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Abstract 15 

Read mapping and variant calling approaches have been widely used for accurate genotyping and 16 
improving consensus quality assembled from noisy long reads. Variant calling accuracy relies heavily on 17 
the read quality, the precision of the read mapping algorithm and variant caller, and the criteria adopted to 18 
filter the calls. However, it is impossible to define a single set of optimal parameters, as they vary 19 
depending on the quality of the read set, the variant caller of choice, and the quality of the unpolished 20 
assembly. To overcome this issue, we have devised a new tool called Merfin (k-mer based finishing tool), 21 
a k-mer based variant filtering algorithm for improved genotyping and polishing. Merfin evaluates the 22 
accuracy of a call based on expected k-mer multiplicity in the reads, independently of the quality of the 23 
read alignment and variant caller’s internal score. Moreover, we introduce novel assembly quality and 24 
completeness metrics that account for the expected genomic copy numbers. Merfin significantly increased 25 
the precision of a variant call and reduced frameshift errors when applied to PacBio HiFi, PacBio CLR, or 26 
Nanopore long read based assemblies. We demonstrate the utility while polishing the first complete 27 
human genome, a fully phased human genome, and non-human high-quality genomes. 28 
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Introduction 1 

Accurate variant calling has been a challenge in medical genomics, especially to achieve both high recall 2 
and precision in hard to measure regions1. The advent of Next Generation Sequencing (NGS) and long-3 
read sequencing technologies streamlined variant calling algorithms2, which typically include: 1) aligning 4 
all reads to a reference genome; 2) performing variant calling from the alignment; and 3) filtering to 5 
remove false positives. The final outcome of variant calling relies heavily on the precision of this 6 
multistep procedure, which depends on: 1) the quality of the read set; 2) the precision of the read mapping 7 
algorithm; and 3) the precision of the variant caller in generating reliable calls3. To remove false 8 
positives, variant calls are often hard filtered using heuristics such as requiring a minimum coverage 9 
support, genotype quality, or other internal quality scores2. However, no consensus on the optimal 10 
parameters has been established, and the best parameters vary depending on the sequencing technology 11 
used. Therefore, the accuracy of a variant often corresponds to the theoretical limit of the algorithms and 12 
the parameters employed, and not the theoretical limit given the quality of the supporting raw data. 13 

In parallel, new sequencing technologies greatly expanded our genome assembly toolkit. While the short 14 
read assemblies stumbled resolving repetitive regions4, long reads have considerably improved the 15 
contiguity of genome assemblies5. However, reduced consensus accuracy has been progressively 16 
acknowledged due to the lower base calling accuracy in long reads until the more recent PacBio Hi-17 
Fidelity (HiFi) reads became available6. Still, lower base call accuracy remains even in HiFi reads for 18 
simple repeat sequences, particularly homopolymers7,8. Reduced consensus accuracy has detrimental 19 
impacts on many downstream analyses, such as gene annotation, which requires an accurate consensus to 20 
predict the correct coding sequence7. To mitigate this issue, “polishing” tools have been developed, such 21 
as Pilon, Arrow, Racon and Medaka9–11, while established variant calling tools such as GATK, Freebayes, 22 
DeepVariant12–14 have been repurposed to detect errors and find candidate corrections. Unlike re-23 
sequencing based methods, the assembly from the same genome is used as a reference for polishing, and 24 
thus all homozygous variants suggest corrections to be made. Once corrections are collected, the 25 
consensus can be updated using tools such as Bcftools15. The process is usually repeated with different 26 
read sets (e.g. long and short reads), until the accuracy of the consensus reaches a set standard. 27 

Consensus accuracy (hereby noted as QV for simplicity) has been historically measured from the variant 28 
calling process as described above, however, bearing biases caused from mapping or variant calling. In 29 
our previous work, we presented Merqury16, an alignment-free approach to estimate base-level QV using 30 
k-mers (genomic substrings of length k). In Merqury, k-mers found only in the assembly and not in the 31 
reads are considered as errors, disregarding the expected copy number. As a result, overly represented k-32 
mers from sequence expansion (i.e. false duplications) in the assembly are considered as correct bases. 33 
Merqury also presents a completeness metric from the portion of k-mers found in the assembly from a 34 
given reliable k-mer set in reads. However, this k-mer completeness metric does not account for the k-mer 35 
multiplicity in the reads, limiting the scope to be measured in the non-repetitive k-mer space. As a result, 36 
any two assemblies with the same distinct k-mers will score the same completeness metric, regardless of 37 
one having higher sequence collapses or expansions. 38 

Ideally, the sequence of an error-free and complete genome assembly is in perfect agreement with the 39 
sequence data, assuming that genomic DNA is randomly sampled and sequenced with negligible 40 
sequencing biases. Therefore, any changes introduced during polishing should improve the assembly-read 41 
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agreement. This principle has been widely used to visually evaluate genome assembly copy number 1 
spectrum (e.g. copy-number spectrum analysis16,17), and more recently, used to detect errors and improve 2 
read alignment18–20. However, none of the evaluation metrics or polishing methods have fully utilized this 3 
assembly-read agreement to date. 4 

Here, we first introduce a k-mer based filtering approach applicable on genomic variant calls, which 5 
achieved higher F1 scores compared to parameter based hard-filtering methods. Next, we propose a 6 
revised QV and completeness score that accounts for the expected sequence copy number given a k-mer 7 
frequency, driven by our refined K* definition21 for genome assembly evaluation. Our K* enables the 8 
detection of collapses and expansions, and significantly improves the QV when used to filter variants for 9 
polishing. We applied this approach to polish and evaluate the most complete HiFi-based assembly of 10 
human CHM1322–25, a Nanopore-based trio assembly from the Human Pangenome Reference Consortium 11 
(benchmark paper in preparation), and three non-human reference genomes from the Vertebrate Genomes 12 
Project (VGP)5, all resulting in significantly higher consensus accuracy and annotation quality. This 13 
approach is implemented as Merfin (k-mer based finishing tool) and is publicly available. 14 

Results 15 

Variant call filtering for higher precision 16 
A reference genome (i.e. GRCh38) with its sequence replaced at all alternate variant calls can be 17 
considered as a “consensus” sequence and evaluated with k-mers. Unlike using a de novo assembled 18 
genome of the same individual as a reference, natural biological differences between the sequenced 19 
individual and the reference genome or the incomplete state of the reference (i.e. missing a segmental 20 
duplication) imposes challenges to reliably call variants. Nevertheless, it is possible to construct 21 
consensus paths from a variant or series of variants within k bps, and confirm its validity. We can score 22 
each path by the number of k-mers never found in the reads (error k-mer), and choose the best path to 23 
contain minimum error k-mers (Fig. 1a). 24 

To test the validity of this filtering approach, we benchmarked against unfiltered (default) and hard-25 
filtered variant calls submitted to precisionFDA challenge II, HG0021. The variants were called from 26 
Illumina reads or from multiple platforms (Illumina, PacBio HiFi, and ONT) using GRCh38 as the 27 
reference with GATK HaplotypeCaller. Hard-filtering was performed using the variant caller’s internal 28 
scores such as PASS, QD, MQ and QUAL. When comparing precision, recall, and F1 (harmonic mean of 29 
precision and recall) on a truth set of Chr. 2026, Merfin always achieved higher precision with minimal 30 
loss in recall when applied on both default and hard-filtered sets (Fig. 1b). The hard-filtered set had a 31 
higher precision, with the price of losing more true positives, resulting in a lower F1 score when 32 
compared to the default set. On the other hand, Merfin was able to remove additional false positives on 33 
the hard-filtered set. 34 
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1 
 2 
Fig. 1 | Algorithms and results used in Merfin. a, Two variant calls and its potential consensus paths. The bases3 
and k-mers in red are errors not found in the reads. The path with A>C has no error k-mers and gets chosen for4 
genotyping (*). For polishing, the average K* gets computed in addition to the missing k-mers using the predicted5 
absent k-mers. b, Precision, recall, and F1 from a benchmark on HG002 genotyping. Merfin always achieves higher6 
precision and F1 scores compared to the hard-filtered approach with almost no loss in recall. Default, no filtering;7 
Red, hard-filtering on default. c, K-mer frequency found in the consensus sequence (KC), reads (KR) with average8 
coverage at 4 (c), expected copy number based on the corrected k-mer frequency (Kr = KR / c), and K*. Positive and9 
negative K* values are colored in green and red. The highlighted region (gray) shows the same k-mers and values10 
used to compute K* as affected by the A base in the reference.  If two alternatives bear the same number of missing11 
k-mers the alternative with the K* closest to zero is chosen. d. K* distribution. K* values deviated from 0 indicate12 
collapsed (+) or expanded (-) k-mers in the assembly. e, Genomescope 2.0 k-mer frequency histogram with13 
theoretical k-multiplicity curves (top) and probabilities (bottom) for 0, 1, 2, 3, and 4-copy k-mers, generated using14 
the --fitted_hist option. Note that the 3-copy peak is fully contained in the 2 and 4-copy peaks. f, Diagram15 
for estimating QV* and completeness from k-mers. Each k-mer is a block colored by its state of presence. In the16 
block tower, each column represents the identical k-mer with its state colored by its presence in the assembly, reads,17 
or in both. Note the QV* and K* completeness is using all k-mers including their frequency. 18 

Assembly evaluation 19 

When a reference genome is constructed from the same individual, the k-mer multiplicity seen in the20 
reads is expected to match the reference. This assumption can be used for evaluating de novo assembled21 
genomes. In the following, we introduce our revised K*,  which we used to identify possible collapsed22 
and expanded regions in an assembly, and quantitative metrics for representing the copy-number23 
concordance and completeness of the assembly. 24 

Identifying collapsed and expanded regions 25 
The K* metric was defined previously to detect identical collapsed repeats on each k-mer in the26 
assembly21. The method proposed K* = KR /KC, where KR is the frequency of a k-mer found in the reads;27 
and KC is the frequency of a k-mer across the entire consensus sequence of the assembly. In regions with28 
no collapsed repeats, K* will be equal to c, the average coverage of the sequenced reads. Here we revised29 
the K* such that it evaluates both collapses and expansions. We propose K* = (Kr - KC) / min(Kr, KC),30 
where Kr is the expected copy number inferred from the reads (Fig. 1c). For a perfect genome assembly31 

 

ses 
for 
ted 
er 
g; 
ge 
nd 
es 
ng 
ate 
ith 
ng 
am 
the 
ds, 

he 
ed 
ed 
er 

he 
ds; 
ith 
ed 
), 
ly 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452324doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452324


 5

and an unbiased read set, K* is normally distributed with mean 0, and deviations from the mean reflect 1 
natural variation in the Poisson sampling process (Fig. 1d). Conversely, any significant deviation from 2 
the normal distribution can be interpreted either as a bias in the assembly (i.e. an assembly error) or a bias 3 
in the read set. In particular, a positive K*  implies that the assembly contains fewer copies of k-mers than 4 
suggested by the read set (collapsed), while negative K* implies more copies in the assembly than 5 
suggested by the read set (expanded). 6 

The Kr can be obtained with � KR / c �, where c is the haploid (1-copy) peak of the k-mer distribution of 7 
the reads. Here we assume that rounding Kr is sufficient to account for the standard deviation associated 8 
with the Poisson process underlying read generation. While this is true in the case of a perfectly sampled 9 
sequencing set, the validity of this generalization is challenged in the presence of sampling bias, 10 
systematic error in the reads, and variable degrees of heterozygosity which prevents the clear distinction 11 
of each ploidy peak. To account for this uncertainty and improve the accuracy of the results, we modified 12 
Genomescope227 to probabilistically infer Kr for each KR, using the observed k-mer count distribution in 13 
the read set. If supplied, Merfin will use these probabilities for Kr � 4. (Fig. 1e). 14 

QV* estimation 15 
An average genome-wide QV accounting for excessive copy numbers (hereby defined as QV*) can be 16 

obtained using ∑ KC - Kr as errors when KC > Kr for all positions in the assembly (Fig. 1f). These 17 

excessive and error k-mers can be generalized as ‘errors’ and Phred-scale QV, obtained as implemented in 18 
Merqury16 or YAK28. 19 

Assembly completeness 20 
The sum of Kr - KC (over all positions where Kr > KC) expresses absent k-mers that should be present in 21 
the assembly, and can be directly translated into a measure of assembly completeness as 1 - ∑ (Kr - KC) / 22 
Kr (Fig. 1f). Importantly, contrary to other measures of assembly completeness based on a subset of the k-23 
mers (e.g. relying only on the occurrence of distinct k-mers as implemented in Merqury16), Merfin uses all 24 
k-mers, including its frequency, and computes the fraction of the expected total number of k-mers. 25 

Sequence polishing 26 
The K* becomes particularly useful in polishing. The impact of each correction or combination of 27 
corrections are assessed from a given variant call set (correction candidates) by comparing the change in 28 
K*-related metrics (Fig. 1a,c). In addition to the error k-mers collected in each predicted consensus path, 29 
we compute the consequent k-mer frequency change, and choose the correction only when it improves the 30 
assembly-read agreement.  For example, when a suggestive correction (replacing AT with A as shown in 31 
Fig. 1a) introduces more error k-mers, it should not be used for polishing. Even when no error k-mers are 32 
introduced, K* theoretically informs whether a path improves the assembly-read agreement in polishing. 33 
The current implementation evaluates each path independently, and thus only a local optimum is 34 
guaranteed. Moreover, variants within distance k are considered in all combinations, allowing Merfin to 35 
filter ambiguous variant calls. This approach is fully independent of the raw dataset employed. For 36 
instance, the assembly could be generated using long reads, and the calls evaluated using either short or 37 
long reads or both, taking advantage of the strengths of each sequencing platform, making accurate 38 
orthogonal validation possible, and maximizing the assembly-read agreement. 39 
 40 
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We first focus our evaluation of Merfin on the most complete assembly to date, generated from a nearly 1 
homozygous diploid CHM13hTERT (CHM13) cell line, simultaneously released by the Telomere-to-2 
Telomere (T2T) Consortium22. We then provide an example of improved base calling accuracy in a 3 
Nanopore-based trio assembly from the Human Pangenome Reference Project (HPRC). We further 4 
extend the usage of Merfin to haploid and pseudo-haploid assemblies applying Merfin to three long-read 5 
assemblies (a fish, reptile, and bird) generated in the framework of the Vertebrate Genomes Project 6 
(VGP)5. 7 

Evaluating a complete human genome: T2T-CHM13 8 
The CHM13 cell line originates from a complete hydatidiform mole (46, XX), where both haplotypes are 9 
near-identical except for a few heterozygous variants that probably have their origin in the original mole 10 
tissue or have accumulated during cell passages29. This cell-line was used to generate the most complete 11 
high-quality human reference to date, resolving all centromeric and telomeric repeats and all segmental 12 
duplications and satellite arrays22,23. Notably, the T2T-CHM13v0.9 was polished from a variety of variant 13 
calls, with an earlier version of Merfin and improved the consensus accuracy of the final assembly25. We 14 
further evaluated candidate assemblies to identify collapses and expansions using Merfin using k-mers 15 
from HiFi and Illumina reads. We found that the T2T-CHM13v1.0 assembly shows a remarkable 16 
agreement with the raw data, with only a few regions having K* significantly different from 0, coinciding 17 
with satellite repeats (Fig. 2a). Rather than being assembly errors, these disagreements were associated 18 
with context-dependent augmentation or depletion in HiFi and GC bias in Illumina22,25. Indeed, K* 19 
derived from HiFi and Illumina k-mers showed opposite behavior in some regions, i.e. the HSat3 of Chr. 20 
9 (Fig. 2b). These effects originating from sequencing biases were observed only on the highly repetitive 21 
regions of the genome. 22 

Compared to a less complete and less accurate preliminary assembly, T2T-CHM13v0.730, T2T-23 
CHM13v1.0 had a higher agreement of the assembly with the k-mers derived from HiFi (Fig. 2c) and 24 
Illumina (Supplementary Fig. 1) reads. We found a general agreement in K* between HiFi and Illumina 25 
PCR-free k-mers, including regions with sequencing bias common to the two technologies 26 
(Supplementary Fig. 2). In other cases, the direct comparison of the K* computed from the two 27 
technologies highlighted technology-specific sequencing biases (Fig. 2a,d). At base resolution, the K* 28 
could distinguish regions with accurate consensus from base pair errors, small and large indels, 29 
heterozygous sites, and collapsed/expanded regions (Supplementary Figs. 3a-b). 30 
 31 
Both QV and QV* measured with Merqury and Merfin improved from v0.7 to v0.9 25, which involved a 32 
complete reassembly of the genome using HiFi reads and patches from v0.7 at GA-rich sequence 33 
dropouts in the HiFi reads (Supplementary Table 1). Merqury QV improved from v0.7 to v0.9, due to 34 
the dramatic decrease in error k-mers, however the Merfin QV* did not change as the number of error k-35 
mers is small compared to the number of overly-represented k-mers. Although the high amount of overly 36 
represented k-mers both in HiFi and Illumina reads may originate from sequencing biases, we argue that 37 
QV* may be a more reliable metric, because it accounts for all expected k-mer copy numbers, reflecting 38 
the full extent of genome representation. The QV* was also marginally influenced by the coverage 39 
through a titration experiment (Supplementary Fig. 4, Supplementary Table 2). 40 
 41 
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1 

Fig. 2 | CHM13 evaluation and polishing. a, Genome-wide K* for the CHM13 assembly v1.0. Satellites are2 
associated with repeat- and technology-specific biases. Yet to be resolved rDNA arrays (red) are highlighted by3 
positive K*. b, Highlight of the centromeric satellite repeats (manuscript in preparation) and segmental4 
duplications23 (orange most similar, yellow less, gray least) on chromosome 9. c, Genome-wide density distribution5 
of the K* using HiFi k-mers. When the assembly is in agreement with the raw data, the K* is normally distributed6 
with mean 0, and the smaller the standard deviation the higher the agreement. CHM13 v1.0 shows a less dispersed7 
distribution of the K* compared to a less complete v0.7 assembly. d, Genome-wide comparison of the K* computed8 
using HiFi vs Illumina k-mers on the CHM13 v1.0 assembly. Agreement between the assembly and the raw reads9 
supported by the two technologies is found around (0, 0). The upper right quadrant highlights where both HiFi vs10 
Illumina technologies suggest the presence of underrepresented k-mers that were mostly contributed from the un-11 
assembled rDNAs later resolved in v1.122; the lower left quadrant highlights where both technologies suggest the12 
presence of overrepresented k-mers (with perfect agreement found on the diagonals). The axes correspond to regions13 
of substantial disagreement between the two technologies. Diamonds indicate k-mers missing from one (x or y axis)14 
or both (0, 0) technologies. 15 
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Polishing a completely phased assembly: HG002 1 
The need for polishing is particularly evident in genome assemblies generated using noisy long reads. 2 
Therefore, we tested Merfin’s variant calling filtering algorithm on a Nanopore-based assembly of human 3 
HG002 trio data generated by the HPRC using Flye31,32. We benchmarked Merfin on Medaka, by 4 
comparing polishing outcomes from Medaka with or without filtering with Merfin. In a trio setting, the 5 
optimal approach is to polish each parental assembly separately, by aligning the binned reads and 6 
performing variant calling5,33. This will prevent, or at least significantly reduce, the introduction of 7 
haplotype switches. However, our k-mer based evaluation of the corrections is best performed on a 8 
combined assembly so that it faithfully represents the expected copy-number of each k-mer given the read 9 
set. This further guards against haplotype switches since, even in case of read misbinning or mismapping, 10 
k-mers from the other haplotype will not be considered underrepresented. 11 

Therefore, we first called variants separately from the binned reads used in the assembly with Medaka, 12 
and then combined the variant calls and the parental assemblies for Merfin. We conducted five different 13 
experiments using read sets that differ in coverage, version of the Guppy basecaller, and read length cut-14 
off (Supplementary Table 3). Two rounds of polishing were performed in all experiments, with the 15 
second round performed on the consensus from the first round generated with the additional Merfin step. 16 
Overall, in all experiments we observed comparable improvements in base calling accuracy as measured 17 
by Merqury QV when Merfin filtering was applied (Supplementary Table 3). This increase reflected a 18 
dramatic positive shift in the QV distribution of individual contigs, with most low-quality contigs being 19 
rescued by Merfin, and a sharp increase in the number of contigs found without errors, leading to a final 20 
Q43.2 and Q42.8 for maternal and paternal haplotypes, respectively (Fig. 3a). In the second round of 21 
polishing, the QV ceased to improve or even decreased when Merfin was not applied (Fig. 3a, 22 
Supplementary Table 3), suggesting that the best trade-off between errors corrected and introduced in 23 
the assembly was already reached in the first round. In contrast, the QV continued to increase relative to 24 
the first round with Merfin. Haplotype blocks as defined by Merqury increased in a comparable if not 25 
better way when using Merfin (Fig. 3b), while the haplotypes remained fully phased (Supplementary 26 
Fig. 5). Importantly, the results with Merfin were achieved by introducing only a fraction of the variants 27 
proposed by Medaka, making this approach more conservative than the regular polishing (Fig. 3c).  28 

We also validated the HG002 unpolished and polished assembly by aligning each haplotype assembly to 29 
GRCh38 and deriving small variants. When benchmarked against GIAB v4.2.1 truth set26, the results 30 
show that using Merfin we get a better F1-score, particularly when INDELs are considered (Fig. 3d, 31 
Supplementary Table 4)26,34,35. 32 
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1 

Fig. 3. | HG002 human trio polishing and evaluation. a, Distribution of QV scores as measured by Merqury for2 
maternal and paternal contigs polished with Medaka only, or with variants generated by Medaka filtered with3 
Merfin, from the experiment using latest basecaller and highest coverage. The first panel represents the unpolished4 
contigs, the mid panel the first round of Medaka polishing and filtering, and the last panel the second round applied5 
to the Merfin results from the previous round. The number of contigs without evidence of errors as judged by6 
Merqury QV are reported on the right side. b, Size of the haplotype blocks before and after polishing with or7 
without Merfin for both the maternal and paternal assemblies. First round of polishing is represented by the dotted8 
lines. c, Number of variants generated by Medaka for polishing and remaining variants after Merfin filtering for9 
both the maternal and paternal assemblies. d, Assembly-based HG002 small variant calling performance of Merfin10 
vs regular Medaka against GIAB truth set. Variants from the assembly are derived against GRCh38 using dipcall. 11 

Evaluation, polishing and annotation of pseudo-haploid assemblies 12 
We next applied Merfin to the polishing steps of the VGP assembly pipeline5 (Supplementary Fig. 6) on13 
pseudo-haplotype assemblies from three species (flier cichlid, Archocentrus centrarchus, fArcCen1;14 
Goode's desert tortoise, Gopherus evgoodei, rGopEvg1; and zebra finch, Taeniopygia guttata, bTaeGut1).15 
Using Pacbio continuous long reads (CLR) and 10x Genomics linked-reads for polishing, we observed a16 
general improvement in QV as measured by Merqury (Fig. 4a, Supplementary Table 5). The largest17 
improvement was observed in the first round of Arrow polishing step using CLR. Arrow can replace low18 
quality sequences with patch sequences generated de novo from the reads that align to the region, i.e.,19 
independent from the quality of the original reference. We observed low coverage, sequencing biases (i.e.20 
homopolymer shortening), and mosaic haplotypes in the generated patches, leading to cases of lower QV21 
in the polished assembly (e.g. Fig. 4a, rGopEvg1). In all cases tested, Merfin rescued the QV decrease, or22 
improved the QV. In the subsequent polishing steps performed using Freebayes as the variant caller, the23 
benefit of running Merfin to filter the variant set was less pronounced but still present (Fig. 4a, dashed24 
lines). This was true in all cases but the zebra finch, where the default pipeline performed marginally25 
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 10 

better. However, when considering low frequency k-mers as errors from the probability model in Merfin, 1 
the QV as well as QV* increased in all cases  (adjusted QV and QV* in Fig. 4bc, Supplementary Table 2 
5). Merqury QV counts all k-mers never seen in the reads as errors, while the adjusted QV additionally 3 
counts low frequency k-mers based on the k-mer frequency spectrum as errors. The QV* further includes 4 
overrepresented k-mers as errors. In doing so, the QV* captures not only the base accuracy errors, but 5 
also false duplications, expressing the uncertainty associated with any particular base given the support 6 
from the raw reads. 7 

Most long-read assemblers naturally generate locally phased haplotypes (e.g. Falcon-Unzip36), and it is 8 
therefore important that the polishing does not introduce haplotype switches. To test whether the increase 9 
in QV from Merfin was due to introducing haplotype switches, we tested a zebra finch (Taeniopygia 10 
guttata, bTaeGut2) pseudo-haplotype assembly for which parental sequence information is available5. 11 
When Merfin was applied to filter variants generated by Freebayes on the Longranger alignments of the 12 
10x reads, we noticed an increase in the number of haplotype switches as measured with Merqury 13 
(Supplementary Table 2). We realized that this was due to many heterozygous variants being called by 14 
Freebayes, when individual reads were mapped to collapsed regions or preferentially to the primary 15 
assembly which had higher base accuracy5. Indeed, such assemblies violate the read-assembly agreement, 16 
potentially leading to heterozygous calls being preferred by Merfin. Even in almost complete pseudo-17 
haplotype assemblies, short reads can be easily mismapped, leading to spurious heterozygous calls. To 18 
overcome this issue, we decided to remove all heterozygous variants before applying with Merfin. This 19 
substantially prevented haplotype switches (Supplementary Fig. 7), with an increase in QV 20 
(Supplementary Table 6). In conclusion, we propose removing all heterozygous variants prior to Merfin 21 
as the best practice for polishing pseudo-haploid and haploid assemblies. 22 

In addition, we validated our results using gene annotations, which are sensitive to consensus accuracy 23 
error, and particularly to frameshift errors caused by indel errors. We performed de novo gene annotation 24 
using RefSeq gene annotation pipeline (GNOMON)37 on the VGP assemblies polished with the 25 
conventional VGP pipeline (v1.6) and compared against assemblies where Merfin was applied at every 26 
polishing step. In GNOMON, if a protein alignment supports a predicted model with an indel introducing 27 
frameshift or premature stop codons, the model gets labeled as ‘low quality’ with the frame marked for 28 
correction. If more than 1 in 10 coding genes in an assembly require corrections, the assembly is excluded 29 
from RefSeq. Almost all rejected assemblies used ONT or PacBio CLR reads as their backbone, based on 30 
sequence technology information provided by the submitters. 31 

Again, Merfin substantially reduced the number of genes affected by frameshifts, cross-validating the QV 32 
and QV* results (Fig. 4d-f, Supplementary Table 7 and example in Supplementary Fig. 8). In 33 
particular, premature stop codons were significantly reduced with respect to the default polishing in all 34 
cases (Fig. 4d), with 42.9%, 42% and 21.7% reduction in fArcCen1, rGopEvg1 and bTaeGut1, 35 
respectively. Ultimately, 1% or less of genes had code breaks in all cases when using Merfin. Frameshifts 36 
were also positively affected (Fig. 4e), with 38%, 49.6% and 19.5% reductions in fArcCen1, rGopEvg1 37 
and bTaeGut1, respectively. Less than 3% of genes had frameshifts in all cases when using Merfin. 38 
Similarly, the number of protein-coding gene predictions labelled as ‘low quality’ were reduced (Fig. 4f). 39 
From these results, we now include Merfin as part of the VGP pipeline (v1.7) for its beneficial effect. 40 
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1 
Fig. 4. | Polishing and evaluation of VGP pseudo-haploid assemblies. a-c, Polishing results of primary and2 
alternate assemblies for the flier cichlid (fArcCen1), the Goode's desert tortoise (rGopEvg1), and the zebra finch3 
(bTaeGut1) using the VGP pipeline. Graphed are the unpolished QV values, and the Merqury QV that accounts only4 
for missing k-mers (a), the Merqury QV corrected using Merfin models for 0-copy k-mers (b), and QV* that also5 
accounts for overrepresented k-mers (c). d-f, the general QV increase was reflected in the quality of the gene6 
annotation, with consistent reduction in the number of genes affected by premature stop codons (d), frameshifts7 
errors (e), and low quality protein-coding gene predictions (f). 8 

Consistent with the variant filtering for genotyping, the improvements in QV with Merfin superseded any9 
hard-filtering attempt using variant call quality score (QUAL) cutoffs at the Arrow polishing step (Fig.10 
5a-c, Supplementary Table 8). For the primary assembly, QV* estimates were consistently higher than11 

the best results attainable by hard-filtering (fArcCen1: Q32.5 vs. Q31.9 at QUAL≥18, rGopEvg1:12 

Q38.7 vs. Q36.7 at QUAL≥21, bTaeGut1: Q44.4 vs. Q42.4 at QUAL≥21). The best QUAL cutoff13 

was not necessarily consistent between species, indicating that a single cutoff cannot produce the best14 
outcome in all cases. The alternate assembly (i.e. alternate haplotype) behaved similarly to the primary15 

assembly, again with Merfin always performing best (fArcCen1: Q31.6 vs Q31.1 at QUAL≥23,16 

rGopEvg1: Q35.2 vs. Q34.2 at QUAL≥26, bTaeGut1: Q42.0 vs. Q40.6 at QUAL≥23); however, it17 

notably differed in best QUAL cutoff values to maximize QV. At increased QUAL cutoffs, both genuine18 
and erroneous corrections are filtered out. Thus, hard-filtering cutoffs perform best when the number of19 
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errors corrected exceeds the number of errors introduced at maximum. In contrast, variants selected by1 
Merfin had a wide range of quality scores, with the majority containing higher quality scores yet2 
including some below 25 (Fig. 5d-f). Notably, a significant fraction of variants with the highest quality3 
score assigned were introducing error k-mers and thus were rejected by Merfin. Potentially, accumulated4 
sequencing biases in long-reads could lead to erroneous variant calls but can be filtered with more5 
accurate k-mers from short-reads. No hard-filtering methods were able to achieve QV improvements in6 
polishing as observed with Merfin. 7 

8 

Fig. 5. | Merfin results against quality scores. a-c, QV after polishing as a function of hard-filtered quality score9 
cutoff in primary (black) and alternate (gray) assembly. Results achieved with Merfin are represented by the10 
horizontal lines for comparison. d-f, Number and proportion of variants by quality score selected by Merfin. 11 

Discussion 12 

Here, we described and demonstrated Merfin, a k-mer based tool to evaluate and filter variant calls for13 
improved genotyping accuracy and polishing. Importantly, Merfin allows an innovative alignment-free14 
evaluation and filtering of variants from any VCF generated from any dataset or variant calling method.15 
Merfin always successfully removes false positive calls, superseding any hard-filter based cutoff for both16 
genotyping and polishing. Contrary to the plateau effect usually observed in traditional polishing, our k-17 
mer-informed polishing is essentially a monotonic function, predicted to improve the consensus accuracy18 
until no more useful variants are produced by the variant caller. This lets polishing pipelines have a19 
natural stopping condition to set, i.e. to stop iterative polishing when less than a certain fraction of20 
produced variants are being filtered. 21 
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 1 
In addition, using the copy number agreement between the reads and the assembly, we revised K*, a 2 
metric to identify and analyze local expansions and collapses at each k-mer genome-wide. We devised 3 
QV* and K* completeness, new quality metrics that account for over and under represented k-mers 4 
undetected by previous methods16. We demonstrated on a complete human genome that our approach 5 
allows orthogonal validation of both consensus sequence and variants with any sequencing read data type. 6 
 7 
Similarly to all k-mer-based estimates, K* estimates are influenced by the choice of k, which is dependent 8 
on the quality of the reads. The results presented here assume high-accuracy reads for evaluation and 9 
variant filtering, and may therefore not work best with k-mers derived from noisy long-reads (i.e. CLR 10 
reads and early ONT data). Presence of sequencing biases will also result in biased K*, such as the GC 11 
bias in Illumina reads or the GA dropouts in HiFi reads25. Yet, these effects are limited only to certain 12 
regions of the genome, and it could be potentially further mitigated by methods that correct sequencing 13 
reads for known biases38. Obviously, the ultimate solution will come with less biased, or even unbiased, 14 
sequencing reads. 15 

In parallel, the completeness of the assembly also affects the K*. Pseudo-haploid or haploid 16 
representation of a genome may potentially lead to suboptimal evaluation because of the missing copies. 17 
However, we argue this is a limitation of the assemblies themselves, rather than a limitation of the 18 
methods used to evaluate and polish them. While haploid or partially phased (e.g. FALCON-Unzip36) 19 
assemblies can be preferred for some applications, a faithful reconstruction of the complete genome 20 
should be preferred for both evaluation and comparative purposes, as well as for many biological analyses 21 
that can benefit from the presence of both haplotypes (e.g. trio binning33,39). Representing a diploid 22 
genome as a haploid or pseudo-haploid assembly introduces complications in the evaluation, since the k-23 
mers in the consensus will not fully reflect the k-mers in the read set. Homozygous k-mers will be 24 
underrepresented, and some of the alternate haplotype k-mers will be completely missing. The recent 25 
developments in assembly graphs enable the representation of complete haplotypes with enhanced 26 
accuracy and completeness40, suggesting that assembly tools and state-of-the-art assemblies are moving 27 
toward this direction. If this condition is met, the information contained in the reads can be fully 28 
harnessed to evaluate and improve genome assemblies. 29 

Merfin presents the first k-mer based variant filtering to the best of our knowledge, enabling higher 30 
precision in genotyping and improving assembly accuracy. This will become critical particularly in 31 
medical genomics and many other applications, where reliable genotyping is highly important. Polishing 32 
with Merfin will rescue assemblies built from noisy long reads, when the more recent, accurate platforms 33 
are not accessible, or when sequencing biases are subject to correction using complementary sequencing 34 
platforms. 35 
 36 

Online methods 37 

Genotyping benchmark 38 
Variant calls from HG002 submitted to precisionFDA Truth Challenge1 were downloaded from 39 
https://data.nist.gov/od/id/mds2-2336. In brief, ~35x Illumina PCRfree, ~36x PacBio HiFi, and ~47x 40 
ONT reads were aligned to the human genome reference (GRCh38) with no alternates. Variants were 41 
called with GATK HaplotypeCaller v4. Unfiltered and hard-filtered set was downloaded and 42 
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benchmarked with hap.py (v0.3.12-2-g9d128a9) following the best practices from a previous study26. 1 
Precision and recall were collected before and after filtering the variants with Merfin. 2 
 3 
PCR-free Illumina paired-end reads (2x250 bp) were obtained from NIST  (https://ftp-4 
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_Illumina_2x250bps/) 5 
and 21-mers were collected using Meryl. K-mers with frequency > 1 were used as read k-mers to avoid k-6 
mer collisions from sequencing errors and improved computational performance. 7 
 8 

Revised K* 9 
K-mers are substrings of length k of a given DNA sequence. Given the assembly consensus sequence, we 10 
compute all its constituent k-mers. Similarly, we compute all k-mers represented in a set of WGS reads 11 
from the same individual. We then ask how the frequency of each k-mer in the read set is mirrored in the 12 
assembly k-mer set. If the read set is a faithful representation of the genome (i.e. in the absence of random 13 
DNA sampling and sequencing biases), then the closer the consensus sequence is to the read set, the 14 
closer it is also to the genome the reads were generated from. This principle can be usefully represented 15 
by our revised K*, where for each k-mer in the consensus we can calculate (Fig. 1a): 16 

KC = k-mer count in the consensus sequence 17 
KR = k-mer count in the read set 18 

To account for the uncertainty associated with the underlying Poisson sampling process, in any 19 
sequencing experiment the read set covers on average the original genome multiple times. It is therefore 20 
useful to determine the expected copy number of a particular k-mer in the assembly given the read set, Kr, 21 
as: 22 

c = haploid peak from KR histogram 23 
Kr = the k-mer count expected in the consensus based on the read set, i.e. � KR / c � 24 

Note that Kr - KC expresses the number of copies of any particular k-mer that is underrepresented 25 
(collapsed; positive value) or overrepresented (expanded; negative value) in the assembly. 26 

With these definitions, we can now define K* as: 27 

K* = Kr / KC – 1 if Kr > KC (collapsed k-mers) 28 
K* = – (KC / Kr – 1) if Kr < KC (expanded k-mers) 29 

Which can be reduced to: 30 

K* = (Kr - KC) / min(Kr, KC) 31 

Note that K* converges to 0 if the k-mer frequency in the assembly matches the expected copy number in 32 
the reads. Missing k-mers (i.e. found in the assembly but not in the read set) have a special behavior with 33 
K* being “undefined” for Kr = 0. 34 

Probabilistic K-mer copy-number estimation 35 
To estimate k-mer copy-number in the genome, we modified Genomescope227 to obtain the associated 36 
probability at each KR. Our additions were subsequently integrated in the current version of 37 
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Genomescope2 (https://github.com/tbenavi1/genomescope2.0). Unmodified fitted model 1- to 4-copy k-1 
mer distributions were used to infer the probability that a particular k-mer frequency observed in the read 2 
set implied a particular copy k-mer in the genome. Using this model, Merfin provides a script generating a 3 
lookup table for each k-mer frequency in the raw data with the most plausible k-mer multiplicity and its 4 
associated probability (https://github.com/arangrhie/merfin/tree/master/scripts/lookup_table). 5 

QV estimation using the K* 6 
An average genome-wide QV* is obtained by counting all k-mers not present compared to the expected 7 
copy number estimated from the read set. We collect all k-mers excessively found in the assembly (KE) 8 
and estimate the error rate given all k-mers in the assembly (Ktotal). 9 

KE = ∑ KC - Kr when KC > Kr for all positions in the assembly 10 

The Phred-scaled QV* can be computed using the implementation in Merqury16 or YAK28. 11 

We follow the implementation in Merqury and compute the probability P that a base in the assembly is 12 
correct and in its expected frequency: 13 

P = ((Ktotal - KE ) / Ktotal)
1/k 14 

Which leads to error rate E being: 15 

E = 1 - P 16 

Hence the phred scaled QV* becomes: 17 

QV* = -10 log E 18 

Assembly completeness using the K* 19 
To estimate completeness, we collect all k-mers that should be present but are absent from the assembly. 20 
Unlike Merqury, we account for the k-mer frequency and count any k-mer that should be added to meet 21 
the expected frequency from the reads KA. 22 

KA = ∑ (Kr - KC) when Kr > KC for all Kr, including KC = 0 23 
 24 
We compute the completeness Comp given all Kr: 25 

Comp (%) = (Kr - KA) / Kr = 1 - KA / Kr 26 

Sequence data 27 
For the HG002 results, data can be found at https://github.com/human-28 
pangenomics/HG002_Data_Freeze_v1.0. For the VGP datasets, PacBio CLR and 10x Genomics linked 29 
reads can be found at https://vgp.github.io/genomeark/5. 30 

Evaluation of CHM13 assemblies 31 
All scripts used for CHM13 evaluation can be found here: 32 
https://github.com/gf777/misc/tree/master/merfin. Briefly, we generated genome-wide K* tracks using 33 
Merfin option -dump (merfin_dump.sh). K-mer counts databases for both the assemblies and the raw 34 
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Illumina and HiFi reads were computed using Meryl (https://github.com/marbl/meryl). Peak values of 1 
106.8 and 31.8 derived as the kcov value from Genomescope2 were used for Illumina and HiFi k-mers, 2 
respectively. The tracks were converted to bigWig and loaded in IGV41 for visualization. We used a 3 
custom script (simplify_dump.sh) to count the number of bases with the same K* values for both Illumina 4 
and HiFi k-mers, which were then used to generate the genome-wide K* comparison. The titration 5 
experiment was performed downsampling the reads with the ‘seqtk sample’ command 6 
(https://github.com/lh3/seqtk). 7 

Variant calling and polishing of HG002 assemblies 8 
Variant calling and polishing of HG002 assemblies was performed using medaka 1.2.6 9 
(https://github.com/nanoporetech/medaka) using the models specified in Supplementary Table 3 for 10 
each dataset. Medaka was first run in the consensus mode (medaka_consensus) and subsequently in the 11 
variant mode (medaka_variant) to generate the vcf of the variant calls. Medaka filtered variant set was 12 
then used in conjunction with bcftools v1.9 in the consensus mode with the -H 1 option to generate a 13 
consensus sequence. The same procedure was followed for the Merfin assemblies, except that Merfin was 14 
used to filter Medaka vcf prior to consensus generation. Polishing was repeated twice, and in the second 15 
round the assembly polished with Merfin was used as reference. 16 

Assembly-based small variant calling assessment 17 
We used dipcall (https://github.com/lh3/dipcall) to generate the small variants from the assembly. Dipcall 18 
takes a diploid assembly and a reference genome to produce a variant call file (VCF) that contains all 19 
variants that are present in the assembly compared to the reference. We then compared the variant calls 20 
against GIAB truth set v4.2.1 using hap.py (https://github.com/Illumina/hap.py). The GIAB variant 21 
calling truth set for HG002 sample can be found in: (ftp://ftp-22 
trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv4.2.1/). We used 23 
the following commands for the evaluation:  24 
 25 
./run-dipcall <output_prefix> <GRCh38.fa> <pat.fa> <mat.fa> -t 8 -x hs38.PAR.bed 26 
 27 
docker run -it pkrusche/hap.py:latest /opt/hap.py/bin/hap.py 28 
HG002_GRCh38_1_22_v4.2.1_benchmark.vcf.gz DIPCALL_OUTPUT.dip.vcf.gz -f 29 
HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.chr20.bed -r 30 
GCA_000001405.15_GRCh38_no_alt_analysis_set.fna -o OUTPUT --pass-only --engine=vcfeval --31 
threads=32 32 

Variant calling and polishing of VGP assemblies 33 
While the original assemblies were generated with different versions of the VGP pipeline5 34 
(https://github.com/VGP/vgp-assembly/tree/master/pipeline), to polish the assemblies of the flier cichlid 35 
(v1.0), the Goode's thornscrub tortoise (v1.5), and the zebra finch (v1.6) with Merfin we used the VGP 36 
pipeline v1.6 (Supplementary Fig. 7). In the first round of polishing, long Pacbio CLR reads were 37 
aligned with pbmm2 v1.0.0, variants were called with variantCaller v2.3.3 (arrow) with the ‘-o 38 
${asm}.vcf’ option. A custom script 39 
(https://github.com/arangrhie/merfin/blob/master/scripts/reformat_arrow/) included in Merfin was used to 40 
properly format the vcf file. 21-mer databases for both the assemblies and the 10x linked-reads were 41 
generated with Meryl. 10x barcodes were trimmed from the reads using the script available in Meryl. The 42 
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haploid 21-mer coverage and the lookup tables were computed using our modified Genomescope2 script 1 
included in Merfin: 2 
 3 
Rscript $merfin/lookup.R ${asm}.21.meryl.hist 21 ${asm}.21.lookup 2 4 
 5 
Similarly to HG002, the consensus was generated with bcftools v1.9 using the filtered vcf generated by 6 
Merfin. The same strategy was applied for the other polishing steps, except that Longranger v2.2.2 was 7 
used for mapping the 10x Genomics linked-reads and Freebayes v1.3.1 for variant calling. For Variant 8 
calling and polishing of zebra finch trio, Freebayes calls were filtered using Bcftools v1.9 with the -9 
i'(GT="AA" || GT="Aa")' option prior to Merfin filtering. K-mer counts databases for both the assemblies 10 
and the raw Illumina reads were computed using Meryl, and Merfin was run with a peak value of 35.2 11 
derived as the kcov value from Genomescope2. 12 

Evaluation of the assemblies 13 
QV and phasing analyses of HG002 and zebra finch trios were performed using Merqury16 14 
(https://github.com/marbl/merqury/) in the trio mode using 21-mers and default parameters. Similarly, 15 
primary and alternate scaffolds of the VGP assemblies were separated and Merqury QV was estimated on 16 
both using 21-mers and default parameters. 17 

Gene annotation of VGP assemblies 18 
Annotation was performed as previously described5, using the same transcript, protein and RNA-Seq 19 
input evidence for the annotation of the unpolished, polished and Merfin assemblies of each species. For 20 
Taeniopygia guttata, a total of 100,000 Taeniopygia guttata ESTs, GenBank and known RefSeq and 10 21 
billion same-species reads for over 13 tissues were aligned to the genome, in addition to all Genbank Aves 22 
proteins, known Aves, human and Xenopus RefSeq proteins, and RefSeq model proteins for Parus major, 23 
Gallus gallus, Columbia livia and Pseudopodoces humilis. For Gopherus evgoodei, 1.22 billions RNA-24 
Seq reads from 5 tissue types from Gopherus and Chelonoidis species were aligned to the assemblies in 25 
addition to all known RefSeq proteins from human, Xenopus, and Sauropsida, and model RefSeq proteins 26 
from Chrysemys picta, Pelodiscus sinensis. For Archocentrus centrarchus, 476 million same species 27 
RNA-Seq reads from 9 tissue types were aligned to the assemblies in addition to all Actinoipterygii 28 
GenBank proteins, human and Actinopterygii known RefSeq proteins and Oryzias latipes, Oreochromis 29 
niloticus, Monopterus albus, Xiphophorus maculatus model RefSeq proteins. 30 

Plots 31 
A combination of bash and Rscript was used for data analysis and visualization. All scripts used to 32 
generate the plots  are available at https://github.com/gf777/misc/tree/master/merfin/paper/figures. 33 
 34 
Availability 35 

A stable release and the C++ source code for Merfin, and examples from this work are available under 36 
Apache License 2.0 (https://github.com/arangrhie/merfin). The only dependency is the k-mer counter 37 
Meryl, which comes with the release. Merfin can be run in five modes: 1) the -filter mode scores each 38 
variant, or variants within distance k and their combinations by error k-mers for improved genotyping; 2) 39 
the -completeness mode generates completeness metrics; 3) the -dump mode computes KC, KR, K* for 40 
each base in the assembly along with QV and QV* for each sequence; 4) the -hist mode provides a K* 41 
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histogram and genome-wide QV and QV* averages; 5) the -polish mode scores each variant, or variants 1 
within distance k and their combinations by the K* for polishing. Merfin is fully parallelized using 2 
OpenMP. The K* tracks obtained from each platform for the CHM13 v1.0 assembly are available in the 3 
associated UCSC browser (http://t2t.gi.ucsc.edu/chm13/dev/hub.txt). 4 
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Supplementary Figures 1 

 2 

Supplementary Figure 1 | Genome-wide density distribution of the K* using Illumina k-mers. When3 
the assembly is in agreement with the raw data, the K* is normally distributed with mean 0, and the4 
smaller the standard deviation the higher the agreement. CHM13 v1.0 shows a less dispersed distribution5 
of the K* compared to a regular HiCanu assembly. 6 
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1 

Supplementary Figure 2 | A region of negative K* highlighting sequencing bias. An example2 

of low coverage in both HiFi and Illumina reads associated with high guanine content, and3 

specifically a GA-rich repeat (heatmap). GA bias has been reported in Pacbio HiFi data, and4 

results in gaps in the assembly that in CHM13 were filled with Nanopore data22. The K* both5 

from HiFi and Illumina k-mers (top tracks) recapitulate the coverage drop. Nanopore coverage6 

appears less affected. Position Chr12:~129,862,000 bp. 7 
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 1 

 2 

Supplementary Figure 3 | The K* can identify issues in the assembly at the base level. a, 40 3 

bp window with K* close to 0, highlighting perfect agreement of the assembly with the raw 4 

reads. Position Chr18:~7,000,000 bp. b, A region of negative K* in coincidence with two 5 

heterozygous indels. Position Chr1:~105,008,350 bp. 6 
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 1 

Supplementary Figure 4 | Coverage titration experiment and impact on QV*. The QV* is only2 
marginally influenced by the coverage of the dataset being considered. 3 

4 
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Supplementary Figure 5 | Haplotype phasing before and after polishing with Merfin. In both1 
parental assemblies, the haplotypes remained fully phased, and the size of the blocks significantly2 
increased compared to the unpolished version (a,b) after polishing with Merfin (c,d). A theoretical human3 
genome size of 3.1 Gbp was used to normalize NG* values. 4 

5 

Supplementary Figure 6 | VGP assembly pipeline. Compared to the previous v1.6, the introduction of6 
Merfin in v1.7 (green) resulted in a minimal change of the workflow, but in a generalized improvement in7 
QV scores and gene annotations. Pipeline available at https://github.com/VGP/vgp-assembly. 8 
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1 

Supplementary Figure 7 | Phase block analysis of zebra finch pseudo-haplotype assembly. a, Phase2 
blocks in the primary assembly after mapping the reads to both the primary and alternate assemblies. b,3 
Phase blocks in the primary assembly after mapping the reads to both the primary only. c, Phase blocks in4 
the alternate assembly after mapping the reads to both the primary and alternate assemblies. d, Phase5 
blocks in the alternate assembly. In all cases, the application of Merfin filtering minor heterozygous6 
variants (green) leads to block sizes better or comparable to prior polishing methods alone (blue).7 
Unpolished assembly in gray. Results of Merfin without filtering in red. A genome size of ~1.03 Gbp8 
derived from Genomescope2 was used to normalize NG* values. 9 
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 1 

Supplementary Figure 8 | Effect of merfin correction on the kinetochore scaffold 1 protein (KNL1)2 
annotation. a, Deleterious presence of an extra A around position 1,321,620 of scaffold_7 (red box) in3 
the polished, non-merfin-corrected sequence is indicated by a 1-base gap in the alignments of zebra finch4 
PacBio IsoSeq SRR8695295.20794.1 and KNL1 transcripts from three other Passeriformes songbirds.5 
This insertion causes a disruption in the frame and a premature stop codon in the translated sequence (see6 
amino acid sequence in red). b, Corresponding span in the merfin-corrected assembly, with gapless7 
alignments of the IsoSeq read and Passeriformes transcripts, and uninterrupted translation. 8 
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