Up and Down states occurring in neuronal networks regulate the
emergence and fragmentation of the alpha-band

Supplementary material
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1 Supplementary results

Table 1 summarizes the parameters used for all the simulation results presented in the main text
and in the following supplementary figures.
|| 1 population ||

2 populations || 3 populations

no AHP AHP no AHP & 1 AHP same E no AHP & 1| AHP
T 0.005 («) - 0.01s (A) | 0.025s [[0.005 () - 0.01s|0.025s 0.005s 0.005-0.07s |0.025s
Ty 0.2 - 0.58 0.5s 0.2 - 0.58 0.5s 0.1s 0.1-0.2s 0.5s
Ty 0.12 - 0.3s 0.3s 0.12 - 0.3s 0.3s 0.06s 0.06 - 0.12s | 0.3s
TmAHP 0.3s 0.12s 0.06s 0.12s
5.6 - 8.6 5.6 6.5
5.6 6.5
4.48 16.25
5.6 3.25
2.8 1.3
1.12 1.3
0 0
4.48 16.25
4.2 6.5
s | 5-15 [ 275(01) 55 (0p) [[10 (o7) 3 (scm) ][ 25 (omcR)
=
0.5 Hz
L 0.3 Hz
X 0.06

Table 1: Models 1 (1 population), 2 (2 populations) and 3 (3 populations) parameters (see Main
text, Methods). For models (2) and (3), the inhibitory population is always without AHP and
excitatory populations can be with or without AHP. For model (3) E; corresponds to the network
with AHP (U/D), and E, to the network without AHP («).
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Figure S1: Effect of network connectivity J and noise amplitude o on model (1) without
AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6
(upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 for J € [3.8,10]. C. Time-
series and spectrograms of h (60s simulations) with SEF95 (blue curve) for ¢ = 7 (upper), 11
(center) and 15 (lower). D. Mean value of the SEF95 for o € [5, 15]. Synaptic plasticity timescales:
7 = 0.025s,7, = 0.5s and 7 = 0.3s.



Figure S2: Effect of network connectivity J and noise amplitude ¢ on model (1) with
AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6
(upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 in the upstates for J € [3.8,10].
C. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for o = 7 (upper),
11 (center) and 15 (lower). D. Mean value of the SEF95 in the upstates for o € [5,15]. Synaptic

plasticity timescales: 7 = 0.025s,7,, = 0.5s and Tig= 0.3s.



Figure S3: Effect of an input current I,, during the up states in model (1). A. Time-
series and spectrograms of h (60s simulations, model (1) without AHP with J = 6.6, ¢ = 10,
7 = 0.01s,7, = 0.2s and 7, = 0.12s), with peak value of the oscillatory band, (black curve) for
I, = —20 (upper) 20 (center) and 80 (lower). B. Mean peak value of the oscillatory band for
I, € [—80,80]. C. Time-series and spectrograms of h (60s simulations, model (1) with AHP with
J =6.6, 0 =14, 7 = 0.025s,7,, = 0.5s and 7y = 0.3s). D. Proportion of time spent in up vs down
states for I, = {—20,20,80} (N = 50 simulations of 7" = 5min, model (1) with AHP).



Figure S4: Contribution of the three components of model (3) for a constant input.
A. Time-series of mean voltage h, spectrogram, facilitation x and depression y of system 3 (120s
simulations) for the excitatory network with AHP (U/D, left: 7 = 0.025s, 7y = 0.3s,7, = 0.5s), the
inhibitory network (N R, center) and the excitatory network without AHP («, right: 7 = 0.005s,
7r = 0.12s, 7, = 0.2s) with a constant input /; = 50 on the inhibitory network (red line). B.
Trajectories in the h — z — y phase space of each component (U/D, pink, left, NR black, center and
«, green, right).



Figure S5: Contribution of the three components of model (3) for a step input. A.
Time-series of mean voltage h, spectrogram, facilitation z and depression y of system 3 (120s
simulations) for the excitatory network with AHP (U/D, left: 7 = 0.005s, 7 = 0.06s,7, = 0.12s),
the inhibitory network (NR, center) and the excitatory network without AHP («, right: 7 = 0.005s,
7y = 0.06s,7, = 0.12s) with a step input /; = 1000 at 40-60s on the inhibitory network (red line).
B. Trajectories in the h — x — y phase space of each component (U/D, pink, left, NR black, center
and «, green, right).



v 2 Supplementary methods

n 2.1 Fragmentation analysis of an oscillatory band

Figure S6: Schematic of the fragmentation analysis using the spectrogram

» 2.2 Mathematical analysis of the phase-space associated with the mean-
13 field depression-facilitation model

11 We shall now describe the phase-space of the dynamical system (1) with and without AHP. In a
15 first subsection we describe the three critical points (two attractors and a saddle-point) and the
16 linearized dynamics around each point and in a second subsection we describe the numerical method
17 used to obtain the shape of the separatrix delimiting the basins of attraction of each attractor.

18 2.2.1 Description of the three critical points of the phase-space of network model (1)

v The phase-space of the deterministic system (1) contains three critical points that we shall analyze
20 1NOW.

a1 Down state attractor point Ap,.,

» The basin of attraction of the critical point Ape,, = (0, X, 1) (fig. STA and S8A, purple) defines
3 the Down state region. The Jacobian at this point is

-1+ JX
_ 0 0
T
1
JADmun = K(l - X) - O : (Sl)
Tf
1
LX 0 ——
T



Figure S7: Phase-space of system (1) without AHP. A. 3D phase-space of the system with
the two attractors Apey, (purple, resp. Ay, red) and saddle-point S (cyan) with its 2-dimensional
stable manifold I' (blue surface) which defines the separatrix. Stable trajectories (black curves) and
unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above light
red) I falling to Apewn (resp. Ayp). Top view (A.1), inset around Apyyy, and S (A.2), inset around
Ay, where deterministic trajectories oscillate at their eigenfrequency wy, (light red, A.3), schematic
summary of the entire phase-space (A.4). B. Stochastic trajectory lasting T' = 30s with ¢ = 10
starting at Apew, and oscillating around Ay,. C. (h,z,y)-time series of a stochastic trajectory,
with the spectrogram of the mean voltage h and SEF95 (blue curve).
8



JX -1 1 1
2 The eigenvalues are ()\’14 Pown )\54 Pown )\34 D"”") = ,——, ——). When the connectivity J

2 varies in the range [5.6, 8.6], the attractor Ap,y, is a stable-node since the first eigenvalue is negative

1
2 as long as J < <~ 16.67. For J € [5.6,8.6],7 = 0.025s, 7y = 0.3s, 7, = 0.5s and the parameter

2 values of Table 1, we obtain that A{Pewn e [—19, —27], A5Pe»" ~ —3.33 and )\?DC’”” ~ —2. The
s dynamics at this point is identical for the systems exhibiting AHP or not.

» Up state attractor Ay,
s The second critical point (fig. STA and S8A, red) is obtained by solving

K (J+1)+ LX7 + VA

T T (K + L)
o = T (52)
Typ — X
hoy =T + Ty + m
;1 where
A= (ryK(J+1)+ LX7)* —4(J7; K + L7,)77 K. (S3)

2 The dynamics around this point depends on whether the system exhibits AHP or not, we will now
;3 describe these two cases.

34 1. Neuronal network without AHP: For that system, the resting membrane potential Tj
35 and the recovery timescale 7y of the mean voltage h are constant in the entire phase-space.
36 The numerical range of values for the position of the critical point Ay, for J € [5.6,8.6],7 =
37 0.01s, 75 = 0.2s, 7, = 0.12s and parameters values from Table 1 is Ay, = (ha,, € [73.15,124.59],
38 Tay, € 10.83,0.89], ya,, € [0.22,0.13]). The Jacobian at this point is
0 JyUp(hUp - T — T0)+ JxUp(hUp T — T0)+
To To
1
JAUp = K(]. —ZL‘Up) —7_——I((h(]p—j—‘—,_z—'o)Jr 0 (S4)
!
L - 1 -
—7 —LyLQ(hUp - T — T()) _T_ — LJIUp(hUp - T — Tg) .

With the present parameters, J4, has one real negative and two complex conjugate eigen-

values with negative real part thus Ay, is a stable-focus: Xfw’ € [—55.71, —79.40] for the real
eigenvalue and the two complex conjugate eigenvalues are

Apy? € [~6.16, —14.73] + i[36.78, 51.87).

39 2. Neuronal network exhibiting AHP: the Up state attractor Ay, is situated in the subspace
40 of medium dynamics with hyperpolarization Q,, agp (fig. SSA-B, orange) where Ty = Tagp =

9



41

42

43

44

45

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

—30 and 79 = Ty amp € [0.06,0.3]s. For J € [5.6,8.6],7 = 0.025s, 74 = 0.3s,7,, = 0.5s the
position of Ay, is now Ay, = (ha,, € [-0.74,19.84], x4, € [0.83,0.89],y4,, € [0.22,0.13]) .
Here, the eigenvalues of Jy, are real and negative, thus for the system with AHP Ay, is a

stable-node. The numerical values are now Af”p € [—34.01, —43.96], Af”” € [—11.67,—18.94]
and ;"% € [—3.96, —3.65).

Saddle-point S

The third critical point S (fig. STA and S8A, cyan) is solution of equations

T K(J+1)+ LX7 — VA

s 2(JrsK + L)
1
- S5
s = 7 (S5)
he =T 4Ty 5~
5 0 TfK(l —ZE5>7

for J € [5.6,8.6],7 = 0.01s,7; = 0.2s,7, = 0.12s and the parameters are presented in Table
1, we get Ag = (hg € [2.52,1.08],z5 € [0.18,0.12],ys € [0.97,0.99]). The Jacobian at S does not
depend on whether the system exhibits AHP or not and it has one real positive and two real
negative eigenvalues, it is thus a saddle-node with an unstable manifold of dimension one and a
stable manifold of dimension two. With the present parameters, we obtain Ay € [—28.80, —25.03],
A5 € [18.96,16.08] and N5 € [—4.89, —4.97]. Finally, the stable two-dimensional manifold I' defines
the separatrix between the basins on attraction of Down Ap,,, and Up Ay, states.

2.2.2 Numerical construction of the separatrix

To represent the stable manifold I' of the saddle-point S, we use the following algorithm based on
numerical approximations (figs. STA-B and S8A-B, blue surface). Since I' defines the separatrix
between the two basins of attraction for the attractors Apew, and Ay, we ran simulations of the
noiseless dynamics for o = 0 of system (1) with the initial condition sampling the entire phase space.
We used grid points (h;, z;,y;) € [—35,500] x [0,1], x[0, 1]) with ¢, = 1,d, = J, = 0.05. Each initial
point was then attributed to the basin of attraction of the attractor at which the corresponding
trajectory ended. The separatrix I' is defined as the border between the set of initial points falling
into the basin of Apy., and those falling into the basin of Ay,,.

This separatrix does not define a bounded domain for neither attractor but rather separates the
entire phase-space in two subdomains, one above I' leading to the Up state and the other one below
I' to the Down state .

2.3 Segmentation of the time-series to detect Up and Down states

To determine whether the neuronal population is in an Up or a Down state, we segmented the
simulated time-series according to the following criteria:

- the Up states are defined in the subspace {z > zy, = 0.5&h < hyp = 0.175hm00 },

10
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Figure S8: Phase-space of system (1) with AHP. A. 3D phase-space of the system with the
two attractor points Apywn (purple), Ay, (red) and the saddle-point S (cyan) with its 2-dimensional
stable manifold I' (blue surface) which defines the separatrix. Stable trajectories (black curves) and
unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above
light red) I' falling to Apewn (resp. Agy,). The phase-space is separated into 3 subspaces defining
the different dynamics: fast Qs (above pink and orange meshes), medium Q,,4zp (below the
orange mesh) and slow Q4pp (below the pink mesh). Top view (A.1), inset around Apyyy and S
(A.2), inset around Ag, (A.3), schematic summary of the entire phase-space (A.4). B. Stochastic
trajectory lasting 7' = 30s with o = 10 starting at Apew, and oscillating between Ag, and Apown.

C. (h,x,y)-time series of a stochastic trajectory, with the spectrogram of the mean voltage h and
SEF95 (blue curve).
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- the Down states are defined when {y > ypouwn = 0.95}

We added the threshold on A for the Up state detection because we do not want to count the bursts,
defining the transition from Down to Up, as an Up state.

To determine the proportion of time spent in Up vs Down state for one neuronal population with
AHP (fig. 3C-D, main text), we ran simulations of system (1) with AHP for N = 100 trajectories
of duration 7' = 600s with J € {5.6,6.6,7.6} and o = 14.

Similarly, for the model (2) with two populations (fig. 4B-D, main text), we segmented the time-
series of the excitatory population for N = 100 trajectories of duration T" = 600s.

Finally for the three population network (3), we segmented the time-series of the excitatory network
a without AHP (IV = 100 trajectories of duration 7" = 300s).

2.4 Numerical methods

All simulations were run in Matlab, using Runge-Kutta 4 scheme with a time step At = 0.005s.
We also tried At = 0.001s and obtained the same results, thus ensuring stability.
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