve biological 
variations while accounting for potential differences in the residual variances across studies. This 
pipeline was applied to targeted metabolomics data acquired using Biocrates AbsoluteIDQ kits in eight 
case-control studies nested within the European Prospective Investigation into Cancer and Nutrition 
(EPIC) cohort. Comprehensive examination of metabolomics measurements indicated that the pipeline 
improved the comparability of data across the studies. Our pipeline can be adapted to normalize other 
molecular data, including biomarkers as well as proteomics data, and could be used for pooling 
molecular datasets, for example in international consortia, to limit biases introduced by inter-study 
variability. This versatility of the pipeline makes our work of potential interest to molecular 
epidemiologists. 
 
Keywords: cancer epidemiology; normalization; pooling; technical variability; metabolomics; 
metabolites. 
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1. Introduction 

Metabolomics is a powerful tool for investigating candidate etiological pathways for chronic 
diseases[1–4]. Using either untargeted or targeted (via sets of pre-defined annotated metabolites) 
approaches, prior metabolomics studies have identified metabolites associated with the risk of several 
chronic conditions, including type-2 diabetes (T2D)[5], cardiovascular diseases (CVD)[6], and cancer[7–9]. 
Metabolomics has also been used to characterize specific signatures of anthropometric measures and 
lifestyle exposures, including body mass index (BMI)[7,10], adherence to a Mediterranean diet[6] and coffee 
consumption[5], as a way to investigate candidate biological mechanisms underpinning the relationship 
between these exposures and chronic diseases.  

Like for other -omics technologies, pre-processing of metabolomics data is critical before relating 
them to phenotypes, such as cancer endpoints or lifestyle exposures[11,12]. After a matrix of p metabolites 
(or features) measured in n samples has been generated, pre-processing usually involves (i) feature and 
sample filtering, where low-quality features and samples are excluded (ii) data imputation, to take care 
of missing values and (iii) data normalization, to correct for sources of unwanted variation in 
metabolomics data, such as batch effects and other factors related to the handling of samples[11,13–16]. 
Following the success of data acquisition efforts in large-scale epidemiological investigation, 
collaborative consortia have been put in place, offering the possibility to pool metabolomics data 
acquired in different studies in order to increase sample size and range of biological variation, and 
eventually enhance statistical power of the analysis. However, pooling metabolomics data across 
studies raises methodological challenges as several preanalytical and analytical factors can induce 
differences in metabolite measurements and unwanted variability between datasets. Specifically, 
sample types (e.g., serum versus plasma), fasting status of the participant, and any other elements 
related to sampling conditions, samples’ treatment and storage represent preanalytical factors, while 
analytical factors include information on the organization of samples in batches, the acquisition 
instrument, the acquisition time (i.e., time at which the sample was assayed) and the laboratory[17]. 
Correcting for these sources of variations is crucial in order to conduct accurate statistical analyses on 
pooled datasets.  

Data on common quality controls assayed in all studies and/or reference assay data from a subset 
of samples in each study can be used for normalization[17,18]. However, these data are not always 
available in large international investigations and consortia. Accordingly, we developed a pipeline for 
the normalization and pooling of metabolomics data acquired in different studies that does not require 
data on quality controls or reference assay data, which covers four main steps. First, data cleaning 
identified and removed features and samples exceeding certain thresholds of missingness and outlying 
samples[11,16]. Second, the remaining missing values were imputed within each study using information 
on limits of detection and quantification when available and appropriate, and measurements were log-
transformed to reduce skewness. Third, the principal component partial R-square (PC-PR2) technique 
was implemented to identify sources of variation in the metabolomics data[13]. Last, mixed effect models 
were used to correct for unwanted variability while preserving biological variability[14]. The ComBat 
method[19] implemented in the R sva package[20] was also implemented for sake of comparison. Our 
pipeline was applied to targeted metabolomics data acquired in eight case-control studies nested within 
the European Prospective Investigation into Cancer and Nutrition (EPIC)[21]. Comprehensive analytical 
and graphical examinations of measurements were performed to assess whether different 
normalization approaches improved the comparability of metabolomics data. For illustration, 
metabolomics data were pooled and related to study participants’ BMI.  

2. Results 

2.1. Description of the study population  

Targeted metabolomics data acquired within the EPIC study and centralized at the International 
Agency for Research on Cancer (IARC) included 16,060 pre-diagnostic blood samples originating from 
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eight case-control studies nested within EPIC (details in Section 4.1) on seven types of cancer: breast 
cancer (one study denoted by BREA; n=3,172 samples)[8], endometrial cancer (ENDO; n=1,706)[22], 
gallbladder cancer (GLBD; n=112), liver cancer (LIVE; n=596)[24], kidney cancer (KIDN; n=1,213)[23], 
prostate cancer (PROS; n=6,020)[9,25], and colorectal cancer (two studies denoted by CLRT1 and CLRT2; 
n=946 and n=2,295, respectively). As displayed in Table 1, samples collected at recruitment were assayed 
at IARC for BREA, LIVE, KIDN, PROS, and CLRT1, at the Helmholtz Zentrum (München, Germany) 
for CLRT2 and GLBD, and at the Imperial College London (UK) for ENDO. Across all studies, 
measurements of a total of 171 metabolites were acquired using either the AbsoluteIDQ p180 or the 
AbsoluteIDQ p150 (for CLRT2 only) commercial kit (Biocrates Life Science AG, Innsbruck Austria), 
following the procedure recommended by the vendor. As displayed in Table 1, samples were assayed 
on different Liquid Chromatography (LC) and Mass Spectrometry (MS) instruments across the different 
studies, but each study used one single pair of LC-MS instruments for all samples. Samples were mostly 
either serum or citrate plasma, and samples within one study all originated from the same type of blood 
matrix, except in BREA and GLBD where samples from Swedish participants originated from a different 
blood matrix compared to the other participants. For these two studies, samples assayed within each 
batch all originated from the same blood matrix (not shown). Samples were assayed between 2013 and 
2018. The pipeline detailed in Section 4.2 was applied to the (n´p) matrix with n=16,060 samples and 
the p=118 metabolites measured in all studies. Specifically, they included 13 metabolites (amino acids) 
measured by a quantitative LC-MS/MS method (Liquid Chomatography coupled with tandem mass-
spectrometry) and 105 metabolites (76 glycerophospholipids, 12 sphingolipids, 16 acylcarnitines, and 1 
hexose, the sum of six-carbon sugars) acquired by a semi-quantitative FIA-MS/MS method (Flow-
Injection Analysis coupled with tandem mass-spectrometry, one-point calibration, no individual 
internal standards).   

2.2. Data cleaning and imputation 

For the exclusion of metabolites and samples exceeding a given threshold of missingness, we applied 
the method described in Section 4.2.1 with a threshold set to 20%, and with missing values defined as 
“fully missing” values only, i.e., not including out of measurable range values. Among the 118 
metabolites originally retained for the analysis, the acylcarnitine C4-OH (C3-DC) was the only one with 
a fully missing value in more than 20% of the samples of at least one study (PROS), and was excluded. 
Among the 16,060 samples originally retained for the analysis, none was excluded because of exceeding 
20% of fully missing values, eight were excluded because they were measured in batches with less than 
10 samples, and two were excluded because they were considered as outliers after a principal 
component analysis (PCA). Thus, the final study population included 16,050 samples, for which 
measurements of 117 metabolites were included (Supplementary Table 1). Out of the 1,877,850 
corresponding measurements, 1,066 were fully missing and 63,564 were out of the measurable range: 
specifically, 63,044 were below a known LOD (limit of detection, applicable to acylcarnitines, 
glycerophospholipids, hexose and sphingolipids), 517 below a known LLOQ (lower limit of 
quantification, applicable to amino acids), 2 above a known ULOQ (upper limit of quantification) and 
1 below an unknown LOD. All these 1,066 + 63,564 = 64,630 missing values were imputed as described 
in Section 4.2.2, and concentration values were log-transformed.     

2.3. Identification of major sources of variations  

As displayed in Figure 1 (left panel), the projection of the measurements on the first two principal 
components of the PCA were strongly clustered by study, suggesting the presence of systematic sources 
of heterogeneity across studies. The PC-PR2 method was applied to assess the proportion of the overall 
variation in the metabolomics data that was explained by a predefined list of variables, including (i) 
participants’ characteristics, i.e., study center, gender, case-control indicator, age, BMI, alcohol intake, 
smoking status, and (ii) three variables describing possible preanalytical and analytical sources of 
unwanted variations: fasting status, time of the day of blood collection, study and batch, with batch 
nested within study. As shown in Figure 2 (top panel), the PC-PR2 analysis indicated that these 
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variables together explained more than 55% of the total variation of the metabolomics measurements 
before normalization. Study explained 31% of the total variation, while batch within study explained 
about 8%. Study center explained about 9% of the total variation, and gender, BMI and alcohol intake 
explained about 2%, 2% and 1%, respectively. Fasting status, time of blood collection, age at recruitment, 
smoking status and case-control status all explained less than 1% of the total variation.   

2.4. Normalization of the measurements 

Based on PC-PR2 analysis, metabolite concentrations were normalized using the method described in 
Section 4.2.4 to correct for variation due to study and batch, and preserve the variation due to study 
center, gender, BMI and alcohol intake. These latter four variables were all unequally distributed across 
studies and batches (not shown). They were included as fixed effects in matrix Z (Equation (2) in Section 
4.2.4; otherwise some of the variation they explain would be removed because of the adjustment for 
study and batch), while study and batch within study were modeled as random effects in matrix X. 
Other variables studied in the PC-PR2 analysis were not included in matrix X or Z as they contributed 
very little to the total variation. Heteroscedastic metabolite-specific mixed models with a study-specific 
variance component were used, although homoscedastic models produced very similar results (not 
shown). The PCA of normalized data (Figure 1; right panel) indicated that the projections on the first 
two principal components were not clustered by study anymore, and measurements’ distribution 
largely overlapped. Data from PROS (men only) were slightly shifted to the left, and data from BREA 
and ENDO (women only) were shifted to the right, suggesting that the normalization preserved some 
variation due to gender overall. For illustration, the distribution of one semi-quantified metabolite, SM 
OH C22:1, was computed within batches and across studies, for the imputed and the normalized 
measurements (Figure 3). Imputed data displayed a study effect, with concentration levels of SM OH 
C22:1 in the CLRT2, ENDO, GLBD, KIDN and LIVE studies substantially larger than those in BREA, 
CLRT1 and PROS. A remarkable batch effect was observed within some studies, e.g., BREA. After 
normalization, the distributions were very similar across batches and studies. Again, the distribution 
was slighty shifted downward for concentration levels in PROS (men only), and upward in BREA and 
ENDO (women only), compared to the other five studies CLRT1, CLRT2, GLBD, KIDN and LIVE (which 
included both men and women), confirming that the normalization preserved some variation due to 
gender for this particular metabolite. The PC-PR2 analysis of normalized data (Figure 2, bottom panel) 
confirmed that normalization removed unwanted sources of variation (batch and study), but kept most 
variability attributed to participants’ characteristics. Complementary PC-PR2 analysis showed that 
blood matrix and LC-MS instruments contributed to less than 0.1% of the total variation after 
normalization (results not shown). Compared to our approach, ComBat[19] produced very similar results 
for all metabolites with the exception of most acylcarnitines and the glycerophospholipid PC aa C40:1 
(Supplementary Figure 1). 

 

2.5. Technical reproducibility of measurements before and after the normalization 

Intra-class correlation (ICC) coefficients were computed for each metabolite to assess their technical 
reproducibility, using measurements from 2*219=438 duplicate samples, i.e., samples measured once in 
two different studies (2*147 samples; see Supplementary Table 2) or in two different batches of the 
prostate study (2*72 samples), as detailed in Section 4.3. Figure 4 shows the distributions of ICCs, for 
the semi-quantified (lipids, acylcarnitines and hexose) and quantified (amino-acids) metabolites, before 
and after normalization. The normalization shifted the distribution of ICCs upward for semi-quantified 
metabolites. The distribution of quantified metabolites did not shift as much, but the variability 
narrowed down, with no ICC value lower than 0.50. Figure 5 shows the effect of the normalization on 
the ICC of each individual metabolite (top), and on the average ICC for each class of metabolites 
(bottom). Before normalisation, 101 (86%) metabolites (92 semi-quantified, 9 quantified) had ICC values 
lower than 0.75, among which 38 (32%: 35 semi-quantified, 3 quantified)  had ICC values lower than 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452593
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.5. After normalization, only twelve metabolites (10%: 9 semi-quantified, 3 quantified) had ICC values 
lower than 0.75, among which only two semi-quantified metabolites had ICC lower than 0.50. Also, 
class-specific averaged ICC values were consistently improved by the normalization, in particular for 
glycerophospholipids and sphyngomyelins. Similar results were observed when normalization was 
performed with ComBat[19], yet ICCs were larger when using our approach, especially for acylcarnitines 
(Supplementary Figure 2). The same analysis was restricted to the 2*57=114 duplicate samples aquired 
in two studies from serum and citrate plasma, respectively. As displayed in Supplementary Figure 3, 
ICC values were lower than 0.5 for 69 metabolites (59%) and 4 metabolites (3%), before and after 
normalization respectively, with ICC values greater than 0.75 for 91 metabolites (78%) after 
normalization.   

 

2.6. Impact of the normalization when relating a given phenotype to the metabolites  

The relationship between the metabolites and BMI was assessed. The analysis was restricted to control 
samples to reduce collider bias, and one sample was randomly chosen among duplicates. For each of 
the 117 metabolites, Pearson correlation coefficients were computed between BMI and, in turn, the 
imputed measurements, the normalized measurements, as well as the normalized measurements 
produced by a simpler normalization approach, which corrected for study and batch effects without 
attempting to preserve variation due to study center, BMI, gender and alcohol intake. As displayed in 
Figure 6, most correlation values were above the line y=x, especially for values greater than 0.1: 
associations with BMI were stronger when using normalized data implementing our approach, 
compared to those observed with both non-normalized data and normalized data implementing a 
simple, yet incomplete, normalization approach. 

3. Discussion 

In this work, a pipeline for the normalization of metabolomics data acquired in different studies 
was described. After a screening of informative metabolites and samples, the PC-PR2 method was used 
to identify major sources of variation in metabolomics data, and linear mixed effect models were used 
to correct for unwanted sources of variation, while attempting to preserve biological variation and 
accounting for potential heteroscedasticity. The pipeline was applied to targeted metabolomics data 
acquired in eight cancer-specific case-control studies nested within EPIC. Substantial inter-study and 
inter-batch heterogeneity was observed in the original data. Accordingly, the technical reproducibility 
was low-to-moderate for many metabolites with ICC values lower than 0.50, especially for the semi-
quantified metabolites (e.g., glycerophospholipids), suggesting that quantified metabolites might be 
less prone to unwanted variations due to analytical factors. Our normalization approach eliminated 
most of the inter-study and inter-batch variability, and improved the technical reproducibility of a large 
proportion of semi-quantified and quantified metabolites, with most ICC values greater than 0.75. 
Normalization using the ComBat approach[19], which relies on a similar model but uses empirical Bayes 
estimation, performed similarly for all metabolites but acylcarnitines, for which ICC values were larger 
with our approach. ICC values estimated from the duplicate samples originating from different blood 
matrices (serum versus citrate plasma), were generally larger than 0.75 after normalization. However, 
they were also generally lower than values estimated from all duplicate samples. In particular, the ICC 
for methionine was 0.39 (95% confidence interval, CI: 0.14-0.57), as compared to 0.71 (95% CI: 0.64-0.77) 
when ICC estimation used all duplicate samples. This result calls for caution when pooling samples 
originating from different blood matrices, as large differences were reported for specific metabolites’ 
concentrations in serum and plasma samples[26].  

As samples within each individual EPIC study were all assayed in the same laboratory with the 
same LC-MS instruments, and mostly originated from the same blood matrix (except for GLBD that 
included serum and heparin plasma samples and BREA that included EDTA and citrate plasma 
samples), the variability due to these factors was encompassed into the inter-study variability, and 
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could not be assessed by the PC-PR2 analysis. In particular, although the large inter-study variability in 
the non-normalized data supported the presence of inter-laboratory and inter-instrument variability, as 
previously reported for the AbsoluteIDQ p180 kit[17], correction for batch and study effects also corrected 
for effects due to blood matrix and LC-MS instruments, which were both observed to contribute to less 
than 0.1% of the total variation in the normalized data. But, the inter-study and inter-batch variability 
also reflected biological variability, because factors like study center, gender, BMI and alcohol intake 
were not equally distributed across studies and batches. Consequently, some of the biological variation 
due to these factors would be removed if the normalized data were simply computed as the residuals 
in linear mixed models adjusted for study and batch. Conversely, by accounting for study center, 
gender, BMI and alcohol intake in the mixed models and by computing the normalized residuals using 
the step described in expression (2) in Section 4.2.4, the normalization preserved (some of) the variation 
due to these factors. This was illustrated by the distribution of normalized data that was shifted in 
opposite directions for studies including only men or women, and by the stronger associations with 
BMI observed when using the complete model for normalization compared to the simpler version that 
only included batch and study as random effects. 

A critical step of normalization procedures that use linear mixed models, or more generally models 
with location/scale adjustments[19], is the choice of (i) factors that may generate unwanted variation, for 
which a correction should be implemented, and (ii) factors that represent biological variability, which 
should be preserved after normalization. As illustrated in Section 4.2.4, while the list of variables in (i) 
should be included in matrix X (like study and batch), variables in (ii) should be included in matrix Z, 
and the choice depends on the study design and on the ultimate objective of the analysis. If the objective 
is to identify metabolites associated with a given phenotype, e.g., BMI, it is crucial to include BMI in 
matrix Z, particularly if BMI is associated with specific variables included in matrix X. Conversely, if 
the ultimate objective of the study is to identify metabolites associated with, say, alcohol, while 
controlling for BMI, then alcohol should be included in matrix Z (particularly if it is associated with 
specific variables included in matrix X), but BMI could be included in matrix X, so that the associations 
are adjusted for BMI. In any case, performing sensitivity analyses with normalized data generated 
including different sets of variables in matrices X and Z is a good practice.  

In multicenter investigations like EPIC, study center is a sensitive variable, as it expresses technical 
(preanalytical) variation, likely the result of specific procedures for blood collection, sample treatment 
and storage, as well as biological variation reflecting specific lifestyle exposures, often characterized by 
geographical gradients. In addition, in multicenter context the relationship between two sets of 
variables could be evaluated at the overall level, at the center level or at the individual level[27]. In this 
study, to use the whole variability in metabolomics and BMI data, center was initially included in matrix 
Z. In sensitivity analysis, study center was included in matrix X, and the center-specific variability was 
removed. As shown in Supplementary Figure 4, results were similar to the overall analysis suggesting 
that group-level correlations were similar to individual–level correlations[27] . Alternative methods, like 
SVA[28,20] and RRmix[29], use linear (mixed) models with latent variables to estimate variability attributed 
to unspecified sources of variation, ultimately to be removed. These methods do not require prior 
knowledge of the sources of unwanted variation, but require the identification of sources of biological 
variation, as their effects would likely be removed if not properly accounted for in the linear predictor 
of the model. 

 
The decision to implement data normalization largely depends on the ultimate objectives of the 

analysis. As the relationship between metabolites and cancer risk is generally quantified in conditional 
logistic regression models for matched case-control studies, metabolite measurements are compared 
within each matched case-control pair. If cases and controls are assayed within the same batch (as was 
the case in the EPIC metabolomics data), the effects of study and batch on the means of the 
measurements are not a concern, and normalization is not required, unless the variances of the 
measurements also vary across studies or batches. However, if the evaluation focuses on the 
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investigation of lifestyle determinants of metabolomics data, like for example in mediation analysis, the 
matching is “broken” and control for inter-batch and inter-study variability is required[7].  

Although originally developed for the normalization of metabolomics data acquired in different 
studies, our pipeline could be used for data acquired in a single study, for example to correct for inter-
batch variability while preserving biological variability, and to correct for potential heteroscedastic 
structures of concentration levels across batches. Our pipeline could also be adapted to the 
normalization of biomarker data and other molecular data, possibly with some modifications. In 
particular, for the normalization of untargeted LC-MS metabolomics data, a step to exclude features 
based on comparison with blank samples should be added to the data cleaning [16], and a K-nearest 
neighbors approach has been shown to perform particularly well for the imputation of missing data[15,30] 
in the context of untargeted metabolomics data. Importantly, when processing untargeted 
metabolomics data from individual studies separately, different feature identifiers (e.g., mass to charge 
ratio and retention time) would characterize the same molecule in each study. Therefore, the pooling of 
several untargeted datasets would generally require an additional feature alignment step consisting in 
identifying the features present in the different datasets, which might be particularly challenging with 
data acquired in different laboratories[31]. 

With the increasing availability of metabolomics data in large scale epidemiological investigations, 
such as those participating in the COnsortium of METabolomics Studies (COMETS)[32], pooling will be 
more and more relevant as a strategy for increasing the statistical power when investigating the 
relationship between metabolomics data with disease indicators, environmental exposures and/or other 
-omics and biomarker data. Combined with analytical and graphical inspection of the data to determine 
sources of unwanted variability to be removed, and sources of biological variability to be preserved, 
linear mixed models provide a flexible tool to normalize metabolomics data, and possibly other -omics 
and biomarker data, prior to pooling data from different studies. As the comparability of measurements 
across studies is improved, our normalization approach could also be useful for studies that aims at the 
meta-analysis of individual-patient data from different studies, in particular if heteroscedastic patterns 
of variability were observed.  

 

4. Materials and Methods  

4.1. The EPIC study  

EPIC is a large prospective study of over 500,000 men and women recruited in 1992-2000 in 23 centres 
in 10 European countries[21], originally designed to investigate the relationship between diet and cancer 
risk. Incident cancer cases were identified through a combination of methods including linkage to health 
insurance records, cancer and pathology registries and active follow-up through study participants and 
their next-of-kin[21]. Around 386,000 participants from all countries provided a blood sample at 
recruitment. Fasting before blood withdrawal was not required. Blood was collected according to a 
standardized protocol in France, Germany, Greece, Italy, the Netherlands, Norway, Spain, and the 
UK[21]. Serum (except in Norway), plasma, erythrocytes, and buffy coat aliquots were stored in liquid 
nitrogen (− 196 °C) in a centralized biobank at IARC. In Denmark, blood fractions were stored locally in 
the vapor phase of liquid nitrogen containers (− 150 °C), and in Sweden, they were stored locally at − 80 
°C in standard freezers. Our analyses used targeted metabolomics data collected within the EPIC study 
and generated through the AbsoluteIDQ p180 or p150 commercial kit (Biocrates Life Science AG, 
Innsbruck Austria).  

All participants provided written informed consent to participate in the EPIC study. This study was 
approved by the ethics committee of the International Agency for Research on Cancer (IARC) and all 
centers.  

 
4.2. The pipeline to normalize data 
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Given a matrix of p metabolites acquired on n samples, our pipeline implemented four main steps, as 
summarized in Figure 7 and detailed hereafter for the EPIC targeted metabolomics data. R scripts 
implementing these four steps will be made available from GitHub.  

 

4.2.1 Step1: Data cleaning 

The objective of data cleaning was to remove the least informative metabolites and samples, using a 
number of (subjective) criteria. First, the pipeline excluded metabolites and samples exceeding a certain 
threshold of missingness (e.g., 20%), in each study separately. Missing values were here defined as fully 
missing values, for which no information on the real value was available. In particular they did not 
include out of measurable range values, which corresponded to values that were missing because they 
were below the batch-specific limit of detection (LOD), below the kit-specific lower limit of 
quantification (LLOQ), or above the kit-specific upper limit of quantification (ULOQ). An extra step was 
implemented to exclude outlying samples within each batch based on Principal Component Analysis 
(PCA)[11], using a 20% proportional expansion of the Hotellings T2 distribution ellipse, with the level of 
the ellipse set to 100*(1-0.05)/Nb % and Nb the total number of batches. Samples assayed in batches with 
less than 10 samples were also excluded to ensure enough information during batch-specific data 
imputation (Section 4.2.2) and normalization (Section 4.2.4).  

 

4.2.2 Step 2: Data imputation 

All missing values, including the out of measurable range values, were imputed in the cleaned dataset 
in each batch separately. Values below batch-specific LOD, below kit-specific LLOQ, or above kit-
specific ULOQ were set to LOD/2, LLOQ/2 and ULOQ, respectively. Values below an unknown batch-
specific LOD were set to LOD/2 after setting batch-specific LOD to study-specific medians of known 
LOD values. Fully missing values were set to the batch-specific median of non-missing values if less 
than 50% of the measurements in the batch were missing, and to the study-specific median of the batch-
specific medians otherwise. Measurements were log-transformed to reduce skewness.  
 
 
4.2.3 Step 3: Data normalization, part 1: Identification of sources of variation 
 
The PC-PR2 technique was used to identify main sources of variation in the metabolomics data[13]. The 
PC-PR2 is a multivariate technique that combines PCA with multiple linear regression to assess the 
proportion of the variability of the full metabolomics dataset explained by a set of explanatory variables, 
including samples characteristics (age, sex, BMI, alcohol consumption, study center), as well as 
preanalytical and analytical factors (fasting status, sample processing protocol, blood matrix, study, 
batch, laboratory instrument). While the former set of factors likely determined biological variability, 
the latter set likely introduced sources of unwanted variation in metabolomics data. PCA was conducted 
on metabolite measurements, and a number K³1 of components sufficient to explain more than 80% of 
total variability was retained. Component scores were, in turn, regressed on the list of aforementioned 
independent variables, say W1, …, WQ, in multiple linear regression models, and the partial R2 for each 
covariate Wq was estimated for each component (Ck). For example, the partial-R2 for W1 conditional on 
the (Q-1) other covariates for component k was 
 

R2partial,k (W1) = [SSE(Ck|W2, …, WQ) - SSE(Ck|W1,W2, …, WQ)]/ SSE(Ck|W2, …, WQ), 
 

with SSE(Ck|Wj, …, WQ) expressing the residual sum of squares in the linear regression model of 
component Ck on variables Wj, …, WQ, for j=1, 2. For variables with a nested structure, for example study 
(S) and batch within study (B), the formula was  
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R2partial, k (S) = [SSE(Ck|W2, …, WQ) - SSE(Ck|S,W2, …, Wq)]/ SSE(Ck|W2, …, WQ), 
R2partial, k (B)  = [SSE(Ck|S, W2, …, WQ) - SSE(Ck|B, S,W2, …, WQ)]/ SSE(Ck|S, W2, …, WQ). 
 

An overall R2partial (W1) was obtained by the average of terms R2partial,k (W1) weighted by the eigenvalue 
of each component. This overall estimate provides a measure of the variability in the ensemble of 
metabolite concentrations that each explanatory variable contributes to explain. The PC-PR2 technique 
is implemented in the pcpr2 R package available on GitHub.  
 
 
4.2.4 Step 4: Data normalization, part 2: Correction for the unwanted sources of variation 
 
In order to correct for unwanted sources of variability while preserving biological variability, a random 
effects model was used for each metabolite separately[14], as 

y = a + Xb + Zq + e,      
   (1) 

where y is the n-vector of the measurements for the metabolite/feature under consideration (all studies 
combined), the matrix X expresses variables corresponding to sources of variations that should be 
corrected for, and the optional matrix Z expresses variables corresponding to biological variations that 
should be preserved. Variables expressed in matrices X and Z typically include some of the variables 
W1, …, WQ of the PC-PR2 analysis with largest R2 partial. The vector of parameters b associated to matrix 
X may include both fixed- and random-effects, while the vector q  associated to matrix Z contains fixed 
effects only. Parameter a is the intercept, and vector e~ Nn(0, S) corresponds to the random error of the 
model. Residuals e are independent of the random effects of the model. Random effects are Gaussian, 
centered, and were further assumed to have diagonal covariance matrix in our illustration.  

Parameters a, b, q and the vector of residuals e under model (1) are estimated by, say, a, b, c, and e. 
Normalized residual measurements are computed as  

 
u = e + Zc.        

     (2) 
 

In this way, the normalization preserves the association between the metabolite and variables in Z, 
while any association with variables in X is eliminated. As mentioned in the Discussion, variables 
describing biological variations of interest should be included in matrix Z if they are associated with 
variables included in matrix X (e.g., sources of biological variations that are unequally balanced across 
studies or batches), otherwise some of the variation they explain would be removed because of the 
adjustment for X. In our illustration, study center indicators, gender, body mass index and alcohol 
intake were included in matrix Z, while batch and study indicators were included in matrix X.  

In the simple homoscedastic random effect models, each component of the vector e of residuals has 
the same variance: S = s2In for some s2>0, where we denote by Ip the identity matrix of size p for any 
positive integer p. However, in practice, pre-analytical and/or analytical factors may not only influence 
the means of the measurements via the term Xb in model (1), but also their variance. For example, 
variances of components of e may vary across studies. This was accounted for by working under 
heteroscedastic random effect models with a specified structure for the variance matrix S of the 
residuals, e.g., S was made of blocks of the form ss2Ins for observations corresponding to study s (with 
ns the number of observations in study s). Then, residuals e were replaced by the Pearson residuals in 
Equation (2), after rescaling them to ensure that their overall variance equals that of the standard 
residuals. Homoscedastic models were implemented with the lmer function of the lme4 R package, 
while heteroscedastic models were implemented with the lme function of the nlme R package, using 
the weights instruction to specify the within-group heteroscedasticity structure. 
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For comparison, we also considered the ComBat method[19] of the sva R package[20], under which a 
fixed-effects version of model (1) is estimated using an empirical Bayes approach, to leverage the fact 
that sources of variation may affect many metabolites in similar ways. In our illustration, ComBat was 
applied to correct for batch effect (which also accounts for study effect), while attempting to preserve 
variations due to study center, gender, body mass index and alcohol intake.   
 
 
4.3. Computation of the intra-class correlation coefficient using duplicated samples 

The EPIC data included duplicate samples, corresponding to aliquots of a baseline blood sample from 
the same subject measured twice in different batches or in different studies. These duplicated samples 
were used to assess the technical reproducibility of metabolomics measurements, and in particular to 
compare technical reproducibility before and after normalization. In sensitivity analyses, ICC values 
were estimated using only duplicate samples originating from distinct blood matrices (serum and citrate 
plasma). For each metabolite, we estimated its ICC using a linear mixed effects model of the form[16]  

mik = gi + xik                                                                        (3) 
where mik is the k-th replicate measurement of subject i, k=1, 2, gi ~ N(µ, sg2) is a subject-specific random 
effect (with µ  corresponding to the general mean of mik), xik ~ N(0, sx2) is the residual random error for 
replicate k of subject i, and Cov(xik, gi)=0. Under this model, ICC = Var(gI)/Var(gI +xik), so the ICC estimate 
was defined as the ratio of the estimated between-subject variance to the estimated total variance 
(between- and within-subject). Model (3) above can be estimated even if only a portion of the subjects 
have replicated samples. It was implemented using the lmer function of the lme4 R package, and 95% 
confidence intervals (CI) of the ICC values were derived using the parametric bootstrap implemented 
by the bootMer function of the lme4 R package.  
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Table 1. Main characteristics of the study population. 

1except Swedish participants (n=101; EDTA plasma). 2except for Swedish participants (n=14, heparin 
plasma). 3Helmhotz Zentrum München. 4Imperial College London 
 

 

 

 Figure 1. Results from the principal component analysis (PCA); left panel: PCA of the imputed data 
(i.e., before the normalization step); right panel: PCA of the normalized data.   

 

 

Acronym Number of 
Samples Matrix Laboratory  MS Instrument  LC Instrument  Kit 

Used 

BREA 3,172 Citrate 
plasma1 IARC SCIEX QTRAP 5500  Agilent 1290 p180 

CLRT1 946 Citrate 
plasma IARC SCIEX Triple Quad 

4500  Agilent 1290 p180 

CLRT2 2,295 Serum HZM3 SCIEX API 4000 Agilent 1200 p150 

ENDO 1,706 Citrate 
plasma ICL4 SCIEX API 4000 Agilent 1290 p180 

GLBD 112 Serum2 HZM3 SCIEX API 4000 Agilent 1200 p180 
LIVE 662 Serum IARC SCIEX QTRAP 5500  Agilent 1290 p180 

KIDN 1,213 Citrate 
plasma IARC SCIEX QTRAP 5500  Agilent 1290 p180 

PROS 6,020 Citrate 
plasma IARC SCIEX Triple Quad 

4500  Agilent 1290 p180 
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Figure 2. Results from the PCPR2 analysis of the imputed data (i.e., before the normalization step; 

top) and the normalized data (bottom).  
 

 
 

Figure 3. Boxplots of SM OH C22:1 within each of the eight case-control studies for the imputed 
data and the normalized data. Dots indicate measurements out of the interval [q1 - 1.5*IQR, q3 + 
1.5*IQR] with q1 and q3 the first and third quartile, respectively, and IQR=q3-q1 the interquartile range.  
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Figure 4. Distribution of the Intra-Class Correlation (ICC) coefficient for quantified and semi-

quantified, before (top) and after (bottom) normalization.  
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Figure 5. Metabolite-specific ICC values before and after normalization  (top) and average ICC 

values for each class of metabolites before and after normalization (bottom). For each arrow, its origin 
represents the ICC value before normalization, and its peak represents the ICC value after 
normalization. 
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Figure 6. Correlations (absolute values) between BMI and the 117 metabolites in control samples. 

The y-axis represents values computed with normalized measurements produced by our approach, 
while the x-axis represents values computed with imputed (non-normalized) measurements (left), and 
normalized measurements produced by the simpler normalization approach (right), which corrected 
for study and batch effects without specifically attempting to preserve variation due to study center, 
BMI, gender and alcohol intake.    
 

 
 
 

 

Figure 7. Main steps of the pipeline.    
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Supplementary Figure 1. Correlations between normalized measurements produced by ComBat 

and our approach. Both approaches were run to correct for batch and study effects, and to preserve 
biological variations due to study center, gender, alcohol intake and body mass index.  

 
 

 
 

Supplementary Figure 2. Average ICC values for each class of metabolites after normalization 
using ComBat and our approach; for each arrow, its origin represents the ICC obtained when using 
ComBat for normalization and its peak represents the ICC obtained when using our approach for 
normalization. All arrows are oriented towards the right, especially for acylcarnitins, indicating that our 
approach produced more reproducible measurements for most metabolites.  
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Supplementary Figure 3. Metabolite-specific ICC values before and after normalization (top) 

and average ICC values for each class of metabolites before and after normalization (bottom); 
normalization was conducted so as to remove study and batch effects while preserving variation due to 
study center, BMI, gender and alcohol intake. Only duplicate samples measured in two different studies 
and originating from two different blood matrices (serum and citrate plasma) were used here. For each 
arrow, its origin represents the ICC value before normalization, and its peak represents the ICC value 
after normalization. 
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Supplementary Figure 4. Correlations (absolute values) between BMI and the 117 metabolites in 
control samples. The y-axis represents values computed with normalized measurements (the 
normalization was run so as to remove study, batch and center effects while preserving variation due 
to BMI, gender and alcohol intake), while the x-axis represents values computed with imputed (non-
normalized) measurements (left), and normalized measurements produced by the “naïve” 
normalization (right), which corrects for study, batch and center effects without preserving variation 
due to BMI, gender and alcohol intake.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table 1. List of the 117 metabolites retained after the data cleaning step.  
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Name Symbol in Figures Class 

Carnitine c0 Acylcarnitins 
Acetylcarnitine c2 Acylcarnitins 
Propionylcarnitine c3 Acylcarnitins 
Butyrylcarnitine c4 Acylcarnitins 
Valerylcarnitine c5 Acylcarnitins 
Decanoylcarnitine c10 Acylcarnitins 
Decenoylcarnitine c10_1 Acylcarnitins 
Dodecanoylcarnitine c12 Acylcarnitins 
Tretradecenoylcarnitine c14_1 Acylcarnitins 
Tetradecadienlycarnitine c14_2 Acylcarnitins 
Hexadecanoylcarnitine c16 Acylcarnitins 
Hexadecenoylcarnitine c16_1 Acylcarnitins 
Octadecanoylcarnitine c18 Acylcarnitins 
Octadecenoylcarnitine c18_1 Acylcarnitins 
Octadecadienylcarnitine c18_2 Acylcarnitins 
Arginine arg Amino Acids 
Glutamine gln Amino Acids 
Glycine gly Amino Acids 
Histidine his Amino Acids 
Methionine met Amino Acids 
Ornithine orn Amino Acids 
Phenylalanine phe Amino Acids 
Proline pro Amino Acids 
Serine ser Amino Acids 
Threonine thr Amino Acids 
Tryptophan trp Amino Acids 
Tyrosine tyr Amino Acids 
Valine val Amino Acids 
lysoPC a C16:0 lysopc_a_c16_0 Glycerophospholipids 
lysoPC a C16:1 lysopc_a_c16_1 Glycerophospholipids 
lysoPC a C17:0 lysopc_a_c17_0 Glycerophospholipids 
lysoPC a C18:0 lysopc_a_c18_0 Glycerophospholipids 
lysoPC a C18:1 lysopc_a_c18_1 Glycerophospholipids 
lysoPC a C18:2 lysopc_a_c18_2 Glycerophospholipids 
lysoPC a C20:3 lysopc_a_c20_3 Glycerophospholipids 
lysoPC a C20:4 lysopc_a_c20_4 Glycerophospholipids 
PC aa C28:1 pc_aa_c28_1 Glycerophospholipids 
PC aa C30:0 pc_aa_c30_0 Glycerophospholipids 
PC aa C32:0 pc_aa_c32_0 Glycerophospholipids 
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Supplementary Table 1 (continued) 
 

Name Symbol in Figures Class 

PC aa C32:1 pc_aa_c32_1 Glycerophospholipids 
PC aa C32:3 pc_aa_c32_3 Glycerophospholipids 
PC aa C34:1 pc_aa_c34_1 Glycerophospholipids 
PC aa C34:2 pc_aa_c34_2 Glycerophospholipids 
PC aa C34:3 pc_aa_c34_3 Glycerophospholipids 
PC aa C34:4 pc_aa_c34_4 Glycerophospholipids 
PC aa C36:0 pc_aa_c36_0 Glycerophospholipids 
PC aa C36:1 pc_aa_c36_1 Glycerophospholipids 
PC aa C36:2 pc_aa_c36_2 Glycerophospholipids 
PC aa C36:3 pc_aa_c36_3 Glycerophospholipids 
PC aa C36:4 pc_aa_c36_4 Glycerophospholipids 
PC aa C36:5 pc_aa_c36_5 Glycerophospholipids 
PC aa C36:6 pc_aa_c36_6 Glycerophospholipids 
PC aa C38:0 pc_aa_c38_0 Glycerophospholipids 
PC aa C38:3 pc_aa_c38_3 Glycerophospholipids 
PC aa C38:4 pc_aa_c38_4 Glycerophospholipids 
PC aa C38:5 pc_aa_c38_5 Glycerophospholipids 
PC aa C38:6 pc_aa_c38_6 Glycerophospholipids 
PC aa C40:1 pc_aa_c40_1 Glycerophospholipids 
PC aa C40:2 pc_aa_c40_2 Glycerophospholipids 
PC aa C40:3 pc_aa_c40_3 Glycerophospholipids 
PC aa C40:4 pc_aa_c40_4 Glycerophospholipids 
PC aa C40:5 pc_aa_c40_5 Glycerophospholipids 
PC aa C40:6 pc_aa_c40_6 Glycerophospholipids 
PC aa c42:0 pc_aa_c42_0 Glycerophospholipids 
PC aa c42:1 pc_aa_c42_1 Glycerophospholipids 
PC aa C42:2 pc_aa_c42_2 Glycerophospholipids 
PC aa C42:4 pc_aa_c42_4 Glycerophospholipids 
PC aa C42:5 pc_aa_c42_5 Glycerophospholipids 
PC aa C42:6 pc_aa_c42_6 Glycerophospholipids 
PC ae C30:0 pc_ae_c30_0 Glycerophospholipids 
PC ae C30:1 pc_ae_c32_1 Glycerophospholipids 
PC ae C30:2 pc_ae_c32_2 Glycerophospholipids 
PC ae C34:0 pc_ae_c34_0 Glycerophospholipids 
PC ae C34:1 pc_ae_c34_1 Glycerophospholipids 
PC ae C34:2 pc_ae_c34_2 Glycerophospholipids 
PC ae C34:3 pc_ae_c34_3 Glycerophospholipids 
PC ae C36:0 pc_ae_c36_0 Glycerophospholipids 
Supplementary Table 1 (continued) 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.16.452593doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Name Symbol in Figures Class 

PC ae C36:1 pc_ae_c36_1 Glycerophospholipids 
PC ae C36:2 pc_ae_c36_2 Glycerophospholipids 
PC ae C36:3 pc_ae_c36_3 Glycerophospholipids 
PC ae C36:4 pc_ae_c36_4 Glycerophospholipids 
PC ae C36:5 pc_ae_c36_5 Glycerophospholipids 
PC ae C38:0 pc_ae_c38_0 Glycerophospholipids 
PC ae C38:2 pc_ae_c38_2 Glycerophospholipids 
PC ae C38:3 pc_ae_c38_3 Glycerophospholipids 
PC ae C38:4 pc_ae_c38_4 Glycerophospholipids 
PC ae C38:5 pc_ae_c38_5 Glycerophospholipids 
PC ae C38:6 pc_ae_c38_6 Glycerophospholipids 
PC ae C40:1 pc_ae_c40_1 Glycerophospholipids 
PC ae C40:2 pc_ae_c40_2 Glycerophospholipids 
PC ae C40:3 pc_ae_c40_3 Glycerophospholipids 
PC ae C40:4 pc_ae_c40_4 Glycerophospholipids 
PC ae C40:5 pc_ae_c40_5 Glycerophospholipids 
PC ae C40:6 pc_ae_c40_6 Glycerophospholipids 
PC ae C42:1 pc_ae_c42_1 Glycerophospholipids 
PC ae C42:2 pc_ae_c42_2 Glycerophospholipids 
PC ae C42:3 pc_ae_c42_3 Glycerophospholipids 
PC ae C42:4 pc_ae_c42_4 Glycerophospholipids 
PC ae C42:5 pc_ae_c42_5 Glycerophospholipids 
PC ae C44:3 pc_ae_c44_3 Glycerophospholipids 
PC ae C44:4 pc_ae_c44_4 Glycerophospholipids 
PC ae C44:5 pc_ae_c44_5 Glycerophospholipids 
PC ae C44:6 pc_ae_c44_6 Glycerophospholipids 
SM C16:0 sm_c16_0 Sphingomyelins 
SM C16:1 sm_c16_1 Sphingomyelins 
SM C18:0 sm_c18_0 Sphingomyelins 
SM C18:1 sm_c18_1 Sphingomyelins 
SM C20:2 sm_c20_2 Sphingomyelins 
SM C24:0 sm_c24_0 Sphingomyelins 
SM C24:1 sm_c24_1 Sphingomyelins 
SM (OH) C14:1 sm_oh_c14_1 Sphingomyelins 
SM (OH) C16:1 sm_oh_c16_1 Sphingomyelins 
SM (OH) C22:1 sm_oh_c22_1 Sphingomyelins 
SM (OH) C22:2 sm_oh_c22_2 Sphingomyelins 
SM (OH)C24:1 sm_oh_c24_1 Sphingomyelins 
Hexoses h1 Monosaccharides 

Supplementary Table 2: Study origin of duplicate samples in the EPIC targeted metabolomics data.  
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Study 1 Study 2 Number of EPIC participants 

BREA CLRT1 1 
BREA CLRT2 4 
BREA ENDO 5 
BREA GLBD 1 
BREA LIVE 2 
CLRT1 CLRT2 2 
CLRT1 ENDO 2 
CLRT1 KIDN 2 
CLRT1 LIVE 1 
CLRT1 PROS 4 
CLRT2 ENDO 4 
CLRT2 KIDN 5 
CLRT2 PROS 27 
ENDO KIDN 2 
GLBD LIVE 51 
GLBD PROS 1 
KIDN LIVE 1 
KIDN PROS 23 
LIVE PROS 9 
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