
Malignancy and NF-kB signalling strengthen coordination between the expression of 
mitochondrial and nuclear-encoded oxidative phosphorylation genes.   
 
Perez, Marcos Francisco1,2 and Sarkies, Peter1,2. 
 

1) MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN 
2) Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital 

Campus, Du Cane Road, London, W12 0NN 
 
Abstract 
 
Mitochondria are ancient endosymbiotic organelles crucial to eukaryotic growth and 
metabolism. Mammalian mitochondria carry a small genome containing thirteen protein-
coding genes with the remaining mitochondrial proteins encoded by the nuclear genome. 
Little is known about how coordination between the two sets of genes is achieved. 
Correlation analysis of RNA-seq expression data from large publicly-available datasets is a 
common method to leverage genetic diversity to infer gene co-expression modules. Here we 
use this method to investigate nuclear-mitochondrial gene expression coordination.  We 
identify a pitfall in correlation analysis that results from the large variation in the proportion 
of transcripts from the mitochondrial genome in RNA-seq data. Commonly used 
normalization techniques based on total read count (such as FPKM or TPM) produce 
artefactual negative correlations between mitochondrial- and nuclear-encoded transcripts. 
This also results in artefactual correlations between pairs of nuclear-encoded genes, thus 
having important consequences for inferring co-expression modules beyond mitochondria. 
We show that these effects can be overcome by normalizing using the median-ratio 
normalization (MRN) or trimmed mean of M values (TMM) methods. Using these 
normalizations, we find only weak and inconsistent correlations between mitochondrial and 
nuclear-encoded mitochondrial genes in the majority of healthy human tissues from the 
GTEx database.  However, a subset of healthy tissues with high expression of NF-κB show 
significant coordination supporting a role for NF-κB in retrograde signalling.  Contrastingly, 
most cancer types show robust coordination of nuclear and mitochondrial OXPHOS gene 
expression, identifying this as a feature of gene regulation in cancer.     
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Introduction 
 
Human mtDNA contains 24 genes encoding for ribosomal and transfer RNAs and 13 protein-
coding genes, all of which are involved in oxidative phosphorylation (hereafter mtOXPHOS 
genes). Mammalian mitochondrial genome-encoded RNAs (mtRNAs) are polyadenylated 
(Taanman 1999) and are thus robustly represented in polyA+ selected RNA-seq libraries, 
comprising a large fraction of total reads in many human tissues (Mercer, Neph et al. 2011). 
However, the majority of proteins with mitochondrial localisation are encoded by the nuclear 
genome, including over 100 genes involved in oxidative phosphorylation (nuOXPHOS 
genes) in humans. 
 
As the mtOXPHOS and nuOXPHOS genes are obligate partners in catalysis within protein 
complexes with a defined stoichiometry, one might expect their expression to be coordinated 
in order to maximise cell growth and function. This would require mitochondrial-to-nuclear 
communication, known as ‘retrograde signalling’. While retrograde signalling has been 
characterised in the case of overt mitochondrial function dysfunction or depletion in yeast 
(Parikh, Morgan et al. 1987) , C. elegans (Haynes, Petrova et al. 2007) , Drosophila (Owusu-
Ansah, Song et al. 2013)  and mammals (Zhao, Wang et al. 2002, Münch and Harper 2016), 
little is known about whether retrograde signalling functions to co-ordinate mtOXPHOS and 
nuOXPHOS gene expression under normal physiological conditions. 
 
One possible method to investigate the coordination between mtRNA and nuclear 
mitochondrial gene expression is to examine the correlation between mtOXPHOS and 
nuOXPHOS expression across different individuals to investigate whether natural differences 
in mtOXPHOS levels are linked to differences in nuOXPHOS expression. Large datasets 
such as GTEx and TCGA are ideal for this purpose, enabling examination of normal and 
diseased tissues respectively.  Previous approaches utilising this method to examine GTEx 
data have suggested that there is a weak positive correlation on average between mtOXPHOS 
and mtOXPHOS expression, indicating coregulation. Surprisingly, however, many tissues 
were found to have strongly negative correlations (Barshad, Blumberg et al. 2018).  This 
question has yet to be directly investigated using TCGA data, but expression of nuclear-
encoded mitochondrial genes was shown to correlate, weakly, with predicted mtDNA copy 
number (Reznik, Miller et al. 2016). 
 
An important consideration in use of gene expression datasets across a number of different 
samples drawn from different individuals is how to normalize the data to enable comparison 
across genes and samples.  Currently, the dominant technology for high-throughput 
quantification of gene expression is sequencing RNA (RNA-seq) (Wang, Gerstein et al. 
2009). The expression level of a gene is indicated by the number of independent sequencing 
reads mapping to the gene, known as the read count (Mortazavi, Williams et al. 2008). 
However, raw read counts are not comparable for genes within a sample, as longer transcripts 
accumulate more mapped reads. Raw counts are also not comparable for a given gene across 
samples, due to potential differences in sequencing depth/library size and, crucially, library 
composition.  
 
A common normalization method is RPKM (Reads Per Kilobase of transcript, per Million; 
also known as FPKM for Fragments Per Kilobase of transcript, per Million) for single- or 
paired-end sequencing, respectively (Mortazavi, Williams et al. 2008). This method 
normalizes read counts by library size and gene length. However, the average FPKM still 
varies from sample to sample, leading to the introduction of the similar TPM (transcripts per 
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million) normalization (Li, Ruotti et al. 2010). The sum of TPM values across samples is 
invariant, and thus TPM is argued to be a better normalization for comparison of expression 
levels across samples (Li, Ruotti et al. 2010, Zhao, Ye et al. 2020).  The Genotype Expression 
Project GTEx) provides data as TPM, and the Cancer Genome Atlas (TCGA) provides data 
as FPKM. Many researchers use data normalized in this way for correlation analysis 
(Barshad, Blumberg et al. 2018, Galai, Ben-David et al. 2020, Sakharkar, Kaur Dhillon et al. 
2020, Yang, Zhang et al. 2020, Boardman, Migally et al. 2021, Marquardt, Solimando et al. 
2021), sometimes aided by web-based database interrogation tools (Tang, Li et al. 2017). 
However, other normalization methods have been proposed which aim to account for biases 
in library composition, in addition to sequencing depth. The median ratio normalization 
(MRN; also known as relative log expression – RLE) provides scaling factors for normalizing 
library read counts in a way that controls for library size and is insensitive to the presence of 
a minority of highly expressed transcripts, thus controlling for library composition biases 
across samples (Anders and Huber 2010). The trimmed mean of M-values (TMM) is another 
algorithm which performs similarly (Robinson and Oshlack 2010). An alternative 
normalization, the upper quartile (UQ) method, adjusts gene read counts by the library 75th 
percentile of non-zero read counts rather than total read count, so as to exclude the influence 
of a minority of highly expressed genes (Bullard, Purdom et al. 2010). The MRN and TMM 
normalization methods are employed in differential expression analysis by the commonly 
used R packages DESeq2 and edgeR, respectively, in which they are used in statistical 
models.  
 
In this study we set out to investigate the relationship between mtOXPHOS and nuOXPHOS 
expression using GTEx and TCGA data. We discover that the apparent relationship depends 
strongly on the choice of normalization method used for RNA-seq data. We show that this is 
due to the fact that mtRNA levels, including mtOXPHOS genes, not only often make up 
more than 50% of the total sequenced transcripts in tissue or cancer types but also show a 
very large range of variation across samples within a cohort. We show that this leads to 
artefactually negative correlations between mtOXPHOS and nuOXPHOS expression across 
samples within a cohort when using TPM or FPKM normalizations. Importantly, we also 
show that the effect of mtRNA expression variation between tissue samples leads to 
artefactual positive correlations between TPM values for random nuclear-encoded genes 
unrelated to the mitochondria.   
 
Normalization using methods that correct for library composition bias, such as MRN or 
TMM, removes these spurious correlations. This analysis shows that in most tissue types, 
there is little correlation between mtOXPHOS and nuOXPHOS gene expression across 
individuals.  Nevertheless, there are some tissues showing stronger coordination, and we 
show that this is linked to higher expression of the NF-κB signalling pathway. Contrastingly, 
we show a consistent positive correlation between mtOXPHOS and nuOXPHOS expression 
in many cancers. Interestingly, further, we show that, whilst mostly positive, coordination 
decreases in cancers with the highest proliferation rates. Our work highlights the dangers in 
performing correlation analysis across GTEx and TCGA data to identify coregulated genes 
and evaluates methods to solve these problems, thereby providing new more robust insights 
into the fundamental problem of how to balance mitochondrial gene regulation across two 
distinct genomes. 
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Results 
 
mtOXPHOS-nuOXPHOS gene expression appears anticorrelated using TPM normalization 
 
To examine the expression correlation between the mtOXPHOS and nuOXPHOS genes, we 
downloaded data for 54 human tissues from the GTEx website, normalized to TPM (version 
8). We excluded tissues with fewer than 100 samples, leaving 48 tissues remaining. We then 
applied a linear model to each gene in each tissue to regress out the influence of known 
confounders (age bracket, sex, cause of death, sequencing batch and ischemic time (Ferreira, 
Muñoz-Aguirre et al. 2018)), continuing downstream analysis with the resulting residuals. 
We downsampled to 100 samples per tissue to ensure equal representation across tissues. To 
ensure that the correlations reflect differences among donors and not expression levels 
between tissues, we ranked the samples for each gene within each tissue, to reflect the 
relative level of expression within the tissue-specific randomly-sampled cohort of each gene 
within a sample. Finally, we determined the correlation of the ranks of all pairs of genes 
using Spearman’s rank-correlation coefficient across the 4800 chosen samples. We repeated 
this process 100 times and plotted the median value of each correlation coefficient. 
 
Using this approach, expression of mtOXPHOS genes showed a high degree of positive 
correlation with each other (ρ = 0.617), as did nuOXPHOS genes (ρ = 0.494). However, 
mtOXPHOS and nuOXPHOS expression appeared to be strongly anticorrelated (Fig 1a; ρ = -
0.336). As nuclear and mitochondrial gene expression have been reported to correlate 
positively across tissues (Mercer, Neph et al. 2011), this result was unexpected and so we set 
out to investigate the source of the apparent anticorrelation in more depth. 
 
Variance in mtRNA expression within tissues drives negative mito-nuclear correlations 
 
The total proportion of transcripts derived from mitochondrial DNA ranges from more than 
50% of the total transcripts on average in the heart and most brain tissues to just 4.8% of 
transcripts in whole blood samples (Fig 1b; Fig S1a for all tissues). Variance was also high 
within tissues, with mtRNAs in the 861 heart (left ventricle) samples ranging from 12.5% to 
95.4% of total transcripts (Fig 1b). As the total of TPM values for each sample must sum to 1 
million, a sample with 95.4% mtRNAs leaves fewer than 50,000 transcripts to be shared 
among the nuclear genome, while a sample with 12.5% mtRNAs has ~875,000. We reasoned 
that the variation in total mtRNA proportion between donors might therefore dominate the 
variance in other genes, affecting correlations between genes. Samples with high mtRNA 
levels will exhibit lower levels of all nuclear genome-derived transcripts and vice-versa, 
which would result in a spurious negative correlation between mtRNAs and nuclear-encoded 
RNAs. 
 
For each tissue we plotted the total percentage of mtRNAs against the median Spearman’s 
correlation of mtOXPHOS-nuOXPHOS gene pairs, using data for all available samples 
within each tissue (Fig 1c). We observed that the average mtRNA proportion was 
anticorrelated to the average correlation between mtOXPHOS and nuOXPHOS genes, such 
that high mtRNA proportions led to negative correlations between mtOXPHOS and 
nuOXPHOS (ρ = -0.85 , p < 2.2 x 10-16). 
 
If this was a result of a technical artefact, we should observe the same pattern when we 
consider the correlations of mtOXPHOS with randomly selected nuclear genes, instead of the 
nuOXPHOS genes. Indeed, the median Spearman’s correlation of mtOXPHOS-random 
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nuclear gene pairs also shows a strong negative correlation with total mtRNA percentage (Fig 
1d; (ρ = -0.87, p < 2.2 x 10-16). Thus, as tissue mtRNA levels climb, their variance between 
samples increasingly comes to dominate the variance of other genes, leading to artefactual 
negative correlations. 
 
mtRNA expression variance drives positive correlations between random nuclear transcripts 
 
If sample mtRNA level is a dominant factor in the variance of nuclear gene TPM values, then 
we reasoned that this might drive artefactual correlations between random nuclear genes 
which are functionally unrelated to the mitochondria. As the mean tissue mtRNA level rises, 
variance in mtRNA levels between samples would become an increasingly dominant factor in 
the variance of nuclear gene TPMs, which are all artificially depressed or inflated in each 
sample according to mtRNA level. 
 
Supporting this hypothesis, we find that the average correlation for TPM values of pairs of 
random expressed nuclear genes is positive and increases with mtRNA transcript levels (Fig 
1e). The average correlation of random nuclear genes for a tissue was predicted by not only 
the tissue mean mtRNA level but also the coefficient of variation (CV) of mtRNA levels 
(linear model, p(mtRNA levels) = 1.37 x 10-8, p(CV) = 3.46 x 10-5, p(mtRNA levels * CV) = 
0.0136). Stronger artefactual correlations are therefore produced when analysing tissues with 
higher and more variable mtRNA levels. 
 
We noticed two outlying tissues with low mtRNA levels and high correlations between 
random nuclear genes (Fig 1e; red circles) - whole blood and pancreas. We looked at the 
highest expressing genes in these tissues to see if these correlations might be driven by 
different library composition biases. In whole blood samples just 4 genes encoding 
haemoglobin subunits – HBB, HBA2, HBA1 and HBD – make up 40.8% of transcripts on 
average. Meanwhile in pancreas samples, there is high expression of many digestive 
enzymes, with two paralogous genes encoding serine proteases – PRSS1 and PRSS2 – 
comprising an average of 18.4% of transcripts. Removing the read counts for these genes 
from whole blood and pancreas samples before computing sample sums for TPM 
normalization leads to large and significant decreases in correlation coefficients between 
random genes (Fig 1f). This shows that the effect we observe is not specific for mitochondrial 
transcripts but rather applies generally for any transcripts that tend to comprise a high 
proportion of the total RNA-seq read count.  
 
The inflation of correlations using TPM normalization is a problem for all tissue datasets, but 
much more so for those with a high mean mtRNA level (or other strong library composition 
bias), leading in some cases to gene pairs with true negative correlations switching sign and 
giving the appearance of being significantly and robustly co-expressed (Fig 1g). 
 
Notably, all these analyses are entirely consistent when using Pearson’s correlations instead 
of Spearman’s rank correlation coefficient (Fig S1). Similar artefactual correlations between 
mito-nuclear gene pairs or pairs of random nuclear genes are also found using data subjected 
to FPKM normalization instead of TPM (Fig S2). 
 
Normalizing libraries with MRN or TMM scaling factors abrogates correlation artefacts 
 
We sought to determine if alternative normalization methods can mitigate these artefacts 
during correlation analysis. We tried four alternative normalizations. First, we tried removing 
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the mtRNA reads when computing sample read sums for the purposes of normalizing nuclear 
gene expression as with TPM (mtRNAs are still normalized by the total sample sums). We 
also tried UQ normalization, which is already applied to some pre-normalized expression 
datasets available from TCGA. Lastly, we employed MRN and TMM algorithms, which use 
different procedures to arrive at a scaling factor for library normalization that is designed to 
be insensitive to library composition bias. 
 
When computing TPM values for nuclear genes with mitochondrial reads excluded, we find 
that the strong negative correlation of tissue mitochondrial level with average mtOXPHOS-
nuOXPHOS is successfully mitigated (Fig 1c). Indeed, there is no relationship between tissue 
mtRNA level with average mtOXPHOS genes-random nuclear correlations (Fig 1d) or 
average correlations between random nuclear genes (Fig 1e). However, in tissues with 
alternative marked library composition biases such as whole blood or pancreas, average 
correlations of random nuclear genes are still strongly positive, while they remain at least 
slightly positive in all tissues. Excluding mitochondrial reads alone therefore fails to account 
for other library composition biases. 
 
UQ normalization performs similarly to TPM with mitochondrial reads excluded with respect 
to artefacts driven by high mitochondrial transcript levels (Fig 1c-e) and abrogates the strong 
positive correlation between random nuclear genes driven by alternative library composition 
biases in whole blood and pancreas samples (Fig 1e). However, UQ normalization results in a 
stronger inflation of correlations between random nuclear genes in most tissues (Fig 1e), and 
therefore cannot be recommended for performing correlation analyses. 
 
MRN and TMM normalizations abrogate the artefactual correlations of mitochondrial genes 
with random nuclear genes (Fig 1d) and between random nuclear genes (Fig 1e). We 
conclude that scaling read counts by library scaling factors produced by MRN or TMM 
algorithms is a simple and appropriate way of normalizing RNA-seq data before correlation 
analysis. We note that the processed data used for QTL analysis available for download on 
the GTEx portal are already TMM-normalized (in addition to further processing) and are thus 
appropriate for use in correlation analysis. 
 
We note that one tissue, the testis (green circles, Fig 1d, e; Fig S1c, d), displays positive 
correlations between mtOXPHOS genes and random nuclear genes and also between pairs of 
random nuclear genes when using MRN and TMM normalizations. The distribution of 
correlations across random nuclear gene pairs differs in width across tissues (Fig S3a); in 
some tissues more extreme positive and negative correlations are more common, which is 
apparent when inspecting correlation heatmaps between random nuclear genes (Fig S3b). 
Nonetheless, the distributions are centred around 0 and are unimodal for all tissues but the 
testis (Fig S3a), which displayed a significantly bimodal distribution of correlations between 
gene pairs for 7/100 samples of 100 random nuclear genes (Hartigan’s dip test; FDR < 0.05; 
no significant samples in any of the 47 other tissues). This unusual property may be related to 
the unique transcriptional complexity of the testis, with over 80% of protein-coding genes 
expressed (Soumillon, Necsulea et al. 2013). This was recently suggested to play a role in 
supressing mutagenesis in the germline (Xia, Yan et al. 2020). 
 
Correlations of mtOXPHOS-nuOXPHOS genes are weak and inconsistent across tissues 
 
Having established appropriate normalizations for the data, we return to the question of the 
correlation of the mtOXPHOS and nuOXPHOS genes. We normalized GTEx read counts 
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using MRN or TMM and applied a linear model for each gene in each tissue individually to 
control for known confounders. It is crucial to account for tissue-specific trends with respect 
to confounding variables, as to apply a linear model across samples from multiple tissues can 
generate further severe artefacts. As previously, we sampled 100 samples from each tissue, 
ranked the residuals for each gene within the tissue sample and aggregated these ranks across 
tissues before computing the Spearman’s correlation across 4800 samples. We repeated this 
process 100 times and plotted the median coefficient of the 100 iterations for each gene pair 
(Fig 2a). 
 
When employing MRN or TMM normalizations, we find that the overall correlation between 
mtOXPHOS and nuOXPHOS genes between donors in the GTEx data is very weak. The 
mean median Spearman’s correlation for mtOXPHOS-nuOXPHOS gene pairs is only slightly 
higher than the mean median Spearman’s correlation between mtOXPHOS genes and random 
nuclear genes (0.0302 vs 0.0144 for MRN normalization; 0.0157 vs -0.00326 for TMM 
normalization; Fig 2b). Although significant (t-test p = 2.82 x 10-27 for MRN; 2.16 x 10-38 for 
TMM), only a tiny fraction of the variation in nuOXPHOS gene expression can be explained 
by mtOXPHOS gene expression. This suggests that despite broad coordination of 
mtOXPHOS-nuOXPHOS expression across tissues (Fig 2c)(Mercer, Neph et al. 2011) there 
is limited coordination that can be detected between the nuclear and mitochondrial gene 
expression programs within tissues. Notably, this contrasts to very clear coregulation within 
the mtOXPHOS (ρ = 0.775) and nuOXPHOS (ρ = 0.329) gene sets. 
 
With MRN normalized data, we observed that the relationship between mtOXPHOS and 
nuOXPHOS gene expression in individual tissues is inconsistent (Fig 2d, Table S1, 
Supplementary Dataset 1). 32/48 tissues exhibit a median mtOXPHOS-nuOXPHOS 
correlation that is not significantly different from 0 (FDR > 0.05). 12/48 tissues exhibit a 
median mtOXPHOS-nuOXPHOS correlation significantly higher from 0, the most striking 
being the small intestine (terminal ileum), breast (mammary tissue), stomach and skeletal 
muscle all with median correlations between 0.30 and 0.32 (Fig 2e). 4/48 tissues display a 
significantly lower correlation with respect to random expectation; the left ventricle of the 
heart, liver, hippocampus (brain) and caudate (basal ganglia of the brain), with medians -
0.361, -0.204, -0.206 and -0.177 respectively (Fig 2e). Note that although the testis has a 
positive mtOXPHOS-nuOXPHOS correlation, it is significantly lower than that observed 
between mtOXPHOS and random nuclear genes (Fig S4a; Table S1), which is unusually high 
as noted above. Very similar results are obtained starting with a TMM normalization (Fig 
S5). 
 
Positive correlation between mtOXPHOS and nuOXPHOS gene expression in cancer 
 
We next explored whether any relationship between mtOXPHOS and nuOXPHOS gene 
expression exists in cancer samples. We downloaded data from TCGA (harmonized) for 31 
cancer types with more than 50 primary tumour samples.  
 
We observed substantial variation in mtRNA across and within cancer types (Fig 3b). As we 
observed for GTEx data, normalization of TCGA gene expression values using TPM leads to 
spurious correlations, both between mtOXPHOS-nuOXPHOS genes and random nuclear 
gene pairs (Fig 3a, c-e). We then proceeded to apply MRN/TMM normalization and repeated 
the analysis. These normalization methods correct the spurious correlations between 
mtOXPHOS genes and random nuclear genes and between pairs of random nuclear genes 
(Fig 3a, d, e). 
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Nevertheless, with MRN normalization 23 of 31 individual cancer types tested displayed a 
significantly positive correlation (FDR < 0.05), with none displaying a significant negative 
correlation (Fig 4c, Table S2; Supplementary Dataset 2). Median correlations of mtOXPHOS 
gene expression with random nuclear genes was around 0 for all cancer types (Fig S4b). 
Analysing across cancer types, the mean median Spearman’s correlation for mtOXPHOS-
nuOXPHOS genes in 0.110, while for mtOXPHOS with random nuclear genes it is -0.0147 
(Fig 4a, b; t-test p-value = 5.53 x 10-158). Interestingly, the degree of mtOXPHOS-
nuOXPHOS correlation within a cancer type increases with mean mtRNA expression level 
(Fig 3a), in a reversal of the apparent relationship when using TPM-normalized data. 
 
We analysed 14 cancer types for which data for at least 10 normal adjacent tissue samples 
was available, and identified the matched tumour counterpart samples. Using MRN-
normalized data, we then computed the correlations between mtOXPHOS and nuOXPHOS 
genes within the normal and tumour samples to compare them (Fig 4d). Although direct 
comparison between the two databases is not possible, we note that the mtOXPHOS-
nuOXPHOS correlations we observe for normal samples in TCGA are broadly congruous 
with those observed in the GTEx tissues, in particular the strong positive correlations in 
TCGA adjacent normal tissue samples from the stomach (STAD) and breast (BRCA). We 
find that the mtOXPHOS-nuOXPHOS correlation tends to be positive in diseased samples in 
those tissues in which the normal cohort displays a negative or insignificant correlation, such 
as in thyroid cancer (Fig 4e; Supplementary Dataset 3, 4). Overall, 13/14 matched tumour 
samples display a significantly positive mtOXPHOS-nuOXPHOS correlation, compared to 
7/14 of the matched normal tumour samples (p = 0.0329, Fisher’s exact test). 
 
NF-κB expression is correlated with OXPHOS co-ordination in healthy tissues 
 
To understand what might underlie the variation in mtOXPHOS-nuOXPHOS correlation 
across tissues, we correlated the mean expression of all genes within each GTEx tissue to the 
observed tissue OXPHOS correlation. We selected the 1000 genes whose expression across 
tissues most strongly correlated positively to mtOXPHOS-nuOXPHOS correlation across 48 
tissues (the top 1000, Spearman’s ρ > 0.487) and performed a gene ontology and KEGG 
pathway enrichment analysis; we did the same for the 1000 most anticorrelated genes (the 
bottom 1000, Spearman’s ρ < -0.443). While the anticorrelated genes yielded no significantly 
enriched terms, the positively correlated genes were strongly enriched for terms related to 
immune function and B cell activation (Supplementary Dataset 5, 6). On closer inspection, 
we found that this was mostly due to a large number (221) of immunoglobulin-encoding 
genes within the top 1000 genes. These immunoglobulin genes represented all three major 
immunoglobulin clusters: IGH (107 genes), IGK (50) and IGL (42), as well as IGH (15) and 
IGK (7) orphons located outside the main clusters. 
 
We used estimates of immune cell fraction for GTEx samples produced by GEDIT, a gene 
expression deconvolution tool (Nadel, Lopez et al. 2021) to see if this was predictive of 
nuOXPHOS-mtOXPHOS correlation. Immune cell fraction could explain little of the 
OXPHOS correlation variance (R2 = 0.0199, p < 2.2 x 10-16) (Fig S6). 
 
In addition to immune-related terms, there was an enrichment for terms that implied a 
possible role for cellular proliferation, such as ribosome biogenesis and DNA replication. To 
assess this contribution to mtOXPHOS-nuOXPHOS correlation, we used the expression data 
to infer a measure of active proliferation, the Proliferative Index (PI) (Ramaker, Lasseigne et 
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al. 2017), for all GTEx samples. Despite a significant relationship, the PI explained a tiny 
fraction of the variance across tissues in OXPHOS correlation (R2 = 0.00759, p < 2.2 x 10-

16)(Fig 5b). 
 
Another possibility was that immunoglobulin expression was driven by NF-κB, a protein 
complex present in almost all cell types that can drive immunoglobulin expression in non-
immune cells (Liu, Zheng et al. 2009) and has been implicated in mitochondrial signalling to 
the nucleus in mammals (Butow and Avadhani 2004) and in mitochondrial gene regulation 
(Cogswell, Kashatus et al. 2003). 3 of the 5 NF-κB members (NFKB1, REL and RELB) were 
found in the top 1000 genes. Indeed, together the expression of the 5 NF-κB members 
explain much of the variance in mtOXPHOS-nuOXPHOS correlation, with NFKB1 
expression alone the most important contribution (Fig 5a; Table S3). 
 
 
Proliferation is negatively correlated to OXPHOS co-ordination in cancer 
 
Having established the importance of NF-κB expression in OXPHOS coordination in healthy 
tissues we next tested whether NF-κB could play a similar role in cancer. However, we found 
only a weak, negative relationship between NFKB1 expression and mtOXPHOS-nuOXPHOS 
correlation in the TCGA data (R2 = 0.0194 p < 2.2 x 10-16; Fig 5c).  
 
As for the GTEx data, we correlated the mean expression of all genes within 31 TCGA 
cancer type to the observed mtOXPHOS-nuOXPHOS correlation, before performing a gene 
ontology enrichment analysis on the top and bottom 1000 genes (Spearman’s ρ > 0.467 and < 
-0.502 respectively; Supplementary Dataset 7, 8). Overall, there was no overlap at all 
between the gene ontology terms that were positively or negatively related to OXPHOS 
coordination in both GTEx and TCGA databases. For the TCGA, the top 1000 genes yielded 
only 7 enriched terms, related to the lysosome and Golgi apparatus. On the contrary, the 1000 
most negatively correlated genes were associated with 220 significant terms, many associated 
with replication and mitosis. 
 
In agreement with the enrichment of proliferation-related terms in the bottom 1000 genes, we 
found a strong negative relationship between proliferative index and coordination (R2 = 0.279 
p < 2.2 x 10-16; Fig 5d; Table S4), suggesting that variation in the rate of proliferation in 
cancer might explain differences in OXPHOS coordination (see Discussion).   
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Discussion 
 
Here we have set out to investigate the coordination between the expression of mitochondrial 
and nuclear transcripts, in particular the mtOXPHOS genes which comprise all 13 
mitochondrially-encoded protein coding genes and their nuclear-encoded catalytic partners, 
the nuOXPHOS genes. Using tens of thousands of RNA-seq samples across 48 healthy 
human tissues from the GTEx database and 31 distinct cancer types from TCGA, we 
examined the correlation of mtOXPHOS and nuOXPHOS expression to identify signs of co-
regulation. We find that most healthy tissues in the GTEx database show little correlation 
between mtOXPHOS and nuOXPHOS expression. In contrast, in TCGA we find that cancers 
show a clear tendency towards positive correlations between mtOXPHOS and nuOXPHOS 
expression. Our results have implications for analysis of gene expression coordination as well 
as the potential for retrograde signalling to balance nuclear and mitochondrial expression of 
genes with mitochondrial function. 
 
Avoiding artefacts when analysing correlations between expressed genes   
 
In the course of our investigation, we realised that the use of TPM or FPKM normalizations 
for RNA-seq data produces grave and ubiquitous artefacts in correlation analysis owing to 
uncontrolled library composition biases. These artefacts are more severe for tissues or 
cancers with strong biases, of which the most common is high levels of expression from 
mitochondrial DNA. Because it allows direct comparison across samples, TPM is often 
considered to be a superior normalization to FPKM (Li, Ruotti et al. 2010, Zhao, Ye et al. 
2020). However, as the total sum of TPM values is invariant, the strength of the artefactual 
correlations introduced are actually more acute than those observed with FPKM 
normalization. 
 
It has previously been pointed out that library composition biases make comparison of 
samples from different tissues problematic when using TPM or FPKM normalization 
(Robinson and Oshlack 2010, Zhao, Ye et al. 2020) Here we have demonstrated that library 
composition biases make comparisons and correlations of TPM/FPKM values problematic 
even when the analysis is limited to samples of the same tissue type. 
 
These results have severe implications for any reported correlation analyses using expression 
values normalized by TPM or FPKM. As correlation coefficients between all pairs of nuclear 
genes are artificially inflated in every tissue, these artefacts can obscure the true relationship 
between genes, with negatively correlated gene pairs appearing to be strongly co-expressed. 
This also presents difficulties in understanding changes in the interactions of pairs of genes 
across tissues, as changes may be simply due to different library composition biases in those 
tissues. Lastly, this adds additional difficulties in interpretation of the already problematic 
(Lovén, Orlando et al. 2012) but frequently observed practice of plotting TPM values of a 
favourite gene for each tissue from the GTEx database side-by-side as a qualitative measure 
of tissue expression level, given that a gene’s mean TPM value for a tissue will in large part 
be determined by the mean mtRNA level of that tissue. 
 
We demonstrate that scaling libraries using MRN or TMM algorithms is a simple and 
effective way to account for these biases prior to correlation analysis. We strongly dissuade 
researchers from using TPM or FPKM for gene expression correlation analysis and 
recommend that researchers employ alternative scaling normalizations that account for 
library composition bias before embarking on correlation analyses. 
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Coordination between mitochondrial and nuclear gene expression 
 
Our analysis using correct normalization substantially updates our view of how gene 
expression is coordinated between mitochondrial and nuclear genomes.  The lack of strong 
correlations between mtOXPHOS and nuOXPHOS gene expression in the majority of 
healthy tissues in the GTEx database implies that these genes are generally not strongly co-
ordinated by retrograde signalling pathways. The broad co-ordination afforded by tissue-
specific transcriptional programs (Mercer, Neph et al. 2011) is likely sufficient for supporting 
tissue function under normal physiological conditions. However, we found that the tissue 
expression level of NF-κB genes is associated with the strength of co-ordination between 
mtOXPHOS and nuOXPHOS expression, supporting a role for this complex in mito-nuclear 
communication as proposed previously (Butow and Avadhani 2004). The biological 
significance of strong negative correlations, such as observed in the left ventricle of the heart 
and the liver, remains unclear.  
 
It is clear from our analysis that the mechanisms by which apparent co-ordination between 
the mitochondrial and nuclear OXPHOS genes arises differ sharply between healthy tissues 
and tumour cells. The positive correlation of mtOXPHOS and nuOXPHOS genes across 
samples within many cancer types does not necessarily imply that retrograde signalling is 
active in cancers, as other differences between healthy tissues and tumours could play a role. 
Both mtOXPHOS and nuOXPHOS gene expression is often altered in cancers (Reznik, 
Wang et al. 2017). Positive correlations might result from selection within tumours for clones 
with concordant OXPHOS expression, with this selection becoming stronger with higher 
mtOXPHOS expression; this might explain the relationship between mtOXPHOS-
nuOXPHOS correlation and mtRNA levels among TCGA cancer types.  
 
Intriguingly, however, we found that although cancers tend to exhibit positive mtOXPHOS-
nuOXPHOS correlation, the strength of this correlation in a particular cancer type relates 
strongly to its inferred proliferation status, with stronger proliferation related to lower 
mtOXPHOS-nuOXPHOS correlation. This may be due to the Warburg effect, in which 
metabolism in rapidly proliferating tumour cells is reported to shift towards aerobic 
glycolysis, thereby bypassing the mitochondrial role in respiration (Liberti and Locasale 
2016). In the fastest proliferating cancer types, the importance of mitochondrial respiration 
may therefore be reduced, leading to reduced selection within tumours for concordant 
OXPHOS expression. Thus although selection between cells within proliferating tumours 
may act to produce a positive mtOXPHOS-nuOXPHOS correlation in most cancers, this 
selection may be weakened and increasingly dominated by the Warburg effect in the fastest 
proliferating cancers. 
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Figure 1. High mitochondrial reads in GTEx libraries leads to artefactual correlations 
between genes using TPM normalization, obscuring biological relationships. 
 
a) Heatmap showing median Spearman’s correlation for mtOXPHOS and nuOXPHOS gene 
expression using TPM normalization in 48 GTEx tissues combined (100 samples from each 
tissue, sampled 100 times). 
 
b) Violin plot showing total expression from mtDNA-encoded genes in samples from a 
selection of 15 healthy human tissues from the GTEx database. 
 
c) Scatterplot shows median Spearman’s correlation (ρ) of mtOXPHOS-nuOXPHOS gene 
pairs within 48 GTEx tissues vs tissue mean of mtRNA levels as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. Error bars indicate IQR. Blue line 
shows linear regression with R2 and ρ noted within panel. 
 
d) Scatterplot shows mean over 100 samples of the tissue median ρ of mtOXPHOS with 126 
random expressed nuclear genes vs tissue mean of mtRNA levels as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error 
bars are smaller than the plotted symbols. Blue line shows linear regression with R2 and ρ 
noted within panel. Green circles for MRN and TMM highlight unusually high correlations in 
the testis. 
 
e) Scatterplot shows mean over 100 samples of the tissue median ρ within 100 random 
expressed nuclear genes vs tissue mean of mtRNA levels as a percentage of total transcripts. 
Shown for data normalized by TPM, TPM excluding mitochondrial reads for normalizing 
nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error bars are smaller 
than the plotted symbols. Blue line shows linear regression with R2 and ρ noted within panel. 
Red circles for TPM highlight whole blood and pancreas; green circles for MRN and TMM 
highlight unusually high correlations in the testis. 
 
f) Boxplot shows mean values for 10 samples of the median ρ of 100 random expressed 
nuclear genes with TPM normalization or TPM excluding the read counts for PRSS1 & 
PRSS2 (pancreas) or HBA1, HBA2, HBB and HBD (whole blood). 
  
g) Scatterplot shows Spearman’s ρ within tissues for two genes, INSR and TSPAN5, for TPM 
normalized data and MRN normalized data. Colour indicates the tissue mean mtRNA level 
(% total transcripts). Tissues that fall in the top left quadrant are those in which the negative 
correlation observed using MRN normalization has switched sign and appears to be positive 
using TPM normalization. 
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Figure 2. MRN normalization reveals weak and inconsistent correlations between 
mtOXPHOS and nuOXPHOS within tissues. 
 
a) Heatmap showing median Spearman’s ρ for mtOXPHOS and nuOXPHOS gene 
expression using MRN normalization in 48 GTEx tissues combined (100 samples from each 
tissue, sampled 100 times). 
 
b) Boxplot showing median Spearman’s ρ for 100 iterations of mtOXPHOS genes with 
random nuclear genes or mtOXPHOS with nuOXPHOS genes for 48 GTEx tissues 
combined. 
 
c) Scatterplot showing mean MRN-normalized pseudocounts for mtOXPHOS and 
nuOXPHOS genes in 48 GTEx tissues. The 13 brain tissues display a high mtOXPHOS count 
and are shown in red. 
 
d) Observed median Spearman’s ρ between mtOXPHOS and nuOXPHOS genes for 48 
GTEx tissues. Error bars show 95% bootstrap confidence interval. Blue bars indicate 
observed correlation significantly lower than 0 (bootstrap empirical p-value, FDR-adjusted < 
0.05), red bars indicate observed correlation significantly higher than 0 and grey bars indicate 
FDR > 0.05. Z-statistics and p-values for observed value relative to mtOXPHOS with random 
nuclear genes are shown in Table S1. 
 
e) Heatmap showing Spearman’s ρ for mtOXPHOS and nuOXPHOS genes for 8 GTEx 
tissues showing clear positive or negative correlations. 
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Figure 3. Artefactual correlations are also driven by mtRNA expression in the Cancer 
Genome Atlas (TCGA) database 
 
a) Heatmap showing median Spearman’s correlation for mtOXPHOS and nuOXPHOS gene 
expression using TPM normalization in 31 TCGA cancer types combined (50 samples from 
each tissue, sampled 100 times). 
 
b) Violin plot showing total expression from mtDNA-encoded genes in samples from a 
selection of 13 cancer types from TCGA database. 
 
c) Scatterplot shows median Spearman’s correlation (ρ) of mtOXPHOS-nuOXPHOS gene 
pairs within 31 TCGA cancer types vs cancer type mean of mtRNA expression as a 
percentage of total transcripts. Shown for data normalized by TPM, TPM excluding 
mitochondrial reads for normalizing nuclear genes, UQ, MRN and TMM methods. Error bars 
indicate IQR. Blue line shows linear regression with R2 noted within panel. 
 
d) Scatterplot shows mean over 100 samples of the cancer type median ρ of mtOXPHOS 
with 126 random expressed nuclear genes vs cancer type mean of mtRNA expression as a 
percentage of total transcripts. Shown for data normalized by TPM, TPM excluding 
mitochondrial reads for normalizing nuclear genes, UQ, MRN and TMM methods. 95% 
confidence interval error bars are smaller than the plotted symbols. Blue line shows linear 
regression with R2 and ρ noted within panel. 
 
e) Scatterplot shows mean over 100 samples of the cancer type median ρ within 100 random 
expressed nuclear genes vs cancer type mean of mtRNA expression as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error 
bars are smaller than the plotted symbols. Blue line shows linear regression with R2 and ρ 
noted within panel. 
 
Abbreviations for cancer type are given in Table S5. 
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Figure 4. Most cancer types display a positive correlation between mtOXPHOS and 
nuOXPHOS expression. 
 
a) Heatmap showing median Spearman’s ρ for mtOXPHOS and nuOXPHOS gene 
expression using MRN normalization in 31 TCGA cancer types combined (50 samples from 
each tissue, sampled 100 times). 
 
b) Boxplot showing median Spearman’s ρ for 100 iterations of mtOXPHOS genes with 
random nuclear genes or mtOXPHOS with nuOXPHOS genes for 31 TCGA cancer types 
combined. 
 
c) Observed median Spearman’s ρ between mtOXPHOS and nuOXPHOS genes for 31 
TCGA cancer types. Error bars show bootstrap 95% confidence interval. Blue bar indicates 
observed correlation significantly lower 0 (bootstrap empirical p-value, FDR-adjusted < 
0.05), red bars indicate observed correlation significantly higher than 0 and grey bars indicate 
FDR > 0.05. Z-statistics and p-values for observed value are shown in Table S2. 
 
d) Median mtOXPHOS-nuOXPHOS ρ within matched samples of tumour (red) or normal 
tissue (grey) from TCGA projects. Error bars show bootstrapped standard error. 
 
e) mtOXPHOS-nuOXPHOS correlation heatmaps for thyroid cancer (TCGA) matched 
normal tissue samples (above) and tumour samples (below). 
 
Abbreviations for cancer types are given in Table S5. 
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Figure 5. mtOXPHOS-nuOXPHOS co-ordination is correlated to NF-κB expression and 
cellular proliferation in the GTEx and TCGA respectively. 
 
a) Within-tissue mtOXPHOS-nuOXPHOS correlation against NFKB1 expression (MRN 
pseudocounts) for GTEx tissues. Each violin represents the samples within a tissue.  
 
b) Within-tissue mtOXPHOS-nuOXPHOS correlation against Proliferative Index for GTEx 
tissues. Each violin represents the samples within a tissue. 
 
c) Within-tissue mtOXPHOS-nuOXPHOS correlation against NFKB1 expression (MRN 
pseudocounts) for TCGA cancer types. Each violin represents the samples within a tissue. 
 
d) Within-tissue mtOXPHOS-nuOXPHOS correlation against Proliferative Index for TCGA 
cancer types. Each violin represents the samples within a tissue. 
 
Dashed grey vertical line shows no correlation. AU, arbitrary units. 
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Figure S1. Mitochondrial library bias drive artefactual correlations using Pearson’s 
correlation. 
 
a) Violin plot showing total expression from mtDNA-encoded genes in samples from all 48 
healthy human tissues with more than 100 samples from the GTEx database. 
 
b) Scatterplot shows mean Pearson’s correlation (r) of mtOXPHOS-nuOXPHOS gene pairs 
within 48 GTEx tissues vs tissue mean of mtRNA expression as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. Error bars indicate SD. Blue line 
shows linear regression with R2 noted within panel. 
 
c) Scatterplot shows mean over 100 samples of the tissue mean r of mtOXPHOS with 126 
random expressed nuclear genes vs tissue mean of mtRNA expression as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error 
bars are smaller than the plotted symbols. Blue line shows linear regression with R2 noted 
within panel. Green circles for MRN and TMM highlight unusually high correlations in the 
testis. 
 
d) Scatterplot shows mean over 100 samples of the tissue mean r within 100 random 
expressed nuclear genes within tissues vs tissue mean of mtRNA expression as a percentage 
of total transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads 
for normalizing nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error 
bars are smaller than the plotted symbols. Blue line shows linear regression with R2 noted 
within panel. Red circles for TPM highlight whole blood and pancreas; green circles for 
MRN and TMM highlight unusually high correlations in the testis. 
 
e) Boxplot shows mean values for 10 samples of the mean r within 100 random expressed 
nuclear genes with TPM normalization or TPM excluding the read counts for PRSS1 & 
PRSS2 (pancreas) or HBA1, HBA2, HBB and HBD (whole blood). 
  
f) Scatterplot shows Pearson’s r within tissues for two genes, INSR and TSPAN5, for TPM 
normalized data and MRN normalized data. Colour indicates the tissue mean mtRNA 
expression (% total transcripts). 
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Figure S2. Mitochondrial library bias drive artefactual correlations using FPKM in 
addition to TPM. 
 
a) Scatterplot shows mean over 100 samples of the tissue median Spearman’s ρ of 
mtOXPHOS with 126 random expressed nuclear genes vs tissue mean of mtRNA expression 
as a percentage of total transcripts. Shown for data normalized by FPKM, TPM, or MRN. 
95% confidence interval error bars are smaller than the plotted symbols. Blue line shows 
linear regression with R2 and Spearman’s ρ noted within panel. 
 
b) Scatterplot shows mean over 100 samples of the tissue median ρ within 100 random 
expressed nuclear genes vs tissue mean of mtRNA expression as a percentage of total 
transcripts. Shown for data normalized by TPM, TPM excluding mitochondrial reads for 
normalizing nuclear genes, UQ, MRN and TMM methods. 95% confidence interval error 
bars are smaller than the plotted symbols. Blue line shows linear regression with R2 noted 
within panel. 
 
Data in this figure are drawn from GTEx v6p, rather than GTEx v8 as for all other figures. 
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Fig S3. Correlation distributions vary consistently across tissues, with the testis unique 
in displaying signs of bimodal correlation distribution. 
 
a) Density of correlation coefficients within 10 random samples (overlaid lines) of 100 
random nuclear genes for GTEx tissues with narrow distributions (above) and wide 
distributions (below). The testis shows clear signs of bimodality. Correlations performed on 
MRN-normalized data. 
 
b) Representative heatmaps for Spearman’s correlations of 100 random genes for the same 
tissues. 
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Fig S4. Correlations of mtOXPHOS with random nuclear genes do not resemble the 
observed mtOXPHOS-nuOXPHOS correlations across tissues or cancer types. 
 
a) Bars show mean median ρ for mtOXPHOS genes with 100 samples of 126 random nuclear 
genes in GTEx tissues; error bars indicate standard error. The testis has unusually high 
correlations between mtOXPHOS and random genes. The order of tissues matches the order 
of mtOXPHOS-nuOXPHOS correlation as shown in Fig 2d. The observed mtOXPHOS-
nuOXPHOS correlation for each tissue is tested against this distribution in Table S1. 
 
b) Bars show mean median ρ for mtOXPHOS genes with 100 samples of 126 random nuclear 
genes in TCGA cancer types; error bars indicate standard error. The testis has unusually high 
correlations between mtOXPHOS and random genes. The order of tissues matches the order 
of mtOXPHOS-nuOXPHOS correlation as shown in Fig 4c. The observed mtOXPHOS-
nuOXPHOS correlation for each cancer type is tested against this distribution in Table S2. 
Cancer abbreviations are found in Table S5. 
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Fig S5. TMM normalization supports weak and inconsistent correlations between 
mtOXPHOS and nuOXPHOS within tissues. 
 
a) Heatmap showing median Spearman’s ρ for mtOXPHOS and nuOXPHOS gene 
expression using TMM normalization in 48 GTEx tissues combined (100 samples from each 
tissue, sampled 100 times). 
 
b) Boxplot showing median Spearman’s ρ for 100 iterations of mtOXPHOS genes with 
random nuclear genes or mtOXPHOS with nuOXPHOS genes for 48 GTEx tissues 
combined. 
 
c) Observed median Spearman’s ρ between mtOXPHOS and nuOXPHOS genes for 48 GTEx 
tissues. Error bars show 95% bootstrap confidence interval. Blue bars indicate observed 
correlation significantly lower than 0 (bootstrap empirical p-value, FDR-adjusted < 0.05), red 
bars indicate observed correlation significantly higher than 0 and grey bars indicate FDR > 
0.05.  
 
d) Heatmap showing Spearman’s ρ for mtOXPHOS and nuOXPHOS genes for 8 GTEx 
tissues showing clear positive or negative correlations. 
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Figure S6.    Total inferred immune cell fraction relates poorly to mtOXPHOS-
nuOXPHOS correlation. 
 
Violins represent tissue types. Total inferred immune cell fraction for each sample was 
inferred from GEDIT, a gene expression deconvolution tool.
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Table 1. Tissue mtOXPHOS-nuOXPHOS Spearman’s correlations for GTEx database 
relative to median mtOXPHOS-random nuclear gene correlations. 

Tissue 

Observed 
median  
mtOXPHOS-
nuOXPHOS ρ 

Mean median  
mtOXPHOS-
random ρ 

Shapiro-Wilk 
normality 
test FDR 

Z-statistic  
(observed  
correlation) FDR 

Small Intestine - 
Terminal Ileum 0.329 0.010 0.517 9.88 3.52E-22 
Breast - Mammary 
Tissue 0.315 0.059 0.878 7.84 1.91E-14 
Stomach 0.310 -0.051 0.992 11.7 1.89E-30 

Muscle - Skeletal 0.305 -0.010 0.946 25.3 5.16E-139 
Cells - EBV-
transformed 
lymphocytes 0.264 0.005 0.753 12.3 9.28E-34 
Minor Salivary 
Gland 0.184 0.006 0.100 15.9 3.18E-55 
Adipose - 
Subcutaneous 0.177 0.016 0.656 13.2 1.02E-38 
Colon - Transverse 0.169 -0.027 0.594 5.51 9.99E-08 
Adipose - Visceral 
(Omentum) 0.149 0.012 0.869 9.23 1.43E-19 
Whole Blood 0.116 0.053 0.517 2.20 3.91E-02 

Uterus 0.111 0.010 0.878 7.79 2.74E-14 
Artery - Coronary 0.105 -0.017 0.878 8.10 2.63E-15 
Brain - Spinal cord 
(cervical c-1) 0.096 0.004 0.953 3.55 7.25E-04 

Testis 0.093 0.210 0.843 -4.17 7.22E-05 

Brain - Cortex 0.086 0.022 0.517 2.05 5.49E-02 
Pancreas 0.083 -0.011 0.926 7.05 6.67E-12 
Vagina 0.078 0.021 0.656 4.83 3.58E-06 

Spleen 0.075 0.028 0.628 4.73 5.58E-06 
Colon - Sigmoid 0.063 0.002 0.953 6.00 6.29E-09 

Ovary 0.058 0.025 0.878 1.96 6.69E-02 
Brain - Cerebellar 
Hemisphere 0.053 0.029 0.517 0.746 4.97E-01 
Skin - Sun 
Exposed (Lower 
leg) 0.046 0.013 0.753 1.91 7.17E-02 

Thyroid 0.046 -0.001 0.517 3.87 2.33E-04 
Prostate 0.044 -0.022 0.695 3.91 2.15E-04 
Skin - Not Sun 
Exposed 
(Suprapubic) 0.041 0.010 0.946 1.53 1.54E-01 
Heart - Atrial 
Appendage 0.040 0.002 0.882 3.85 2.42E-04 
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Esophagus - 
Gastroesophageal 
Junction 0.038 0.012 0.517 2.80 8.02E-03 
Brain - Cerebellum 0.028 0.028 0.926 0.001 1.00E+00 
Cells - Cultured 
fibroblasts 0.027 0.010 0.517 1.417 1.88E-01 
Brain - Frontal 
Cortex (BA9) 0.012 0.053 0.992 -0.989 3.69E-01 
Esophagus - 
Muscularis 0.011 0.009 0.768 0.238 8.47E-01 

Lung -0.002 -0.008 0.594 0.400 7.35E-01 
Brain - 
Hypothalamus -0.010 0.032 0.869 -1.17 2.84E-01 

Nerve - Tibial -0.012 -0.012 0.517 -0.021 1.00E+00 
Pituitary -0.024 0.042 0.882 -3.68 4.62E-04 
Brain - Nucleus 
accumbens (basal 
ganglia) -0.025 0.079 0.517 -1.91 7.17E-02 
Brain - Substantia 
nigra -0.027 0.004 0.602 -0.966 3.73E-01 
Esophagus - 
Mucosa -0.034 0.022 0.953 -3.10 3.16E-03 
Artery - Tibial -0.036 -0.006 0.869 -3.48 9.02E-04 

Artery - Aorta -0.043 -0.007 0.594 -3.42 1.06E-03 
Brain - Amygdala -0.046 0.044 0.517 -2.44 2.20E-02 

Adrenal Gland -0.061 -0.004 0.517 -3.58 6.66E-04 
Brain - Anterior 
cingulate cortex 
(BA24) -0.066 0.045 0.992 -2.35 2.73E-02 
Brain - Putamen 
(basal ganglia) -0.080 0.097 0.632 -3.09 3.16E-03 
Brain - 
Hippocampus -0.177 0.023 0.882 -6.61 1.29E-10 
Liver -0.204 -0.008 0.882 -10.9 8.41E-27 
Brain - Caudate 
(basal ganglia) -0.206 0.071 0.602 -5.62 5.89E-08 
Heart - Left 
Ventricle -0.361 -0.012 0.100 -9.73 1.25E-21 
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Table S2. Cancer type mtOXPHOS-nuOXPHOS Spearman’s correlations for TCGA 
database relative to median mtOXPHOS-random nuclear gene correlations. 

Cancer 

Observed 
median  
mtOXPHOS
-nuOXPHOS 
ρ 

Mean median  
mtOXPHOS-
random ρ 

Shapiro-Wilk 
normality test 
FDR 

Z-statistic  
(observed  
correlation
) FDR 

UVM 0.356 -0.015 0.737 17.03 2.01E-64 
SKCM 0.349 -0.014 0.737 26.9 2.05E-157 

KIRC 0.305 -0.009 0.924 39.5 0.00E+00 
KICH 0.300 -0.043 0.466 18.6 1.57E-76 
KIRP 0.299 -0.037 0.737 11.4 1.08E-29 

PCPG 0.255 -0.021 0.581 19.8 1.15E-86 
THCA 0.234 -0.029 0.347 17.9 7.54E-71 

LGG 0.209 -0.013 0.581 12.8 5.40E-37 
STAD 0.206 -0.026 0.581 18.9 9.38E-79 

ACC 0.195 -0.042 0.896 9.95 5.83E-23 
LAML 0.171 -0.005 0.234 6.72 3.39E-11 
OV 0.154 -0.015 0.347 15.5 6.03E-54 

PAAD 0.151 -0.012 0.679 16.2 3.88E-58 

TGCT 0.129 0.005 0.581 3.25 1.40E-03 

BRCA 0.128 -0.006 0.581 14.2 3.23E-45 
LIHC 0.122 -0.023 0.737 10.7 4.14E-26 
SARC 0.092 -0.020 0.924 9.53 3.16E-21 

THYM 0.089 -0.027 0.737 4.76 2.54E-06 
UCEC 0.085 0.014 0.581 5.00 7.94E-07 

LUAD 0.073 -0.035 0.581 6.53 1.24E-10 
BLCA 0.066 -0.028 0.234 4.91 1.24E-06 

LUSC 0.056 -0.022 0.679 5.64 2.69E-08 
ESCA 0.047 -0.011 0.924 5.72 1.72E-08 
PRAD 0.046 -0.032 0.873 3.52 5.31E-04 

CESC 0.030 -0.019 0.581 5.24 2.40E-07 
HNSC 0.027 -0.042 0.737 5.77 1.37E-08 

COAD 0.014 0.001 0.234 0.658 5.46E-01 
UCS -0.016 -0.009 0.821 -0.274 8.10E-01 
MESO -0.023 -0.004 0.737 -1.10 2.98E-01 

READ -0.029 -0.035 0.622 0.241 8.10E-01 
GBM -0.048 0.000 0.581 -2.23 2.96E-02 
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Table S3. Coefficients of a linear model predicting tissue mtOXPHOS-nuOXPHOS 
correlation by GTEx sample Proliferative Index (PI)  and expression of NF-κB family 
members. 
 
 
 Estimate Std. Error t value Pr(>|t|)     
Intercept -0.425181 0.024484 -17.366  < 2e-16 
Proliferative Index -0.005170   0.001053  -4.910 9.18e-07 
log10(NFKB1 expression) 0.187359   0.007624  24.574  < 2e-16 
log10(NFKB2 expression) -0.077582   0.005614 -13.819  < 2e-16 
log10(REL expression) 0.033591   0.003987   8.425  < 2e-16 
log10(RELA expression) -0.038051   0.008690  -4.379 1.20e-05 
log10(RELB expression) 0.068737   0.005065  13.570  < 2e-16 
 
Residual standard error: 0.1254 on 17237 degrees of freedom 
Multiple R-squared:  0.1235, Adjusted R-squared:  0.1232  
F-statistic: 404.7 on 6 and 17237 DF,  p-value: < 2.2e-16  
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Table S4. Coefficients of a linear model predicting cancer type mtOXPHOS-
nuOXPHOS correlation by TCGA sample Proliferative Index (PI)  and expression of 
NF-κB family members. 
 

 
Residual standard error: 0.08055 on 9714 degrees of freedom 
Multiple R-squared:  0.294, Adjusted R-squared:  0.2935  
F-statistic: 674.1 on 6 and 9714 DF,  p-value: < 2.2e-16  

  Estimate Std. Error t value Pr(>|t|)     
Intercept 0.7654839  0.0251287  30.463  < 2e-16 
Proliferative Index -0.0458482  0.0008316 -55.135  < 2e-16 
log10(NFKB1 expression) -0.0310699  0.0047090  -6.598 4.38e-11 
log10(NFKB2 expression) 0.0412251  0.0043534   9.470  < 2e-16 
log10(REL expression) -0.0019117  0.0023865  -0.801   0.423   
log10(RELA expression) -0.0417820  0.0062731  -6.661 2.88e-11 
log10(RELB expression) -0.0227510  0.0046963  -4.844 1.29e-06 
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Table S5. TCGA cancer type codes. 
TCGA abbreviation Cancer type 

LAML Acute myeloid leukemia 

ACC Adrenocortical carcinoma 

BLCA Bladder urothelial carcinoma 

LGG Brain lower grade glioma 

BRCA Breast invasive carcinoma 

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 

COAD Colon adenocarcinoma 

ESCA Esophageal carcinoma 

GBM Glioblastoma multiforme 

HNSC Head and neck squamous cell carcinoma 

KICH Kidney chromophobe 

KIRC Kidney renal clear cell carcinoma 

KIRP Kidney renal papillary cell carcinoma 

LIHC Liver hepatocellular carcinoma 

LUAD Lung adenocarcinoma 

LUSC Lung squamous cell carcinoma 

MESO Mesothelioma 

OV Ovarian serous cystadenocarcinoma 

PAAD Pancreatic adenocarcinoma 

PCPG Pheochromocytoma and paraganglioma 

PRAD Prostate adenocarcinoma 

READ Rectum adenocarcinoma 

SARC Sarcoma 

SKCM Skin cutaneous melanoma 

STAD Stomach adenocarcinoma 

TGCT Testicular germ cell tumors 

THYM Thymoma 

THCA Thyroid carcinoma 

UCS Uterine carcinosarcoma 

UCEC Uterine corpus endometrial carcinoma 

UVM Uveal melanoma 
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Supplementary datasets 
 
Supplementary dataset 1. mtOXPHOS-nuOXPHOS expression heatmaps using MRN 
normalization for 48 GTEx tissues. 
 
Supplementary dataset 2. mtOXPHOS-nuOXPHOS expression heatmaps using MRN 
normalization for 31 TCGA cancer types. 
 
Supplementary dataset 3. mtOXPHOS-nuOXPHOS expression heatmaps for matched 
tumour samples for 14 cancer types. 
 
Supplementary dataset 4. mtOXPHOS-nuOXPHOS expression heatmaps for matched 
normal samples for 14 cancer types. 
 
Supplementary dataset 5. Gene Ontology enrichment for the top 1000 genes, whose 
expression across GTEx tissues is most positively correlated with tissue mtOXPHOS-
nuOXPHOS correlation. 
 
Supplementary dataset 6. Gene Ontology enrichment for the bottom 1000 genes, whose 
expression across GTEx tissues is most negatively correlated with tissue mtOXPHOS-
nuOXPHOS correlation. 
 
Supplementary dataset 7. Gene Ontology enrichment for the top 1000 genes whose 
expression across TCGA cancer types is most positively correlated with cancer type 
mtOXPHOS-nuOXPHOS correlation. 
 
Supplementary dataset 8. Gene Ontology enrichment for the bottom 1000 genes, whose 
expression across TCGA cancer types is most negatively correlated with cancer type 
mtOXPHOS-nuOXPHOS correlation. 
 
Table S6. Spreadsheet containing HGNC symbols and ENSEMBL gene IDs for mtOXPHOS 
and nuOXPHOS genes used in this study. 
 
Supplementary text 1. R script used for all analyses, annotated according to corresponding 
figure panels.  
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Methods 
 
Raw data 
 
RNA-Seq data were downloaded from the GTEx data portal for GTEx v8, apart from data 
shown in Fig S2 from GTEx v6p. Data were downloaded as normalized TPM values (or 
FPKM values for GTEx v6p, later also converted to TPM) or as raw counts. ‘Harmonised’ 
(hg38) RNA-seq data were downloaded for TCGA projects using the ‘TCGAbiolinks’ 
package in R as normalized FPKM values or as raw counts. 
 
For TCGA cancer type analyses, we only considered samples annotated as Primary Tumours, 
except where we explicitly note that we perform analyses on adjacent normal tissue samples. 
 
We were mindful of the possibility of contamination of mitochondrial RNA reads by 
expression of nuclear integrations of mitochondrial DNA (NUMTs). Previous studies have 
established that NUMT contamination of mtDNA expression quantification in RNAseq data 
is negligible for the GTEx (Barshad, Blumberg et al. 2018) and TCGA (Reznik, Wang et al. 
2017) databases. 
 
We restricted our analyses to GTEx tissues with at least 100 samples or TCGA cancer types 
with at least 50 Primary Tumour samples. 
 
mtOXPHOS and nuOXPHOS genes 
 
The list of mtOXPHOS and nuOXPHOS genes was taken from Barshad, Blumberg et al. 
(2018) and can be found in Table S6. 
 
Normalizations 
 
For TCGA data and GTEx v6p, TPM values were obtained by converting FPKM values 
according to the following formula for gene i: 
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�
�	�� ����
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The MRN normalization was performed using the ‘DESeq2’ package in R. Normalizations 
were applied individually for each tissue or cancer type cohort. Normalized pseudocounts 
were obtained by converting raw counts data to a DEseq2DataSet using the 
‘DESeqDataSetFromMatrix()’ function, applying the ‘estimateSizeFactors()’ function to the 
resulting dds object, and then retrieving the normalized pseudocounts with the function 
‘counts()’ with ‘normalized = TRUE’. 
 
The TMM and UQ normalizations were performed using the ‘edgeR’ package in R. 
Normalizations were applied individually for each tissue or cancer type cohort. Raw counts 
were converted into a DGEList object with the function ‘DGEList’. Normalization factors 
were returned using the function ‘calcNormFactors()’ with method set as either ‘TMM’ or 
‘UQ’. Library scaling factors were then obtained by multiplying the resulting library sizes by 
the resulting normalization factors. All read counts for each library/sample were then 
multiplied by 106 and divided by the scaling factor for that library. 
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TPM (nuclear only) values for nuclear-encoded genes were obtained by multiplying raw read 
counts for nuclear genes by 106 and dividing by the sample sum of reads for all genes 
excluding those borne on mitochondrial DNA. mtDNA-encoded genes were normalized with 
the total sample sum instead, as for TPM. We did not normalize for transcript length; the 
values thus calculated should be considered as Counts Per Million. However, for correlation 
analysis, which does not involve direct comparison of genes within samples, this is 
equivalent to TPM. 
 
TPM values excluding haemoglobin reads or PRSS1/2 reads for GTEx Whole Blood or 
Pancreas samples respectively were obtained as for TPM nuclear only but excluding the read 
counts for those genes when computing the total sample read count, instead of the read counts 
for the mitochondrial genes. 
 
Correlations  
 
Correlations were computed using the ‘cor.test()’ function in R, with ‘method = “spearman”’ 
or ‘method = “pearson”’.  
 
Linear model correction of data prior to correlation analysis 
 
Before correlation analysis, we applied linear model corrections to normalized data to control 
for known confounders in the GTEx and TCGA datasets.  
 
Sample and donor information for the GTEx were downloaded from the GTEx data portal in 
the form of the Subject Phenotypes and Subject Annotations files accompanying GTEx v8 (or 
v6p as appropriate). TCGA metadata was obtained using the ‘all_metadata(subset = “tcga”)’ 
function of the ‘recount’ package in R. Some TCGA donors provided multiple cancer 
samples; these were all excluded to leave only samples unique to a single donor. 
 
Linear models were applied within each tissue or cancer type cohort, to account for tissue-
specific trends. We found that to apply linear models pooling GTEx tissues was to introduce 
grave artifacts which can profoundly affect downstream analysis. A linear model was fitted 
for each gene using the ‘lm()’ function in R and the resulting residuals were used downstream 
in correlation analyses. GTEx data were corrected for age bracket of the patient, sex of the 
patient, cause of death (Hardy scale), sample ischemic time and sequencing batch. Age 
bracket was considered to be a numerical variable, and the midpoint of the appropriate age 
bracket was taken for each sample to be entered into the linear model. We opted to use the 
publicly available age-bracket data so that our analyses can be readily reproduced. TCGA 
data (including matched normal samples) was corrected for the gender, race, tumour stage 
and age of the patient and the sequencing centre where the samples were processed. 
 
Correlations combining tissues or cancer types 
 
To perform a correlation analysis on combined tissues or cancer types, we took the residuals 
of expression data that had been normalized and corrected by fitting a linear model to control 
for confounding variables, as above. We filtered the tissue or cancer types for those with at 
least 100 (GTEx) or 50 (TCGA) samples, leaving 48 tissues and 31 cancers respectively. To 
ensure equal representation of each tissue or cancer type, we randomly sampled 100 (GTEx) 
or 50 (TCGA) from each tissue. Combining raw gene expression residuals for tissues or 
cancer types with different mtRNA levels may introduce artifacts, as high-expressing tissues 
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will have much greater variance in the absolute value of the residuals, despite the linear 
model controlling for the tissue average gene expression level. To account for this, we ranked 
the sample residuals for each gene within the sample chosen for each tissue or cancer type. 
We then combined the ranks for the chosen samples across tissue types, using the ranks in 
place of the raw residuals; this gave us 4800 samples for GTEx or 1550 samples for TCGA. 
The Spearman’s correlation was then computed across these aggregated ranks. As the result 
varies slightly depending on the random sampling within each tissue, we repeated this 
process 100 times. Heatmaps show the median correlation for any gene pair over the 100 
iterations. The order of mtOXPHOS/nuOXPHOS genes for all heatmaps for both GTEx and 
TCGA data throughout the manuscript is identical and was determined by clustering of the 
correlations for the MRN-normalized data combining GTEx tissues. Although the gene 
names are not shown in main figure panels, the genes are fully annotated with HGNC 
symbols in Supplementary Datasets 1-4. 
 
In order to provide a null distribution for the correlation of mtOXPHOS genes with 
nuOXPHOS genes, we repeated the process as above, but replaced the 126 nuOXPHOS 
genes with a random sample of 126 expressed nuclear genes (median TPM > 5 across all 
samples for all tissues/cancer types) for each iteration. This process was repeated 100 times. 
In order to test the observed mtOXPHOS-nuOXPHOS correlation against this distribution, 
the 100 median correlations for mtOXPHOS-nuOXPHOS gene pairs for each iteration was 
compared to the 100 median correlations of mtOXPHOS genes with random nuclear genes 
with a two-tailed t test. 
 
Correlations within tissues or cancer types 
 
For correlations reported within cancer types or tissue types, all available samples were 
utilised for the calculations. To provide a bootstrapped distribution, we calculated the median 
mtOXPHOS-nuOXPHOS for each tissue or cancer type 1000 times in samples constituted by 
resampling with replacement. The 95% confidence intervals shown in the main figure panels 
were calculated by multiplying the standard deviation of these 1000 bootstrap estimates of 
median mtOXPHOS-nuOXPHOS by 1.96. We used empirical p-values from the bootstrap 
distributions to test if observed median mtOXPHOS-nuOXPHOS correlations were different 
from 0. Raw p-values were the fraction of bootstrap values > 0 for tissue/cancer types s with 
observed negative correlations or < 0 for positive correlations. These p values were then 
corrected to FDR across tissue/cancer types. 
 
To test the significance of mtOXPHOS-nuOXPHOS correlations against mtOXPHOS with 
random nuclear genes, correlations were computed for each tissue/cancer type for the 
mtOXPHOS genes and 126 random nuclear genes (median TPM > 5 across all samples from 
all tissues/cancer types). This was repeated 100 times and the medians of the correlations of 
mtOXPHOS genes with random nuclear genes from each iteration were taken to be the null 
distribution. We confirmed that these medians conformed to a normal distribution, as would 
be expected under the Central Limit Theorem, by performing a Shapiro-Wilk normality test 
on the 100 medians for each tissue. The adjusted p-values (FDR) for the Shapiro-Wilk tests 
are reported in Table S1 and Table S2. The Z-statistic for the observed median mtOXPHOS-
nuOXPHOS correlation was then calculated by subtracting the mean and dividing by the 
standard deviation of the mtOXPHOS-random nuclear medians. p-values were then 
calculated for each tissue according to the normal cumulative distribution function and 
corrected to FDR (Table S1 and Table S2). 
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Matched cancer and normal samples 
 
Matched primary tumour and adjacent normal tissue samples were identified using TCGA 
metadata and barcodes. Tissues were identified with at least 10 normal samples. Using the 
donor portion of the TCGA barcode, matching primary tumour samples were identified. If 
multiple primary tumour samples matched the adjacent normal tissue sample, one was 
retained at random and the remainder were discarded. Additionally, normal tissue samples 
without lacking identifiable primary tumour samples in the expression data were discarded, 
such that all normal tissue samples had one matching primary tumour sample and vice versa. 
mtOXPHOS-nuOXPHOS correlations were computed using all samples. To calculate the 
bootstrapped standard error, we repeated the correlations using unique subsets of 90% of the 
datapoints 100 times. The bootstrapped standard error for the median mtOXPHOS-
nuOXPHOS correlation is the standard deviation of the bootstrapped median mtOXPHOS-
nuOXPHOS correlations. 
 
Dip test for bimodality 
 
To test for bimodality in the distribution of correlations among random nuclear genes, 
correlations for 100 sets of random genes were computed for all GTEx tissues using MRN-
normalized data. Hartigan’s dip test was then performed for each set of 100 random genes in 
each tissue using the ‘dip.test()’ function of the ‘diptest’ package in R. Dip test p-values were 
adjusted to FDR within each tissue. 
 
Gene ontology enrichment analysis 
 
To test for genes whose expression was associated with mtOXPHOS-nuOXPHOS co-
ordination, we calculated the mean expression of each gene in each tissue or cancer type (in 
pseudocounts generated by MRN normalisation of raw counts across all tissues/cancers). We 
then computed the Spearman’s correlation for each gene of the mean tissue/cancer 
pseudocounts with tissue/cancer mtOXPHOS-nuOXPHOS correlation calculated earlier 
using MRN normalisation. We ordered the gene lists in order of correlation and took the top 
or bottom 1000 genes. As these were ENSEMBL gene IDs, we retrieved the HGNC symbols 
for these genes using the ‘biomaRt’ package in R; this typically resulted in the loss of a 
fraction of the genes which lack HGNC symbols (such as some lncRNA genes). We then 
submitted the HGNC symbols to the ‘enrichr()’ function of the ‘enrichR’ package in R, using 
the reference databases ‘KEGG_2021_Human’, ‘GO_Molecular_Function_2018’, 
‘GO_Cellular_Component_2018’ and ‘GO_Biological_Process_2018’. 
 
Proliferative Index 
 
The Proliferative Index (PI) was calculated with the ‘ProliferativeIndex’ package in R. 
Briefly, the entire dataset across all tissues or cancer types was normalized by MRN and 
variance stabilising transformation using the ‘varianceStabilizingTransformation()’ function 
of DESeq2. Following the normalization, the PI was calculated by applying the 
‘readDataForPI()’ function with a randomly selected gene specified in the ‘modelIDs’ 
argument, then running ‘calculatePI()’ on the resulting object. 
 
Estimations of total immune fraction 
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The estimates for the total immune fraction of GTEx samples were taken directly from the 
GitHub repository associated with the GEDIT tool (Nadel, Lopez et al. 2021). 
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