1	Up and Down states occurring in neuronal networks regulate the
2	emergence and fragmentation of the alpha-band
3	
4	Supplementary material
5	
6	Lou Zonca ^{1,2} David Holcman ²

7 1 Supplementary results

9

⁸ Table 1 summarizes the parameters used for all the simulation results presented in the main text and in the following supplementary figures.

	1 population		2 populations		3 populations			
	no AHP	AHP	no AHP & I	AHP	same E	no AHP & I	AHP	
τ	$0.005 (\alpha) - 0.01s (\theta)$	0.025s	$0.005 (\alpha) - 0.01s$	0.025s	0.005s	0.005 - 0.07s	0.025s	
$ au_r$	0.2 - 0.5s	0.5s	0.2 - 0.5s	0.5s	0.1s	0.1 -0.2s	0.5s	
$ au_f$	0.12 - 0.3s	0.3s	0.12 - 0.3s	0.3s	0.06s	0.06 - 0.12s	0.3s	
$ au_{mAHP}$		0.3s		0.12s	0.06s		0.12s	
$ au_{sAHP}$		$1\mathrm{s}$ - $10.5\mathrm{s}$		1s	0.5s		1s	
$J_{E_1E_1}$	5.6 - 8.6		6.8		5.6	6.5		
J_{E_1I}			5.1		5.6	6.5		
J_{IE_1}			3.4		4.48	16.25		
J_{II}			8.5		5.6	3.25		
$J_{E_1E_2}$					2.8	1.3		
$J_{E_2E_1}$					1.12	1.3		
J_{E_2I}					0	0		
J_{IE_2}					4.48	16.25		
$J_{E_2E_2}$					4.2	6.5		
σ	5 - 15		2.75 (σ_I) 5.5 ((σ_E)	$10 (\sigma_T) 3 (\sigma_{C,R})$	2.5 ($\sigma_{T,C}$	(R)	
T_{AHP}		-30		-30	-30		-30	
K	0.5 Hz							
L	$0.3~\mathrm{Hz}$							
X	0.06							

Table 1: Models 1 (1 population), 2 (2 populations) and 3 (3 populations) parameters (see Main text, Methods). For models (2) and (3), the inhibitory population is always without AHP and excitatory populations can be with or without AHP. For model (3) E_1 corresponds to the network with AHP (U/D), and E_2 to the network without AHP (α) .

¹Sorbonne University, Pierre et Marie Curie Campus, 5 place Jussieu 75005 Paris, France.

²Group of Applied Mathematics and Computational Biology, École Normale Supérieure, France.

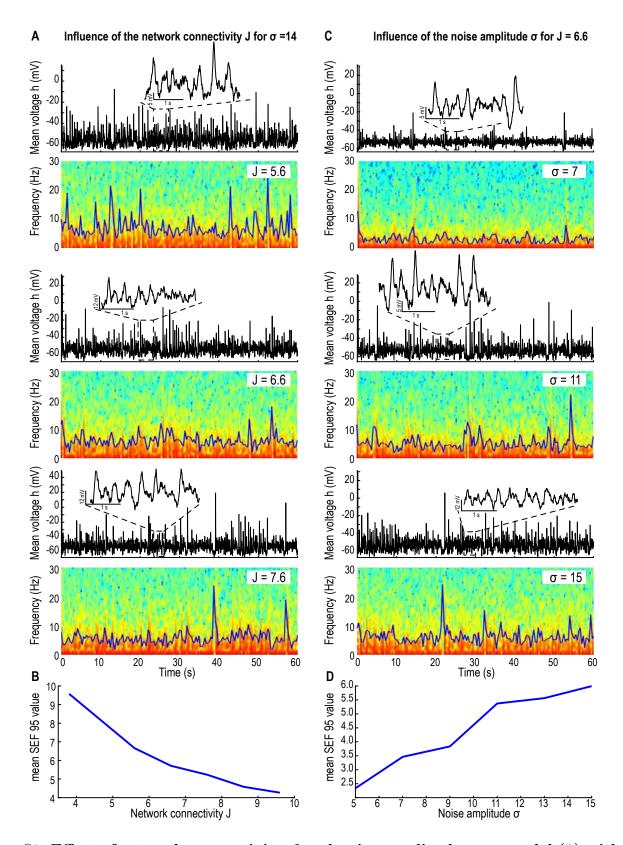


Figure S1: Effect of network connectivity J and noise amplitude σ on model (1) without AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6 (upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 for $J \in [3.8, 10]$. C. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for $\sigma = 7$ (upper), 11 (center) and 15 (lower). D. Mean value of the SEF95 for $\sigma \in [5, 15]$. Synaptic plasticity timescales: $\tau = 0.025s, \tau_r = 0.5s$ and $\tau_f = 0.3s$.

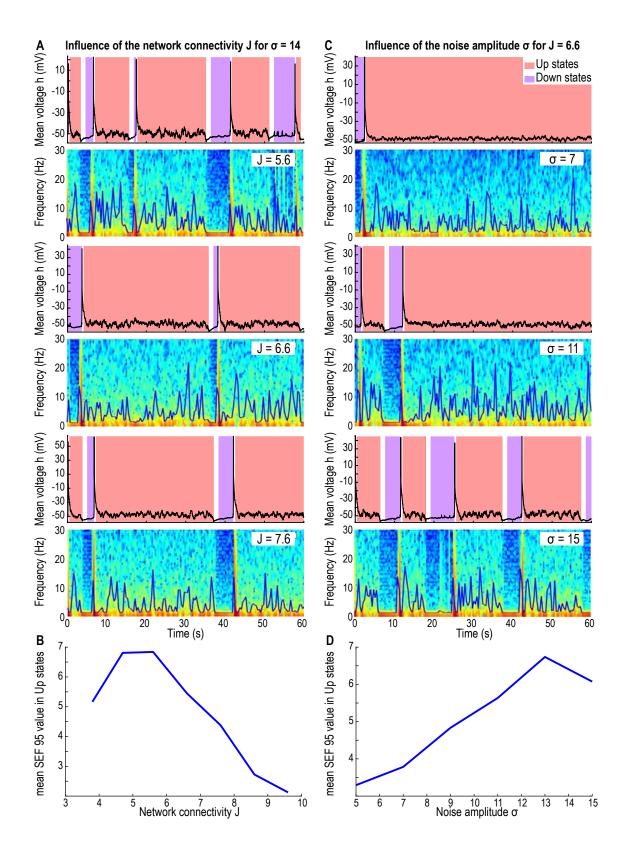


Figure S2: Effect of network connectivity J and noise amplitude σ on model (1) with AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6 (upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 in the upstates for $J \in [3.8, 10]$. C. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for $\sigma = 7$ (upper), 11 (center) and 15 (lower). D. Mean value of the SEF95 in the upstates for $\sigma \in [5, 15]$. Synaptic plasticity timescales: $\tau = 0.025$, $\tau_r = 0.5$ s and $\tau_{f_3} = 0.3$ s.

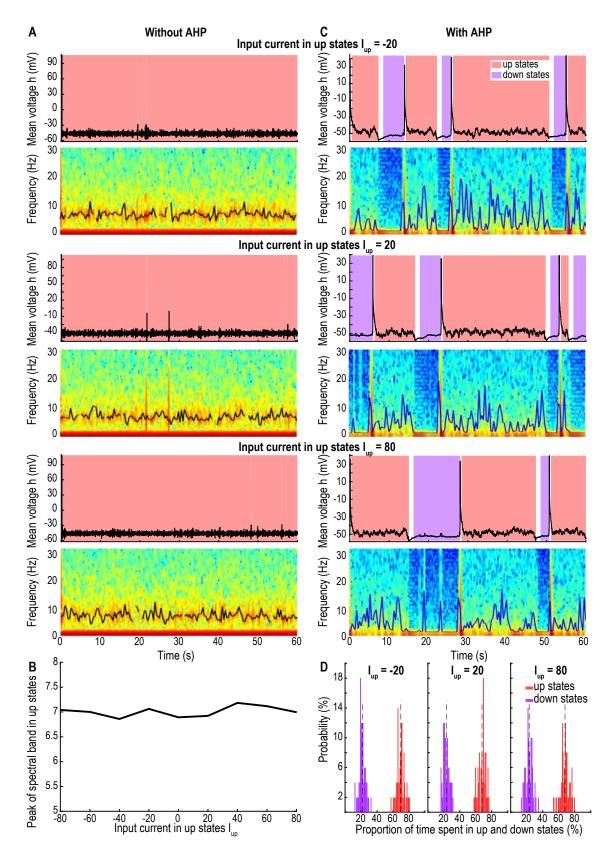


Figure S3: Effect of an input current I_{up} during the up states in model (1). A. Timeseries and spectrograms of h (60s simulations, model (1) without AHP with J = 6.6, $\sigma = 10$, $\tau = 0.01s$, $\tau_r = 0.2s$ and $\tau_f = 0.12s$), with peak value of the oscillatory band, (black curve) for $I_{up} = -20$ (upper) 20 (center) and 80 (lower). B. Mean peak value of the oscillatory band for $I_{up} \in [-80, 80]$. C. Time-series and spectrograms of h (60s simulations, model (1) with AHP with J = 6.6, $\sigma = 14$, $\tau = 0.025s$, $\tau_r = 0.5s$ and $\tau_f = 0.3s$). D. Proportion of time spent in up vs down states for $I_{up} = \{-20, 20, 80\}$ (N = 50 simulations of T = 5min, model (1) with AHP).

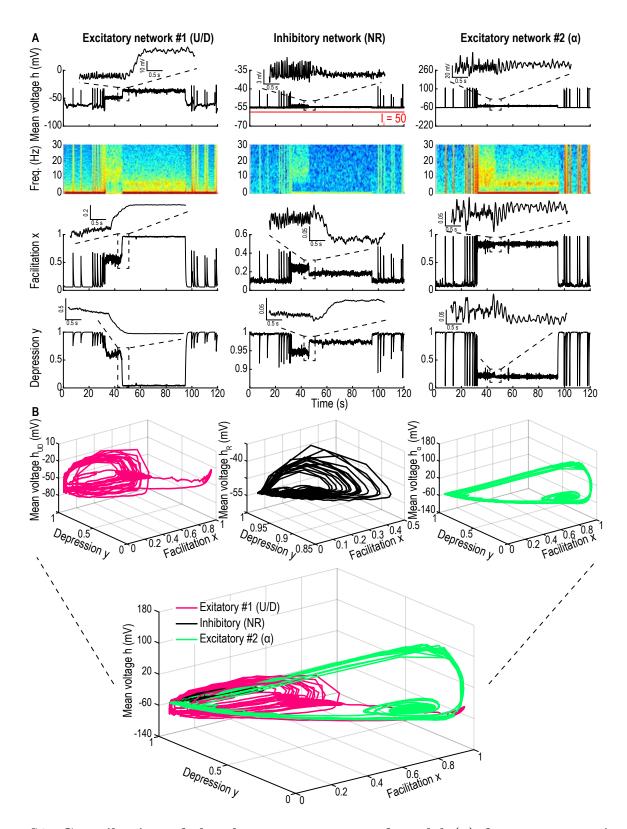


Figure S4: Contribution of the three components of model (3) for a constant input. A. Time-series of mean voltage h, spectrogram, facilitation x and depression y of system 3 (120s simulations) for the excitatory network with AHP (U/D), left: $\tau = 0.025$ s, $\tau_f = 0.3$ s, $\tau_r = 0.5$ s), the inhibitory network (NR), center) and the excitatory network without AHP $(\alpha, \text{ right: } \tau = 0.005$ s, $\tau_f = 0.12$ s, $\tau_r = 0.2$ s) with a constant input $I_i = 50$ on the inhibitory network (red line). B. Trajectories in the h - x - y phase space of each component (U/D), pink, left, NR black, center and α , green, right).

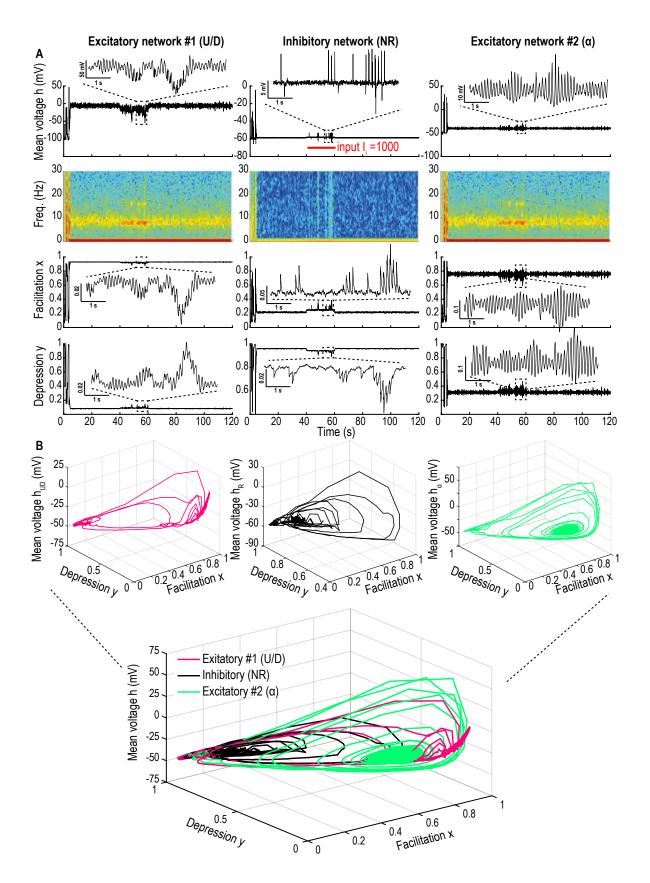


Figure S5: Contribution of the three components of model (3) for a step input. A. Time-series of mean voltage h, spectrogram, facilitation x and depression y of system 3 (120s simulations) for the excitatory network with AHP (U/D, left: $\tau = 0.005s$, $\tau_f = 0.06s$, $\tau_r = 0.12s$), the inhibitory network (NR, center) and the excitatory network without AHP (α , right: $\tau = 0.005s$, $\tau_f = 0.06s$, $\tau_r = 0.12s$) with a step input $I_i = 1060$ at 40-60s on the inhibitory network (red line). B. Trajectories in the h - x - y phase space of each component (U/D, pink, left, NR black, center and α , green, right).

¹⁰ 2 Supplementary methods

¹¹ 2.1 Fragmentation analysis of an oscillatory band

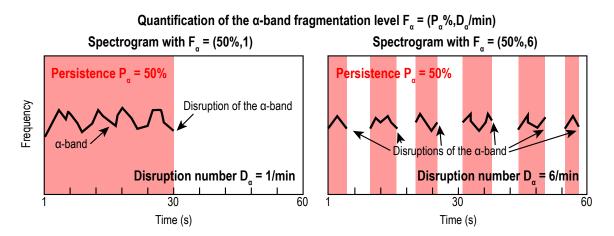


Figure S6: Schematic of the fragmentation analysis using the spectrogram

2.2 Mathematical analysis of the phase-space associated with the mean field depression-facilitation model

We shall now describe the phase-space of the dynamical system (1) with and without AHP. In a first subsection we describe the three critical points (two attractors and a saddle-point) and the linearized dynamics around each point and in a second subsection we describe the numerical method used to obtain the shape of the separatrix delimiting the basins of attraction of each attractor.

$_{18}$ 2.2.1 Description of the three critical points of the phase-space of network model (1)

¹⁹ The phase-space of the deterministic system (1) contains three critical points that we shall analyze ²⁰ now.

²¹ Down state attractor point A_{Down}

The basin of attraction of the critical point $A_{Down} = (0, X, 1)$ (fig. S7A and S8A, purple) defines the Down state region. The Jacobian at this point is

$$J_{A_{Down}} = \begin{pmatrix} \frac{-1 + JX}{\tau} & 0 & 0\\ K(1 - X) & -\frac{1}{\tau_f} & 0\\ LX & 0 & -\frac{1}{\tau_r} \end{pmatrix}.$$
 (S1)

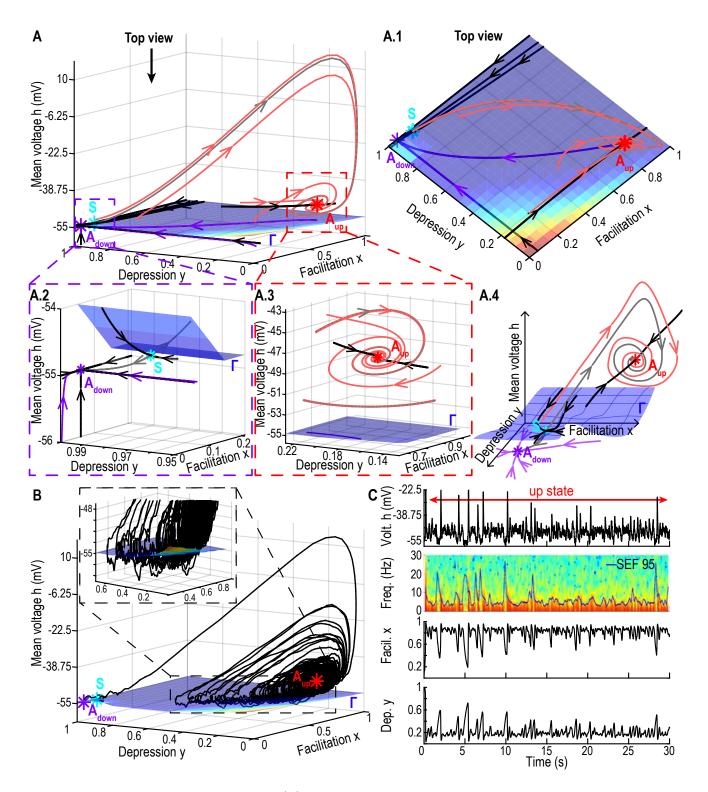


Figure S7: Phase-space of system (1) without AHP. A. 3D phase-space of the system with the two attractors A_{Down} (purple, resp. A_{Up} , red) and saddle-point S (cyan) with its 2-dimensional stable manifold Γ (blue surface) which defines the separatrix. Stable trajectories (black curves) and unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above light red) Γ falling to A_{Down} (resp. A_{Up}). Top view (A.1), inset around A_{Down} and S (A.2), inset around A_{Up} where deterministic trajectories oscillate at their eigenfrequency ω_{Up} (light red, A.3), schematic summary of the entire phase-space (A.4). **B.** Stochastic trajectory lasting T = 30s with $\sigma = 10$ starting at A_{Down} and oscillating around A_{Up} . **C.** (h, x, y)-time series of a stochastic trajectory, with the spectrogram of the mean voltage h and SEF95 (blue curve).

The eigenvalues are $(\lambda_1^{A_{Down}}, \lambda_2^{A_{Down}}, \lambda_3^{A_{Down}}) = \left(\frac{JX-1}{\tau}, -\frac{1}{\tau_f}, -\frac{1}{\tau_r}\right)$. When the connectivity Jvaries in the range [5.6, 8.6], the attractor A_{Down} is a stable-node since the first eigenvalue is negative as long as $J \leq \frac{1}{X} \approx 16.67$. For $J \in [5.6, 8.6], \tau = 0.025s, \tau_f = 0.3s, \tau_r = 0.5s$ and the parameter values of Table 1, we obtain that $\lambda_1^{A_{Down}} \in [-19, -27], \lambda_2^{A_{Down}} \approx -3.33$ and $\lambda_3^{A_{Down}} \approx -2$. The dynamics at this point is identical for the systems exhibiting AHP or not.

²⁹ Up state attractor A_{Up}

³⁰ The second critical point (fig. S7A and S8A, red) is obtained by solving

$$x_{Up} = \frac{\tau_f K(J+1) + LX\tau_r + \sqrt{\Delta}}{2(J\tau_f K + L\tau_r)}$$

$$y_{Up} = \frac{1}{Jx_{Up}}$$

$$h_{Up} = T + T_0 + \frac{x_{Up} - X}{\tau_f K(1 - x_{Up})},$$

(S2)

31 where

$$\Delta = (\tau_f K (J+1) + L X \tau_r)^2 - 4 (J \tau_f K + L \tau_r) \tau_f K.$$
(S3)

The dynamics around this point depends on whether the system exhibits AHP or not, we will now describe these two cases.

1. Neuronal network without AHP: For that system, the resting membrane potential T_0 and the recovery timescale τ_0 of the mean voltage h are constant in the entire phase-space. The numerical range of values for the position of the critical point A_{Up} for $J \in [5.6, 8.6], \tau = 0.01s, \tau_f = 0.2s, \tau_r = 0.12s$ and parameters values from Table 1 is $A_{Up} = (h_{A_{Up}} \in [73.15, 124.59], x_{A_{Up}} \in [0.83, 0.89], y_{A_{Up}} \in [0.22, 0.13]$). The Jacobian at this point is

$$J_{A_{Up}} = \begin{pmatrix} 0 & \frac{Jy_{Up}(h_{Up} - T - T_0)^+}{\tau_0} & \frac{Jx_{Up}(h_{Up} - T - T_0)^+}{\tau_0} \\ K(1 - x_{Up}) & -\frac{1}{\tau_f} - K(h_{Up} - T - T_0)^+ & 0 \\ -\frac{L}{J} & -Ly_{1,2}(h_{Up} - T - T_0)^+ & -\frac{1}{\tau_r} - Lx_{Up}(h_{Up} - T - T_0)^+. \end{pmatrix}$$
(S4)

With the present parameters, $J_{A_{Up}}$ has one real negative and two complex conjugate eigenvalues with negative real part thus A_{Up} is a stable-focus: $\lambda_1^{A_{Up}} \in [-55.71, -79.40]$ for the real eigenvalue and the two complex conjugate eigenvalues are

$$\lambda_{2,3}^{A_{U_p}} \in [-6.16, -14.73] \pm i[36.78, 51.87].$$

2. Neuronal network exhibiting AHP: the Up state attractor A_{Up} is situated in the subspace of medium dynamics with hyperpolarization Ω_{mAHP} (fig. S8A-B, orange) where $T_0 = T_{AHP} =$ 41 $-30 \text{ and } \tau_0 = \tau_{m,AHP} \in [0.06, 0.3]$ s. For $J \in [5.6, 8.6], \tau = 0.025s, \tau_f = 0.3s, \tau_r = 0.5s$ the

⁴² position of A_{Up} is now $A_{Up} = (h_{A_{Up}} \in [-0.74, 19.84], x_{A_{Up}} \in [0.83, 0.89], y_{A_{Up}} \in [0.22, 0.13])$.

Here, the eigenvalues of $J_{A_{Up}}$ are real and negative, thus for the system with AHP A_{Up} is a stable-node. The numerical values are now $\lambda_1^{A_{Up}} \in [-34.01, -43.96], \lambda_2^{A_{Up}} \in [-11.67, -18.94]$

stable-node. The numerical values are now $\lambda_1^{\circ p} \in [-34.01, -43.96], \lambda_2^{\circ p} \in [-11.67, -18.94]$ and $\lambda_3^{A_{Up}} \in [-3.96, -3.65].$

46 Saddle-point S

⁴⁷ The third critical point S (fig. S7A and S8A, cyan) is solution of equations

$$x_{S} = \frac{\tau_{f}K(J+1) + LX\tau_{r} - \sqrt{\Delta}}{2(J\tau_{f}K + L\tau_{r})}$$

$$y_{S} = \frac{1}{Jx_{S}}$$

$$h_{S} = T + T_{0} + \frac{x_{S} - X}{\tau_{f}K(1 - x_{S})},$$
(S5)

for $J \in [5.6, 8.6], \tau = 0.01s, \tau_f = 0.2s, \tau_r = 0.12s$ and the parameters are presented in Table 1, we get $A_S = (h_S \in [2.52, 1.08], x_S \in [0.18, 0.12], y_S \in [0.97, 0.99])$. The Jacobian at S does not depend on whether the system exhibits AHP or not and it has one real positive and two real negative eigenvalues, it is thus a saddle-node with an unstable manifold of dimension one and a stable manifold of dimension two. With the present parameters, we obtain $\lambda_1^S \in [-28.80, -25.03],$ $\lambda_2^S \in [18.96, 16.08]$ and $\lambda_3^S \in [-4.89, -4.97]$. Finally, the stable two-dimensional manifold Γ defines the separatrix between the basins on attraction of Down A_{Down} and Up A_{Up} states.

⁵⁵ 2.2.2 Numerical construction of the separatrix

To represent the stable manifold Γ of the saddle-point S, we use the following algorithm based on 56 numerical approximations (figs. S7A-B and S8A-B, blue surface). Since Γ defines the separatrix 57 between the two basins of attraction for the attractors A_{Down} and A_{Up} , we ran simulations of the 58 noiseless dynamics for $\sigma = 0$ of system (1) with the initial condition sampling the entire phase space. 59 We used grid points $(h_i, x_i, y_i) \in [-35, 500] \times [0, 1], \times [0, 1])$ with $\delta_h = 1, \delta_x = \delta_y = 0.05$. Each initial 60 point was then attributed to the basin of attraction of the attractor at which the corresponding 61 trajectory ended. The separatrix Γ is defined as the border between the set of initial points falling 62 into the basin of A_{Down} and those falling into the basin of A_{Up} . 63

⁶⁴ This separatrix does not define a bounded domain for neither attractor but rather separates the ⁶⁵ entire phase-space in two subdomains, one above Γ leading to the Up state and the other one below ⁶⁶ Γ to the Down state

⁶⁶ Γ to the Down state .

⁶⁷ 2.3 Segmentation of the time-series to detect Up and Down states

To determine whether the neuronal population is in an Up or a Down state, we segmented the simulated time-series according to the following criteria:

- the Up states are defined in the subspace $\{x \ge x_{Up} = 0.5 \& h \le h_{Up} = 0.175 h_{max}\},\$

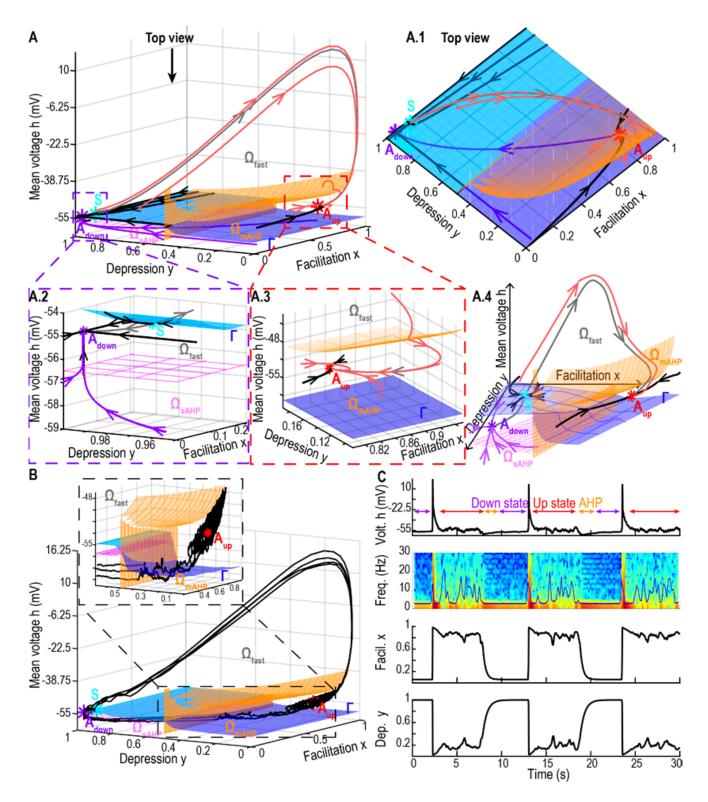


Figure S8: **Phase-space of system (1) with AHP. A.** 3D phase-space of the system with the two attractor points A_{Down} (purple), A_{Up} (red) and the saddle-point S (cyan) with its 2-dimensional stable manifold Γ (blue surface) which defines the separatrix. Stable trajectories (black curves) and unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above light red) Γ falling to A_{Down} (resp. A_{Up}). The phase-space is separated into 3 subspaces defining the different dynamics: fast Ω_{fast} (above pink and orange meshes), medium Ω_{mAHP} (below the orange mesh) and slow Ω_{sAHP} (below the pink mesh). Top view (A.1), inset around A_{Down} and S (A.2), inset around A_{Up} (A.3), schematic summary of the entire phase-space (A.4). **B.** Stochastic trajectory lasting T = 30s with $\sigma = 10$ starting at A_{Down} and oscillating between A_{Up} and A_{Down} . **C.** (h, x, y)-time series of a stochastic trajectory, with the spectrogram of the mean voltage h and SEF95 (blue curve).

- the Down states are defined when $\{y \ge y_{Down} = 0.95\}$

- ⁷² We added the threshold on h for the Up state detection because we do not want to count the bursts,
- $_{73}\;$ defining the transition from Down to Up, as an Up state.
- ⁷⁴ To determine the proportion of time spent in Up vs Down state for one neuronal population with
- ⁷⁵ AHP (fig. 3C-D, main text), we ran simulations of system (1) with AHP for N = 100 trajectories
- ⁷⁶ of duration T = 600s with $J \in \{5.6, 6.6, 7.6\}$ and $\sigma = 14$.
- ⁷⁷ Similarly, for the model (2) with two populations (fig. 4B-D, main text), we segmented the time-
- respectively series of the excitatory population for N = 100 trajectories of duration T = 600s.
- ⁷⁹ Finally for the three population network (3), we segmented the time-series of the excitatory network
- α without AHP (N = 100 trajectories of duration T = 300s).

⁸¹ 2.4 Numerical methods

- ⁸² All simulations were run in Matlab, using Runge-Kutta 4 scheme with a time step $\Delta t = 0.005$ s.
- We also tried $\Delta t = 0.001$ s and obtained the same results, thus ensuring stability.