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Abstract 

 
Although cancer immunotherapy with PD-(L)1 blockade is now routine treatment for patients with 
lung cancer, remarkably little is known about acquired resistance. We examined 1,201 patients 
with NSCLC treated with PD-(L)1 blockade to clinically characterize acquired resistance, finding 
it to be common (occurring in more than 60% of initial responders), with persistent but diminishing 
risk over time, and with distinct metastatic and survival patterns compared to primary resistance. 
To examine the molecular phenotype and potential mechanisms of acquired resistance, we 
performed whole transcriptome and exome tumor profiling in a subset of NSCLC patients (n=29) 
with acquired resistance. Systematic immunogenomic analysis revealed that tumors with 
acquired resistance generally had enriched signals of inflammation (including IFNγ signaling and 
inferred CD8+ T cells) and could be separated into IFNγ upregulated and stable subsets. IFNγ 
upregulated tumors had putative routes of resistance with signatures of dysfunctional interferon 
signaling and mutations in antigen presentation genes. Transcriptomic profiling of cancer cells 
from a murine model of acquired resistance to PD-(L)1 blockade also showed evidence of 
dysfunctional interferon signaling and acquired insensitivity to in vitro interferon gamma treatment. 
In summary, we characterized clinical and molecular features of acquired resistance to PD-(L)1 
blockade in NSCLC and found evidence of ongoing but dysfunctional IFN response. The 
persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired 
resistance informs therapeutic strategies to effectively reprogram and reverse acquired 
resistance. 
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Introduction 

PD-(L)1 blockade can generate profound, durable responses in patients with lung cancer and has 
been rapidly incorporated into the treatment paradigm for nearly all patients with advanced non-
small cell lung cancer (NSCLC) (Gandhi et al., 2018; Reck et al., 2016). Unfortunately, even 
among those patients who initially respond to PD-(L)1 blockade, over half will eventually develop 
progression – termed acquired resistance (Schoenfeld and Hellmann, 2020). Alongside primary 
resistance (refractory to initial treatment), acquired resistance represents a significant and 
possibly underappreciated clinical challenge (Garon et al., 2019; Gettinger et al., 2018a, 2018b; 
Herbst et al., 2020). Remarkably little is known about the molecular mediators of acquired 
resistance. Perhaps relatedly, effective therapies to circumvent or reverse acquired resistance 
largely remain elusive. 

The landscape of immune acquired resistance to PD-(L)1 blockade is poorly understood. By 
contrast, several molecular mechanisms of acquired resistance to molecularly targeted therapies 
(e.g. EGFR and ALK-directed tyrosine kinase inhibitors) have been identified and led to significant 
therapeutic advances (Drilon et al., 2019; Piotrowska et al., 2018; Ramalingam et al., 2018; Shaw 
et al., 2019; Solomon et al., 2018). In patients with lung cancer treated with PD-(L)1 blockade, 
there have been a few published cases of acquired resistance (Abdallah et al., 2018; Anagnostou 
et al., 2017; Ascierto and McArthur, 2017; George et al., 2017; Gettinger et al., 2017; Iams et al., 
2019; Koyama et al., 2016). Along with case reports in other diseases, these studies have 
identified that loss of key proteins associated with antigen presentation or defects of the IFNγ 
signaling pathway can contribute to immune resistance (Gettinger et al., 2017; Le et al., 2017; 
Sade-Feldman et al., 2017; Zaretsky et al., 2016). Pre-clinical work has further highlighted how 
the relative acuity vs chronicity of IFNγ exposure can contribute to immune dysfunction and tumor 
resistance (Benci et al., 2016, 2019; Grasso et al., 2020). Improved understanding of the nature 
and biology underlying acquired resistance is imperative to develop more effective next-
generation immunotherapies in the future.  

To address the clinical and molecular landscape of acquired resistance to PD-(L)1 blockade in 
patients with NSCLCs, we examined the largest clinical cohort (n = 1,201) of acquired resistance 
to PD-(L)1 blockade in lung cancer to date paired with a systematic genomic and transcriptomic  
analysis in a subset of patients (n = 29) with available tissue samples. We then also examined a 
murine model of acquired resistance to PD-(L)1 blockade to validate relationships identified in 
human samples.  
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Results 
 
Acquired resistance to PD-1 blockade in NSCLC is common 
 

Of 1,201 NSCLC patients treated with PD-1 blockade at MSK between April 2011 through 
December 2017, 243 (20%) achieved initial response. Many responding patients ultimately 
developed acquired resistance (AR), with an estimated cumulative AR rate of 61% (95% CI 36% 
- 85%) at 5 years of follow up using a competing risk model (Figure 1a). The onset of AR was 
variable (52% within 1 year, 39% 1-2 years, 11% >2 years) (Figure 1b). The relative risk of 
developing AR decreased with longer duration of initial response (Figure 1c).  

Although acquired and primary resistance have not been directly compared previously, 
we hypothesize that these scenarios are distinct biologically and clinically. Consistent with this, 
we found that several baseline clinical features differ between patients with acquired and primary 
resistance (Figure 1d). High tumor PD-L1 protein expression in baseline (pre-treatment) tissue, 
in particular, is enriched among patients with acquired resistance compared to primary resistance 
(55% vs 28%, Fisher’s p = 0.02). The organ-specific pattern of progression also differed, with liver 
metastasis being a common site of progression at primary resistance but relatively uncommon in 
acquired resistance (31% vs 7%, Odds Ratio 6.23, Fisher’s p<0.0001, Figure 1e). Perhaps most 
notably, the post-progression overall survival was significantly longer in patients with acquired 
resistance compared to primary progression (median 18.9 months vs 4.4 months, Log-rank p< 
0.0001 Figure 1f), suggestive of persistent, partially effective anti-tumor immune responses that 
permits prolonged survival even after the initial onset of acquired resistance. Overall, AR is largely 
characterized by distinct clinical features, suggesting acquired resistance may have underlying 
immunobiologic features that are distinct from primary resistance and in need of dedicated 
analysis. 
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Figure 1. Clinical features of acquired resistance to immunotherapy in lung cancer.  
(a) Cumulative incidence of developing acquired resistance among NSCLC patients with initial response to 
PD-1 blockade therapy. (b) Time to onset of acquired resistance among responders. (c) Estimated rate of 
developing acquired resistance defined by duration of initial response. (d) Rates of baseline clinical features 
among patients with primary (n = 346) and acquired resistance (n = 118).  Asterisk represents significant 
comparisons of p < 0.05. (e) Common organ sites of progression at time of primary or acquired resistance. 
(f) Post-progression overall survival in patients with primary or acquired resistance (p < 0.0001). 
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Patient cohort for molecular profiling of acquired resistance to PD-1 blockade 
 

To investigate the molecular mechanisms of acquired resistance to PD-1 blockade in 
patients with NSCLC, we generated microarray-based whole transcriptome expression data, and 
whole exome sequencing (WES) data from pre and/or post-treatment tumors in a subset of 
patients. Patients with analyzed samples had similar baseline characteristics to those in the larger 
clinical cohort (Table S1). After QC and sample prioritization, the primary analysis of the molecular 
data focused on 49 tumor samples (13 pre-treatment, 29 post-treatment) from 29 patients for 
expression data and 34 tumor samples (15 pre-treatment, 19 post-treatment) from 22 patients for 
exome data (Figure 2a, Table S2). 13 patients had expression data available from both pre- and 
post-treatment tissue; 12 patients had exome data available from both pre- and post-treatment 
tissue. All post-treatment samples were obtained following radiographic progression to PD-1 
blockade (median time from progression to sample collection 3.7 weeks, IQR 1.8-10.4) and prior 
to initiation of new systemic therapy (Figure 2b). 

Our work and others (Gettinger, J Thor Oncol 2018) have shown that acquired resistance 
frequently occurs in an oligoprogressive pattern, highlighting the importance of assessing the 
lesion-level response in the analysis of acquired resistance. Therefore, we examined the lesion-
level response (and resistance) from which each sample was collected to optimize that pre-
treatment and post-treatment samples reliably represented the biology of responsive and 
acquired resistance tumors, respectively. Specifically, all post-treatment samples were derived 
from sites with lesion-specific radiologic rebound growth or de novo growth (Figure 2c, Figure 
S1,S2).  

 

Figure 2. Overview of the patient cohort used for the exome and expression analyses. (a) Flow 
diagram depicting molecular profiling of samples from NSCLC patients treated with PD-1 blockade who 
developed acquired resistance. Paired samples are those collected prior to treatment initiation with PD-1 
inhibitor and at time of resistance from the same patient. Unpaired samples include single timepoints of 
collection; prior to treatment initiation or at time of resistance.  (b) Swimmer’s plot of when each patient 
was molecularly profiled. Course of treatment, progression-free survival, and time to tissue acquisition are 
depicted. Lines within circles identify the type of sequencing completed. (c) Waterfall plot of RECIST best 
overall response in patient (dark blue) and lesion (light blue). Dashed line represents 30% shrinkage. 
Asterisk represents new lesions that developed on treatment (de novo growth). 
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Acquired resistance to PD-1 blockade is associated with a distinct transcriptional 
landscape  

 
Principal components analysis (PCA) of protein-coding gene expression profiles from 

whole transcriptome data of all 42 samples showed no major technical or clinical factors 
influenced clustering, including batch and site of sample collection (i.e. lung, lymph node, adrenal, 
etc) (Figure S3a,b). There was also no separation among phenotypically distinct post-treatment 
lesions (Figure S3c). We summarized gene expression values to pathway-level scores using 
single-sample gene set enrichment approach (ssGSEA) (Hänzelmann et al., 2013) on hallmark 
gene sets categorized into oncogenic, cellular stress, immune, stromal and other processes as 
previously applied (Jiménez-Sánchez et al., 2020). PCA clustering of 24 paired samples using 
enrichment scores showed a separation of samples based on paired pre- and post-treatment 
timepoints, with the separation primarily driven by immune-related hallmark gene sets (Figure 
3a,b). Differential expression analysis of paired samples for hallmark gene sets showed a 
significant upregulation of IFN alpha/gamma response, oxidative phosphorylation, and DNA 
repair pathways after treatment (FDR < 0.1, Figure 3c, Table S3). Clustering of paired samples 
based on computational deconvolution of immune cell estimates from bulk expression derived 
using CIBERSORT (Newman et al., 2015) showed a separation of pre- and post-treatment 
samples particularly driven by infiltration of CD8+ T cells (Figure 3d,e). Significant increase in 
immune infiltration (wilcoxon signed-rank test p<0.05; Figure S3d) and specifically CD8+ T cells 
was also observed post-therapy from differential analysis of paired pre-treatment and post-
treatment samples (FDR < 0.1, Figure 3f,  Table S3).  
 
Several clinical and pre-clinical studies have generated bulk or single-cell RNAseq datasets to 
identify gene sets associated with ICB resistance and T cell dysfunction. We curated a non-
redundant resource of these gene sets (See Methods for details) and compared differential 
changes among the paired samples (Table S3, S4). Among these, comparing post-treatment to 
pre-treatment samples, we found an increase in expression of antigen presentation (AP) pathway, 
IFNγ (Gao et al., 2016), CD8 T effectors (Rosenberg et al., 2016), and proliferating exhausted 
CD8+ T cells (Miller et al., 2019), while genes belonging to WNT (Sanchez-Vega et al., 2018) 
pathway showed modest reduction in expression (Figure 3g). Consistent with these gene sets 
associated with ongoing immune response to PD-1 blockade, expression of individual genes 
enriched in post-treatment tumors included GZMA, B2M, and CXCL9 (Figure 3h, Table S5).   
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Figure 3. Resistant lesions show up-regulation of Interferon Gamma Response pathway and 
infiltration of CD8+ T cells. (a) Principal components analysis of paired samples using enrichment scores 
of hallmark gene sets derived from ssGSEA. Paired pre- and post-treatment lesions from the same patient 
are connected using a dashed line. The light grey arrow indicates the average directionality of change for 
each pair. (b) Principal components feature loadings of hallmark gene sets with both magnitude and 
direction. Biological processes in hallmark gene sets were categorized into sub-groups as described in 
(Jiménez-Sánchez et al., 2020) and colour-coded accordingly. (c) Differential comparison of hallmark 
enrichment scores (ES) between pre- and post-treatment samples. Each point represents a hallmark gene 
set and point size indicates the number of genes in a gene set. The x-axis indicates the change in hallmark 
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enrichment scores for paired samples from each patient (Post vs Pre) and the y-axis is FDR adjusted p-
value derived from the comparison of enrichment scores of hallmark gene sets using paired t-test. The 
black dashed line represents FDR cutoff to identify significant gene sets (FDR < 0.1). (d) Principal 
components analysis of immune cell estimates derived using CIBERSORT immune cell deconvolution 
approach. (e) Principal components feature loadings of immune cell estimates. (f) Differential comparison 
of immune cell estimates (CIBERSORT) between pre- vs post-treatment samples. Each point represents 
an immune cell type and associated colour reference indicated in panel e. The x-axis indicates the change 
in immune cell estimates for paired samples from each patient (Post vs Pre) and y-axis is FDR adjusted p-
value derived from paired comparison of immune cell estimates. (g) Summary of key changes in hallmark 
gene sets, ICB-resistance related gene signatures and estimates of immune cells using differential analysis 
of expression data. All gene sets with p value < 0.05 are shown. * indicates gene sets that were significant 
after FDR correction (FDR < 0.1). (h) Differentially expressed genes between pre- and post-treatment 
samples. The black dashed line represents FDR cutoff to identify significant genes (FDR < 0.15). 
Benjamini–Hochberg (BH) method was used for false discovery rate (FDR) correction. 
 

Chronic and therapy-dependent increase in IFNγ response pathway as a potential 
route to acquired resistance to ICB  
 

As sustained cancer-intrinsic IFN signalling has been linked to ICB resistance in pre-
clinical mouse models of melanoma and other cancers (Benci et al., 2016, 2019; Jacquelot et al., 
2019), we tested whether the change in ISG signatures (IFN𝛼 and IFNγ response)  observed in 
our clinical cohort related to a resistance signature derived from a ICB-resistant mouse model of 
melanoma (Benci et al., 2019; Twyman-Saint Victor et al., 2015). We found a significant 
association between the mouse-derived ICB resistance signature and the treatment-induced 
change in IFNγ response (spearman’s rank correlation r = 0.90; p = 2.2e-16; Figure 4a), which 
persisted after removing overlapping genes (r = 0.86; p = 0.0003). Separately, principal 
components analysis of change in enrichment score of hallmark gene sets between paired lesions 
showed a separation of patients on the 1st principal components based on the extent of change 
of ISG signatures (Figure S4a-c). The correlation was significantly stronger for change in the 
IFNγ-specific response genes (r = 0.9; p < 2.2e-16) when compared to change in IFN𝛼-specific 
response genes (r = 0.48; p = 0.09; Figure S4d-e). Notably, samples could be separated into two 
subsets, with about half of the paired samples showing no increase pre- to post-treatment and 
the other half characterized by induced expression in the IFNγ response pathway. This led us to 
categorise the samples into an IFNγ “stable” and an IFNγ “increase” group (Figure 4b).  

 Consistent with a differential change of IFNγ in these patients, patients with increase in 
IFNγ generally had an increase in inferred activity of individual transcription factors associated 
with activation of IFN-stimulated genes (ISGs), STAT1 and IRF1 as well as immune signatures 
(estimated by hallmark and literature gene sets) associated with CD8+ T cell exhaustion across 
several studies (Miller et al., 2019; Sade-Feldman et al., 2018) (Figure 4c-f, Table S6). In addition 
to signatures of T cell exhaustion, increase in regulatory T cells (Sade-Feldman et al., 2018) were 
also noted. FOXP3 was specifically upregulated in the IFNγ ‘increase’ subgroup (paired t-test p = 
0.005; Figure S4f). In contrast, patients with ‘stable’ IFNγ were characterized by a lack of change 
in these immune-related pathways and genes (Table S6). Together these data suggest a 
recurrent pattern of acquired resistance to PD-1 blockade in NSCLC is characterized by activation 
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of IFNγ transcriptional program in tumors, presumptive tumor-specific IFNγ insensitivity (given 
persistent tumor growth clinically), and a concomitant increase in exhaustion of CD8+ T cells in 
the micro-environment.  
 

 

Figure 4. Activation of IFNγ correlates with CD8+ T cell exhaustion signature. (a) Correlation between 
change in the IFNγ response signature and change in the ICB-resistance signature derived from a mouse 
model of melanoma for the paired samples (Twyman-Saint Victor et al., 2015).  (b) Patients were sub-
divided into ‘stable’ and ‘increase’ categories based on the magnitude of change in the INFg response 
signature between the pre- and post-treatment samples. (c) Change in enrichment scores of key 
differentially regulated gene sets in either ‘stable’ or ‘increase’ patients (p < 0.05) ordered according to 
change in enrichment score of IFNγ response signature. Activity of IFNγ response associated transcription 
factors (d) IRF1 and (e) STAT1 in pre- and post-treatment timepoints of patients in ‘stable’ and ‘increase’ 
sub-groups. (f) Differential change in expression levels of previously reported immune-responsive genes 
and resistance associated therapeutic targets in literature in the ‘stable’ or ‘increase’ sub-group.  Benjamini–
Hochberg (BH) method was used for p-value adjustment. Statistical comparisons in panel d and e were 
performed using two-tailed paired t-test. 
 
 

Positive selection pressure for antigen presentation gene mutations in acquired 
resistance 
 
To examine somatic alterations and potential mechanisms of acquired resistance, we next turned 
to evaluate the exome sequencing data pre vs post-treatment for 12 patients (24 samples with 
germline SNPs confirming paired samples belonged to the same patient; Figure S5a). NSCLC is 
characterized by a high mutation burden, a strong predictor of response to immunotherapy (Rizvi 
et al., 2015, 2020; Strickler et al., 2021). Overall, there was no significant difference in tumor 
mutation burden (wilcoxon signed-rank test p = 0.6; Table S7), known driver genes (Campbell et 
al., 2016), neoantigen burden, fitness (wilcoxon signed-rank test p = 0.74), or tumor heterogeneity 
(wilcoxon signed-rank test p = 0.37) before versus after immunotherapy treatment at a summary 
level (Figure 5a, Figure S5b,c). However, there was evidence of remodeling of clonal or sub-
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clonal structure in seven patients. For five of these patients, clonal mutations were retained while 
a subset of sub-clonal mutations were lost and/or new sub-clonal mutations were also acquired 
(Figure 5b, Figure S5d). For two patients (AR_20 and AR_27), post-treatment lesions did not 
share any somatic mutations with their respective pre-treatment lesions indicative of emergence 
of a potentially new tumour or outgrowth of a rare (i.e. below the limit of detection by WES) pre-
existing tumor clone (Figure S5e). Among the clonal mutations detected in post-treatment lesion 
of AR_20 included a nonsense mutation in STK11 gene consistent with previous observations of 
an association between mutations in STK11 gene and resistance to immune-checkpoint blockade 
in lung adenocarcinoma (Skoulidis et al., 2018). Several mutational processes including extrinsic 
factors, particularly smoking, can influence somatic molecular profile in NSCLC and can be 
detected as mutational signatures (Alexandrov et al., 2013). The smoking signature was the 
dominant signature in pre-treatment lesions and these mutations persisted in post-treatment 
lesions. However, post therapy the clonal composition of these tumours had changed potentially 
shaped by different sets of factors indicated by depleted proportion of smoking related mutations. 
(Figure S5f). Recent studies have shown an enrichment of APOBEC mutational signature in 
patients that benefit from immunotherapy treatment (Wang et al., 2018). In two patients, AR_08 
and AR_20, we observed a noticeable increase in fraction of private mutations contributing to 
APOBEC mutational signatures 2 and 13 in the post-treatment lesions (48.3% in AR_08 and 
14.3% in AR_20) relative to those in the pre-treatment lesions (5.4% in AR_08 and 1.6% in 
AR_20). 

Given previous studies describing loss of B2M and other genes such as TAP1, TAP2 and 
TAPBP involved in antigen presentation pathway as a potential mechanism of immune escape in 
resistant tumours, we performed an unbiased analysis to evaluate positive selection pressure on 
individual genes before and after therapy (Martincorena et al., 2017). As expected, canonical 
driver mutations in lung cancer such as KRAS and TP53 were under strong positive selection 
pressure and there were no recurrently altered driver genes with significant enrichment in post-
treatment tumors compared to pre-treatment (Figure 5c, Figure S5g). However, a nonsense 
mutation and a frameshift deletion in B2M were exclusively identified in post-treatment tumors of 
AR_14 and AR_19 respectively, and other immune-related genes such as IL21R, PDCD5, 
FKBP1A and FNIP1 were indeed enriched post-therapy (Figure 5c, Figure S5h,i). No potential 
pathogenic mutations were observed in TAP1, TAP2 and TAPBP genes.  

Given the selective identification of mutation in B2M and other immune-related genes in 
the ICB-resistant tumor samples, we evaluated additional gene sets involved in Antigen 
Presentation (AP) pathways using the GSEA approach. Specifically, we asked whether there was 
evidence of an association between IFNγ selective pressure and dysregulation of AP pathways 
(Figure 5d). Overlaying mutational changes with IFNγ status for the cases with both expression 
and mutation data, we observed the mutation enrichment in the AP pathway to be more common 
among patients that show an ‘increase’ in IFNγ response in contrast to those with ‘stable’ IFNγ 
response pathway. Notably, 3 out of 4 patients with significant change in clonal or sub-clonal 
architecture (AR_20, AR_27, AR_19), also showed presence of new mutations in the AP pathway 
genes in their post-treatment lesions (Figure 5e). All 4 of these patients also had available tissue 
for B2M and class 1 HLA protein expression testing on tumor cells and all were negative or 
decreased from baseline (Figure 5f,g) 
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Figure 5. Genomic dynamics in acquired resistance to PD-1 blockade in lung cancer. (a) Summary 
of somatic mutations (missense and indels) in our ICB-resistance cohort for known driver genes in non-
small cell lung cancer. Pattern of mutations of recurrently mutated genes derived from a previous study 
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(Campbell et al., 2016).  The heatmap also indicates the unique and shared mutations in each sample and 
the proportion of mutations associated with key somatic signatures (smoking and APOBEC) associated 
with lung cancer. (b) Percentage loss or gain of clonal and sub-clonal mutations in each patient. (c) 
Comparison of global p-value estimates for genes derived from dN/dS analysis of missense, truncations 
and indels to evaluate gene-level selection pressure in pre and post-treatment samples estimated using 
dndscv method (Martincorena et al., 2017). (d) Comparison of global p-value estimates genes to identify 
gene sets under positive selection in pre and post-treatment samples. The change in gene level global p-
value between pre- and post-treatment samples (shown in c) was used to order genes and estimate GSEA 
normalized enrichment score and p-value for each gene-set. (e) Summary of key changes in expression 
and mutations in nine patients with pre- and post-treatment measurements for both expression and exome. 
The private mutations in post-treatment lesions of patients in genes part of Antigen Presentation Pathway 
(KEGG or REACTOME) are shown. Immunohistochemistry based quantification of (f) HLA/MHC-I and (g) 
B2M. 
 
 
Acquired tumor IFNγ insensitivity associates with ICB resistance  
 
To further explore the transcriptional features that are associated with acquired resistance to ICB 
in our clinical cohort, we also examined cancer cell intrinsic transcriptional programs using a 
preclinical murine model system of acquired resistance to ICB inhibitors. Similar to PD-1-
responsive human lung cancer, the CT26 murine model is carcinogen-induced, has high tumor 
mutation burden, and is highly sensitive to immunotherapy treatment (Zhong et al., 2020), and 
therefore well suited pre-clinical analogue for interrogating acquired resistance. As expected, after 
subcutaneous inoculation of CT26 cells, tumors showed significant reduction in tumor volume 
over 3 weeks of anti-PD-1 treatment (Figure 6a). To model acquired resistance, following anti-
PD-1 treatment, persistent viable cells were excised, cultured in vitro,  and reimplanted in mice. 
The re-implanted tumors were then re-treated and this process was repeated for several 
passages until the serially progressive CT26 tumors were no longer responsive to anti-PD1 
antibody therapy (Figure 6b). Bulk RNAseq was performed on the ICB-resistant cancer cell lines 
derived from tumors from the 2nd round (n=2) and 4th round (n=4) of in vivo passage and 
compared against the ICB-sensitive parental cell line (n=3; Figure 6c).  PCA of whole 
transcriptome data did not show any clear trend (Figure S6a), however, PCA of hallmark gene 
sets showed the parental and 2nd round samples tend to cluster separately from the 4th round 
samples with the separation mainly driven by Interferon Alpha/Gamma Response pathway 
(Figure 6d,e). Systematic comparison of 4th round samples with parental samples showed a 
significant upregulation of several biological processes including TNFalpha signaling and 
IFN𝛼/IFNγ response pathway (FDR <= 0.1; Table S8). In contrast, no significant change in gene 
sets were observed from the comparison of the 2nd round and parental cell lines (Figure S6b,c). 
Alongside the increase in INFg response pathway in the 4th round cells, we also observed a 
correlated increase in STAT1 and IRF1 activity inferred from their regulons and expression of 
genes part of the Antigen Presentation Pathway (Figure 6f-i). Together, and similar to the human 
data, these results indicated that IFNγ response signaling was upregulated in ICB resistant cancer 
cells. 
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To explore if ICB resistant cancer cells maintained responsiveness to type II IFN signaling, cell 
lines were stimulated with IFNγ for 24 hours and compared to unstimulated controls. While the 
parental and 2nd round cell lines showed an increased expression of genes  involved  in IFN 
signaling, the 4th round cell line did not show additional reactivity to IFNγ stimulation at the 
transcriptional level (Figure 6j-l; S6d-f; Table S8).  In addition, downstream transcription factor 
activity of type II IFNγ signaling, such as STAT1 and IRF1, showed the same pattern with no 
statistically significant differences detected between IFNγ stimulated vs control in the 4th round 
cell line (Figure 6m,n). As type II IFN signaling is known to upregulate antigen presentation 
machinery pathway genes (Schroder et al., 2004), we also investigated the effect of IFNγ on these 
genes, which further supported the observations and showed no additional reactivity to  IFNγ 
stimulation in 4th round cells (Figure 6o). Together these data indicate that 4th round PD-1 
resistance cell lines have acquired insensitivity to IFN stimulation likely because they have high 
baseline IFN signaling activity and the pathway appears to be insensitive without canonical 
upregulation of interferon stimulated genes upon IFNγ exposure.  
  

 

 
 
Figure 6. Cell lines derived from mouse CT26 tumours with acquired resistance to PD1 show 
dysfunctional IFNγ signalling (a) Tumor volume over time after treatment with anti-PD1 therapy or control 
(Vehicle) for parental (CT26 parental) and resistant cells (CT26 anti-PD1 Res.) (n = 9 per group). (b) 
Percentage of mice that resisted anti-PD1 treatment. (c) Experimental design for development of ICB-
resistance model from anti-PD1 treatment of CT26-derived tumours in mice. Cell lines were derived from 
tumors and subjected to RNA sequencing. (d) PCA of IFNγ-untreated samples i.e. parental (sensitive), 2nd 
round and 4th round ICB-resistant cells based on Enrichment Scores of hallmark gene sets. (e) Principal 
components feature loadings of hallmark gene sets with both magnitude and direction. Biological processes 
in hallmark gene sets were categorized into sub-groups as described in Jimenez-Sanchez et al, 2020 and 
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the vectors were color-coded accordingly. Enrichment Scores in parental, 2nd and 4th round cells for the 
following genesets: (f) IFNγ response pathway, (g) STAT1, (h) IRF1 and (i) Antigen Processing 
machinery.(j) Comparison of significance of change in Enrichment Score between IFNγ Stimulated (IFNγs) 
and IFNγ Untreated (IFNγu) 2nd round and significance of change in Enrichment Score between IFNγs and 
IFNγu parental cells. (k) Comparison of significance of change in Enrichment Score between IFNγs and 
IFNγu 4th round and significance of change in Enrichment Score between IFNγs and IFNγu parental cells. 
Comparison of Enrichment Scores between IFNγu  vs IFNγs (parental or 2nd or 4th) cells for the following 
genesets: (l) IFNγ response pathway, (m) STAT1, (n) IRF1 and (o) Antigen Processing machinery. Error 
bars are the standard error from the mean (n = 3 independent experiments). Statistical comparisons 
between parental and 2nd (or 4th) round samples or between IFNγs and IFNγu cells were made using two-
tailed unpaired t-test. 
 
 
Discussion 

Although PD-1 blockade has been transformative in the treatment of patients with NSCLC, 
acquired resistance is common and understanding of the molecular mechanisms of resistance 
remains quite limited. Before embarking on this report, we had hypothesized that “non-inflamed” 
or “cold” tumors, characterized by exclusionary immunologic barriers or an absence of T cell 
infiltration, would significantly contribute to resistance (Schoenfeld and Hellmann et al., 2020). 
Previously, neoantigen loss and tumor-mediated immunosuppression have been associated with 
primary resistance to immunotherapy (Anagnostou et al., 2017; Peng et al., 2016; Verdegaal et 
al., 2016). In contrast, we found that neoantigen depletion does not appear to be dominant 
mediators of acquired resistance. In fact, most tumors have retained or increased inflammatory 
characteristics, rather than immune excluded or desert phenotype, with significant upregulation 
of IFNγ suggestive of persistent, albeit dysfunctional, anti-tumor immune response. The 
persistent, if incomplete, anti-tumor immune response may also manifest in the clinical 
observation that some patients who develop acquired resistance can still have durable survival 
for many years following initial emergence of resistance. In addition to the chronic upregulation of 
the IFNγ response pathway, we also observed strong upregulation of OxPhos and DNA repair 
pathway genes which is consistent with a recent report (Jaiswal et al., 2020) which proposes 
acquisition of hypermetabolic state with high expression of glycolytic and oxidative 
phosphorylation pathway genes as a potential escape mechanism in ICB-resistant melanoma 
cells. 

The inflammatory phenotypes we identify have implications for future rational development of new 
immunotherapy strategies for patients with acquired resistance. Most notably, immune 
recruitment and infiltration did not appear to be the primary biologic challenges, which provides 
credence to strategies aimed to reprogram and rescue native anti-tumor immunity. Delivery of de 
novo anti-tumor immunity via engineered antigen-specific cellular or TCR-based therapies 
(Sarnaik et al., 2020; Creelan et al., 2020; D’Angelo et al., 2018; Doran et al., 2019; Nagarsheth 
et al 2021) also appears well-suited to exploit the lack of barriers to immune trafficking and 
persistent tumor antigen expression. While we did observe a few instances of sub-clonal/clonal 
neoantigen loss, these changes were relatively uncommon and mutation burden was generally 
unchanged pre vs post-treatment. One potential limitation of our clinical cohort is that it relies on 
bulk exome and transcriptome data which are prone to be affected by tumor purity. Future efforts 
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utilizing single cell multi-omics will be important to further parse cancer cell-intrinsic vs immune 
or stromally-related mechanisms of resistance. 

Our work informs and builds upon the prior pre-clinical and translational data supporting the 
intricate role of IFNγ in sensitivity and resistance to immunotherapy. Whereas initial IFNγ 
exposure may be fundamental to T cell activation and a hallmark of immune response, persistent 
IFNγ related effects and upregulation could signal immune dysfunction (Benci et al., 2016; Benci 
et al., 2019) and IFNγ insensitivity (Zaretsky et al 2016, Kalbasi et al. 2020, Grasso et al 2020). 
In contrast to previous reports linking IFNγ insensitivity to mutations in the JAK-STAT pathway, 
we did not identify specific defects in the IFNγ signalling pathway to explain the dysfunctional 
nature of IFNγ response observed in a subset of patients. While we found some evidence of B2M 
and other antigen presentation alterations, these changes were predominantly sub-clonal and 
generally co-occurred in tumors with upregulation of IFNγ potentially suggestive they are an 
evolutionary consequence rather than an initiating cause of resistance. We have previously 
shown that chronic IFNγ signaling may trigger a cascade of epigenetic modifications in tumor cells 
including enhanced IFN stimulated genes and ultimately generate a feedback loop of innate and 
adaptive immune exhaustion and dysfunction (Benci et al., 2016; Benci et al., 2019). In a murine 
model of acquired resistance presented here, we recapitulate how acquired resistance is 
associated with upregulated cancer-intrinsic IFNγ response and ultimately tumor insensitivity to 
effective anti-tumor immunity. Further work is needed to identify the specific mechanistic deficits 
in response to the dynamics of IFNγ signaling in both immune cells and tumor cells. Overall, these 
data can further guide more rationally guided therapeutic strategies to prevent, overcome, and 
reverse acquired resistance to PD-1 blockade for patients with lung cancer. 

 
 

Methods 
 
Description of the clinical cohort 
Following MSKCC institutional review board approval, patients with advanced NSCLC treated 
with PD-(L)1 based therapy between April 2011 and December 2017 were identified. Response 
Evaluation Criteria in Solid Tumors (RECIST) version 1.1 was used to assess objective response 
outcomes. Patients with primary resistance were defined as those with progressive disease (PD) 
at their first on-treatment scan evaluation. Patients with acquired resistance were defined as those 
with partial or complete response (PR/CR) followed by isolated or systemic progression on or 
before the date of their last scan (median follow-up 33.6 months). Post-progression overall 
survival was calculated from the date of progression on PD-(L)1 inhibitor. Patients who did not 
die were censored at the date of last contact. A cumulative incidence function with death as a 
competing risk was used to estimate the proportion of acquired resistance over time. Overall 
survival was estimated using the Kaplan-Meier method. 
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Generation of the molecular dataset 
Tumor tissue samples from pre- and post-treatment timepoints were obtained from a subset of 
NSCLC patients treated with PD-1 blockade (n = 29). All samples were processed as FFPE. 16 
samples were obtained prior to initiation of therapy (pre-treatment) and 37 samples were obtained 
at time of acquired resistance. Most patients had a best overall response of CR or PR per RECIST 
criteria (n = 22, 76%), with a small subgroup with stable disease (SD) less than -10%. Lesion-
level response was obtained for all samples (Figure S2). Pre-treatment lesions were those that 
had at least a -30% reduction in size on treatment or were resected prior to initiating therapy (n = 
4). In patients with resected lesion samples, lesion-level response could not be obtained so overall 
patient-level must have been CR or PR per RECIST. Of note, consistent with prior work 
demonstrating generalized inter-tumor uniformity  of response, pre-treatment samples derived 
from resected tumors had similar molecular features of tumors in which the lesion-level response 
was known (Figure S2). All post-treatment samples were obtained following radiographic 
progression to PD-1 blockade. Post-treatment samples were defined as “rebound” or “de novo” 
growth (Figure S1a). Rebound lesions were those that were present at initiation of therapy, 
responded on treatment, but subsequently progressed. De novo growth lesions were those that 
were not present at initiation of therapy and newly grew following treatment. Time to progression 
in rebound lesions and growth of de novo lesions were similar (Figure S1b). Only patients with 
at least one post-treatment sample were included in this analysis. Samples were molecularly 
profiled by microarray-based transcriptome sequencing and/or whole exome sequencing. 
Expression and exome data were available on the same sample for 28 tumor lesions. The 
following antibodies were used for the Immunohistochemistry of the clinical : B2M (B2M 
Polyclonal, DAKO, A0072; RRID: AB_812325) and HLA (HLA-1/MHC-1, Clone: A4, eBioscience, 
14-9958; RRID: AB_1210772). 
 
 
Processing and analysis of microarray data for the clinical cohort 
Global RNA expression was measured using the human Affymetrix Clariom D Pico assay. The 
RNA samples quantification on Affymetrix Arrays was performed in two separate batches. 
Samples from each batch were processed independently using Affymetrix Expression Console 
Software. Initially the samples were normalized using the SST-RMA algorithm and outlier samples 
were excluded. Samples from the two batches were then combined together into a single dataset 
and subject to batch normalization using ComBat. Finally all the samples were further normalized 
together using LOESS normalization. For genes with multiple measurements, we selected the 
measurement with the highest coefficient of variation. The data analysis was focussed on 14,668 
annotated protein-coding genes with expression measurements in the arrays. The expression 
dataset was thoroughly evaluated for technical artifacts such as batch effects (Figure S3a). 
Differential expression analysis was performed using the limma (Ritchie et al., 2015) package in 
R. Normalized expression data of protein-coding genes were fitted to a linear model using lmFit 
function and subject to empirical Bayes (eBayes) moderated t-statistics test to identify 
differentially expressed genes in paired lesions.  
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Estimation of gene set enrichment scores from expression data 
Enrichment scores were calculated for gene sets from the normalized expression matrix of 
protein-coding genes using the GSVA package (Hänzelmann et al., 2013) in R with default 
parameters except for method =  ‘ssgsea’ and norm = ‘TRUE’. This approach was used to 
estimate enrichment scores for the Hallmark Gene sets (msigdb v6.1 database (Liberzon et al., 
2015)) and non-redundant cancer and immune-related gene sets in literature. Although clinical 
data for acquired resistance to immunotherapy is fairly limited, recent studies have investigated 
the impact of chronic ICB treatment in in vitro cell lines and in vivo settings using mouse models 
generating either bulk or single-cell RNAseq datasets. We manually collated gene sets reported 
in many of these studies to build an extensive resource of biological processes and gene sets 
associated with cancer and immune pathways and more specifically ICB resistance (Table S4). 
In order to select for non-redundant gene sets from this resource, jaccard similarity coefficient 
was calculated between gene sets based on the number of shared genes and used this metric to 
perform hierarchical clustering of gene sets and construct a dendrogram with similar gene sets 
clustering together. Clusters of Gene sets were obtained by cutting the dendrogram at a particular 
level using cutree function in r (h=1.1). A non-redundant list of gene sets were created by selecting 
one gene set per cluster (Table S4).  
 
Patients were classified into ‘increase’ and ‘stable’ sub-group based on the difference in the 
enrichment of IFNγ response pathway between the paired pre- and post-treatment samples. The 
‘increase’ subgroup consisted of patients with difference in scaled enrichment score of IFNγ 
pathway > 0.025 while ‘stable’ subgroup was defined by minimal change in enrichment score of 
IFNγ pathway (< 0.025 and > -0.025). Overlap coefficients were calculated between IFNγ gene 
set and other gene sets to make sure correlation in enrichment score across samples was not 
driven by shared genes.Change in enrichment score in paired samples was calculated by first 
scaling the signed enrichment scores values using min-max normalization and then taking the 
difference in the scaled enrichment scores for paired post and pre-treatment samples for each 
patient. Enrichment scores were also calculated for transcription factors using the same approach 
as for other gene sets using previously published regulons of each of the 164 transcription factors 
(Garcia-Alonso et al., 2019). Deconvolution of immune cells from bulk microarray expression data 
was performed using CIBERSORT (Newman et al., 2015) tool with default parameters and 
normalized protein-coding gene expression matrix as input. Significance of change in enrichment 
score or immune cell estimates for paired samples was calculated using either paired t-test, welch 
t-test or wilcoxon signed-rank test depending on the evaluation of equality (Bartlett’s test or 
Levene’s test) of variance and normality assumptions. All pairwise correlations between gene 
sets based on change in enrichment scores were performed using spearman’s rank-order 
correlation method.  
      
 
Processing and analysis of Exome Data 
 
Processing of raw sequencing reads 
Exome samples were aligned to human reference genome (hg19) using bwa aligner (v0.7.17) (Li 
and Durbin, 2009) and the aligned BAM files were subjected to deduplication and base 
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recalibration methods in GATK (v4.0.2.1) (DePristo et al., 2011). These processed BAM files were 
used for all subsequent analyses.  
 
Detection of somatic mutations in tumor samples 
Mutation calling for SNPs and Indels was performed for each tumor-normal(serum) pair using 
GATK-Mutect2 (v.4.0.2.1) with default parameters and additional filters to remove germline 
mutations including SNPs detected in gnomAD (Genome Aggregation Database) (Karczewski et 
al., 2020) and mutations in PoN (panel of normal) samples obtained from combining all normal 
samples in the cohort. Since exome samples were generated in multiple batches with different 
sequencers and using different capture kits (Illumina's Rapid Capture Exome Kit (38Mb target 
territory), Agilent SureSelect Human All Exon V2 (44Mb target territory), Agilent SureSelect 
Human All exon V4 (51MB target territory)), mutations were only called on common regions 
captured by the three different kits. The mutation calls were annotated using the Oncotator v1 
(Ramos et al., 2015) tool.  
 
Tumor heterogeneity and clonality 
Tumor heterogeneity was evaluated using the Mutant-Allele Tumor Heterogeneity (MATH) score 
derived from the variant allele frequencies of somatic mutations as described previously (Mroz 
and Rocco, 2013). The clonal population structure of somatic mutations in tumor samples was 
inferred using Pyclone-VI (Roth et al., 2014). This method uses a bayesian statistical approach 
to estimate cellular prevalence of mutations after accounting for purity of samples. The tumor 
purity estimates for Pyclone-VI were obtained from FACETS (Shen and Seshan, 2016) and 
manually corrected for each sample based on the distribution of variant allele frequency. The 
mean cellular prevalence (MCP) estimates from Pyclone-VI were used to classify somatic 
mutation as clonal (MCP > 0.6),  sub-clonal (MCP <= 0.6) or absent (MCP < 0.02). 
 
Estimation of somatic signatures in tumor exome data 
Mutational signatures were estimated using the Sigfit (Gori and Baez-Ortega, 2018) package in 
R. For each exome sample, the proportion of mutations associated with each of the 30 mutational 
signatures in the COSMIC (Tate et al., 2019) database were estimated. Signature 4 corresponds 
to smoking signature while Signature 13 corresponds to APOBEC signature. 
 
Analysis of selection pressure in mutation data 
Gene-level selection pressure was quantified for pre-treatment and post-treatment samples using 
the dNdScv (Martincorena et al., 2017) package in R. The dNdScv approach quantifies dN/dS 
ratios based on missense, truncations (nonsense and essential splice site) and indel mutations in 
a group of samples and identifies genes under positive selection in cancer based on the global p-
values derived from likelihood tests. Selection pressure was calculated for each gene for pre-
treatment and post-treatment samples separately and the difference in selection pressure 
between the two groups was used to identify potential biologically important genes associated 
with acquired resistance to ICB treatment. Gene sets with significant change in selection pressure 
between pre and post-treatment samples were identified via the GSEA (Subramanian et al., 2005) 
approach using the clusterProfiler (Yu et al., 2012) package in R with the difference in the -
log10(global p-values) between pre and post-treatment samples, used as a metric to rank genes. 
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Phylogeny Tree Reconstruction 
For 12 patients with both pre and post-treatment WES available, mutations were filtered based 
on the following criteria: 1) total coverage for tumor ≥10, 2) variant allele frequency (VAF) for 
tumor ≥4%, 3) number of reads with alternative allele ≥9 for tumor, 4) total coverage for normal 
≥7, and 5) VAF for normal ≤1% at a given mutation. These filters applied to all mutations except 
for mutations in the KRAS gene. Then pre- and post-therapy mutations were aggregated per 
patient. PhyloWGS (Deshwar et al., 2015) software package 
(https://github.com/morrislab/phylowgs) was used to infer the clonal structures and estimate clone 
sizes. 
  
  
Neoantigen Prediction and Fitness Score 
Filtered mutations were annotated with snpEff.v4.3t software (Cingolani et al, 2012, PMID: 
22728672) with options set as “-noStats -strict -hgvs1LetterAa -hgvs -canon -fastaProt [fasta file 
name]”. All wild-type (WT) and mutant genomic sequences corresponding to coding mutations 
were translated to an amino acid sequence consistent with the GRCh37 reference genome 
(GRCh37.75). Only annotations without “WARNING” or “ERROR” were kept and the most 
deleterious missense mutation was prioritized in mapping a genomic mutation to a gene. 
  
The mutant amino acid from a missense mutation was centered in a 17 amino acids long peptide. 
Then 9-mers were extracted in a left-to-right sliding fashion. Each mutant 9-mer contained the 
mutant amino acid on one of the 9 positions. In essence, one missense mutation produced up to 
nine 9-mer peptides. Predictions of MHC Class-I binding for both wildtype peptide (PWT) and 
mutant peptide (PNeo) were estimated using the NetMHC 3.4 (Lundegaard et al., 2008) software 
with patient-specific HLA-I types. All PNeos with predicted IC50 affinities below 500 nM to a patient-
specific HLA-I type were defined as neoantigens. Filtered neoantigens were aligned to the known 
positive epitopes in the Immune Epitope Database (IEDB, http://www.iedb.org) (Vita et al., 2019) 
for all human infectious disease, class-I restricted targets with positive immune assays using 
blastp (Altschul et al., 1990) software (https://blast.ncbi.nlm.nih.gov/Blast.cgi). We then calculate 
the alignment scores with the Biopython Bio.pairwise2 package (http://biopython.org) for all 
identified alignments. 
  
Clonal structure, MHC Class-I affinities, and epitope alignment scores were put together into the 
fitness modeling framework in Luksza et al (Łuksza et al., 2017). Neoantigens were mapped to 
the clonal structure based on the underlying genomic mutations. Then fitness score was 
calculated for each clone, and the scores were averaged over all the clones in a sample after 
weighting on clonal sizes. 
 
 
Generation of anti-PD1 resistant CT26 tumors 
BALB/C mice were acquired from The Jackson Laboratory, after several days of acclimation, mice 
were inoculated with 500k CT26 on the rear flank. When the average tumor volume reached 80-
100 mm3 (indicating day 0), mice were given a series of intraperitoneal injections of anti-PD1 
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(clone RMP1-14; BioXcell), consisting of 100 ug each on days 0,3, and 6. Tumors were excised 
from mice that did not respond to anti-PD1 therapy, approximately 10-14 days following the initial 
treatment. Tumors were dissociated using collagenase (Stemcell Technologies), washed in 1X 
PBS, and plated in IMDM culture media supplemented in 10% fetal bovine serum, 1% GLUTiMAX, 
and 1% Antibiotic-Antimycotic (all GIBCO). Cells were passaged at least 5 times and then 
inoculated into new recipient mice according to the same protocol as above. Again, when tumors 
reached 80-100 mm3, another treatment course of anti-PD1 began. This process was repeated 
for a total of 4 rounds, at which point none of the treated mice responded to anti-PD1 therapy. 
The cell lines generated after 2 rounds of anti-PD1 selection are referred to throughout this 
manuscript as ‘2nd round’, ‘2nd generation’ or ‘F2 generation’, and the cell line generated after 4 
rounds of anti-PD1 selection are referred to as ‘4th round’, ‘4th generation’, or ‘F4 generation’. 
 

Transcriptomic profiling of anti-PD1 resistant cell lines 
Three distinct vials of parental CT26 cells (ATCC; ‘experimental replicates’), two independently 
isolated tumors from ‘2nd round’ mice, and four independently isolated tumors from ‘4th round’ 
mice (both ‘biological replicates’), were cultured +/- 20 ng/ml of mouse IFNγ (Biolegend) for 24 
hours at 37oC/5%CO2. The following day, RNA was isolated from cells using Qaigen RNAeasy 
reagents according to manufacturer’s instructions, including QiaShredder homogenization and 
on-column DNaseI digestion. Isolated RNA was sent to Genewiz (www.genewiz.com) for library 
generation, RNA-sequencing, and data processing. Briefly, sequencing libraries were generated 
and sequenced on an Illumina HiSeq (2x150 paired end reads), targeting >20x106 reads per 
sample. Sequences were trimmed using Trimmomatic v.0.36 (Bolger et al., 2014) and mapped to 
Mus Musculus GRCm38 reference genome using STAR aligner v.2.5.2b (Dobin et al., 2013). 
Unique gene hits were calculated by using featureCounts from the Subread package v.1.5.2. Only 
unique reads that fell in exonic regions were counted. The Transcript Per Million (TPM) values 
were obtained for each protein-coding gene and subsequently log-transformed (log2(TPM +1)) 
for downstream analysis. Mouse orthologs of genes in hallmark gene sets and Antigen Processing 
Machinery (Şenbabaoğlu et al., 2016) and regulons of IRF1 and STAT1 were identified using 
Ensembl 87 (Howe et al., 2021) and single sample gene set enrichment analysis was performed 
in a similar fashion as described for the clinical cohort. 
 
 
Statistical tests of experimental data 
All statistical tests were performed in R. The two-tailed unpaired t test was performed to identify 
differences between parental and the resistant cells or between naive and IFNγ challenged 
cells. Data are shown as mean + SEM. 
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Supplementary Figures 
 

 
Figure S1. (a) Schematic of patterns of progression in post-treatment lesions. “Rebound growth” is defined 
as lesions present at initiation of therapy with response on treatment, but subsequently followed by 
progression (top). “De novo growth” is defined as lesions that were not present at initiation of therapy and 
newly grew during treatment. (b) Time to progression in rebound and de novo growth lesions. 
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Figure S2. Spider plot of individual lesion and best overall response within each profiled patient. Pre-
treatment lesions were defined as with at least 30% reduction after initiation of treatment or resected prior 
to treatment. Post-treatment lesions were defined as those with “rebound growth” or “de novo” growth. 
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Figure S3. Principal components analysis of expression data to evaluate for a) batch effects, b) site and c) 
post-treatment response. d) Comparison of immune score from CIBERSORT between paired pre-treatment 
and post-treatment samples. 
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Figure S4. (a) Principal components analysis of patients with paired samples based on change in 
enrichment score of hallmark gene sets. (b) Principal components feature loadings of hallmark gene sets 
with both magnitude and direction. Biological processes in hallmark gene sets were categorized into sub-
groups as described in (Jiménez-Sánchez et al., 2020) and colour-coded accordingly. regulated gene sets 
in either ‘stable’ or ‘increase’ patients ordered according to IFNγ status.  (c) Correlation between Hallmark 
gene sets and PC1 from panel a.(d) Correlation between change in the IFNγ Response specific signature 
with the 1st principal components from panel a. (e) Correlation between change in the IFN𝛼 Response 
specific signature with the 1st principal components from panel a. (f) Expression levels of FOXP3 
(Regulatory T cells marker) in pre- and post-treatment samples of IFNγ stable and increase group of 
patients. 
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Figure S5. (a) Clustering of samples based on germline mutations. Column annotations indicate patient ID 
and treatment timepoints. Non-homozygous germline mutations were identified by genotyping the SNPs in 
the panel of normal (PoN) samples in the cohort using GATK. The variant allele frequencies of these 
germline SNPs in the tumour samples were used to classify them as ref/ref (<0.25), alt/ref (>=0.25 & <0.75) 
or alt/alt (>=0.75). (b) Neoantigen Fitness Score and (c) Mutant-Allele Tumor Heterogeneity (MATH) Score 
in paired pre-treatment and post-treatment samples. Dynamics of loss and gain of clonal and sub-clonal 
mutations between paired pre-treatment and post-treatment samples of patients with (d) sub-clonal 
expansion (AR_19 and AR_26) or (e) clonal replacement (AR_20 and AR_27). (f) Proportion of smoking 
signature in private pre-treatment and private post-treatment mutations. dN/dS values for genes based on 
(g) missense, (h) indel and (i) truncation (nonsense and splice site) mutations. Genes with high magnitude 
of dN/dS values (>100) and significant p-value (<.002) in either the pre-treatment or post-treatment 
timepoints are shown. 
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Figure S6. (a) PCA of parental, 2nd round and 4th round samples based on whole transcriptome data. 
Differential comparison of hallmark gene sets between (b) 2nd round and parental cells, (c) 4th round and 
parental cells. The x-axis indicates the change in Enrichment Score and y-axis is FDR adjusted p-value 
derived from comparison of Enrichment Score of hallmark gene sets. Differential analysis of hallmark gene 
sets for IFNγ Stimulated vs IFNγ Untreated cells from (g) Parental, (h) 2nd round and (i) 4th round. 
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