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Abstract 

Background: Chronic stress is an important risk factor in the etiology of mood and 

anxiety disorders, but exact pathomechanisms remain to be understood. Mapping 

individual differences of acute stress-induced neurophysiological changes, especially 

on the level of neural activation and functional connectivity (FC), could provide 

important insights in how variation in the individual stress response is linked to disease 

risk.  

Methods: Using an established psycho-social stress task flanked by two resting-state 

scans, we measured subjective, physiological, and brain responses to acute stress 

and recovery in 217 unmedicated participants with and without mood and anxiety 

disorders. To estimate block-wise changes in stress-induced brain activation and FC, 

we used hierarchical mixed-effects models based on denoised timeseries within a 

predefined stress network. We predicted inter- and intra-individual differences in stress 

phases (anticipation vs. acute stress vs. recovery) and transdiagnostic dimensions of 

stress reactivity using elastic net and support vector machines. 

Results: We identified four subnetworks showing distinct changes in FC over time. 

Subnetwork trajectories predicted the stress phase (accuracy: 71%, pperm<.001) and 

increases in pulse rate (R2=.10, pperm<.001). Critically, individual spatio-temporal 

trajectories of changes across networks also predicted negative affectivity (∆R2=.08, 

pperm=.009), but not the presence or absence of a mood and anxiety disorder. 

Conclusions: Spatio-temporal dynamics of brain network reconfiguration induced by 

stress reflect individual differences in the psychopathology dimension negative 

affectivity. These results support the idea that vulnerability for mood and anxiety 

disorders can be conceptualized best at the level of network dynamics, which may 

pave the way for improved prediction of individual risk.  
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1. Introduction 

Stressful situations occur frequently in everyday life and an adaptive response 

to stress is critical for mental health (1). Congruently, maladaptive stress responses 

such as prolonged anxiety, extensive rumination, and negative coping strategies are 

common symptoms of many mental disorders including mood and anxiety disorders 

(2–5). These maladaptive responses to stress are mirrored on a biological level, where 

dysregulation of the endocrine (6–9) as well as autonomous stress response (10) have 

been described across mood and anxiety disorders. 

The stress response can be divided into three phases: anticipation (11,12), the 

acute (13,14) stress response and recovery (15–17). All phases have been shown to 

be affected on different levels in relation with risk to mood and anxiety disorders 

(13,14). An increased endocrine responses in anticipation of stress (18–20), a blunted 

acute response (9), or prolonged recovery after stress (21) have been associated with 

depression. Depression-related personality characteristics such as negative affectivity 

or trait anxiety (22,23) with shared genetic signatures (24) also affect endocrine stress 

reactivity across all phases (25–27). Likewise, mood and anxiety disorders are 

characterized by specific maladaptive cognitions related to stress (28,29). For 

instance, negative coping styles, such as excessive rumination, often seen in 

depressed patients, are associated with slower stress recovery (30–33), whereas 

distraction is associated with faster recovery (34,35). Resilient coping styles, such as 

social support (36) or cognitive reappraisal (37), showed faster stress recovery (38) 

and reduced anticipatory stress (39). Taken together, specific psychological factors of 

mood and anxiety disorders may alter stress reactivity at different phases of the stress 

response. 

On the neural level, stress responses are characterized by dynamic shifts in the 

salience (SN), default mode (DMN), and fronto-parietal (FPN) networks (40,41). 
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Consequently, changes in FC between key nodes of the stress network have been 

reported (42,43) up to 40min after stress. Within this network, dysregulation has been 

consistently reported across mood and anxiety disorders (44), suggesting that brain 

networks implicated in acute stress reactivity are also affected in disorders showing 

maladaptive stress responses. Comparably, previous work in healthy participants or 

adolescents with mental disorders has shown that trait anxiety is associated with 

altered stress-induced activation in key regions of the stress network (45,46). However, 

most studies focus on average stress-induced brain responses during the task. Hence, 

little is known about dynamic changes within the stress network across the stress cycle 

although emerging evidence has highlighted the importance dynamic reconfigurations 

of brain networks in mental disorders (47,48). Likewise, task-induced changes in FC 

have been shown to improve correspondence with phenotypic differences compared 

to resting FC and have been proposed as promising target to unravel alterations in 

mental disorders (49,50). Therefore, identifying individual signatures of stress reactivity 

that may map to risk for psychopathology could help pinpoint potential intervention 

targets  (i.e., for non-invasive brain stimulation techniques (51) and improve means to 

study network perturbations in clinical trials.  

Here, we used a hierarchical model of stress-induced changes in brain 

responses and FC to characterize trajectories of network reconfigurations across the 

stress cycle. Using individual FC signatures of stress adaptation, we identified dynamic 

FC changes that differentiate between stress states and predict interindividual 

differences in negative affectivity, providing a link between acute psycho-social stress 

reactivity and psychopathology. 
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Figure 1: Schematic overview of task design and analyses. A) The psycho-social stress task 

consists of 15 blocks (50s each) of arithmetic problems interleaved with rest blocks (fixation 

cross, 40s each). The first five blocks are without aversive feedback (PreStress), followed by 

five blocks with negative feedback and time constraints (Stress), and another five blocks 

without aversive feedback (PostStress). Illustratively, we depict the average time series of the 

vmPFC after denoising across all measurements, which tracks the structure of the paradigm. 

B) Stress-induced changes in activation and functional connectivity (FC) from block to block 

are characterized for all regions and edges within a predefined stress network. C) Changes in 

activation and FC for each block are estimated using a hierarchical extension of generalized 

psychophysiological interactions (gPPI) estimated with one hierarchical linear model for each 

edge of the network, leading to group-level estimates of task-induced FC change for each 

block and 210 edges. D) For further predictive analyses, edges with similar changes over time 

are clustered into four subnetworks using hierarchical clustering. E) Lastly, we use individual-

level profiles of the four subnetworks FC changes (average across all edges per subnetwork) 

to predict either the task phase of unseen blocks (four features per block) or interindividual 

differences in adaptive vs. maladaptive stress reactivity, vmPFC = ventromedial prefrontal 

cortex, dACC = dorsal anterior cingulate cortex, Put = putamen, PCC = posterior cingulate 

cortex, pIns = posterior insula, aIns = anterior insula, pHipp = posterior hippocampus, mHipp 

= medial hippocampus, aHipp = anterior hippocampus, Amy = amygdala, SVM = support 

vector machine 
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2. Methods 

2.1 Participants 

The sample was recruited as part of the Biological Classification of Mental 

Disorders study at the Max Planck Institute of Psychiatry (ClinicalTrials.gov: 

NCT03984084,(52)). The study characterizes participants with a broad spectrum of 

mood and anxiety disorders including common comorbidities as well as unaffected 

individuals. Here, we included 217 participants (140 women, Mage= 35.1 years ± 12.1, 

Supplementary Table S1). All participants underwent a computer-based, standardized 

diagnostic interview (CIDI (53)). Diagnoses were derived by a DSM-IV-based algorithm 

and n=129 (54%) fulfilled the criteria for ≥1 mood or anxiety disorder (ICD-10 code F3-

F4, excluding specific phobias) within the last 12 months (Supplementary Table S2). 

None of the participants reported any present medication for their psychiatric 

symptoms. To maximize the sample size, we excluded participants with missing or low-

quality data for each analysis separately leading to sample sizes between 177 and 217 

(Supplementary Table S4). 

2.2 Experimental procedure 

The imaging stress task (Supplementary Figure S1) was included in the second 

functional magnetic resonance imaging (fMRI) session (52), so none of the participants 

were fMRI naïve (54). Upon arrival, the first saliva sample was taken (T0) for cortisol 

assessment followed by a second sample (T1) approximately 20 min later, after 

placement of an intravenous catheter for additional blood sampling in 73 (33%) 

participants, and before entering the scanner. After an emotional face-matching task 

(~12 min), a baseline resting-state measurement, and immediately before the stress 

paradigm, participants rated their current affective state using Befindensskalierung 

nach Kategorien und Eigenschaftsworten (BSKE, (55) Supplementary Information). 
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The psycho-social stress paradigm was adapted from the Montreal imaging stress task 

(56), where stress is induced by performing arithmetic tasks under time pressure and 

with negative feedback (57,58). The task lasted ~25 min and included a PreStress 

phase without negative feedback or time pressure, followed by a Stress phase with 

psycho-social stress-induction, and a PostStress phase (analogous to PreStress). 

Each phase contained 5 task blocks (50s) interleaved with rest (40s) blocks. We 

measured autonomous activity throughout using photoplethysmography 

(Supplementary Information). After completion of the task, affective state was 

assessed and saliva samples were taken (T6). A 30-min rest period lying outside the 

scanner was followed by a concluding resting-state scan, and assessments of 

subjective affect and saliva cortisol (T8). In participants with additional blood sampling, 

samples were taken in the scanner before the task (T3), during, and after the task in 

approximately 15-min intervals (T4-T8). At the end of the session, participants were 

debriefed.     

2.3 Questionnaires   

To measure state- and trait-like depressive symptoms and negative affect (23), 

we included the Becks Depression Inventory-II (BDI, (59)) and the trait subscale of the 

State-Trait Anxiety Inventory (TAI, (60)). To measure maladaptive and adaptive 

psychological stress reactivity, we included the Intolerance of uncertainty scale (IoU, 

(61)), a stress coping scale (Stressverarbeitungsfragebogen, SVF,(62)), and a 

resilience scale (RS-11,(63)).  

2.4 fMRI data acquisition and preprocessing  

Briefly, MRI data were acquired on a GE 3T scanner (Discovery MR750, GE, 

Milwaukee, U.S.A.). The functional data were 755 T2*-weighted echo-planar images 

(EPI) for the stress task and 155 EPIs for each of the resting-state scans. All fMRI data 
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preprocessing was performed in Matlab 2018a (The Mathworks Inc., Natick, MA, USA) 

and SPM12 (v12; Wellcome Department of Imaging Neuroscience, London, UK). Data 

was slice-time corrected, realigned, normalized to the MNI-template using DARTEL 

(64), and spatially smoothed with a 6x6x6mm3 full-width at half maximum kernel 

(Supplementary Information). 

2.5 Data analysis 

2.5.1 Questionnaire data: Non-negative matrix factorization  

To extract interpretable dimensions capturing maladaptive stress reactivity from 

the questionnaires, we used non-negative matrix factorization (NNMF, (65)). In 

contrast to other dimension reduction methods, NNMF captures additive latent 

variables that are intuitively interpretable since all weights are positive. We included all 

items from the questionnaires after rescaling them between 0 and 1. We estimated 

NNMF (nnmf, MATLAB 2020b) with 150 iterations and 50,000 replicates to ensure 

stability. To determine the optimal number of dimensions, we used the elbow method 

for explained variance (66).    

2.5.2 Stress response to the psycho-social stress task 

The endocrine stress response was estimated as the change in cortisol 

concentration (∆Cort) between T1 and T6. Since we took blood samples in a subset of 

participants and a cortisol response to the procedure may confound the response to 

the stress task (58), we included a nuisance regressor (dummy coded) classifying 

participants with a response > 2.5 nmol/l (0.91 ng/ml, (58,67)) at T1 (20 min after 

arrival) compared to baseline (T0) as pre-task cortisol responders in all analyses.  

The autonomous stress response was estimated as change in average pulse 

rate during the arithmetic blocks in the Stress phase compared to PreStress or 

PostStress, respectively (58). Subjective stress effects were estimated as the change 
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in positive and negative affect (sum scores across 15 BSKE items) after the task 

(57,58) (Supplementary Information).  

2.5.3 fMRI data  

To compare stress-induced changes in brain response with previous studies, 

we assessed associations between stress-induced changes in activation and 

dimensions of stress susceptibility using previously reported first-level contrasts 

including one task regressor for each task phase (PreStress, Stress, and PostStress) 

phase (58) (Supplementary Information). At the group-level, we used voxel-wise 

multiple regressions. To capture stress-induced changes independent of directionality, 

we calculated representational similarity (58,68) (Supplementary Information) between 

average contrasts of PreStress, Stress, and PostStress phases in 268 atlas ROIs (69). 

Individual similarity was calculated as Fisher’s z-transformed Pearson correlations. All 

analyses regarding fMRI data and psychometric variables (whole-brain regressions 

and elastic net predictions) included age, sex, pre-task cortisol, and average log-

transformed framewise displacement as covariates (Supplementary Information). 

To model dynamic changes in FC across the task, we extracted average 

timeseries from the preprocessed but unsmoothed stress task, the preceding and the 

following resting state in 21 ROIs based on previously reported activations (Fig. 1B, 

(40,41,45,70)). The regions included the left and right amygdala, hypothalamus, 

caudate, putamen, anterior, medial, and posterior hippocampus, anterior and posterior 

insula and one region for the posterior cingulate, dorsal anterior cingulate, and 

ventromedial prefrontal cortex. Regions were defined using a FC-based atlas (69), only 

the hypothalamus was defined based on an the Harvard-Oxford atlas as the resolution 

of the Shen atlas was too coarse. Timeseries were detrended (linear), despiked 

(winsorized at ±4SDs), and residualized with the same covariates as in previous work 
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(57) including the 6 movement parameters, their derivative, and 5 components 

extracted from white matter and cerebro-spinal fluid, respectively ((71), Supplementary 

Information). To estimate changes relative to the resting-state baseline before the task, 

we concatenated all data by matching their grayscale values (Supplementary 

Information).  

We then used hierarchical linear models (LME, (72,73)) analogous to 

hierarchical generalized psychophysiological interactions (74) to estimate block-wise 

changes in activation in all 21 ROIs (Fig. 1B) and FC for all (21*20)/2 edges between 

nodes. We estimated one model for each edge with all predictors as random effects, 

deriving group-level and regularized individual-level estimates simultaneously (75–77). 

Each model included the timeseries of one region (ROI1) as a dependent variable and 

the timeseries of the other region (ROI2) as independent variable together with one 

regressor for each of the 15 task blocks (convolved with hemodynamic response 

function) and the interaction of each task-block regressor with the predictive 

timeseries. Additionally, we included an interaction term for the post task resting-state 

to account for lasting stress-induced changes in FC. For interaction terms, the 

predictors were mean-centered. 

𝐵𝑂𝐿𝐷𝑅𝑂𝐼1 ~ 𝑇𝑎𝑠𝑘𝑏𝑙𝑜𝑐𝑘1…15 ∗ 𝐵𝑂𝐿𝐷𝑅𝑂𝐼2 + 𝑅𝑒𝑠𝑡𝑃𝑜𝑠𝑡𝑆𝑡𝑟𝑒𝑠𝑠 ∗  𝐵𝑂𝐿𝐷𝑅𝑂𝐼2 

+ 𝑀𝑜𝑡𝑜𝑟 + 𝑣𝑒𝑟𝑏𝑎𝑙𝑓𝑏 + (𝑇𝑎𝑠𝑘𝑏𝑙𝑜𝑐𝑘1…15 ∗ 𝐵𝑂𝐿𝐷𝑅𝑂𝐼2

+ 𝑅𝑒𝑠𝑡𝑃𝑜𝑠𝑡𝑆𝑡𝑟𝑒𝑠𝑠 ∗  𝐵𝑂𝐿𝐷𝑅𝑂𝐼2 + 𝑀𝑜𝑡𝑜𝑟 +  𝑣𝑒𝑟𝑏𝑎𝑙𝑓𝑏)| 𝐼𝐷 

To reduce dimensionality, we defined subnetworks of nodes showing similar FC 

changes over time (i.e., blocks) using hierarchical clustering (eclust, (78)) with z-

standardization and Pearson correlation as distance measure. The number of clusters 

was determined by evaluating the decrease in total within sum-of-squares (wss) with 

the elbow method leading to 4 distinct clusters (Supplementary Figure S5).   
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To evaluate the predictive performance of stress-induced FC changes within the 

subnetworks, we used machine learning algorithms to predict intra- and inter-individual 

differences in stress susceptibility. First, we predicted the task phase (PreStress, 

Stress, or PostStress) of unseen blocks based on average FC-changes in the 4 

subnetworks using support-vector machine (SVM) classifiers with a radial basis 

function (one vs. one, SVC, scikitlearn (79), Python 3.7.0) with nested 10-fold cross-

validation. We used a leave-subject-out approach so that all data from 10% of the 

participants was in a held-out fold. Second, we used the same approach to predict z-

scored pulse-rate changes for each block using support-vector regression (SVR). To 

test whether the prediction provided information in addition to differences between 

stress phases (i.e., higher pulse rate during stress), we estimated LMEs including the 

observed pulse-rate change of each block, the stress phase and their interaction as 

predictors (random effects by participant, (80)). Last, we predicted interindividual 

differences in dimensions of stress reactivity derived from NNMF using activation (12 

ROIs) and connectivity (4 subnetworks) trajectories across the task blocks. Since the 

models included between 68 (connectivity) and 180 (activation) features, we used 

elastic net (lasso, preset alpha = .5) with nested 10-fold cross-validation. Elastic net 

performs well if features are correlated and their number is moderately high compared 

to the number of observations (81). To account for confounding variables, we included 

them in the baseline prediction models and evaluated the incremental variance 

explained by fMRI features. Notably, average log-transformed framewise displacement 

was not associated with diagnosis status or psychometric dimensions of stress 

reactivity (rs < .12, ps > .11). Statistical significance was determined using permutation 

tests (1,000 iterations), where the outcome was shuffled together with the confounders 

to keep their correlation structure.  
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2.5.4 Statistical threshold and software 

Statistical analyses were performed in R v3.5.1. (82). For whole-brain fMRI 

analyses, the voxel threshold was set at p<.001 (uncorrected). Clusters were 

considered significant with an FWE cluster-corrected p-value threshold of 

pcluster.FWE<.05. Additional LME models were estimated in R using lmerTest (83).   
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3. Results 

Average task-induced stress responses do not differ in mood and anxiety 

disorders  

The task induced stress across multiple levels: positive affect decreased (b=-

2.35, p<.001), while negative affect (b=7.6, p<.001, Fig. 2A) increased after the task. 

Likewise, pulse rate (b=6.5, p<.001, Fig. 2B) increased during stress as well as salivary 

cortisol (b=.42, p=.007, Fig. 2C). On the neural level, stress led to significant 

deactivation in the DMN (PCC and angular gyrus), insula, dorsomedial prefrontal 

cortex as well as activation in the visual and parietal cortex (see Fig. 2E).  

In contrast to previous reports, average stress reactivity did not differ between 

participants with and without mood and anxiety disorders on the autonomous, 

endocrine, or subjective level (Fig. 2, Supplementary Table S3). Likewise, there were 

no significant differences in brain response on average whole-brain maps (Fig. 2E), 

although neural similarity during stress recovery was significantly lower in participants 

with a mood or anxiety disorder (b=-0.05, p=.005, Fig. 2B), indicating slower recovery. 

The lack of significant alterations of stress reactivity may be due to the heterogeneous 

phenotype of the patient group, or because individual stress-induced changes are only 

insufficiently reflected in average maps that lack dynamic information about network-

level reconfiguration.  
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Figure 2: The psycho-social stress task leads to multi-modal stress responses that do not 

differ in participants with mood and anxiety disorders. A) Pulse rate increases during the Stress 

phase and recovers in the PostStress phase similarly in both groups. B) Negative affect 

increases (T6: b=-7.6, p<.001) and recovers after stress (T8: b = -1.1, p = .006), while positive 

affect decreases (T6: b=2.35, p<.001, Fig. 2A) and does not recover back to baseline levels 

(T8: b = -1.4, p < .001) in both groups (Supplementary Table S3). C) The task leads to an 

increase in salivary cortisol compared to baseline (T0). Thin lines depict individual cortisol 

trajectories, thick lines show group averages. The shaded area shows the timing of the stress 

task. D) Neural similarity (58) assessing regional and directional unspecific neural changes 

comparing PostStress but not Stress (b=0.0, p=.80) to the PreStress baseline differed between 

groups. E) Stress-induced changes in neural activation do not differ between groups. All 

models include age, sex, and pre-task cortisol response as covariates and response variables 

are residualized accordingly.  Neural similarity models additionally included average framewise 

displacement. Error bars depict 95% confidence intervals. 
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Dynamic connectivity changes predict stress state and changes in pulse rate 

To assess stress-induced changes throughout the stress cycle, we used 

concatenated data from the psycho-social stress task and two flanking resting-state 

scans (see Fig. S1). To derive stress-induced changes at a single-block resolution, we 

used mixed-effects models of fMRI timeseries. By fitting a hierarchical model, such 

estimates recover individual deviations from group averages more robustly (75–77). 

While stress-induced changes in brain responses were similar across task blocks 

(Supplementary Figure S3), FC changes were qualitatively and quantitatively 

discernable across stress phases (Fig. 3B). To reduce dimensions for individual 

predictions, we identified subnetworks of edges with a comparable stress response 

using hierarchical clustering. According to the elbow criterion (wss), we identified four 

clusters of subnetworks showing distinct stress-induced changes (Figure 3, 

Supplementary Figure S4-6). Two clusters showed a pronounced FC change in 

response to stress onset that was followed by gradual recovery towards the baseline 

state: the blue cluster, primarily reflecting cross-clique connections (i.e., between 

canonical networks), and the yellow cluster, primarily reflecting cortico-limbic 

connections. In contrast, the green cluster, primarily including DMN edges, showed 

decreasing FC and the purple cluster, primarily including edges from the 

hypothalamus, showed increasing FC throughout the complete task, suggesting that 

its FC does not recover to the PreStress state.  
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Figure 3: Psycho-social stress leads to characteristic spatio-temporal patterns of functional 

connectivity (FC) changes. A: A cluster reflecting cross-clique connections shows a decrease 

in FC in response to stress and slowly recovers afterwards. The first circle plot shows the 

change in FC strength in the first block compared to rest (standardized and rescaled for 

visualization) for all edges. The second and third plot show the change in FC compared to the 

beginning of the task at stress onset (first stress block) and at the end of stress recovery (last 

PostStress block). Red lines indicate decreases in FC and green lines increases, line thickness 

shows the strength of change. The circle plots for the other 3 networks are shown in the Figure 

S6. B: FC change (z-standardized) in edges of the stress network ordered according to the 

subnetworks identified by hierarchical clustering. C-F) Trajectories of block-wise FC changes 

(z-standardized) for all four subnetworks (thin lines depict individual edges, thick lines the 

average across all edges of the subnetwork). vmPFC = ventromedial prefrontal cortex, dACC 

= dorsal anterior cingulate cortex, Put = putamen, PCC = posterior cingulate cortex, pIns = 

posterior insula, aIns = anterior insula, pHipp = posterior hippocampus, mHipp = medial 

hippocampus, aHipp = anterior hippocampus, Amy = amygdala, DMN = default mode network, 

HPA axis = Hypothalamus-pituitary-adrenal axis  
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Next, to verify that these spatio-temporal profiles indeed reflect the 

experimentally induced stress phases, we predicted the phase of unseen blocks based 

on individual-level estimates within the four subnetworks using SVM. Stress-induced 

changes in FC predicted stress phases with high accuracy (71% vs. 33% chance; 

pperm<.001, individual accuracy M=71% ±14%, Figure 4A). However, predictions solely 

based on changes in activation barely exceeded chance levels (40%, Figure 4B). The 

same FC features predicted relative changes in pulse rate of each block within 

participants using SVR (r=.31, R2=.10, pperm<.001, Figure 4C). Critically, successful 

prediction of pulse rate was not only driven by changes between task phases (e.g., 

higher pulse rate during stress), but also recovered differences in pulse rate of blocks 

within the same stress phase (ps between .02 and <.001, Fig. 4D, Supplementary 

Information). Stress-induced increases in pulse rate (Stress – PreStress) derived from 

predicted changes in pulse rate for each block corresponded with observed stress-

induced effects (ps≤.002, Fig. 4E-F). Decreasing or further increasing the number of 

subnetworks derived from the hierarchical clustering did not improve the predictive 

performance (Supplementary Figure S7). Changes in head movement during stress 

alone could not explain the successful prediction of stress phases, since a prediction 

based on average framewise-wise displacement and average differences in 

consequent images (DVARS) of each task block performed significantly worse (43%, 

Supplementary Information, Figure S11) To summarize, spatio-temporal profiles of 

stress-induced responses within the four subnetworks track the current stress phase 

and physiological adaptation better than chance or changes in brain response.  
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Figure 4: Block-wise changes in functional connectivity (FC) in the four stress 

subnetworks predict the stress state and individual changes in pulse rate in unseen 

blocks. A: Block-wise changes in FC predict the current stress phase above chance 

(71%, pperm<.001). Predictions are best for the PreStress condition and the initial stress 

blocks. In contrast, the transition from Stress to PostStress is harder to differentiate, 

indicating a gradual recovery into discernable states of recovery. B: Predictions based 

solely on changes in brain responses do not exceed chance levels (40%). C: Changes 

in FC predict changes in pulse rate within participants (R2=.10, p<.001). To account for 

baseline differences, the pulse is z-standardized within each participant. D: Successful 

prediction of changes in pulse rate does not only recover differences between stress 

and non-stress conditions, but also predicts the magnitude of pulse-rate changes 

within stress recovery and acute stress phases. E-F: Comparing inter-individual 

differences in stress-induced changes (e.g., Stress-PreStress (r=.22, p=.002) or 

PostStress-PreStress (r=.25, p<.001)), derived from the observed and the predicted 

pulse rate changes of each block, showed significant correlations, indicating that inter-

individual differences in the stress-induced pulse rate response can also be recovered.  
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Dynamic connectivity changes predict negative affectivity as a transdiagnostic 

dimension reflecting maladaptive stress reactivity 

To map differences in dynamic FC to psychological constructs related to stress 

adaptation, we derived questionnaire-based dimensions reflecting psychological 

responses to stress (i.e., resilience and susceptibility) using NNMF. To this end, we 

included single-item responses assessing state and trait factors including depressive 

symptoms (BDI), trait-like negative affect (TAI) as well as stress coping (SVF), 

intolerance of uncertainty (IoU) and resilience (Resilience). The most parsimonious 

solution revealed five interpretable dimensions (Fig. 5A). Two dimensions captured 

stress-resilient phenotypes (1:self-instruction; 2:social and cognitive coping) that 

loaded high on items from the resilience scale and the coping questionnaire (Fig. 5A). 

In contrast, two dimensions captured maladaptive stress phenotypes (3:intolerance of 

uncertainty, 5:avoidance/distraction) that loaded high on the respective IoU and coping 

subscales. Finally, the fourth dimension (negative affectivity) loaded high on state 

depressive symptoms and TAI items (Fig. 5B) that are part of the ‘depression’ factor 

(22). Elevated TAI scores are highly prevalent in mood and anxiety disorders (23), and 

might have a shared genetic basis (24). Notably, individual scores on the five 

dimensions of stress adaptation correlated differentially with the subjective response 

to the psycho-social stress (Supplementary Figure S8 and Table S5).  

Next, we evaluated whether these inter-individual differences in stress 

adaptation can be predicted by stress-induced changes in brain responses and FC 

using elastic net with nested cross-validation. Individual block-wise changes in FC 

predicted negative affectivity considerably better than confounding variables alone 

(ΔR2=.08; pperm=.009, Fig. 5C-E). Specifically, lower FC in the anticipatory PreStress 

phase across the DMN and cortico-limbic clusters as well as higher stress-induced FC 

in the same clusters were associated with higher negative affectivity (Fig. 5E). While 
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block-wise changes in brain responses did slightly improve the prediction compared to 

confounding variables (ΔR2=.06; pperm=.038), combining block-wise changes in brain 

response and FC changes did not further improve the prediction. Stress-induced 

changes in FC did not predict other psychological dimensions of stress adaptation, 

while changes in brain responses predicted resilience: self-instruction (ΔR2=.091; 

p=.01, Supplementary Figure S10), suggesting that changes in activation and FC 

contribute to separable psychological constructs.  

Since negative affectivity predominantly reflected scores of the BDI and TAI, we 

used the same algorithm to predict average scores of both questionnaires. Trait anxiety 

was predicted best based on stress-induced changes in brain responses and FC 

(combined: ΔR2=.10; pperm=.005; activation: ΔR2=.06; pperm=.019, FC: ΔR2=.06; 

pperm=.02). In contrast, neither BDI scores nor the presence of a mood or anxiety 

disorder were predicted better than when we relied only on confounding variables 

(Supplementary Figure S9-S10).  
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Figure 5: Block-wise changes in functional connectivity (FC) within the four stress 
subnetworks predict negative affectivity. A: Non-negative matrix factorization (NNMF) revealed 
5 dimensions of individual stress responsivity that capture resilient and susceptible 
phenotypes. B: Weights of representative items contributing to the negative affectivity NNMF 
dimension. Shown are the top five items from the three questionnaires contributing most items 
to the dimension. C: A model including stress-induced spatio-temporal FC changes predicts 
negative affectivity. Predicted and observed values of negative affectivity were significantly 
correlated (r=.35, pperm=.009) and the model explained 12% variance. D: Adding stress-
induced changes in brain responses and FC improves the prediction of negative affectivity 
compared to permutations of only the response variable (chance level, yellow) or the response 
variable and the confounding variables age, sex, average framewise displacement and pre-
task cortisol response correspondingly (confound baseline, turquoise). Error bars depict 95% 
percentiles. E: Weights from the combined prediction model including stress-induced changes 
in brain response and FC (retained weights add to the prediction beyond confounding 
variables). DMN = default mode network, BDI = Becks depression inventory, TAI = trait anxiety 
inventory, IoU = intolerance of uncertainty, SVF = coping questionnaire 
(Stressverarbeitungsfragebogen), SOC = social support, AVO = avoidance. 
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4. Discussion 

Symptoms of impaired stress regulation are common across many mental 

disorders and mapping individual symptoms onto stress-induced brain network 

reconfigurations may help increase our pathomechanistic understanding of disorders. 

Here, we characterized dynamic changes in FC and brain response across all phases 

of a psycho-social stress task in participants with and without a range of mood and 

anxiety disorders. First, we showed that dynamic stress-induced changes in FC, but 

not activation, recover the current state of the stress cycle. Second, we showed that 

only spatio-temporal FC profiles predicted inter-individual differences in a dimension 

related to negative affectivity, a well-established transdiagnostic marker of heightened 

stress susceptibility. Third, reduced FC in subnetworks dominated by DMN and cortico-

limbic edges during stress anticipation and increased FC during stress added to the 

prediction, highlighting that anticipatory stress regulation (11,84,85) could help unravel 

signatures indicative of a key psychopathology dimension of affective disorders 

(86,87). Taken together, our results provide a quantitative mapping of dynamic brain 

connectivity changes in the acute stress response that reflect psychological differences 

in affective processing (i.e., measures that have been associated with mood and 

anxiety disorders). Our results highlight the large potential of novel analysis techniques 

that capitalize on the rich individual information in spatio-temporal brain response 

profiles to stress, supporting the idea that mood and anxiety disorders can be best 

understood as disorders arising from individual differences in dynamic network 

interactions. 

Our results derived from the predictive modeling of acute spatio-temporal stress 

signatures show that dynamic network reconfigurations within the DMN and the 

cortico-limbic network reflect both stress states and psychopathological risk factors, 
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echoing crucial insights concerning neural signaling dynamics within the stress 

network (40,41) (88–90). While previous studies have highlighted characteristic 

changes in brain responses (46,56,57,91,92), most case-control studies are relatively 

small and cannot resolve dimensional aspects of psychological stress susceptibility, 

which may add to the limited convergence of findings across studies (93–96). Thereby, 

our study adds to the growing concern about heterogeneity (i.e., non-ergodicity) within 

diagnosis categories (97,98). By combining dynamic stress-induced changes in brain 

responses and FC in one predictive model trained in a large transdiagnostic sample, 

we can capitalize on the rich hierarchical information provided by 217×40min of fMRI 

timeseries data to derive robust individual markers of stress reactivity. Crucially, our 

findings are closely in line with recent preclinical work on spatio-temporal signatures of 

mood and anxiety disorders that reflect state and trait characteristics of stress reactivity 

(99), indicating large potential for translational approaches (100,101). Despite our 

comparably large sample (70,102), conventional analyses comparing average brain 

responses between diagnostic groups failed to identify characteristic signatures of 

stress. In contrast, our spatio-temporal network model recovered both the phases of 

the stress task as well as a psychopathological dimension of maladaptive stress 

responses: negative affectivity (103,104). To conclude, our findings highlight the 

relevance of unique stress-related network dynamics to better understand 

psychological responses to acute stress, including susceptibility for mood and anxiety 

disorders that is of high relevance for translational research or clinical trials. 

At a mechanistic level, our findings provide crucial insights into cognitive and 

affective processes that link altered stress-induced brain function to symptoms of 

psychopathology at the individual level. In line with recent work on ‘connectomic 

fingerprints’, individual changes in stress-induced FC showed much higher accuracy 

in predicting stress states and psychopathology dimension, compared to changes in 
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activation. This demonstrates the large potential of a combined hierarchical model for 

accurate predictions at an individual level (105,106), especially during relevant task 

perturbations (50,105,107,108). Relatedly, it supports the notion that most mental 

disorders can be conceptualized as network disorders (44), where a dynamic network 

perspective helps extracting unique information (48,109) that tracks adaptive 

responses to stressors more faithfully from a neurobiological perspective (110–112). 

Specifically, our results suggest that network-based reconfigurations in FC during 

stress as well as in anticipation of stress, particularly between the DMN and edges of 

a cortico-limbic subnetwork, are important markers reflecting negative affectivity which 

is in line with extensive previous research on mood and anxiety disorders (113–115). 

Notably, neurobiologically-inspired treatments such as TMS target comparable 

networks to elicit clinically meaningful responses (116) and present-centered 

psychotherapy has been shown to normalize cortico-limbic processing in stress-related 

disorders (117). To conclude our predictive model demonstrates that an emphasis on 

modeling individual differences in psychopathology and network-based reconfiguration 

within the stress network improves prediction and interpretability (45,118), dovetailing 

well with recent insights on effective treatment mechanisms. 

Although our study provides an innovative approach to bridge the predictive gap 

between acute stress reactivity and psychological responsivity, it has limitations that 

need to be addressed in future work. First, to ensure robust inferences, we had to 

aggregate connectivity within subnetworks to balance model complexity with the 

number of participants and larger samples will allow to disentangle the specific 

contribution of connections between nodes in the future. Second, it is conceivable that 

stress-induced changes on timescales that are not explicitly modeled with our 

approach (i.e., specific events such as feedback) could improve the prediction. Third, 

to establish robustness, replication of the spatio-temporal signatures of negative 
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affectivity in an independent dataset is preferable. Likewise, whether the dynamic 

changes in network FC generalize to other stress tasks remains to be shown and will 

be an important step for a better understanding of FC in relation to stress-related 

disorders. Finally, while previous work has shown that negative affectivity is associated 

with mood and anxiety disorders, our association between short-term stress-induced 

FC changes and this psychopathological trait cannot address the question of a causal 

link.  

To summarize, dynamic FC changes within the stress network, but not changes 

in activation, tracked the current stress phase and corresponding changes in pulse 

rate. Furthermore, these network-based reconfigurations, driven by reduced cortico-

limbic and DMN FC in anticipation of stress and increased FC during stress, predicted 

the psychopathology dimension negative affectivity. Collectively, our results 

emphasize that characterizing the neural stress response across the entire cycle by 

modeling individual signatures with high spatial and temporal resolution in a 

hierarchical model improves the prediction of key changes within participants (i.e., 

stress phase, pulse rate) and between participants (i.e., differences in negative 

affectivity). Crucially, since individual signatures predicted the psychopathology 

dimension negative affectivity, but not the presence of any mood and anxiety disorder, 

our study highlights the need for transdiagnostic approaches to better understand the 

multifaceted psychopathological profile of individuals within broad disorder categories. 

Therefore, our results offer novel insights into stress-related pathomechanisms of 

mental disorders, providing a potential endophenotype that may guide future 

translational research. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 26 

Acknowledgement 

We thank Anna Hetzel and Ines Eidner for help with data acquisition and Alina 

Tontsch, Manfred Uhr and the team of the Max Planck Institute of Psychiatry Biobank 

for sample processing. NBK received salary support from the University of Tübingen, 

fortune grant #2453-0-0.  

 

 

Author contributions 

EBB and PGS were responsible for the study concept and design. MC and PGS 

validated the paradigm and procedure. AK and NBK conceived the method and AK 

performed the data analysis. AK wrote the first draft of the manuscript and NBK 

contributed to the writing. All authors contributed to the interpretation of findings, 

provided critical revision of the manuscript for important intellectual content and 

approved the final version for publication. 

 

 

Financial disclosure 

The authors declare no competing financial interests. 

  

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 27 

References 

1. McEwen BS (2003): Mood disorders and allostatic load. Biological Psychiatry 54: 

200–207. 

2. Aldao A, Nolen-Hoeksema S, Schweizer S (2010): Emotion-regulation strategies 

across psychopathology: A meta-analytic review. Clinical Psychology Review 

30: 217–237. 

3. Compas BE, Jaser SS, Bettis AH, Watson KH, Gruhn M, Dunbar JP, et al. (2017): 

Coping, Emotion Regulation and Psychopathology in Childhood and 

Adolescence: A Meta-Analysis and Narrative Review. Psychol Bull 143: 939–

991. 

4. McEwen BS (2004): Protection and Damage from Acute and Chronic Stress: 

Allostasis and Allostatic Overload and Relevance to the Pathophysiology of 

Psychiatric Disorders. Annals of the New York Academy of Sciences 1032: 1–

7. 

5. Nolen-Hoeksema S, Wisco BE, Lyubomirsky S (2008): Rethinking Rumination. 

Perspect Psychol Sci 3: 400–424. 

6. de Kloet CS, Vermetten E, Geuze E, Kavelaars A, Heijnen CJ, Westenberg HGM 

(2006): Assessment of HPA-axis function in posttraumatic stress disorder: 

Pharmacological and non-pharmacological challenge tests, a review. Journal of 

Psychiatric Research 40: 550–567. 

7. Horowitz MA, Zunszain PA (2015): Neuroimmune and neuroendocrine abnormalities 

in depression: two sides of the same coin. Annals of the New York Academy of 

Sciences 1351: 68–79. 

8. Mehta D, Binder EB (2012): Gene × environment vulnerability factors for PTSD: the 

HPA-axis. Neuropharmacology 62: 654–662. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 28 

9. Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH (2017): Cortisol stress 

reactivity across psychiatric disorders: A systematic review and meta-analysis. 

Psychoneuroendocrinology 77: 25–36. 

10. Schiweck C, Piette D, Berckmans D, Claes S, Vrieze E (2019): Heart rate and high 

frequency heart rate variability during stress as biomarker for clinical 

depression. A systematic review. Psychol Med 49: 200–211. 

11. Gaab J, Rohleder N, Nater UM, Ehlert U (2005): Psychological determinants of the 

cortisol stress response: the role of anticipatory cognitive appraisal. 

Psychoneuroendocrinology 30: 599–610. 

12. Pulopulos MM, Baeken C, De Raedt R (2020): Cortisol response to stress: The 

role of expectancy and anticipatory stress regulation. Hormones and Behavior 

117: 104587. 

13. Selye H (1976): Stress without distress. Psychopathology of Human Adaptation. 

Springer, pp 137–146. 

14. de Kloet ER, Joëls M (2020): Mineralocorticoid Receptors and Glucocorticoid 

Receptors in HPA Stress Responses During Coping and Adaptation. In: de 

Kloet ER, Joëls M. Oxford Research Encyclopedia of Neuroscience. Oxford 

University Press. https://doi.org/10.1093/acrefore/9780190264086.013.266 

15. Brosschot JF, Gerin W, Thayer JF (2006): The perseverative cognition hypothesis: 

A review of worry, prolonged stress-related physiological activation, and health. 

Journal of Psychosomatic Research 60: 113–124. 

16. Gold SM, Zakowski SG, Valdimarsdottir HB, Bovbjerg DH (2004): Higher Beck 

depression scores predict delayed epinephrine recovery after acute 

psychological stress independent of baseline levels of stress and mood. 

Biological Psychology 67: 261–273. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 29 

17. Lü W, Wang Z, You X (2016): Physiological responses to repeated stress in 

individuals with high and low trait resilience. Biological Psychology 120: 46–52. 

18. Morris MC, Kouros CD, Mielock AS, Rao U (2017): Depressive Symptom 

Composites Associated with Cortisol Stress Reactivity in Adolescents. J Affect 

Disord 210: 181–188. 

19. Morris MC, Rao U, Garber J (2012): Cortisol responses to psychosocial stress 

predict depression trajectories: Social-evaluative threat and prior depressive 

episodes as moderators. Journal of Affective Disorders 143: 223–230. 

20. Rudolph KD, Troop-Gordon W, Granger DA (2011): Individual differences in 

biological stress responses moderate the contribution of early peer victimization 

to subsequent depressive symptoms. Psychopharmacology 214: 209–219. 

21. Fiksdal A, Hanlin L, Kuras Y, Gianferante D, Chen X, Thoma MV, Rohleder N 

(2019): Associations between symptoms of depression and anxiety and cortisol 

responses to and recovery from acute stress. Psychoneuroendocrinology 102: 

44–52. 

22. Balsamo M, Romanelli R, Innamorati M, Ciccarese G, Carlucci L, Saggino A 

(2013): The State-Trait Anxiety Inventory: Shadows and Lights on its Construct 

Validity. J Psychopathol Behav Assess 35: 475–486. 

23. Knowles KA, Olatunji BO (2020): Specificity of trait anxiety in anxiety and 

depression: Meta-analysis of the State-Trait Anxiety Inventory. Clinical 

Psychology Review 82: 101928. 

24. Thorp JG, Campos AI, Grotzinger AD, Gerring ZF, An J, Ong J-S, et al. (2021): 

Symptom-level modelling unravels the shared genetic architecture of anxiety 

and depression. Nat Hum Behav 1–11. 

25. Gecaite J, Burkauskas J, Brozaitiene J, Mickuviene N (2019): Cardiovascular 

Reactivity to Acute Mental Stress: The Importance of Type D Personality, Trait 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 30 

Anxiety, and Depression Symptoms in Patiens after Acute Coronary 

Syndromes. Journal of Cardiopulmonary Rehabilitation and Prevention 39: E12. 

26. Quirin M, Kazén M, Rohrmann S, Kuhl J (2009): Implicit but Not Explicit Affectivity 

Predicts Circadian and Reactive Cortisol: Using the Implicit Positive and 

Negative Affect Test. Journal of Personality 77: 401–426. 

27. Zellars KL, Meurs JA, Perrewé PL, Kacmar CJ, Rossi AM (2009): Reacting to and 

recovering from a stressful situation: The negative affectivity-physiological 

arousal relationship. Journal of Occupational Health Psychology 14: 11–22. 

28. LeMoult J (2020): From Stress to Depression: Bringing Together Cognitive and 

Biological Science. Curr Dir Psychol Sci 29: 592–598. 

29. Schlotz W, Yim IS, Zoccola PM, Jansen L, Schulz P (2011): The perceived stress 

reactivity scale: Measurement invariance, stability, and validity in three 

countries. Psychological Assessment 23: 80–94. 

30. LeMoult J, Arditte KA, D’Avanzato C, Joormann J (2013): State Rumination: 

Associations with Emotional Stress Reactivity and Attention Biases. Journal of 

Experimental Psychopathology 4: 471–484. 

31. Ottaviani C, Thayer JF, Verkuil B, Lonigro A, Medea B, Couyoumdjian A, Brosschot 

JF (2016): Physiological concomitants of perseverative cognition: A systematic 

review and meta-analysis. Psychological Bulletin 142: 231–259. 

32. Quinn ME, Grant KE, Adam EK (2018): Negative cognitive style and cortisol 

recovery accentuate the relationship between life stress and depressive 

symptoms. Stress 21: 119–127. 

33. Stewart JG, Mazurka R, Bond L, Wynne-Edwards KE, Harkness KL (2013): 

Rumination and Impaired Cortisol Recovery Following a Social Stressor in 

Adolescent Depression. J Abnorm Child Psychol 41: 1015–1026. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 31 

34. Janson J, Rohleder N (2017): Distraction coping predicts better cortisol recovery 

after acute psychosocial stress. Biological Psychology 128: 117–124. 

35. Salzmann S, Euteneuer F, Strahler J, Laferton JAC, Nater UM, Rief W (2018): 

Optimizing expectations and distraction leads to lower cortisol levels after acute 

stress. Psychoneuroendocrinology 88: 144–152. 

36. Meuwly N, Bodenmann G, Germann J, Bradbury TN, Ditzen B, Heinrichs M (2012): 

Dyadic coping, insecure attachment, and cortisol stress recovery following 

experimentally induced stress. Journal of Family Psychology 26: 937–947. 

37. Raymond C, Marin M-F, Juster R-P, Lupien SJ (2019): Should we suppress or 

reappraise our stress?: the moderating role of reappraisal on cortisol reactivity 

and recovery in healthy adults. Anxiety, Stress, & Coping 32: 286–297. 

38. Cheetham-Blake TJ, Turner-Cobb JM, Family HE, Turner JE (2019): Resilience 

characteristics and prior life stress determine anticipatory response to acute 

social stress in children aged 7–11 years. British Journal of Health Psychology 

24: 282–297. 

39. Mikolajczak M, Roy E, Luminet O, Timary P de (2008): Resilience and 

hypothalamic-pituitary-adrenal axis reactivity under acute stress in young men. 

Stress 11: 477–482. 

40. Hermans EJ, Henckens MJAG, Joëls M, Fernández G (2014): Dynamic adaptation 

of large-scale brain networks in response to acute stressors. Trends Neurosci 

37: 304–314. 

41. van Oort J, Tendolkar I, Hermans EJ, Mulders PC, Beckmann CF, Schene AH, et 

al. (2017): How the brain connects in response to acute stress: A review at the 

human brain systems level. Neuroscience & Biobehavioral Reviews 83: 281–

297. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 32 

42. Vaisvaser S, Lin T, Admon R, Podlipsky I, Greenman Y, Stern N, et al. (2013): 

Neural traces of stress: cortisol related sustained enhancement of amygdala-

hippocampal functional connectivity. Front Hum Neurosci 7. 

https://doi.org/10.3389/fnhum.2013.00313 

43. Zhang W, Llera A, Hashemi MM, Kaldewaij R, Koch SBJ, Beckmann CF, et al. 

(2020): Discriminating stress from rest based on resting-state connectivity of the 

human brain: A supervised machine learning study. Human Brain Mapping n/a. 

https://doi.org/10.1002/hbm.25000 

44. McTeague LM, Rosenberg BM, Lopez JW, Carreon DM, Huemer J, Jiang Y, et al. 

(2020): Identification of Common Neural Circuit Disruptions in Emotional 

Processing Across Psychiatric Disorders. Am J Psychiatry 177: 411–421. 

45. Corr R, Pelletier-Baldelli A, Glier S, Bizzell J, Campbell A, Belger A (2020): Neural 

Mechanisms of Acute Stress and Trait Anxiety in Adolescents. NeuroImage: 

Clinical 102543. 

46. Wheelock MD, Harnett NG, Wood KH, Orem TR, Granger DA, Mrug S, Knight DC 

(2016): Prefrontal Cortex Activity Is Associated with Biobehavioral Components 

of the Stress Response. Front Hum Neurosci 10. 

https://doi.org/10.3389/fnhum.2016.00583 

47. Braun U, Schäfer A, Bassett DS, Rausch F, Schweiger JI, Bilek E, et al. (2016): 

Dynamic brain network reconfiguration as a potential schizophrenia genetic risk 

mechanism modulated by NMDA receptor function. PNAS 113: 12568–12573. 

48. Braun U, Schaefer A, Betzel RF, Tost H, Meyer-Lindenberg A, Bassett DS (2018): 

From Maps to Multi-dimensional Network Mechanisms of Mental Disorders. 

Neuron 97: 14–31. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 33 

49. Finn ES, Todd Constable R (2016): Individual variation in functional brain 

connectivity: implications for personalized approaches to psychiatric disease. 

Dialogues Clin Neurosci 18: 277–287. 

50. Greene AS, Gao S, Noble S, Scheinost D, Constable RT (2020): How Tasks 

Change Whole-Brain Functional Organization to Reveal Brain-Phenotype 

Relationships. Cell Reports 32: 108066. 

51. Figee M, Mayberg H (2021): The future of personalized brain stimulation. Nat Med 

27: 196–197. 

52. Brückl TM, Spoormaker VI, Sämann PG, Brem A-K, Henco L, Czamara D, et al. 

(2020): The biological classification of mental disorders (BeCOME) study: a 

protocol for an observational deep-phenotyping study for the identification of 

biological subtypes. BMC Psychiatry 20: 213. 

53. Wittchen H, Beloch E, Garczynski E, Holly A, Lachner G, Perkonigg A, et al. (1995): 

Münchener Composite International Diagnostic Interview (M-CIDI). München: 

Max-Planck-Institut für Psychiatrie, Klinisches Institut. 

54. Muehlhan M, Lueken U, Wittchen H-U, Kirschbaum C (2011): The scanner as a 

stressor: Evidence from subjective and neuroendocrine stress parameters in 

the time course of a functional magnetic resonance imaging session. 

International Journal of Psychophysiology 79: 118–126. 

55. Janke W (1994): Befindlichkeitsskalierung durch Kategorien und 

Eigenschaftswörter: BSKE (EWL) nach Janke, Debus, Erdmann und Hüppe. 

Test und Handanweisung Unveröffentlichter Institutsbericht, Lehrstuhl für 

Biologische und Klinische Psychologie der Universität Würzburg. 

56. Pruessner JC, Dedovic K, Khalili-Mahani N, Engert V, Pruessner M, Buss C, et al. 

(2008): Deactivation of the Limbic System During Acute Psychosocial Stress: 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 34 

Evidence from Positron Emission Tomography and Functional Magnetic 

Resonance Imaging Studies. Biological Psychiatry 63: 234–240. 

57. Elbau IG, Brücklmeier B, Uhr M, Arloth J, Czamara D, Spoormaker VI, et al. (2018): 

The brain’s hemodynamic response function rapidly changes under acute 

psychosocial stress in association with genetic and endocrine stress response 

markers. PNAS 201804340. 

58. Kühnel A, Kroemer NB, Elbau IG, Czisch M, Sämann PG, Walter M, Binder EB 

(2020): Psychosocial stress reactivity habituates following acute physiological 

stress. Human Brain Mapping 41: 4010–4023. 

59. Beck AT, Steer RA, Brown G (1996): Beck depression inventory–II. Psychological 

Assessment. 

60. Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G (1983): Manual for the 

State-Trait Anxiety Inventory (Form Y) Mind Garden. Palo Alto, CA. 

61. Gerlach AL, Andor T, Patzelt J (2008): The significance of intolerance of uncertainty 

in generalized anxiety disorder: Possible models and development of a German 

version of the intolerance of uncertainty scale. ZEITSCHRIFT FUR KLINISCHE 

PSYCHOLOGIE UND PSYCHOTHERAPIE 37: 190–199. 

62. Ising M, Weyers P, Janke W, Erdmann G (2001): The psychometric properties of 

the SVF78 by Janke and Erdmann, a short version of the SVF120. Zeitschrift 

fur Differentielle und Diagnostische Psychologie 22: 279–290. 

63. Wagnild GM, Young HM (1993): Development and Psychometric Evaluation of the 

Resilience Scale. Journal of nursing measurement 1: 165–17847. 

64. Ashburner J (2007): A fast diffeomorphic image registration algorithm. NeuroImage 

38: 95–113. 

65. Lee DD, Seung HS (1999): Learning the parts of objects by non-negative matrix 

factorization [no. 6755]. Nature 401: 788–791. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 35 

66. Cattell RB (1966): The scree test for the number of factors. Multivariate behavioral 

research 1: 245–276. 

67. Wust S, Wolf J, Hellhammer DH, Federenko I, Schommer N, Kirschbaum C (2000): 

The cortisol awakening response - normal values and confounds. Noise and 

Health 2: 79. 

68. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. (2015): 

Functional connectome fingerprinting: Identifying individuals based on patterns 

of brain connectivity. Nat Neurosci 18: 1664–1671. 

69. Shen X, Tokoglu F, Papademetris X, Constable RT (2013): Groupwise whole-brain 

parcellation from resting-state fMRI data for network node identification. 

Neuroimage 0: 403–415. 

70. Noack H, Nolte L, Nieratschker V, Habel U, Derntl B (2019): Imaging stress: an 

overview of stress induction methods in the MR scanner. J Neural Transm 126: 

1187–1202. 

71. Behzadi Y, Restom K, Liau J, Liu TT (2007): A component based noise correction 

method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37: 90–

101. 

72. Kroemer NB, Sun X, Veldhuizen MG, Babbs AE, de Araujo IE, Small DM (2016): 

Weighing the evidence: Variance in brain responses to milkshake receipt is 

predictive of eating behavior. NeuroImage 128: 273–283. 

73. Kroemer NB, Guevara A, Ciocanea Teodorescu I, Wuttig F, Kobiella A, Smolka 

MN (2014): Balancing reward and work: Anticipatory brain activation in NAcc 

and VTA predict effort differentially. NeuroImage 102: 510–519. 

74. McLaren DG, Ries ML, Xu G, Johnson SC (2012): A Generalized Form of Context-

Dependent Psychophysiological Interactions (gPPI): A Comparison to Standard 

Approaches. Neuroimage 61: 1277–1286. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 36 

75. Mejia AF, Nebel MB, Barber AD, Choe AS, Pekar JJ, Caffo BS, Lindquist MA 

(2018): Improved estimation of subject-level functional connectivity using full 

and partial correlation with empirical Bayes shrinkage. Neuroimage 172: 478–

491. 

76. Narayan M, Allen GI (2016): Mixed Effects Models for Resampled Network 

Statistics Improves Statistical Power to Find Differences in Multi-Subject 

Functional Connectivity. Front Neurosci 10. 

https://doi.org/10.3389/fnins.2016.00108 

77. Pervaiz U, Vidaurre D, Woolrich MW, Smith SM (2020): Optimising network 

modelling methods for fMRI. NeuroImage 211: 116604. 

78. Charrad M, Ghazzali N, Boiteau V, Niknafs A, Charrad MM (2014): Package 

‘nbclust.’ Journal of statistical software 61: 1–36. 

79. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. (2011): 

Scikit-learn: Machine Learning in Python. Journal of Machine Learning 

Research 12: 2825–2830. 

80. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E (2013): An fMRI-

Based Neurologic Signature of Physical Pain. New England Journal of Medicine 

368: 1388–1397. 

81. Jollans L, Boyle R, Artiges E, Banaschewski T, Desrivières S, Grigis A, et al. 

(2019): Quantifying performance of machine learning methods for neuroimaging 

data. NeuroImage 199: 351–365. 

82. R Core Team (2018): R: A Language and Environment for Statistical Computing. 

Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 

https://www.R-project.org/ 

83. Kuznetsova A, Brockhoff P, Christensen R (2017): lmerTest Package: Tests in 

Linear Mixed Effects Models. https://doi.org/10.18637/JSS.V082.I13 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 37 

84. Fehlner P, Bilek E, Harneit A, Böhringer A, Moessnang C, Meyer‐Lindenberg A, 

Tost H (2020): Neural responses to social evaluative threat in the absence of 

negative investigator feedback and provoked performance failures. Human 

Brain Mapping 41: 2092–2103. 

85. McKlveen JM, Myers B, Herman JP (2015): The Medial Prefrontal Cortex: 

Coordinator of Autonomic, Neuroendocrine and Behavioural Responses to 

Stress. J Neuroendocrinol 27: 446–456. 

86. Böhnke JR, Lutz W, Delgadillo J (2014): Negative affectivity as a transdiagnostic 

factor in patients with common mental disorders. Journal of Affective Disorders 

166: 270–278. 

87. Hur J, Stockbridge MD, Fox AS, Shackman AJ (2019): Chapter 16 - Dispositional 

negativity, cognition, and anxiety disorders: An integrative translational 

neuroscience framework. In: Srinivasan N, editor. Progress in Brain Research, 

vol. 247. Elsevier, pp 375–436. 

88. Goldfarb EV, Rosenberg MD, Seo D, Constable RT, Sinha R (2020): Hippocampal 

seed connectome-based modeling predicts the feeling of stress [no. 1]. Nature 

Communications 11: 2650. 

89. Wheelock MD, Harnett NG, Wood KH, Orem TR, Mrug S, Deshpande G, et al. 

(n.d.): Psychosocial Stress Reactivity Is Associated With Decreased Whole-

Brain Network Efficiency and Increased Amygdala Centrality. 13. 

90. Zhang W, Hashemi MM, Kaldewaij R, Koch SBJ, Beckmann C, Klumpers F, 

Roelofs K (2019): Acute stress alters the ‘default’ brain processing. NeuroImage 

189: 870–877. 

91. Dedovic K, D’Aguiar C, Pruessner JC (2009): What Stress Does to Your Brain: A 

Review of Neuroimaging Studies. The Canadian Journal of Psychiatry 54: 6–

15. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 38 

92. Lederbogen F, Ulshöfer E, Peifer A, Fehlner P, Bilek E, Streit F, et al. (2018): No 

association between cardiometabolic risk and neural reactivity to acute 

psychosocial stress. NeuroImage: Clinical 20: 1115–1122. 

93. Admon R, Holsen LM, Aizley H, Remington A, Whitfield-Gabrieli S, Goldstein JM, 

Pizzagalli DA (2015): Striatal hyper-sensitivity during stress in remitted 

individuals with recurrent depression. Biol Psychiatry 78: 67–76. 

94. Oort J van, Kohn N, Vrijsen JN, Collard R, Duyser FA, Brolsma SCA, et al. (2020): 

Absence of default mode downregulation in response to a mild psychological 

stressor marks stress-vulnerability across diverse psychiatric disorders. 

NeuroImage: Clinical 102176. 

95. Villarreal MF, Wainsztein AE, Mercè RÁ, Goldberg X, Castro MN, Brusco LI, et al. 

(2021): Distinct Neural Processing of Acute Stress in Major Depression and 

Borderline Personality Disorder. Journal of Affective Disorders 

S0165032721001890. 

96. Waugh CE, Hamilton JP, Chen MC, Joormann J, Gotlib IH (2012): Neural temporal 

dynamics of stress in comorbid major depressive disorder and social anxiety 

disorder. Biology of Mood & Anxiety Disorders 2: 11. 

97. Adolf JK, Fried EI (2019): Ergodicity is sufficient but not necessary for group-to-

individual generalizability. PNAS 116: 6540–6541. 

98. Fisher AJ, Medaglia JD, Jeronimus BF (2018): Lack of group-to-individual 

generalizability is a threat to human subjects research. Proc Natl Acad Sci USA 

115: E6106–E6115. 

99. Hultman R, Ulrich K, Sachs BD, Blount C, Carlson DE, Ndubuizu N, et al. (2018): 

Brain-wide Electrical Spatiotemporal Dynamics Encode Depression 

Vulnerability. Cell 173: 166-180.e14. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 39 

100. Flores Á, Fullana MÀ, Soriano-Mas C, Andero R (2018): Lost in translation: how 

to upgrade fear memory research [no. 11]. Molecular Psychiatry 23: 2122–2132. 

101. Notaras M, van den Buuse M (2020): Neurobiology of BDNF in fear memory, 

sensitivity to stress, and stress-related disorders [no. 10]. Molecular Psychiatry 

25: 2251–2274. 

102. Kogler L, Mueller VI, Chang A, Eickhoff SB, Fox PT, Gur RC, Derntl B (2015): 

Psychosocial versus physiological stress – meta-analyses on deactivations and 

activations of the neural correlates of stress reactions. Neuroimage 119: 235–

251. 

103. Gulley LD, Hankin BL, Young JF (2016): Risk for Depression and Anxiety in 

Youth: The Interaction between Negative Affectivity, Effortful Control, and 

Stressors. J Abnorm Child Psychol 44: 207–218. 

104. Hur J, Kuhn M, Grogans SE, Anderson AS, Islam S, Kim HC, et al. (2021): 

Anxiety-related frontocortical activity is associated with dampened stressor 

reactivity in the real world. bioRxiv 2021.03.17.435791. 

105. Finn ES, Scheinost D, Finn DM, Shen X, Papademetris X, Constable RT (2017): 

Can brain state be manipulated to emphasize individual differences in functional 

connectivity? NeuroImage 160: 140–151. 

106. Waller L, Walter H, Kruschwitz JD, Reuter L, Müller S, Erk S, Veer IM (2017): 

Evaluating the replicability, specificity, and generalizability of connectome 

fingerprints. NeuroImage 158: 371–377. 

107. Cole MW, Ito T, Bassett DS, Schultz DH (2016): Activity flow over resting-state 

networks shapes cognitive task activations [no. 12]. Nature Neuroscience 19: 

1718–1726. 

108. Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE (2014): Intrinsic and 

Task-Evoked Network Architectures of the Human Brain. Neuron 83: 238–251. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 40 

109. Fornito A, Zalesky A, Breakspear M (2015): The connectomics of brain disorders 

[no. 3]. Nature Reviews Neuroscience 16: 159–172. 

110. Alexander L, Wood CM, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT, et al. 

(2020): Over-activation of primate subgenual cingulate cortex enhances the 

cardiovascular, behavioral and neural responses to threat [no. 1]. Nature 

Communications 11: 5386. 

111. Grueschow M, Stenz N, Thörn H, Ehlert U, Breckwoldt J, Brodmann Maeder M, 

et al. (2021): Real-world stress resilience is associated with the responsivity of 

the locus coeruleus [no. 1]. Nature Communications 12: 2275. 

112. Sousa N (2016): The dynamics of the stress neuromatrix [no. 3]. Molecular 

Psychiatry 21: 302–312. 

113. Sikora M, Heffernan J, Avery ET, Mickey BJ, Zubieta J-K, Peciña M (2016): 

Salience Network Functional Connectivity Predicts Placebo Effects in Major 

Depression. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging 

1: 68–76. 

114. Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, Liberzon I 

(2012): Neural Dysregulation in Posttraumatic Stress Disorder: Evidence for 

Disrupted Equilibrium between Salience and Default Mode Brain Networks. 

Psychosom Med 74: 904–911. 

115. Whitton AE, Webb CA, Dillon DG, Kayser J, Rutherford A, Goer F, et al. (2019): 

Pretreatment Rostral Anterior Cingulate Cortex Connectivity With Salience 

Network Predicts Depression Recovery: Findings From the EMBARC 

Randomized Clinical Trial. Biological Psychiatry 85: 872–880. 

116. Philip NS, Barredo J, van ’t Wout-Frank M, Tyrka AR, Price LH, Carpenter LL 

(2018): Network Mechanisms of Clinical Response to Transcranial Magnetic 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/


Stress-induced network effects Kühnel et al. 41 

Stimulation in Posttraumatic Stress Disorder and Major Depressive Disorder. 

Biological Psychiatry 83: 263–272. 

117. Abdallah CG, Averill CL, Ramage AE, Averill LA, Alkin E, Nemati S, et al. (2019): 

Reduced Salience and Enhanced Central Executive Connectivity Following 

PTSD Treatment. Chronic Stress 3: 2470547019838971. 

118. Sinha R, Lacadie CM, Constable RT, Seo D (2016): Dynamic neural activity 

during stress signals resilient coping. Proc Natl Acad Sci USA 113: 8837–8842. 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.16.452622doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.16.452622
http://creativecommons.org/licenses/by-nc/4.0/

