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Standard niche modeling is based on probabilistic inference
from organismal occurrence data but does not benefit yet from
genome-scale descriptions of these organisms. This study over-
comes this shortcoming by proposing a new conceptual niche
that encompasses the whole metabolic capabilities of an orga-
nism. The so-called metabolic niche resumes well-known traits
such as nutrient needs and their dependencies for survival. De-
spite the computational challenge, its implementation allows the
detection of traits and the formal comparison of niches of diffe-
rent organisms, emphasizing that the presence-absence of func-
tional genes is not enough to approximate the phenotype. Fur-
ther statistical exploration of an organism’s niche sheds light
on genes essential for the metabolic niche and their role in un-
derstanding various biological experiments, such as transcripto-
mics, paving the way for incorporating better the genome-scale
description in ecological studies.
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A hundred years ago, seminal studies introduced the gene-
ral idea of a niche that still motivates current ecological in-
vestigations. In 1917, Joseph Grinnell proposed one of its
first definitions by declaring the niche as the environmental
conditions needed by a given species to survive (1). Howe-
ver, because such a description did not consider the impact
of the species on its environment, Charles S. Elton (2) pro-
posed a complementary description examining the niche as
the place of the species in its biotic environment. We ha-
ve to wait until 1957 for G. E. Hutchinson to publish his
Concluding Remarks(3) that explored a new formalism that
could embed both definitions. He proposes a niche space as
an n-dimensional space, where each axis describes an envi-
ronmental variable. The set of conditions allowing a species
to survive defines its niche, forming an n-dimensional volu-
me in the niche space. This definition is referred to as the
fundamental niche. It aims to reason on the biological system
requirements and to highlight its impact on its environment.
Nevertheless, modeling such n-dimensional volume is chal-
lenging because of the nature of biological data. To overcome
these limitations, many heuristics, leading to different defini-
tions of the niche, are proposed. However, these numerous
formalizations contribute to the complexification of the niche
concept (4).

In parallel, high-throughput technologies have changed the
global perception of a biological system and fostered the use
of DNA sequencing techniques and molecular abstractions in
microbial ecology (5). Meanwhile at the interface of com-
puter science, mathematics, and molecular biology the new
field of systems biology emerged (6). This discipline’s pri-
mary goal is to extract emerging properties from biological
systems depicted by high-throughput molecular experiments.
Increasing computing capacity and large dataset availabili-
ty enabled systems biology to extend its modeling applicati-
on domain from small size reductionist networks to ecosys-
tems (7–10). Nowadays, biological systems are analyzed by
their gene content, allowing metabolic network reconstructi-
on that attempts to predict the metabolic phenotype (i.e., bio-
chemical capabilities of an organism) from the genotype (11).
These metabolic predictions from omics data have shown si-
gnificant successes in biotechnology (12–15). However, the-
se predictions assume the biological system to adopt optimal
behaviors such as growing at their maximal rate, which is not
suited for the niche concept, where organisms show their pla-
sticity to survive, not their ability to overgrow.
Here we proposed a novel computational framework where
we extract the niche of an organism based on its metabo-
lic network. We first use the quantitative description of this
metabolic niche to recover biological features of Escheri-
chia coli such as conditions for aerobic or anaerobic growth
. We then extend our computations to numerous prokaryo-
tes, exhibiting metabolic niche inclusion and its putative link
with ecotype. Finally, we investigate the metabolic niche of
Phaeodactylum tricornutum showing the importance of parti-
cular reactions and pathways in the survival of the organism.
Notably, we show that we can gather different kinds of omics
data around our theoretical framework for improving our un-
derstanding of previous biological results in light of the eco-
logical success of diatoms.

Results
Rationale of the metabolic niche and its application on a
state-of-the-art metabolic model. The metabolic niche is a
new computational result estimated from the sole genomic
composition of an organism. Contrary to other niche estimati-
ons (16), our modeling does not consider statistical distributi-
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Fig. 1. Formalizing the metabolic niche from omic knowledge and application on E. coli. From the genomic content of an organism (a), we could infer the corresponding
encoded catalytic proteins. These proteins support metabolic reactions that interplay (i.e., products are substrates for others). The resulting metabolic network (b) integrates
all the physiological abilities of one species. Projected into a constraint-based paradigm, solving the corresponding linear problem depicts a solution space (c) that describes
all the fluxes in each metabolic reaction that satisfy all given constraints. Ecological traits define the axes of Hutchinson’s niche space. The niche volume (d) guarantees that
the species survives as long as its environmental conditions belong to this volume. If we apply this formalism to the metabolic network, we abstract the organism’s inner
mechanism and focus only on its exchange reactions (e). Using constraint-based modeling on this new system, we have a new constraint, which is the survival of the species;
that is, the flux through the growth rate reaction needs to be at least as high as the death rate of the species (f). Therefore, a formal description of the metabolic niche explores
the solution space in which axes (or traits) are exchange reaction fluxes. When applied on E. coli, we reduced the number of axes of the niche space to allow visualization of
the volume of its niche (g)

ons over a range of parameters but rather a theoretical pheno-
type. From genomic data (Fig. 1a), metabolic network recon-
struction techniques infer an organism’s metabolic abilities.
Reactions intertwine with products of reactions that are sub-
strates of others, forming a metabolic network (Fig. 1b). So-
me metabolites are constituents of the biomass reaction. This
synthetic reaction models the growth rate of the organism.
Exchange reactions are responsible for the organism’s inter-
action with its environment, defining the limits of the biolo-
gical system. The set of all biological constraints, such as (i)
the inter-connectivity of reactions, (ii) the stoichiometry, and
(iii) a classical steady-state approximation, describes a solu-
tion space (Fig. 1c). From this solution space, state-of-the-art
systems biology approaches focus on distinct points of inte-
rest, generally minimizing or maximizing one particular flux
(e.g., the red dot in Fig. 1c maximizing the flux through the
biomass reaction). The fundamental niche focuses on the spe-
cies’ interaction with its environment and survival (Fig. 1d).
Projected in a metabolic modeling framework, considering

the niche space implies abstracting the network’s inner reac-
tions and focusing on the exchange reactions while maintai-
ning a minimal growth rate (Fig. 1e). The former metabolic
solution space is therefore further constrained by a death rate.
Hence, the corresponding space describes all fluxes combina-
tions that satisfy the fundamental niche constraints, so-called
the metabolic niche (Fig. 1f).

For the sake of application, a metabolic niche was estimated
for the core Escherichia coli metabolic network. An estima-
tion of the maximum growth rate via Flux Balance Analysis
(17) is 0.874 mmol.gDW−1.h−1. The metabolic niche was
estimated for a death rate equals to 0.01 mmol.gDW−1.h−1

and on six dimensions, or traits, that are exchange reactions
for the following metabolites: CO2, O2, H2O, NH4, phospha-
te, and glucose. The death rate value is herein strictly arbi-
trary, and results may vary for other values. For instance, a
value of 0.7 would shed light on high growth rate behavi-
or, whereas a lower value would add behaviors representing
less than 15% of the flux range through the biomass. A finer
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parameterization of this rate is necessary to represent biotic
interactions better, such as predation, but does not interfere
in the fundamental niche definition.
The topology of a metabolic niche is complex. We could de-
scribe its volume with more than 210 vertices. In favor of
representation, we clustered close vertices, dividing by three
their number (64 vertices) while maintaining more than 95%
of the niche volume for the represented axes. For the sake
of simplicity, we represent the metabolic niche (a blue-grey
area) and its vertices in the CO2 vs. ammonium and CO2 vs.
O2 exchange spaces (Fig. 1g). As a companion illustration,
we also represented the metabolic niche in the front of the
growth rate as a 3D shape to picture each environmental con-
dition’s theoretical growth.
For approximating the state-of-the-art niche space in the con-
text of the metabolic network, we performed a Flux Varia-
bility Analysis (FVA) (17) on the same exchange reactions
with a minimum flux through the biomass reaction set to 0.01
mmol.gDW−1.h−1 to mimic a death rate. It defined the fea-
sible range of fluxes for each trait (Fig. 1g red lines). As a
modeling validation, estimated ranges of fluxes embed the
projection of the metabolic niche. The volume defined by the
Cartesian product of each segment of the feasible range is cal-
led the Cartesian niche. The Cartesian niche volume is more
than 86× 106 units in the six dimensions, whereas the me-
tabolic niche volume is less than 72×103. Thus, it occupies
less than 1‰ of the approximate Cartesian niche, emphasi-
zing all the constraints that are not taken into account in the
Cartesian niche approximation, in particular those that define
phenotypic traits. This support previous results on trait space
occupied by plant compared to models (18).
The metabolic niche indicates an overall uptake of ammo-
nia by E. coli (i.e., negative exchange fluxes), whereas CO2
could be produced (i.e., positive exchange fluxes) by respi-
ration, or uptaken but in small amplitude for anaplerotic re-
actions and other carboxylation reactions. Flux distributions
in this part of the metabolic niche are associated with lower
uptake of oxygen (15 mmol.gDW−1.h−1), emphasizing the
anaerobic growth conditions. As a biological validation, the
metabolic niche description correctly shows lower maximal
growth rates in anaerobic than in aerobic conditions condi-
tions. Furthermore, the metabolic niche’s overall shape exhi-
bits a positive relationship between O2 consumption and CO2
production that defines respiration (i.e., a negative relation-
ship between both fluxes), whereas the relationship between
CO2 and ammonia is less obvious. This system’s characte-
ristic is a straightforward consequence of considering who-
le intracellular biochemical reactions, leading to mechani-
stic interdependencies between uptake reactions, that by con-
struction, Cartesian niches could not consider. Furthermore,
the metabolic niche extracts essential numerical descriptors
of E. coli, mainly physiological switches of regime in func-
tion of available nutrients. These switches between regimes
are traits, usually identified after extensive and tedious expe-
rimental efforts.

Comparing organisms via their metabolic niches. We arbi-
trarily defined traits for a systematic comparison of meta-

bolic niches (i.e. exchange reactions for the following me-
tabolites: NH4, SO4, H2S, glucose, NO3). We randomly se-
lected 39 prokaryotic metabolic models (19) that share tho-
se traits. When possible, we associated each model with its
habitat(20). We then compared the metabolic niche distance,
a surrogate to the metabolic niche volume overlap, versus dif-
ferent state-of-the-art distances between organisms (Fig. 2a-
c). Identical or included metabolic needs imply similar or in-
cluded metabolic niches, and a metabolic niche-based distan-
ce equals to 0. Conversely, a distance equals to 1 emphasizes
distinct niches and distinct metabolic needs. Each point des-
cribes a comparison between two bacteria. Colored points in-
dicate bacteria from similar habitats (resp. blue, brown, and
red for marine, soil, and host-associated). When removing
inclusion cases, we show a strong positive correlation bet-
ween Cartesian niche overlaps and metabolic niche overlaps
(Fig. 2a; R: 0.82, p-value: 2.68× 10−181, slope: 0.98). This
result was expected as the Cartesian niche embed the metabo-
lic niche. Furthermore, most of the comparisons are above the
scatter plot’s diagonal. Several metabolic model comparisons
are spread over vertical lines: showing the same Cartesian ni-
che overlap but different metabolic niche overlaps, stressing
an overall refinement in the distance brought by the use of the
metabolic niche.

Similarly, we compared the metabolic distance with the phy-
logenetic distance based on 16S rRNA sequence pairwise
comparison (Fig. 2b). The comparison exhibits a decoupling
between the metabolic niche and taxonomy as already shown
for marine prokaryotes (21). Because seminal genomic stu-
dies extrapolate organismal functionalities from their geno-
mic content (21, 22), we further compared the metabolic ni-
che overlap with a genomic composition distance by compu-
ting pairwise organismal reactions sets’ Jacquard distances
(Fig. 2c). In this context, high distance means low cardinali-
ty of the intersection of the sets. This straightforward metric
stresses the topologies’ differences from a metabolic network
perspective by emphasizing similar reactions between orga-
nisms but not their use. Our computations reveal no signi-
ficant relationship between the metabolic niche overlap and
the presence-absence of reactions, emphasizing that the ex-
clusive metabolic abilities do not approximate the organismal
metabolic needs or phenotype.

To scale up this strong result in a more specific habitat, we ap-
plied the same protocol for 502 metabolic models of bacteria
found in Tara Ocean Datasets (23). Their pairwise compari-
son implies considering more than 105 points described by
the logarithm of point densities (Fig. 2d). This result con-
firms the lack of overall relationship between the metabo-
lic niche overlap and the presence-absence of shared reacti-
ons for marine prokaryotes. Furthermore, the metabolic niche
overlap computation showed several cases of distances near
0 (Fig. 2a-d). This result implies that some metabolic niches
were included in others. Due to numerical imprecisions, we
stated that an intersection covering more than 999h of the
smallest niche is an inclusion. We used this metric to depict
a metabolic niche inclusion graph (Fig. 2e), where nodes are
marine bacteria with a node size proportional to the metabo-
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Fig. 2. Comparison of the metabolic niche overlap with other pairwise distances and niche inclusion. a, comparison between metabolic niche overlaps and Cartesian
niche overlaps estimated with a Jacquard distance. This comparison is performed for bacteria from different or common habitats. b, absence of a relationship between
metabolic niche overlaps and pairwise phylogenetic distances based on 16S rRNA gene. c, absence of a relationship between metabolic niche overlaps and presence/absence
of common reactions estimated via a Jaccard distance. d, absence of a relationship between metabolic niche overlaps and presence/absence of common reactions estimated
for 502 marine bacteria metabolic models. Instead of a scatter plot, it shows concentrations for more than 105 pairwise comparisons. For bacteria that show metabolic niche
overlaps almost null, we investigate potential niche inclusion. e, metabolic niche inclusion graph of marine bacteria. The node size is proportional to metabolic niche volume,
and an edge indicates a metabolic niche’s inclusion into another. The graph layout follows an isomeric distribution driven by the out-degree of the inclusion graph. Bacteria
are divided into four categories based on the z-score from most embedded metabolic niche (i.e., turquoise) to the least (i.e., purple). Labels of bacteria known for being
associated with a host are in red/bold and underlined.

lic niche volume, and edges describe the inclusion of a bac-
teria niche into another. For the sake of clarity, the directed
graph follows an isomeric layout driven by the out-degree,
and nodes are partitioned into four categories based on the
z-score that approximates the capacity to include other meta-
bolic niches. Bacteria known for being associated with a host
are depicted in red/bold. Mainly distributed at the bottom of
the layout and colored in purple (i.e., metabolic niche inclu-
ded in others), these bacteria show significantly smaller me-
tabolic niche volume (Extended Data Fig. 1). These features
indicate less phenotypic plasticity for the bacteria associated
with host, potentially following more stable environmental
conditions or gene loss (24).

In-depth study of the metabolic niche flux space of a ubiqui-
tous diatom. To assess the impact of primary metabolism on
the metabolic niche and apply our approach beyond proka-
ryotes, we used one of the most comprehensive and ubiqui-
tous eukaryotic models: the diatom Phaeodactylum tricornu-
tum (25). Its metabolic model covers more than 2000 reacti-

ons and 1700 metabolites (Supplementary Text 3), which are
suited to characterize the chimeric nature of diatom metabo-
lism and incorporate compartmental targeting of biochemical
reactions. We investigated the metabolic niche of P. tricornu-
tum via a sampling procedure that estimates 105 samples of
fluxes distribution that belong to the metabolic niche. This
numerical exploration is used to compute pairwise correlati-
ons between fluxes. This statistical score emphasizes the rela-
tionship between flux variations of two reactions that results
from mechanistic dependencies arising from metabolic cons-
traints. Thus, a high absolute correlation value between two
reaction fluxes indicates that a change in one of the reaction
flux will induce a change in the other reaction flux, where-
as not correlated (i.e., R2 = 0) fluxes designate mechanistic
independence of both reactions in the niche flux space, allo-
wing independent variations of their fluxes. We resumed this
exploration in a correlation graph where reactions are verti-
ces and correlation between two reactions is an edge linking
the corresponding vertices (Fig. 3a). We assume that the re-
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Fig. 3. Correlation between Phaeodactylum reactions to support the metabolic niche. a, description of most significant dependencies between metabolic reactions.
Metabolic reactions are ordered in an outer circle. Reactions associated with nitrogen, Calvin-Benson-Bassham, and glycolysis cycles are emphasized. An edge between
reactions corresponds to a correlation (positive or negative) between two fluxes’ reactions above 0.6. The inner-circle describes WGCNA modules to which the gene
associated with the reaction belongs. A grey circular bar plot shows the correlation sum of each reaction as a proxy of the reaction essentiality for the metabolic niche.
b shows essentiality of pathways for the metabolic niche. We represent the correlation histogram normalized by the number of genes present in the pathway for distinct
pathways. Y-axes are in log scale. The S score is the sum of the absolute correlation value of the histogram, which estimates pathway essentiality for the metabolic niche.

action’s importance to sustain the metabolic niche i.e., orga-
nism survival, can be shown by the sum of all the correlation
involving this particular reaction (as depicted in Fig. 3a by
the grey circular bar diagram). We showed that most Calvin-
Benson-Bessham (CBB) cycle reactions are essential to the
metabolic niche by pointing out reactions belonging to no-
table metabolic pathways, biologically reassuring for photo-
synthetic organisms. To be able to get the same kind of results
on metabolic pathways, we look at the distribution of its cor-
relation normalized by the number of reactions it is composed
of (Fig. 3b). All pathways show a modal distribution around
0, emphasizing that no pathways are entirely dependent on
the whole network. Proportionally to others, sulfur and iron
show smaller correlations, whereas chlorophyll, carotenoid,
amino-acyl-tRNA, glycerolipids, fatty acid biosynthesis, and
oxidative stress reactions exhibit higher correlations, as these
pathways target energy storage or consumption. Interestingly
photorespiration, carbon fixation, TCA, and amino acid me-
tabolism pathways have less high absolute correlation values
but still show a normal distribution of the correlations. This
result indicates a potential role in acclimating while still ha-

ving a pivotal role in the organism’s survival.

We can benefit from previous extensive transcriptomic ana-
lysis of P. tricornutum, in which modules of co-expressed
genes over distinct experimental conditions are defined by
Weighted Gene Co-expression Network Analysis(26). Be-
cause most metabolic reactions are linked to genes that en-
code for their enzymes, we are able to integrate the informa-
tion of membership to a module to our analysis (colored ring
of Fig. 3a). For some modules, targeted reactions show high
pairwise flux correlations, which indicates that the metabo-
lic dependencies could explain the clustering of these genes.
Nevertheless, we also see high correlations between modules,
indicating metabolic dependencies between different modu-
les (Extended Data Fig. 2a), insights that are not accessible
from the standard transcriptomic analysis. Among others, the
blue module is of particular interest. It is the most prevalent in
the metabolic network. It has the highest intra module corre-
lation sum and shares a high correlation with other modules,
emphasizing its importance in the metabolic niche. A pre-
vious study (26) showed its implication in several metabolic
pathways, mainly the CBB cycle, glycolysis, and fatty acid
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pathways ( for details, see Fig. S6 of Ait-Mohamed et al(26)
that depicts the distribution of genes belonging to pathways
across all transcriptomic modules). The use of the metabolic
niche allows fostering the previous interpretations of these
modules. It shows that the module is correlated with reac-
tions directly linked with the TCA pathway (this pathway
was essentially associated with Cyan module, explaining in
part the connection between these two modules), amino acid
metabolism, and chlorophyll biosynthesis (explaining most
of the connection with light steel module that encompasses
genes associated with chlorophyll and isoprenoid synthesis).
Notice that the connection with the dark grey module is pri-
marily due to other pathways not labeled here (Extended Data
Fig. 2b).
Finally, projecting the essentiality of genes for the metabolic
niche at the chromosome level shows that all chromosomes
contribute to the metabolic niche by considering the exact
relationship between genes and essential reactions (Fig. 4a).
However, extraction of simple statistical parameters from the
distribution suggests no particular pattern of gene essentiali-
ty for the niche among chromosomes (Fig. 4b). Identifying
these islands of essential genes for the metabolic niche vs.
segments less constrained paves the way to understand evo-
lutionary processes further.

Discussion
Our definition of the fundamental niche relies on the recent
signs of progress of two recent complementary and produc-
tive fields. On the one hand, the genomic composition of or-
ganisms and ecosystems is now available via high throughput
DNA sequencing fostering the identification of putative func-
tions (10, 27). Notably, a recent study formalizes a metabo-
lic niche space based on the presence-absence of microbe’s
metabolic traits, allowing well-defined comparison and clus-
tering of organisms upon metabolic abilities (22). However,
it does not investigate the dependency between metabolic ca-
pabilities and growth rate (15), putting aside one essential
aspect of the niche: the survival of the considered organisms.
By doing so, it steps away from Hutchinson’s definition by
throwing other niche specificities into the pool (4). On the
other hand, systems biology takes advantage of using some of
the most efficient computational solvers that enable new de-
scriptions of biological systems phenotypes from networks.
The complementarity between these fields allows analyzing
genome-scale metabolic models identified from their envi-
ronment and extrapolating their niche. However, it is worth
noting that this models’ identification is a tedious and chal-
lenging task (11, 28), and few metabolic models are available
compared to the number of annotated genomes. In particular,
this study (Fig. 2d,e) considers a fraction of marine proka-
ryotes, for which metabolic models are available (19), com-
pared to available marine microbial genomes (21). Nevert-
heless, preliminary metabolic niche exploration is insightful.
The metabolic niche inclusion depicts the relative plastici-
ty of bacteria compared to others (Fig. 2e). In particular, it
shows that bacteria associated with hosts rely on smaller ni-
ches and potentially more stable environmental conditions

(Extended Data Fig. 1).

Our metabolic niche approach relies on genome-scale meta-
bolic modeling and is a new formulation of Hutchinson’s fun-
damental niche. The metabolic niche extracts the main phe-
notypic characteristics of an organism and considers omics
data in the form of a metabolic network as its sole input.
Of note, it allows the identification of quantitative traits wi-
thout the need for parametrizations. For instance, it identified
the quantities of oxygen that lead E. coli to switch from an-
aerobic to aerobic growth by just considering its metabolic
network (Fig. 1g). This trait description is possible through
the sharp abstraction of the internal biochemical machine-
ry, which removes its complexity for emphasizing its effects
on growth in the front of nutrient availabilities. From a com-
putational viewpoint, the metabolic niche relies on a formal
description of the metabolic solution space. Contrary to other
metabolic modeling tools designed for metabolic engineering
(used to maximize the growth rate of specific organisms or
the production of given metabolites of societal interest), the
metabolic niche investigates organismal behaviors conside-
ring all kinds of growth conditions, especially sub-optimal.
Previous studies advocate for these conditions as more rea-
listic for studying ecological systems or organisms in biotic
interactions (29). This statement requires a more exhaustive
and computationally challenging exploration of the solution
space than extracting small sets of extreme points associated
with the maximal growth rate. We proposed the metabolic
niche abstraction and the original niche flux space sampling
procedure for this purpose.

Formally, the metabolic niche reformulates semi-quantitative
knowledge (i.e., presence/absence of genes or relative abun-
dance of gene transcripts) into a quantitative framework to
fit the fundamental niche expectation, which is quantitative
by nature. This change of abstraction from semi-quantitative
to quantitative is a theoretical and computational challenge
necessary and recurrent in omics data. The metabolic niche
contributes to this general effort by resolving a complicated
mathematical problem and assuming the biological system
in quasi-steady-state conditions. It is a strong assumption for
modeling a biological system in its environment, but it re-
mains coherent with preliminary metabolic engineering stu-
dies. Indeed, previous experimental results showed that mi-
crobial metabolisms adapt themselves within an hour. Com-
plementary, other constraint-based modeling techniques ta-
ke benefit from this assumption for simulating an organisms’
adaptation by computing different metabolic fluxes following
the evolution of substrates at the minute time-scale (i.e., the
systems being at quasi-steady states every minute) (30). The-
se points advocate for the quasi-steady-state assumption and
the accuracy of the metabolic niche to investigate the adapta-
tion or acclimation of organisms in environmental conditions.

Interestingly, as shown for P. tricornutum, applying a funda-
mental ecological concept allows integrating a multi-omics
data set, which is a fundamental issue in systems biology
that often eludes us. In particular, the use of the metabolic
niche explains causal dependencies between groups of co-
expressed genes. In the case of P. tricornutum, it emphasizes
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Fig. 4. Description of the gene essentiality for the metabolic niche on Phaedactylum tricornutum’s genome. a, for each 33 diatom’s chromosome, we emphasize
genes that encode for a metabolic reaction catalyzer. For each gene, we report the correlation sum of its associated reaction at its genomic position. In addition, b describes
statistics for each chromosome (i.e., specific color line), such as the total number of genes, the sum of all correlation sums, the proportion of genes from the chromosome
involved in the metabolic network, the highest correlation sum found in the chromosome and mean values considering solely genes involved in the metabolic network or all
genes.

the role of the blue module for the diatom survival. Further-
more, when projected on its chromosomes, the metabolic ni-
che concept shows that all chromosomes are necessary for the
niche, but not all chromosomic regions are equivalent. This
result has implications about the evolution of the organism
and how chromosome regions must be more constrained than
others for the sake of survival.
Despite biological validations, the metabolic niche remains
conceptual and calls for further and extensive bioinformatics
applications on large environmental genomic databases such
as those provided by the Tara Oceans expedition (9). This ef-
fort will be necessary to compare our formalism with in situ
data about habitat. In addition, the metabolic niche forma-
lization allows precise estimation of the fundamental niche
overlap between organisms. However, the work will be colos-
sal as it needs to be performed on more than three thousand
metabolic models built from the annotated genomes of recon-
structed Metagenome Assembled Genomes (MAGs) (31).
The metabolic niche formalizes the organismal function as a
space in which an organism can survive. This new abstracti-
on of the fundamental niche is an addition to other techniques
that assess the niche from the presence-absence of omics data

(22). In particular, this conceptual study illustrates the need
for biological modeling to assess biological phenotype per se
as it differs from the sole identification of functional genes.
The metabolic niche is thus an essential step towards the de-
sign of new omics-trait-based models. It aims to be applied at
the organismal and ecosystem levels where we could encom-
pass the whole biological complexity as enclosed in the me-
tagenomic knowledge associated with a superorganism hypo-
thesis (32).

Methods
Genome scale metabolic modeling: a general defini-
tion. Modeling a metabolic network implies a description of
how metabolites are exchanged and transformed within a net-
work. For instance, a general description can take the form of
a chemical equation:

a1S1 +a2S2 + ...−→ ...+ak−1Pk−1 +akPk

, where Si and Pi depict one metabolite among k that are
respectively a substrate and a product of the reaction, and ai
its corresponding stoichiometry to satisfy the mass balance
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law. By definition, substrates or reactants are on the left side
of the equation, whereas products are on the right one.
The stoichiometric coefficient sij of a metabolite Mi which
is involved in a reaction Rj is defined by:

sij =


−|ai| if consumned by the reaction, i.e a reactant
|ai| if produced by the reaction, i.e a product
0 not in the reaction equation

According to kinetic theory, the change over time of the con-
centration of the metabolite i is given by the mass balance
equation:

dMi

dt
= si1v1 +si2v2 + ...+sinvn =

∑
j=1...n

sijvj = 〈Si.|v〉

, where vj is the reaction rate or flux associated to reaction
Rj . Using a vector notation, the above equation can be writ-
ten as:

dM
dt

= Sv,

, where M is a vector that encloses all internal metabolite
concentrations, v is the flux vector that includes all fluxes vi,
and S the matrix that stores stoichiometric coefficients and
belongs to Rm,n where m is the number of internal meta-
bolites and n the number of reactions. Worth noticing, the
effect of the temperature on the reaction rate is not taken into
account.
This definition of the metabolic network encompasses one
particular kind of reactions which are of great interest in the
niche definition: the exchange reactions, defined as follow:

Mi←→Miex

, where Miex is a metabolite external to our system. If a me-
tabolite is secreted, the flux through the reaction will be posi-
tive (production of Miex). Conversely, a negative flux (pro-
duction of Mi) is an uptake of the metabolite. External meta-
bolites (Miex) are not represented in M. In other words, the
column of S responsible for the exchange reaction will only
show a stoichiometric coefficient in the line corresponding to
the metabolite in the organism.
Considering that most of the cells are homeostatic, they keep
their internal metabolite concentrations as constant as possi-
ble. One can thus assume the system at quasi-steady-states
(33), leading to:

dM
dt

= Sv = 0

In addition to this system of linear constraints, one also consi-
ders the bounds on fluxes that state that no reaction can have
an infinite rate. All fluxes must satisfy an inequality like:

lbi ≤ vi ≤ ubi

, where ubi represents the upper bound of the flux, meaning

the highest rate of the direct reaction, and lbi represents the
lower bound of the flux, i.e. the highest rate of the reverse re-
action. One can also encode thermodynamic information by
tweaking those bounds. For instance, if the reaction is known
to be direct and irreversible, it means that the flux cannot be
negative. In that case, the inequality becomes:

0≤ vi ≤ ubi

All solutions of v that satisfy these constraints are biochemi-
cally accurate. The set of solutions describes a steady-state
flux space F defined by:

F := {v ∈ Rn,Sv = 0, lb≤ v≤ ub} (1)

, where lb and ub are lower and upper bounds of reaction
fluxes. Those values may not be known. In that case, a ve-
ry high value (or a very low value for reversible reactions)
is generally used. The corresponding space is then an over-
approximation. Each solution of F is a point satisfying all
chemical and physical constraints in terms of fluxes. Thus,
mathematically, points of F are feasible, as they satisfy all
the constraints. Biologically, we will call them functional, as
they represent fluxes distribution that allow the organism to
survive. We propose herein to investigate the whole set of so-
lutions instead of focusing on one solution proposed by other
mechanistic and ultra-parameterized biological modelings.

General formulation of the metabolic niche. All soluti-
ons from F are feasible but represent different phenotypes
as the distributions of fluxes indicate different uses of meta-
bolic pathways, or uptakes, or secretions. However, solutions
belonging to F do not form a proper functional niche space.
Indeed, two additional constraints must be added to restrain
F that are described below.

The survival condition State-of-the-art metabolic mode-
ling techniques consider a chimeric metabolic reaction, cal-
led the biomass reaction (34). The flux through this biomass
reaction, vbiomass, approximates the growth rate of a given
organism and is usually maximized. For instance, in the ca-
se of respiration of heterotrophic microbial systems, such a
reaction involves more than 25 metabolites . In the genome-
scale metabolic framework, growth rate is hence described in
mole by mass of dry weight per hour (mol.gDW −1.h−1).
To survive, an organism must satisfy a flux through this parti-
cular reaction above a certain threshold representing its death
rate:

vbiomass ≥ drate

We add this new inequality to the previous set of constraints
on flux bounds lb≤v≤ub. The corresponding solution flux
space is noted NF (niche flux space).

NF := {v∈Rn,Sv = 0, lb≤v≤ub, vbiomass≥ drate}
(2)

The environmental space The metabolic niche space is
constrained by the environment, which implies decomposing
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the flux vector v into two parts: one concerning the exchange
reactions (x), and the other concerning the internal reactions
(y). Hence, we seek for the set of acceptable x such that there
exists a y so that v is in NF . Thus, if among the n reacti-
ons of the metabolic network, p are exchange reactions, we
define the metabolic niche by:

N := {x ∈ Rp|∃y ∈ Rn−p,S
(

x
y

)
= 0, lb≤

(
x
y

)
≤ ub}

(3)
Noting πex : Rn 7→Rp the orthogonal projection of Rn onto
Rp, the metabolic niche would be the image ofNF by πex :
N = πex(NF).

Intuition of the projection One property worth mentioning
on NF is its topology. This space is convex by definition
and also bounded as reactions cannot carry infinite fluxes.
Moreover, all its constraints are linear, making it a convex
polytope that can be described through the enumeration of
its vertices. This representation is called the V-representation
(35). Let us call V the set of vertices generatingNF . We can
write NF as a convex combination of the vertices in V , i.e.,
NF = conv(V). From this description the projection ofNF
can be done through the projection of each v ∈V and we have
:

N = πex(NF) = πex(conv(V)) = conv(πex(V))

This formulation is well suited for understanding the origin
of the niche space in our formalism. However, vertex enu-
meration is a computationally challenging problem, and its
complexity grows exponentially with the number of metabo-
lic reactions involved in the system.

Metabolic niche computation. This projection of the ni-
che flux space onto the niche space is general as it relies
on the seminal definitions of Elton (2) of the fundamental
niche that considers all exchange reactions. However, explo-
ring this space is a complicated numerical task. Therefore, we
propose to reduce the complexity of the above projection by
reformulating the original niche flux space NF , allowing its
computation through the resolution of a linear programming
problem.

Polytope formulation As NF is a polyhedron, one can
change its representation from the vertices description to the
half-spaces intersection, called the H-representation.

NF = {v ∈ Rn|Av≤ b}

, with A ∈ Rq,n and b ∈ Rq . A is the matrix composed
by the vectors defining the half-space constraints (as rows),
such that for each row Ai., the corresponding constraint is
〈Ai.|v〉 ≤ bi. The new formulation is similar as equation
Eq. (2) if A and vector b are specific matrices defined as
follow:

A =


S
−S
In
−In

 and b =


0m
0m
ub
−lb


, with In the identity matrix of Rn,n and 0m the column
vector of Rm with all its components set to 0.

Projection through multi objective linear programming
Assuming p exchange reactions of interest, that represent
axes for the metabolic niche space. Defining the metabolic ni-
che following the formulation of Hutchinson consists in pro-
jecting NF onto the nutrient flux space Rp defined by those
exchange reactions. Formally, it is the polyhedron defined by:

N = {x ∈ Rp|∃y ∈ Rn−p : Gy+Hx≤ b} (4)

, with the two matrices H∈Rq,p and G∈Rq,n−p being sub-
matrices of A. H is composed of the k columns correspon-
ding to the exchange reactions; G corresponds to the remai-
ning columns taking credit for interior reactions. Biologically
speaking, H is responsible for the interaction of the organism
with its environment, and G accounts for the inner mecha-
nism of the organism.
In practice, computing this projection is similar to solve the
following Multi-Objective Linear Program (MOLP) (36) for
which efficient solvers(37) are available:

min

(
Ip

−1Tp

)
x

subject to

(
x
y

)
∈NF

(5)

, with 1p the column vector of Rp with all its components
set to 1. For passing from the MOLP solution to the solution
of the projection problem, one only needs to get rid of the
last component of the former to get the latter. Computing the
niche following the formulation of Hutchinson is therefore
equivalent to solve a multi-objective problem in the context
of genome-scale metabolic modeling. The detailed pipeline
can be found in Appendix A.

Comparing niches As p-dimensional volumes, niches can
be compared and characterized with different measures. To
formally compare such volumes, one can use a pseudo di-
stance based on the Jaccard index (38). The Jaccard index
is a similarity measure applied on ensembles, looking at the
intersection ratio over the union of the two compared ensem-
bles. The distance is computed as follows:

d(Va,Vb) = 1−J(Va,Vb) = 1− |Va∩Vb|
|Va∪Vb|

, where |.| is an operator measuring the size of the ensem-
ble. For the niche, it is the volume. Biologically speaking,
the intersection of two metabolic niches represents all the
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conditions (fluxes distribution through exchange reactions)
that allow both species to survive. The intersection of two
p-dimensional volumes is not straightforward, so we develo-
ped a method based on metabolic networks. The mathemati-
cal and computational framework is explained in Appendix
B.

Exploring niches The niche flux space investigation em-
phasizes how the organism allocates its resources and its
energy for the sake of its survival. However, the formal inves-
tigation of this space is a challenging task that we propose to
overcome via the use of OptGP sampler (39) from COBRApy
(17); see Appendix C for more detail. This technique compu-
tes different points that belong to the niche flux space. Each
point is a distribution of flux values over all the reactions.
Considering fluxes as random variables, we computed pair-
wise correlations between reactions over the extracted samp-
les to create a weighted correlation graph. It summarizes the
metabolic niche’s organization and highlights dependencies
between metabolic reactions motivated by its survival. As a
final metric, we sum all the correlations associated with one
reaction. A high value for a given reaction indicates that this
reaction plays a pivotal role as a flux variation of this reaction
will imply large changes in several other reactions.

Genome-scale metabolic networks We applied the meta-
bolic niche formalism on different metabolic models availa-
ble in the BiGG database (40). Escherichia coli str. K-12 sub-
str. MG1655 core is a heterotrophic microbial model orga-
nism suitable for bioinformatics benchmarking, comprises 95
reactions of which 20 are exchanges reactions and 72 meta-
bolites. Phaeodactylum tricornutum CCAP 1055/1 is an ubi-
quitous eukaryotic organism for which a genome-scale meta-
bolic model is already well described (25). Finally, the meta-
bolic niche was computed on several prokaryotic metabolic
models reconstructed with Carveme (19) available at the fol-
lowing repository github.com/cdanielmachado/embl_gems.

Code availability
The source code for the metabolic niche computation
is available at gitlab.univ-nantes.fr/aregimbeau/metabolic-
niche
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Extended Data Fig. 1. Distribution of metabolic niche volumes for bacteria known for being associated with a host (i.e., red), and bacteria (i.e., in grey) not defined as being
associated with host (as stored in PATRIC database)
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Extended Data Fig. 2. Graph of transcriptomic clusters correlation On a a general view of the clusters correlations is represented. Each cluster is a vertex, which size
depends on the intra-correlation of its genes. The width of the edges represents the value of the correlation sum that is computed between clusters. In b more than 60% of
the blue module correlation sum is detailed. A ribbon from the blue ellipse is a correlation that leads to another module and then split into different pathways or directly to a
pathway if not related to one of the five represented modules. The intensity of the correlation is proportional to the size of the ribbon.
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Supplementary Text 1: Computational implementation of the metabolic niche
Pipeline From the metabolic network of the considered organism, we identify the exchange reactions (1) we want to see as
parameters of the niche (whose flux will correspond to the axis of the metabolic niche). With that information, we formulate
the problem as a Vector Linear Program (VLP) (2), that once solved, results in a list of vertices. The vertices fully characterize
the niche as a volume (3) in the defined space.

(1) Identification of Significant exchange reactions Exchange reactions are explicit from the metabolic network description.
However, for the sake of simplicity, the metabolic niche definition requires minimizing the number of exchange reactions. For
this purpose, we run a Flux Variability Analysis (FVA) (17) with COBRApy that computes both lower and upper bounds of
each flux while respecting our constraints. Our constraints are the same as a classical constraint-based model, plus the survival
condition, which imposes a minimum flux through the biomass reaction. In our formalism, exchange reactions are considered
to have only a reactant and no product. A negative flux describes a consumption by the organism (the metabolite äppearsïn the
organism), and a positive flux is a production (the metabolite "disappears"from the organism). Thus every reaction having a
negative FVA minimal bound is a reaction responsible for consuming a nutrient. This preliminary check allows us to narrow
the number of exchange reactions to consider. For instance, blocked or fixed exchange reactions can bring numerical error in
the next step of the niche computation and should be avoided.

(2) VLP formulation Once identified, the reactions define a space on which we want to project the niche. From the stoichiome-
tric matrix, the projection matrix, and the reaction bounds, the solver Bensolve (37) allows us to solve the problem formulated
as follow: {

min Px
subject to a ≤Qx≤ b | l≤ x≤ s

Where Q = S, a = b = 0 represent the quasi steady states approximation and l and s are respectively lower and upper bound
defined in (3). The matrix P is the one defined in (5), with adjustment because the x vector considered in Bensolve is our v.
The formulation is done through Benpy a python wrapping of Bensolve. This resolution gives us the upper image of the solution
space, which means that we are only interested in the set of vertices returned by the solver and that we need to remove the last
component.

(3) Volume computation As above, the Bensolve solver allows us to get the vertex of the polytope. We then have the V-
representation of the polytope. Depending on the network complexity and the size of the projected space, the number of
vertices might be vast and difficult to manipulate. To avoid that, one can apply agglomerate clustering to reduce the number of
points that simplify the polytope. Once simplified, we can use lrs (41) that gives us the volume of the defined polygon.
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Supplementary Text 2: Formalization of the metabolic niche pairwise comparison
The similarity between two niches can be measured through the Jacquard index (38). To do so one need to compute the
intersection of a niche pair, as the intersection of multidimensional polytope can be computationally intensive we modify our
approach to be able to compute such an intersection.
Let us consider two different species. We then consider the metabolic network and the associated stoichiometric matrices
T∈RmT ,nT and B∈RmB ,nB . To compute the intersection of the two niches, one need to make the assumption that they have
exchange reactions in common. Let us note R1..Rp the p exchange reactions we want to consider for the niche computation,
and M1..Mp the p corresponding metabolites (for clarity we are omitting here the subscripts T and B that tell from which
organism we are talking about).
We are going to order the matrix T and B, so that the p reactions and metabolites are placed at the top left of the matrix:

T =
(

Ip
OmT−p,p

T̃
)

and B =
(

Ip
OmB−p,p

B̃
)

Here the exchange reactions of the two species are distinct axes in the niche space. We need to modify the model so that there is
only one set of p exchange reactions responsible for the intake of the p metabolites of both species. Exchange reaction i should
look like : MBi+MTi←→Miex. In term of matrix this gives us:

S =


Ip

OmT−p,p
T̃ OmT,nB−p

Ip
OmB−p,p

OmB,nT−p B̃


The model has then mT +mB metabolites and nT +nB−p reactions. The first mT line correspond to the network T , and the
last mB lines to the network B. The corresponding flux vector x will have its first p component responsible for the intake of
the p metabolites in T and B, the following mt−p components will be the inner mechanism of T that we want to abstract, and
the last mB−p lines the one of B.
Let us see the implication of such a formalism in term of flux bounds. If we rearranged the bounds order to correspond the
matrix T and B defined erlier we have:

ubT =
(

ubTp
ubT(nT−p)

)
ubB =

(
ubBp

ubB(nB−p)

)
lbT =

(
lbTp

lbT(nT−p)

)
lbB =

(
lbBp

lbB(nB−p)

)
The bounds for the p exchange reactions will be the lbi = max(lbTi, lbBi) and ubi = min(ubTi,ubBi). The rest of the
bounds are defined by the network that possesses the reaction. Thus we have:

ub =

min(ubTp,ubBp)
ubT(nT−p)
ubB(nB−p)

 lb =

max(lbTp, lbBp)
lbT(nT−p)
lbB(nB−p)


The newly created system can then be formulated as a VLP and the previously described pipeline allows computation of the
solution which is the intersection of the two metabolic niches of T and B computed on the p exchange reactions.

Pairwise comparison of marine prokaryotes Due to numerical imprecisions or error we made some approximations to make
our results more robust. Inclusion where considered when the intersection was covering at least one per mill of the volume of
one of the two considered niches. That means, if we consider niche i and j, with a volume voli and volj , with an intersection
inter the inclusion was determined if:

|1− inter

voli
|< 10−3 or |1− inter

volj
|< 10−3 or dJacquard(i, j) < 10−3

We consider the computation as an error if:

inter

min(voli,volj)
> 1.001

We had 502 species. That means 125751 comparisons. Among those comparisons, 111775 (89%) where computed correctly,
4286 (less than 4% of computed comparisons) results in error because of an intersection that where too big. The rest were either
not computed because of an error of the solver, or was taking too long (over than 2 days) during computation (9% of all the
comparisons). When computing the inclusion graph we have 47287 edges, an edge is an inclusion. The inclusion relation is
transitive, that means that if A include B, and B include C, then A include C. We can applied a transitive closure on the graph.
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When we do so we have a graph of 56322 edges. This means that around 10000 comparisons (computed or not) should be
inclusion, whereas we got an other results. Half of the newly found edges belongs to not computed comparisons. 15% of them
where found in error, which results in 35% of them that are not inclusion in our computations (less than 3% of the computed
comparisons). Those errors come from the Bensolve solver during computation of the vertices coordinates or from the Lrs
library during computation of the volume.

Régimbeau et al. | bioRχiv | 17

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.453190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.21.453190


DRAFT

Supplementary Text 3: Sampling of Phaeodactylum tricornutum niche space
Problem description When formalizing the niche we have a well defined space. The characterization of this space can be
done through the interdependences of each pair of reactions. This can be directly measured with the correlation. Method
relying on kernel analysis has been proposed to compute correlation between each reaction (42). But this method did not take
into account the boundaries of the system, which is for us one key component of our formalism. A way to circumvent this issue
is to compute the correlation between reactions through a sampling method. If correctly sampled the niche space allow a quiet
accurate computation. But sampling such a high dimensional volume is not an easy thing to do.

Tools and approximation We used the OptGP sampler (39) embedded in COBRApy to obtain enough points to compute the
correlation. We sampled 105 points with a fitting of 105. This allow a convergence of the sampled distribution. We verified the
convergence by making 10 batches with the same parameters and look at the variance of each correlation. The sampling has
been done with the integration of the survival condition in the model, meaning that the lower bound of the flux through the
biomass reaction was set to 0.01. When we sampled the niche space we did not get rid of biomass reactions, whereas a strict
sampling of the niche space should be a sampling without the biomass reactions that introduce a bias on the distribution. Indeed
the biomass reaction is a constraint, it models the survival of the organism, but the niche definition does not need to have its
value, as long as it is above the threshold. Unfortunately the OptGP sampler would requires some heavy modifications to allow
this sampling.

Visualization Once we have the correlation graph, we need a proper algorithms to visualize it. We used the Graph-Tool library
(43). The library implements a hierarchical block structures algorithm(44) which is of great help for module detection in huge
graph.
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