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1 Supplementary results7

Table 1 summarizes the parameters used for all the simulation results presented in the main text8

and in the following supplementary figures.

1 population 2 populations 3 populations

no AHP AHP no AHP & I AHP same E no AHP & I AHP

τ 0.005 (α) - 0.01s (θ) 0.025s 0.005 (α) - 0.01s 0.025s 0.005s 0.005-0.07s 0.025s
τr 0.2 - 0.5s 0.5s 0.2 - 0.5s 0.5s 0.1s 0.1 -0.2s 0.5s
τf 0.12 - 0.3s 0.3s 0.12 - 0.3s 0.3s 0.06s 0.06 - 0.12s 0.3s

τmAHP 0.3s 0.12s 0.06s 0.12s
τsAHP 1s - 10.5s 1s 0.5s 1s

JE1E1 5.6 - 8.6 6.8 5.6 6.5
JE1I 5.1 5.6 6.5
JIE1 3.4 4.48 16.25
JII 8.5 5.6 3.25
JE1E2 2.8 1.3
JE2E1 1.12 1.3
JE2I 0 0
JIE2 4.48 16.25
JE2E2 4.2 6.5

σ 5 - 15 2.75 (σI) 5.5 (σE) 10 (σT ) 3 (σC,R) 2.5 (σT,C,R)

TAHP -30 -30 -30 -30

K 0.5 Hz
L 0.3 Hz
X 0.06

Table 1: Models 1 (1 population), 2 (2 populations) and 3 (3 populations) parameters (see Main
text, Methods). For models (2) and (3), the inhibitory population is always without AHP and
excitatory populations can be with or without AHP. For model (3) E1 corresponds to the network
with AHP (U/D), and E2 to the network without AHP (α).
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Figure S1: Effect of network connectivity J and noise amplitude σ on model (1) without
AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6
(upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 for J ∈ [3.8, 10]. C. Time-
series and spectrograms of h (60s simulations) with SEF95 (blue curve) for σ = 7 (upper), 11
(center) and 15 (lower). D. Mean value of the SEF95 for σ ∈ [5, 15]. Synaptic plasticity timescales:
τ = 0.025s,τr = 0.5s and τf = 0.3s.
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Figure S2: Effect of network connectivity J and noise amplitude σ on model (1) with
AHP. A. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for J = 5.6
(upper), 6.6 (center) and 7.6 (lower). B. Mean value of the SEF95 in the upstates for J ∈ [3.8, 10].
C. Time-series and spectrograms of h (60s simulations) with SEF95 (blue curve) for σ = 7 (upper),
11 (center) and 15 (lower). D. Mean value of the SEF95 in the upstates for σ ∈ [5, 15]. Synaptic
plasticity timescales: τ = 0.025s,τr = 0.5s and τf = 0.3s.
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series and spectrograms of h (60s simulations, model (1) without AHP with J = 6.6, σ = 10,
τ = 0.01s,τr = 0.2s and τf = 0.12s), with peak value of the oscillatory band, (black curve) for
Iup = −20 (upper) 20 (center) and 80 (lower). B. Mean peak value of the oscillatory band for
Iup ∈ [−80, 80]. C. Time-series and spectrograms of h (60s simulations, model (1) with AHP with
J = 6.6, σ = 14, τ = 0.025s,τr = 0.5s and τf = 0.3s). D. Proportion of time spent in up vs down
states for Iup = {−20, 20, 80} (N = 50 simulations of T = 5min, model (1) with AHP).
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Figure S4: Contribution of the three components of model (3) for a constant input.
A. Time-series of mean voltage h, spectrogram, facilitation x and depression y of system 3 (120s
simulations) for the excitatory network with AHP (U/D, left: τ = 0.025s, τf = 0.3s,τr = 0.5s), the
inhibitory network (NR, center) and the excitatory network without AHP (α, right: τ = 0.005s,
τf = 0.12s, τr = 0.2s) with a constant input Ii = 50 on the inhibitory network (red line). B.
Trajectories in the h−x− y phase space of each component (U/D, pink, left, NR black, center and
α, green, right).

5



-100
-50

0
50

Me
an

 vo
lta

ge
 h 

(m
V)

Excitatory network #1 (U/D)

0
0.2
0.4
0.6
0.8

1

Fa
cil

ita
tio

n x

0 20 40 60 80 100 120

0.2
0.4
0.6
0.8

1

De
pr

es
sio

n y

-80
-60
-40
-20

0

Inhibitory network (NR)

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100 120
Time (s)

0.6

0.8

1

-100

-50

0

50

Excitatory network #2 (α)

0
0.2
0.4
0.6
0.8

1

0 20 40 60 80 100 120

0.2
0.4
0.6
0.8

1

Fr
eq

. (
Hz

)

0

10

20

30

0

10

20

30

0

10

20

30

1 s

50
 m

V

1 s

5 m
V

1 s

10
 m

V

1 s

0.0
2

1 s

0.0
2

1 s

0.0
5

1 s

0.0
2

1 s

0.1

1 s

0.1

Me
an

 vo
lta

ge
 h α

 (m
V)

Depression y Facilitation x

1

-50

1

0

0.80.5

50

0.60.40.20 0

Me
an

 vo
lta

ge
 h R (m

V)

Depression y Facilitation x

-90
1

-60

1

-30

0.8 0.8

0

0.6

30

0.6 0.40.20.4 0

Me
an

 vo
lta

ge
 h UD

 (m
V)

Depression y Facilitation x

-75
1

-50

1

-25

0.8

0

0.5 0.6

25

0.40.20 0

Me
an

 vo
lta

ge
 h 

(m
V)

Depression y Facilitation x

-75
1

-50

-25

1

0

25

0.80.5

50

0.6

75

0.4
0.20 0

Exitatory #1 (U/D)
Inhibitory (NR)
Excitatory #2 (α)

A

B

input Ii =1000

Figure S5: Contribution of the three components of model (3) for a step input. A.
Time-series of mean voltage h, spectrogram, facilitation x and depression y of system 3 (120s
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2 Supplementary methods10

2.1 Fragmentation analysis of an oscillatory band11
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Figure S6: Schematic of the fragmentation analysis using the spectrogram

2.2 Mathematical analysis of the phase-space associated with the mean-12

field depression-facilitation model13

We shall now describe the phase-space of the dynamical system (1) with and without AHP. In a14

first subsection we describe the three critical points (two attractors and a saddle-point) and the15

linearized dynamics around each point and in a second subsection we describe the numerical method16

used to obtain the shape of the separatrix delimiting the basins of attraction of each attractor.17

2.2.1 Description of the three critical points of the phase-space of network model (1)18

The phase-space of the deterministic system (1) contains three critical points that we shall analyze19

now.20

Down state attractor point ADown21

The basin of attraction of the critical point ADown = (0, X, 1) (fig. S7A and S8A, purple) defines22

the Down state region. The Jacobian at this point is23

JADown
=



− 1 + JX

τ
0 0

K(1−X) −
1

τf
0

LX 0 −
1

τr

 . (S1)
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Figure S7: Phase-space of system (1) without AHP. A. 3D phase-space of the system with
the two attractors ADown (purple, resp. AUp, red) and saddle-point S (cyan) with its 2-dimensional
stable manifold Γ (blue surface) which defines the separatrix. Stable trajectories (black curves) and
unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above light
red) Γ falling to ADown (resp. AUp). Top view (A.1), inset around ADown and S (A.2), inset around
AUp where deterministic trajectories oscillate at their eigenfrequency ωUp (light red, A.3), schematic
summary of the entire phase-space (A.4). B. Stochastic trajectory lasting T = 30s with σ = 10
starting at ADown and oscillating around AUp. C. (h, x, y)-time series of a stochastic trajectory,
with the spectrogram of the mean voltage h and SEF95 (blue curve).
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The eigenvalues are
(
λADown
1 , λADown

2 , λADown
3

)
=

(
JX − 1

τ
,−

1

τf
,−

1

τr

)
. When the connectivity J24

varies in the range [5.6, 8.6], the attractor ADown is a stable-node since the first eigenvalue is negative25

as long as J ≤
1

X
≈ 16.67. For J ∈ [5.6, 8.6], τ = 0.025s, τf = 0.3s, τr = 0.5s and the parameter26

values of Table 1, we obtain that λADown
1 ∈ [−19,−27], λADown

2 ≈ −3.33 and λADown
3 ≈ −2. The27

dynamics at this point is identical for the systems exhibiting AHP or not.28

Up state attractor AUp29

The second critical point (fig. S7A and S8A, red) is obtained by solving30

xUp =
τfK(J + 1) + LXτr +

√
∆

2(JτfK + Lτr)

yUp =
1

JxUp

hUp = T + T0 +
xUp −X

τfK(1− xUp)
,

(S2)

where31

∆ = (τfK(J + 1) + LXτr)
2 − 4(JτfK + Lτr)τfK. (S3)

The dynamics around this point depends on whether the system exhibits AHP or not, we will now32

describe these two cases.33

1. Neuronal network without AHP: For that system, the resting membrane potential T034

and the recovery timescale τ0 of the mean voltage h are constant in the entire phase-space.35

The numerical range of values for the position of the critical point AUp for J ∈ [5.6, 8.6], τ =36

0.01s, τf = 0.2s, τr = 0.12s and parameters values from Table 1 isAUp = (hAUp
∈ [73.15, 124.59],37

xAUp
∈ [0.83, 0.89], yAUp

∈ [0.22, 0.13]). The Jacobian at this point is38

JAUp
=


0

JyUp(hUp − T − T0)+

τ0

JxUp(hUp − T − T0)+

τ0

K(1− xUp) −
1

τf
−K(hUp − T − T0)+ 0

−
L

J
−Ly1,2(hUp − T − T0)+ −

1

τr
− LxUp(hUp − T − T0)+.

 (S4)

With the present parameters, JAUp
has one real negative and two complex conjugate eigen-

values with negative real part thus AUp is a stable-focus: λ
AUp

1 ∈ [−55.71,−79.40] for the real
eigenvalue and the two complex conjugate eigenvalues are

λ
AUp

2,3 ∈ [−6.16,−14.73]± i[36.78, 51.87].

2. Neuronal network exhibiting AHP: the Up state attractor AUp is situated in the subspace39

of medium dynamics with hyperpolarization ΩmAHP (fig. S8A-B, orange) where T0 = TAHP =40

9



−30 and τ0 = τm,AHP ∈ [0.06, 0.3]s. For J ∈ [5.6, 8.6], τ = 0.025s, τf = 0.3s, τr = 0.5s the41

position of AUp is now AUp =
(
hAUp

∈ [−0.74, 19.84], xAUp
∈ [0.83, 0.89], yAUp

∈ [0.22, 0.13]
)
.42

Here, the eigenvalues of JAUp
are real and negative, thus for the system with AHP AUp is a43

stable-node. The numerical values are now λ
AUp

1 ∈ [−34.01,−43.96], λ
AUp

2 ∈ [−11.67,−18.94]44

and λ
AUp

3 ∈ [−3.96,−3.65].45

Saddle-point S46

The third critical point S (fig. S7A and S8A, cyan) is solution of equations47

xS =
τfK(J + 1) + LXτr −

√
∆

2(JτfK + Lτr)

yS =
1

JxS

hS = T + T0 +
xS −X

τfK(1− xS)
,

(S5)

for J ∈ [5.6, 8.6], τ = 0.01s, τf = 0.2s, τr = 0.12s and the parameters are presented in Table48

1, we get AS = (hS ∈ [2.52, 1.08], xS ∈ [0.18, 0.12], yS ∈ [0.97, 0.99]). The Jacobian at S does not49

depend on whether the system exhibits AHP or not and it has one real positive and two real50

negative eigenvalues, it is thus a saddle-node with an unstable manifold of dimension one and a51

stable manifold of dimension two. With the present parameters, we obtain λS1 ∈ [−28.80,−25.03],52

λS2 ∈ [18.96, 16.08] and λS3 ∈ [−4.89,−4.97]. Finally, the stable two-dimensional manifold Γ defines53

the separatrix between the basins on attraction of Down ADown and Up AUp states.54

2.2.2 Numerical construction of the separatrix55

To represent the stable manifold Γ of the saddle-point S, we use the following algorithm based on56

numerical approximations (figs. S7A-B and S8A-B, blue surface). Since Γ defines the separatrix57

between the two basins of attraction for the attractors ADown and AUp, we ran simulations of the58

noiseless dynamics for σ = 0 of system (1) with the initial condition sampling the entire phase space.59

We used grid points (hi, xi, yi) ∈ [−35, 500]× [0, 1],×[0, 1]) with δh = 1, δx = δy = 0.05. Each initial60

point was then attributed to the basin of attraction of the attractor at which the corresponding61

trajectory ended. The separatrix Γ is defined as the border between the set of initial points falling62

into the basin of ADown and those falling into the basin of AUp.63

This separatrix does not define a bounded domain for neither attractor but rather separates the64

entire phase-space in two subdomains, one above Γ leading to the Up state and the other one below65

Γ to the Down state .66

2.3 Segmentation of the time-series to detect Up and Down states67

To determine whether the neuronal population is in an Up or a Down state, we segmented the68

simulated time-series according to the following criteria:69

- the Up states are defined in the subspace {x ≥ xUp = 0.5&h ≤ hUp = 0.175hmax},70
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Figure S8: Phase-space of system (1) with AHP. A. 3D phase-space of the system with the
two attractor points ADown (purple), AUp (red) and the saddle-point S (cyan) with its 2-dimensional
stable manifold Γ (blue surface) which defines the separatrix. Stable trajectories (black curves) and
unstable manifold of S (grey) and deterministic trajectories starting below (purple, resp. above
light red) Γ falling to ADown (resp. AUp). The phase-space is separated into 3 subspaces defining
the different dynamics: fast Ωfast (above pink and orange meshes), medium ΩmAHP (below the
orange mesh) and slow ΩsAHP (below the pink mesh). Top view (A.1), inset around ADown and S
(A.2), inset around AUp (A.3), schematic summary of the entire phase-space (A.4). B. Stochastic
trajectory lasting T = 30s with σ = 10 starting at ADown and oscillating between AUp and ADown.
C. (h, x, y)-time series of a stochastic trajectory, with the spectrogram of the mean voltage h and
SEF95 (blue curve).
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- the Down states are defined when {y ≥ yDown = 0.95}71

We added the threshold on h for the Up state detection because we do not want to count the bursts,72

defining the transition from Down to Up, as an Up state.73

To determine the proportion of time spent in Up vs Down state for one neuronal population with74

AHP (fig. 3C-D, main text), we ran simulations of system (1) with AHP for N = 100 trajectories75

of duration T = 600s with J ∈ {5.6, 6.6, 7.6} and σ = 14.76

Similarly, for the model (2) with two populations (fig. 4B-D, main text), we segmented the time-77

series of the excitatory population for N = 100 trajectories of duration T = 600s.78

Finally for the three population network (3), we segmented the time-series of the excitatory network79

α without AHP (N = 100 trajectories of duration T = 300s).80

2.4 Numerical methods81

All simulations were run in Matlab, using Runge-Kutta 4 scheme with a time step ∆t = 0.005s.82

We also tried ∆t = 0.001s and obtained the same results, thus ensuring stability.83
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