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Oligodendrogenesis in the human central nervous system has 
been mainly observed at the second trimester of gestation, a 
much later developmental stage compared to mouse. Here we 
characterize the transcriptomic neural diversity in the human 
forebrain at post conceptual weeks (PCW) 8 to 10, using 
single-cell RNA-Seq. We find evidence of the emergence of a 
first wave of oligodendrocyte lineage cells as early as PCW 8, 
which we also confirm at the epigenomic level with single-cell 
ATAC-Seq. Using regulatory network inference, we predict 
key transcriptional events leading to the specification of 
oligodendrocyte precursor cells (OPCs).  Moreover, by 
profiling the spatial expression of fifty key genes using In Situ 
Sequencing (ISS), we identify regions in the human ventral 
fetal forebrain where oligodendrogenesis first occurs. Our 
results indicate evolutionary conservation of the first wave of 
oligodendrogenesis between mouse and human and describe 
regulatory mechanisms required for human OPC 
specification.  
 
Introduction 
The understanding of diversification of cell types has been a long 
outstanding challenge in biology. The human brain is one of the 
most diverse tissues in the mammalian body, and on the 
evolutionary scale, the emergence of the first neuronal cell-types 
dates back millions of years (Arendt et al., 2016a). Recent 
advances in single-cell transcriptomics allow capture of this 
diversity of cell states in developing tissues (Buenrostro et al., 
2015; Cao et al., 2019; Hochgerner et al., 2017; Islam et al., 2014; 
Klein et al., 2015; La Manno, 2019; Marioni and Arendt, 2017).  
One of the most defining characteristics of primate evolution, and 
specifically human evolution is cortical expansion (Polioudakis et 
al., 2019; de la Torre-Ubieta et al., 2018; Won et al., 2016; Zhu et 
al., 2018). The human cortex is much larger and possibly more 
complex compared to any animal. However, the mammalian brain 
contains the most diverse collection of known cell-types compared 
to any other tissue. And as such, it has been studied intensely. 
From an evolutionary perspective, many aspects of human brain 
development are similar to other mammalian and even other 
vertebrates (Arendt et al., 2016b; Houart et al., 1998, 1998; La 
Manno et al., 2016). Transcription factor families, such as the 
basic helix-loop-helix (bHLH) and forkhead-box (FOX) amongst 
others have evolved and diversified forming a web of interweaved 
dependencies in the spatio-temporal context of brain development. 
Dorsal-ventral patterning factors, morphogens, chromatin 
modifying enzymes, and regulatory elements play a role in the 
development of the brain across species. Moreover, during the 
evolution of the vertebrate and then mammalian central nervous 
system (CNS) glial cells appeared. Glial cells such as astrocytes 
and oligodendrocytes have been traditionally thought to have 

mainly supportive roles to neurons in the CNS. However, recent 
findings indicate that glial cells are involved in many other 
functions in the CNS (Di Bella et al., 2021; Falcão et al., 2018; 
Kirby et al., 2019). 
The formation of glial cells during mouse development occurs 
after neurogenesis (Rowitch and Kriegstein, 2010). Three main 
waves of oligodendrogenesis have been characterized in the 
mouse brain, with the first starting at embryonic day (E)12.5 from 
ventral regions (Kessaris et al., 2006). We have recently shown 
that oligodendrogenesis in mouse entails an intermediate stage of 
pre-OPCs, between neural progenitors and OPCs (Marques et al., 
2018). During human fetal development, OPCs have been mainly 
observed at the second trimester of gestation, with the first cells 
detected at 16 weeks, and much larger numbers detected at 22 
weeks (Huang et al., 2020; McClain et al., 2012; Sim et al., 2011; 
Windrem et al., 2004). These OPCs can be isolated with antibodies 
targeting CD140a/PDGFRA, can originate both oligodendrocytes 
and astrocytes and are highly migratory and myelinogenic upon 
transplantation to the mouse brain (Sim et al., 2011; Windrem et 
al., 2020). More recently, pre-OPCs (Marques et al., 2018) were 
also observed in the human cortex at 20-24 post conception weeks 
(PCW) (Huang et al., 2020). These second trimester pre-OPCs 
might correspond to the last cortical wave as described in mouse 
(Di Bella et al., 2021; Kessaris et al., 2006; Winkler et al., 2018). 
They exhibit as hallmark the expression of EGFR (Huang et al., 
2020). Nevertheless, it is unclear whether earlier distinct waves of 
oligodendrogenesis occur in human. Interestingly, 
OLIG1+/PDGFRA+ cells might arise in the forebrain at as early 
as 9-10 weeks of gestation (Jakovcevski and Zecevic, 2005). Here 
we used single cell transcriptomics, epigenomics (UCSC Cell 
Browsers (Speir et al., 2021) for visualization available at 
https://human-forebraindev.cells.ucsc.edu) and spatial 
transcriptomics to characterize the specification of glial lineages 
during early human forebrain development, at PCW 8-11. We 
found that as early as PCW 8 radial glial cells start being specified 
in the ventral forebrain into the oligodendrocyte lineage, 
indicating that a first wave of oligodendrogenesis indeed occurs 
early in the first trimester of human development.  
 
Results 
 
Single-cell RNA-seq of human fetal forebrain at the first 
trimester uncovers early cell transitions from neural 
progenitors towards neuronal fates, but also glial fates. 
We performed droplet-based single-cell RNA-seq on human fetal 
forebrain tissue at the first trimester, on 5 separate samples from 4 
different fetuses of PCW 8, 8.5, 9, and 10, using the 10x Genomics 
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platform (versions 2 and 3). We obtained an average number of 
7400 UMIs and 2500 expressed genes (Figure S1A). After quality 
control, we retained 25161 cells. We batch corrected the lower 
dimensional space using Harmony (Korsunsky et al., 2019) to 
integrate the v2 and v3 data, while retaining biological differences. 
We then clustered the data using Louvain clustering on the 
obtained Jensen-Shannon distance (JSD) matrix from the 
integrated PCA resulting in 32 clusters (Figure 1A, B, S1B, see 
Methods for details). By assessing the expression of known neural 
markers, we were able to identify populations of radial glial cells, 
neuroblasts, excitatory and inhibitory neurons, but also cells of 
glial, endothelial and vascular and leptomeninges (VLMCs) 
lineages (Figure 1A,B). These populations were enriched in 
specific time-points, reflecting different stages of development 
(Figure 1C, D, Figure S1C). 
Clustering revealed populations of radial glial cells expressing 
genes such as Hes Family BHLH Transcription Factor 1 (HES1), 
Fatty Acid Binding Protein 7 (FABP7), Paired Box 6 (PAX6), and 
Vimentin (VIM) (Figure1A, E). The radial glial population could 
be further distinguished by the expression of outer radial glial 
genes such as HOP Homeobox (HOPX), a well-known marker for 
outer radial glia (Nowakowski et al., 2017; Pollen et al., 2015). 
Broadly we could resolve cycling cells expressing MKI67, and 
cells belonging to the early excitatory lineages, expressing genes 
such as Neuronal Differentiation 2 and 6 (NEUROD2, 
NEUROD6) among others. And early inhibitory lineages 
expressing genes such as Glutamate Decarboxylase 1 (GAD1), and 
GAD2, as well as LIM Homeobox 1 (LHX1) Figure 1A, E). 
Moreover, we could also distinguish glioblast-like populations 
such as Cluster 15, expressing Brevican (BCAN), Regulatory 
Factor X4 (RFX4), ZFP36 Ring Finger Protein Like 1 (ZFP36L1), 
Cyclin D1 (CCND1), and MyoD Family Inhibitor (MDFI). We 
detected expression of the OL lineage transcription factor OLIG2 
and NKX2-2 in this cluster (Figure S1D), which could indicate that 
early OL lineage cells might contribute to this cluster. 
Additionally, we found early astrocyte lineage cells in this cluster 
expressing Secreted Protein Acidic And Cysteine Rich (SPARC), 
TSC22 Domain Family Member 4 (TSC22D4), Endothelin 
Receptor Type B (EDNRB), SPARC Like 1 (SPARCL1), and Glial 
Fibrillary Acidic Protein (GFAP) (Figure S1D). In sum, cluster 15 
could be a population that has the potential to become OPC and 
astrocytes. 
 
Specification of human OPCs occurs already at PCW 8 
Importantly, at these early stages we could resolve a population of 
cells expressing OL lineage genes such as Platelet Derived Growth 
Factor Receptor Alpha (PDGFRA), SRY-Box Transcription 
Factor 10 (SOX10), NK2 Homeobox 2 (NKX2-2), 
Oligodendrocyte Transcription Factor 1/2 (OLIG1), (OLIG2) and 
many other OPC specific genes (Figure 1A, E. Figure 2G, and 
Figure S1D). The OPC population (Cluster 26) was present in all 
timepoints (PCW 8-10, Figure S1C) and seemed to be closely 
related to the glioblast population (Cluster 15), both by co-
expression of glial lineage genes such as BCAN, TTYH1, 
ZFP36L1, HES1, as well as expression of OL lineage genes such 
as OLIG2, SOX10, and NKX2-2 (Figure S1D). We named this 
cluster pre-OPCs (Marques et al., 2018) and proceeded to identify 
differentially expressed genes between the OPC and putative pre-

OPC population (Wilcoxon rank-sum test). OPCs expressed genes 
strongly associated with OPC identity such as S100B, KCND2, 
OLIG1, PCDH15, SCRG1, LHFPL3, OPCML, APOD, and 
OLIG2, among other genes (Figure S1E). Conversely, the pre-
OPC population expressed genes that indicated a progenitor 
identity, expressing genes such as VIM, FABP7, TTYH1, 
SPARCL1, HES1, RMST, CLU, and FOS (Figure S1F). 
Additionally, we observed differentially expressed transcription 
factors between the OPC and the pre-OPC identity (Figure S1F). 
OPC identity strongly expressed factors known to be important in 
the specification and maintenance of OPCs such as OLIG1, 
OLIG2, SOX6, NKX2-2, and SOX10 (Jakovcevski and Zecevic, 
2005; Rowitch and Kriegstein, 2010; Windrem et al., 2004). 
Importantly, several other transcription factors and co-factors that 
have not yet/or have been weakly implicated in OL specification 
were identified, including LUZP2, NCALD, NR0B1, ETV1, MITF, 
and TRAF4 (Figure S1F). Conversely pre-OPC identity seemed to 
be associated with factors known to be important for glial cell 
formation and genes associated with the neuro-glial switch, 
migration, and activation such as HES1, GLIS3, FOS, NFIA, 
NFIB, HES4, TSC22D4, NFATC2, JUNB, HES5, and FOXJ1 
among others (Figure S1F).  
 
Lineage inference by back-diffusion reveals two paths towards 
human OPCs, with outer radial glia and medial ganglionic 
eminence radial glia as likely origins 
We next sought to confirm if we correctly inferred the pre-OPC 
state as the state OPCs transition through during OL fate 
consolidation in early human forebrain development. To avoid 
losing the gradients involved in differentiation, which might be 
broken by the Harmony algorithm, we reintegrated the V2 and V3 
datasets using a customized approach inspired by the reciprocal 
PCA and anchor-based integration as found from Seurat version 3 
on (Stuart et al., 2019) (see Methods). This necessitated re-
clustering of the newly integrated data for lineage assessment 
leading to 30 clusters (Figure S2A). We then used the corrected 
PCA space as input for scVelo (Bergen et al., 2019) to obtain a 
transition matrix of cell velocities. We generated a diffusion map 
(Haghverdi et al., 2016) of the integrated PCA space to obtain a 
transition matrix of transcriptomic similarities, we performed 
canonical correlation analysis (CCA) on both these transition 
matrices as input to the final diffusion map to generate a manifold 
congruent with transcriptional and velocity distances that can 
capture non-linear relationships (see Methods).   
We reasoned that the manifold of human fetal development has 
more than one start point, and thus we attempted to first resolve 
end points in the data (Figure S2A). The endpoints as defined here 
reflect cells that have reached a point in differentiation where they 
do not function as progenitors for other cells in the dataset as 
predicted by the manifold but might perhaps not yet constitute 
mature cell types at this PCW 8-10. To achieve this, we calculated 
the diffusion pseudotime for all clusters, and proceeded to walk 
along the K-nearest neighbour (KNN) graph between all clusters 
(see Methods). Using this approach, we could observe that some 
paths are rarely traversed, except in the case where the cluster is 
an end point. Thus, we designated clusters that were rarely 
traversed as end points and used the cell cycle score as obtained 
from Seurat (Stuart et al., 2019) to identify highly cycling 
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populations, likely to be wrongly assigned end points which were 
subsequently removed. To obtain lineage information, we 
proceeded to walk back from all clusters across the manifold (see 
Methods). Lineage scores were then calculated, and lineage 
membership was determined by calculating the percent of lineage 
influence over all cells compared to all lineages (Figure S2B). We 

calculated the overall position of each cell in development as the 
sum of all the lineage scores and defined the differentiation score 
as the highest lineage membership value for each cell. We 
validated this approach by using a pancreas single cell RNA-seq 
dataset (Bergen et al., 2019; Lange et al., 2020) where trajectories 

 

 
Figure 1. Single cell RNA-seq reveals a continuous manifold of developmental transitions into glial fates already at the human PCW 8-10 
forebrain. A) Heatmap showing the top 10 genes enriched for each cluster. B) UMAP of 25161 cells depicting the clusters and their inferred identities 
based on marker expression. C) Coarse clusters showing the main developmental stages in the early brain. D) UMAP depicting the different post 
conception ages in the experiment. E) Representative genes for the coarse cluster, expression overlayed in UMAP from Panel B. 
 
 
have been previously defined (Figure S2C-F). Interestingly, the 
differentiation score recapitulated the endpoints although they are 
calculated using two different methods (graph walk and back 
diffusion), strengthening the confidence in end point prediction. 
Using the differentiation score, we defined undifferentiated cells 
as those obtaining a low score and differentiated cells as the cells 
that obtain a high score (Figure 2B, C). The obtained 
differentiation score for all cells anti-correlated with cycling and 
radial glial expressed genes such as HMGN2, PCLAF, TYMS, 
H2AX, HMGN2, MAD2L1, ZFP36L1, GLI3, and others, and 
positively correlated with STMN2, MLLT11, TMSB10, TUBB2A, 
NEUROD6, DCX, MAPT, BCL11A, SYT1, and others (Pearsons R, 
Fisher test, FDR 5%). To obtain more functional insights in the 
two genesets, we performed a pathway enrichment where we 
found the anticorrelating gene set to be enriched in pathways 
relating to cell-cycle checkpoints, DNA methylation, RNA 

polymerase I promoter opening, telomere maintenance and more 
(Figures S3B-G). Conversely the gene set positively correlating 
with differentiation was enriched in pathways relating to axon 
pathfinding by SLIT and ROBO, acetylcholine-, serotonin-, 
norepinephrine-, and glutamate neurotransmitter release, NMDA 
receptor activation and postsynaptic events, long-term 
potentiation, and others (Figures S3B-G). Thus, the differentiation 
score correlated with well-known pathways active in both stem-
cell maintenance, and neural differentiation, suggesting the score 
captured a general progression from undifferentiated progenitors 
towards maturing clusters of cells in the developing forebrain.  
We then proceeded to infer the putative OL lineage and calculated 
the lineage membership score. To approximate the accuracy of the 
OL lineage score, we compared it to the joint expression profile of 
the major known OL lineage markers OLIG2, OLIG1, NKX2-1, 
NKX2-2, and SOX10 (Figure 2A). This showed moderate 
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agreement as measured by Pearson R of 0.59 between the gene 
module total counts, and the calculated lineage membership 
(Figure 2A). We next focused on resolving transitions that occur 
within the putative OL lineage. We designated pseudotime as the 
sum of all the end point lineage scores over all cells. To select 
lineage associated genes, we ranked genes using KL divergence 
(see Methods), we selected the top 1000 genes scoring high for the 
lineage and modelled the expression using a generalized additive 
model (GAM) implemented by the mgcv R package (Wood et al., 
2016) to smooth the expression along pseudotime. Significant 
genes were selected using Spearman correlation against the 
lineage membership score (Spearman Rho, Fisher test, FDR 1%) 
and the smoothed GAM predictions were min max normalized and 
ordered based on their maximum predicted expression point along 
the pseudotime (Figure 2D, E, Figure S3A). 
We observed that the pseudotime determined early populations 
within the cells with estimated OL lineage potential showed high 
expression of patterning factors associated with the lateral and 
medial ganglionic eminence (LGE and MGE, respectively) such 
as DLX1, DLX2, GSX1, GSX2, and NKX2-1 (Figure 2D), within 
the glioblasts clusters 7 and 15 (Figure 2G). Furthermore, our 
ranking and subsequent correlation test associated NR2F1/2 (also 
known as COUP TF 1/2) with the OL lineage (Figure 2D). NR2F1 
and NR2F2 are found to be necessary for both neural progenitor 
specification and glial commitment in CNS derived neural 
progenitor cells (NPCs) (Naka et al., 2008), and consistently 
expressed in the predicted lineage cells, possibly indicating that 
the radial glial populations are already glial potent at this early 
developmental stage in human. Interestingly, we also observed 
another radial glial sub-population within clusters 1 and 11 with 
estimated OL lineage potential, that did not express (MGE) 
patterning factors, but instead expressed HOPX, and to a lesser 
degree LHX5, SP5 and GATA3, which we defined as outer radial 
glial cells (Figures 2D and 2F, Figure S3A).  
The predicted OPC trajectory suggests that both MGE and outer 
radial glia progenitor groups progress through a stage of ASCL1 
upregulation combined with EGFR, and HES6 expression after 
which the expression of key OL related genes occurs such as 
NKX2-2, SOX10, PDGFRA, EDNRB, OMG, APOD, and 
upregulation of existing expression of OLIG2 among many other 
genes (Figure 2D,F-G, Figure S1D, S3A). Moreover, to visualize 
regulatory changes, we min/max normalized the smoothed 
expression of both the unspliced and spliced transcripts and 
visualized the difference between the two for each gene as the 
residual. Here we could observe different timepoints along the 
trajectory up- or downregulating genes such as early 
downregulation of DLX5 and subsequent upregulation of high 
mobility group proteins HMGN2 and HMGB2, known for 
involvement in transcription and chromatin remodeling(Ugrinova 
et al., 2009). We then observed high residuals for ASCL1, followed 
by SLIT2, TFDP2, WLS, MEST, NR2F2, EGFR, SFRP2, and 
ZFP36L1 and others, indicating upregulation of developmental 
morphogens, and transcription factors along the trajectory (Figure 
2E, Figure S1D). Thus, our predicted OL trajectory overlaps with 
parts of clusters 12, 6, 4, 23, 11, 1, 7, and 15, marking  them as 
OPC progenitor populations and suggesting that the differentiation 
towards OPCs originates from the MGE and outer radial glial 
regions expressing regional patterning factors such NKX2-1, 

GSX1/2, and HOPX respectively, involves several transcriptional 
transitions, most notably EGFR, ZFP36L1, and HES6 expression, 
and thus involves multiple progenitor populations and 
intermediate states at the PCW 8-10 timepoint  
 
Molecular definition of pre-OPC to OPC transition in the first 
trimester human forebrain 
Our results indicate that the predicted oligodendrocyte lineage 
travels through the pre-OPC sub-clusters with a glioblast identity 
(cluster 15). Therefore, we proceeded to compare the predicted 
trajectories of both the glioblast population and the OPCs in more 
detail, to determine predicted overlap as determined by the lineage 
membership scores and which genes are correlated with either 
trajectory in a divergent manner. We attributed cells to each 
lineage by a low cut off value for the lineage membership score of 
0.01 and performed Pearson correlation within these lineage cells, 
correlating for both the gliogenic membership score and the OPC 
membership score. We plotted the lineage scores of each end point 
to visualize the lineage structure. After an initial root structure, 
cells seemed to shift towards either fate indicating a branching 
structure (Figure S4A). We correlated expression with the lineage 
memberships of the OPC and glioblast lineages respectively 
(Spearman rho, cut off < 0.1, FDR 5%) (Figure S4B, C). Top 
positively correlating genes within the Glioblast and the OPC 
lineage biasing towards a OPC lineage fate included the patterning 
genes DLX5, DLX1 and the proto-oncogene MLLT11 known to act 
as a co-factor for TCF4. Other highly correlating genes included 
ELAVL4, a broadly acting RNA-binding protein involved in neural 
differentiation, INSM1 a transcription factor necessary for the 
formation of the SVZ and delamination of radial glia (Tavano et 
al., 2018), also implicated in glioblastoma (Rosenbaum et al., 
2015), possibly indicating that the glioblast lineage is not enriched 
for delaminated cells. Furthermore, SOX4, and SOX11 were highly 
correlated with OPC lineage membership and were downregulated 
upon reaching the OPC state. (Figure S4B, C). SOX4 and SOX11 
are known inhibitors of further OL differentiation, whereas SOX10 
is only expressed upon attainment of OPC fate (Claus Stolt et al., 
2002; Potzner et al., 2007; Stolt and Wegner, 2010; Wittstatt et al., 
2019). Additionally, we found expression of DCX, and STMN2 
(both microtubule associated proteins). Conversely, genes 
correlating with glioblast fate were broadly shared with OPC fate 
and captured more general gliogenic and radial glial factors such 
as TTYH1, HES1, TSC22D4 and others, in accordance with a more 
undifferentiated state (Figure S4B, C). 
 
Regulatory networks underlying pre-OPC to OPC transition 
To identify transcription factors regulating the transition of cells 
towards the OL lineage, we used SCENIC (Aibar et al., 2017), a 
framework to infer gene regulatory networks (GRNs) and 
transcription factor regulon activity using the GENIE3 algorithm 
(Huynh-Thu et al., 2010) (Figure 3A). We performed a Pearson 
correlation between the obtained regulon activity scores and the 
differentiation score over the entire dataset to obtain regulons that 
were significantly associated with differentiation scores (Pearson 
R, Fisher test, FDR 5%). Within the top significantly correlating 
regulons of the differentiation score were several known lineage 
regulators such as KLF7, a known regulator of differentiation in 
neuronal, cardiac and corneal epithelial differentiation, SOX11, 
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SOX4, TCF7L2, LHX9 amongst others (Figure S4D). Regulons 
correlating with undifferentiated states were mainly related to the 
cell cycle, such as E2F7, E2F2, and TFDP2 which binds E2F 
family members, also highly correlating were nuclear receptor 
NR2E1, and NFE2L2 a cytoprotective regulator (Figure S4E). 
Reactome pathway enrichment analysis of enriched regulons 

indicated enrichment of regulators of the cell cycle including 
TP53, regulators of senescence, regulators involved in SMAD 
signalling, and regulators of pre-NOTCH signalling, among other 
pathways (Figure S4F, G). Pathways enriched for the 
differentiation associated regulons included TFAP2 regulatory 
pathway, regulators of beta-catenin, TCF complex, and HOX 

 
 

 

 
Figure 2. Convergent paths from radial glia, through glioblasts, to OPCs in the human PCW8-10 forebrain. A) UMAP showing the OPC lineage 
association score (Left), and the joint expression profile of the major OL lineage markers OLIG2, OLIG1, NKX2-1, NKX2-2 and SOX10 for comparison 
(Right) B) UMAP showing the estimated differentiation score of every cell in the dataset according to the lineage analysis over all lineages (Left). C) 
Violin plot showing estimated differentiation score for every cluster. Cluster number according to Figure 1B.  D) Smoothed depiction of the top 100 
genes correlating with the OL lineage, ordered over time. Color bar colored according to the coarse clustering. Blue color bar on the left highlights 
expression of early lineage genes mainly involving patterning genes. Red bar, genes expressed during and after the glioblast stage. E) The top 100 genes 
filtered for genes lacking both spliced and unspliced counts, showing the difference between the min/max normalized smoothed expression within the 
lineage cells, Red = positive residual (possible upregulation of gene), Blue = negative residual (possible downregulation of gene). Genes are ordered 
according to residual value. Color bar colored according to the coarse clustering. F) UMAPs depicting LHX5, SP5, GATA3, and HOPX expression, 
showing possible outer radial glia progenitor groups. G) UMAPs of patterning genes expressing along the OL lineage.  
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Figure 3. Transcriptional network connects early and late regulon activity along the OL lineage. A) Heatmap of enriched regulons for all cells in 
the dataset (Z-score of regulon activity). B) Top 25 regulons, estimated to be lineage drivers due to correlation to the OL lineage membership score. C) 
Selection of regulons activity profiles related to the OL lineage. D) Regulon network of top 20 regulons and top 100 genes associated to the lineage.  
 
 
regulated hindbrain development, indicating possible 
contaminating or migrating populations in our sampled cells 
(Figure S4F, G). To infer regulons that play a role in OL 
differentiation we correlated the OL lineage scores with the 
regulon activity scores to assess regulons that were significantly 
associated with the lineage (Pearson R, Fisher test, FDR 5%, 
Figure 3B, C). The highest correlating motif activities were well 
known regulators of OL lineage specification and maintenance, 
such as OLIG2, SOX10, SOX8, NKX2-2, and SOX6, other highly 
correlating motif scores were patterning factors GSX2, GSX1 and 
DLX1, and motifs for other factors such as NKX2-3, E2F4, 
FOXB1, STAT3, SALL3, and SOX2 (Figure 3B, C). E2F1 has been 
implicated in cell-cycle control and E2F4 in repression of targets 
of E2F1, and has been found to be important in regulating cell 
cycle exit (Magri et al., 2014). Both E2F1 and E2F4 are expressed 
in the OPC lineage, indicating a possible role for cell cycle exit in 
the differentiation trajectory towards OPCs. Furthermore, FOXB1 
has been revealed to be involved in inhibiting the cell cycle during 
oligodendrogenesis, but promoting differentiation in the 
developing forebrain (Zhang et al., 2017) (Figure 3 A, B). We 
calculated enrichment of regulon activity across the dataset, we 
observed transcription factor grouping broadly in accordance with 
the clustering, notably we observed distinct separation of cells 
based on patterning genes such as DLX1/2/5/6 and overlapping 
LHX6 and SOX6. Interestingly, although both GSX1 and GSX2 

motif activity was predicted to be active throughout the OL 
lineage, GSX1 appeared to have a higher predicted activity in the 
glioblast cluster (cluster 15) compared to GSX2 (Figure 3A). 
Additionally, radial glial populations grouped together enriched 
for cell cycle regulatory factors such as E2F2, E2F7, TGIF1, 
STAT1.  
To assess the predicted regulatory interactions from the GRN 
generated using SCENIC, we selected the top 20 regulons and top 
100 genes associated to the lineage (Pearson R, Fisher test, FDR 
5%) and visualized the connected network after filtering for single 
edges, so that any target shares at least two transcription factors in 
the network. As expected, the regulon network indicated a strong 
positive feedback exists for OLIG2, SOX6, and SOX10, and strong 
interconnectedness for the major OL lineage transcription factors. 
Additionally, both GSX1 and GSX2 were predicted to regulate 
OLIG2, and SALL3, whereas GSX2 also showed a direct activation 
of OLIG1 (Figure 3D). This suggests that the transcription factors 
GSX1/2 might play a vital role in early forebrain OPC 
development. Interestingly, SALL3 was predicted to be mainly 
targeted by factors that were active in an early timepoint of the 
predicted trajectory (Figure 3B, D). Since SALL3 targets the major 
OL lineage factors OLIG1, OLIG2, and NKX2-2 (Figure 3D), it 
might play an important role for OL lineage initiation during 
human forebrain development. 
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Regulons along the preOPC to OPC transition involve 
NOTCH signaling 
We then turned to identifying genes that might be involved in early 
budding from the glioblast lineage towards OPC fate. To achieve 
this, we chose a more stringent cut off for glioblast lineage 
membership (cut off is 0.5, where more than half of the cells 
membership belongs to the glioblast lineage) and used Pearson 
correlation on the OPC lineage membership score within the 
glioblast lineage (> 0.1 Pearson’s R, 0.05 FDR). We found highly 
significant genes which we categorized into a OPC UP and 
DOWN module, with the score reflecting the mean expression of 
the genes in the module, showing a clear increase in expression 
when the OPC lineage score increased (Figure 4A). We found 
many genes that were previously predicted in the OPC lineage 
analysis. Highly correlating genes included EGFR, DLL1/3, 
HES6, HNRNPA1-(P48), ASCL1, GLCCI1, OLIG1, OLIG2, 
CD24, GADD45G, TFDP2, ZEB1, SOX4, INSM1 and others 
(Figure 4B, Figure S4J). We observed genes expressed in the pre-
OPC to OPC transition that seemed to be shared with other 
neuroblast populations. The shared genes included ZEB1 which is 
known to be associated with the epithelial to mesenchymal 
transition in cancer, and known the be associated with DLL1, 
DLL3, NOTCH, MAML1/2/3, JAG1, NOTCH1, leading to 
attenuation of NOTCH signaling (Brabletz et al., 2011). The most 
strongly correlated genes with early OPC differentiation from the 
pre-OPC state involves both EGFR and NOTCH signaling, 
through the EGFR receptor, and NOTCH signaling ligands DLL1, 
DLL3, MAML1/2/3, and NOTCH1 expressed in the OPC trajectory 
(Figure S4J). Furthermore, MFNG a modulator of NOTCH1, 
enhancing the interaction with DLL1 is also upregulated in this 
transition, implicating NOTCH signaling as a major component of 

the pre-OPC to OPC transition (Brabletz et al., 2011).  
To infer the regulon activity profiles correlated with the switch to 
the OPC state, we generated a network with the top 20 regulons 
and top 100 target genes, we filtered targets that had only a single 
predicted transcription factor associated to them and visualized the 
network (Figure 4C, D, and Figure S4J). Highly correlating 
regulons with OPC lineage membership in the glioblast lineage 
included NEUROG1, HES6, GSX1, NHLH1, NEUROD1, SHOX2, 
ELF1, and GSX2. The constructed regulon network indicated that 
major connected predicted drivers of the network by out-degree 
were ELF1, SHOX2, GSX1, LHX1, KLF7, NHLH1. SHOX2 was 
the most central to the network and seemed to be expressed during 
the transition (Figure 4C, D and Figure S4H-J). However, SHOX2 
has a role supporting OLIG2 in the pMN formation suppressing 
motor neuron fate (Hochstim, Christian John, 2009). The network 
did not share many regulons with the OL lineage network 
discussed previously, indicating that these processes might be 
driving different developmental processes. Additionally, many of 
the targets of the preOPC to OPC transition were expressed in 
other differentiation processes in the dataset indicating a more 
general network that might be adapted by patterning factors such 
as OLIG2 and GSX1 in this network.  
We next investigated the predicted RNA velocity vector field 
associated with the OL and glioblast lineage (lineage membership 
cutoff> 0.1) and observed that most genes were expressed right 
before or during major transcriptional shifts occurred towards the 
OPC state. We observed EGFR, DLL1/3, and ZEB1 upregulate 
expression right before the shift to the OPC state occurs  (Figure 
4E). Interestingly, Jagged1 and Contactin1 have been found to 
have inhibitory and promoting functions in OPC differentiation

 

 
Figure 4. Regulons along the preOPC to OPC transition involves NOTCH signaling. . A) Module scores for the top genes correlating with OPC 
“budding” from the glioblast state. B, C) Top 8 correlating genes and regulons with OPC “budding” from the glioblast lineages. D) Regulon network of 
top 20 regulons and top 100 genes associated to the “budding” from the glioblast lineage. E) Velocity vector field showing lineage score towards glioblast 
state and OPC state respectively, illustrating the relatively large RNA velocity change accompanied with the initiation of the OPC state progression. 
Colored by normalized expression of each respective gene.  
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(Hu et al., 2003; Wang et al., 1998), which we could observe in 
our data, where we see JAG1 downregulated upon OPC 
differentiation, witch a marked upregulation of CNTN1 whilst we 
observe maintained expression of the NOTCH1 receptor during 
differentiation (Figure S4J). Furthermore, we could observe 
upregulation of OPC marker genes such as PDGFRA, and APOD, 
but also, interestingly expression of DCX, previously found in 
OPCs (Boulanger and Messier, 2017) (Figure S4J). EGFR+ DLL1+ 
transit amplifying cells have been shown to asymmetrically divide 
leading to differential inheritance of receptors during VZ/SVZ 
division. Additionally, it has been shown that the EGFR+DLL1+ 
transit amplifying cells require DLL1 for maintaining and 
promoting quiescence, thereby promoting their own quiescence 
(Kawaguchi et al., 2013). A recent study on later stage human 
development also identified asymmetric division from an EGFR+ 
progenitor population giving rise to OPCs (Huang et al., 2020). 
Collectively, this would suggest a role for EGFR and DLL1 
regulation as well as NOTCH signaling in the asymmetric division 
upon OPC fate acquisition and suggests that the cell cycle arrest 
genes, GADD45G, and TP53 play a role in obtaining a quiescent 
pool of oligodendrocyte progenitors in the SVZ. 
 

Chromatin accessibility compatible with oligodendrogenesis 
in the first trimester human forebrain  
Our single-cell transcriptomics analysis indicates that 
oligodendrogenesis already occurs between PCW 8-10.  For such 
a OL transcriptional programme to be executed, chromatin at 
regulatory regions of the genes involved need to be in open, 
accessible states.  To investigate whether this was indeed the case, 
we performed single-cell assay for transposase accessible 
chromatin followed by sequencing (scATAC-seq) (10x 
Genomics) on human forebrain in the first trimester, at PCW 8.5, 
9.5 and 11 (Figure 5A and 5B). Using the scRNA-seq annotation 
(Figure 1B) and label transfer, we first mapped scATAC activity 
scores to gene expression. Seurat finds gene anchors between both 
modalities in low dimensional space and builds a cell type 
classifier based on the reference dataset. For every cell, we obtain 
a prediction score for each cell type, which can be interpreted as a 
similarity score (Stuart et al., 2019). This approach allowed the 
identification of 18 out of 32 clusters found in the scRNA-seq, 
with prediction scores higher than 0.7 (Figure 5A and Figure S5B). 
Most cells have a high prediction score for a specific cell type and 
a low for all others (Fig. S5B). Among those, we found 51 cells.

 

 
Figure 5 - Chromatin accessibility on the OPC lineage in first trimester human forebrain. A) UMAP of 10487 cells distributed in 17 clusters 
annotated via label transfer with the scRNA-seq as reference. B) Cell distribution according to post-conceptional week age in UMAP representation 
(upper) and its proportion in each cluster. 
 
similar to OPCs and 562 similar to pre-OPCs. While OPCs 
clustered close to pre-OPCs, we obtained a prediction score higher 
than 0.6 for OPCs and lower than 0.3 for pre-OPCs, suggesting a 
distinct chromatin accessibility profile (Figure S5B). We 
identified 207 genes with increased activity (padj < 0.01) between 
OPCs and pre-OPCs (Supplementary Table 2). In concordance 
with the scRNA-seq, genes such as SOX10, BRINP1 and CMTM5 
have highly increased activity scores in OPCs (Figure 6A). 
Reversibly, pre-OPCs presented higher chromatin accessibility in 
CRB2, SOX1-OT and A2ML1 (Figure 6A). We also found that the 
chromatin at regulatory regions controlling some genes involved 

in the OPC specification, such as LUZP2, PDGFRA and ETV1 
were already open in pre-OPCs (Figure 6A), despite their reduced 
expression (Figure 6C), suggesting chromatin priming prior to 
OPC specification. In addition, we found enriched motifs of 
transcription factors such as OLIG1, OLIG2 and EPAS1 in OPCs 
when compared to pre-OPCs (Figure 6B). In contrast, we found 
that JUNB, KLF4 and SOX10 have enriched motifs only in a 
portion of the OPCs (Figure 6B). Thus, our results indicate that 
the human forebrain contains at the first trimester subsets of cells 
with a chromatin state compatible with oligodendrogenesis. 
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Figure 6 – Accessible genes with chromatin acessibility in OPCs and preOPCs. A) Track plots of genes differentially accessible in OPCs (upper), 
pre-OPCs (middle) or primed in pre-OPCS (lower).  The first row in each plot represents normalized pseudo-bulk coverage. Second row represents a 
sample of 30 cells from each cluster and its binary signal. Last row depicts the locus. B) Density plot of ChromVar motif deviation score in OPCS and 
pre-OPCS.  C) Expression of genes with chromatin accessibility in both OPCs and Pre-OPCs. 
 
Spatial ISS analysis defines the ventral forebrain as a site for 
early human oligodendrogenesis 
Our single cell omics analysis between PCW 8-11 indicates that 
oligodendrogenesis occurs in the human forebrain, with two likely 
origins, outer radial glia and MGE radial glia. To determine the 
exact spatial location of the first waves of OL lineage cells, we 
performed In Situ Sequencing (Gyllborg et al., 2020; Ke et al., 
2013) on an entire PCW 8 forebrain, with 10μm thick coronal 
sections covering both ventral and dorsal regions and spanning 
three regions in the anterior-posterior axis (Figure 7A-E, S6 and 
S7). In particular, we applied hybridization-based In Situ 
Sequencing (HybISS) (Gyllborg et al., 2020) that has an increased 
signal-to-noise ratio and performs well for in situ mapping of 
human cell types (Langseth et al., 2021). We targeted 50 genes 
which characterize subsets of the populations identified by 

scRNA-seq and scATAC-Seq (Figure 7D, E and S7A-D) and used 
pciSeq (Qian et al., 2020) for cellular assignment. While HybISS 
has single-cell resolution, we noted that the human forebrain at 
this stage has a high cellular density (Figure S7D)(Nowakowski et 
al., 2017; Pollen et al., 2015), and thus applied a grid-based 
approach for cell assignments. As expected, we observed radial 
glia (cluster 11) lining the entire breadth of ventricles, neural 
progenitors (cluster 14) in the sub-ventricular zone, while early 
inhibitory (cluster 28) and excitatory neurons (clusters 9, 16, 28) 
at the parenchyma, with the latter clusters positioned in the 
periphery of the MGE (Figure 7A, B and S6). Radial glia clusters 
4 and 18, and partial 11 were enriched in the ventral forebrain, but 
interestingly in the outer subventricular zone (Figure 7B) 
(Nowakowski et al., 2017; Pollen et al., 2015). Notably, HOPX, a 
marker of outer radial glia at the second trimester (Nowakowski et 
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al., 2017; Pollen et al., 2015), was not expressed as much in these 
outer layers but rather at the ventricles (Figure 7E and Figure S7), 
suggesting that the outer radial glia at the first trimester might have 
different properties. We also identified neural progenitor 

populations (clusters 6, 17) and radial glia (cluster 21) present in 
the parenchyma, in areas enriched with differentiated excitatory 
neurons (Figure 7B and Figure S6). 

 

 
Figure 7. Spatial transcriptomics of PCW8 brain highlights the ventral forebrain as a region of early oligodendrogenesis. A) PciSeq HyISS 
showing all clusters from Figure 1B mapped to spatial coordinated using probabilistic mapping. B) Individual clusters grouped as shown in Figure 1C. 
C) The average OPC potential by cluster translated to spatial coordinates using the cluster assignment as in A (softscaled potential0.1 for visualization). 
D, E) Spot recordings of probes referring to a selection of genes showing DAPI staining in white. 
 
 

Glioblasts (cluster 15), which include pre-OPCs, lined the 
ventricles in a layer adjacent to radial glial cells (cluster 11). They 
were also assigned to the meninges and choroid plexus (Figure 7A, 
B and S6), which is most likely due to co-expression of some of 
the genes characterizing glioblasts by populations in these tissues. 
OPCs (cluster 26) were observed in ventral regions, namely in the 
medial ganglionic eminence (Figure 7B and S6). Interestingly, 
OPCs appeared to have already migrated from their sites of origin 

(outer subventricular zone and ventricular zone) and were 
observed in areas where excitatory neurons reside (Figure 7B and 
S6). 
We then investigated the locations where cells with higher 
estimated OL lineage potential (Figure 2A) were present by 
averaging the OL lineage potential for each cluster and visualizing 
the average cluster potential onto the spatial mapping (softscaled 
(potential0.1) for visualization purposes). As predicted, cells 
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representing clusters with highest average potential were absent in 
dorsal regions, and were instead restricted to ventral domains, 
away from ventricles, suggesting migration. We noticed an 
increase in OPC potential near sites of EGFR expression (Figure 
7C-E). In addition, only one site of OPC potential increase was 
matched with HOPX expression (Figure 7C, E), suggesting that at 
the PCW 8 timepoint not all OPCs are generated from HOPX+ 
regions. Other cells with much lower potential were present in the 
first trimester outer radial glia region, and also at the ventricles, 
where glioblasts are located, reflecting the partial overlap with the 
OL lineage resulting in much lower average potential values 
(Figure 7C). Future studies, perhaps with finer clustering and a 
bigger probe set could give a finer grained picture. Regardless, our 
spatial HybISS analysis confirms oligodendrogenesis in the 
human first trimester, from radial glial cells in the outer 
subventricular zone and glioblasts from the MGE.  
 
Discussion 
In this study, we performed an extensive analysis of the identity of 
neural progenitors at the human forebrain at the first trimester, at 
PCW 8-11. Our results indicate that the oligodendrocyte lineage is 
specified already at this early stage of human gestation, several 
weeks from what was previously thought. Interestingly, 
oligodendrogenesis is also observed in the human first trimester 
spinal cord (Erik Sundström, personal communication, (Marklund 
et al., 2014; Rayon et al., 2021)). These findings suggest that 
human oligodendrogenesis occurs in several developmental 
waves, as previously described in mouse forebrain (Kessaris et al., 
2006) and spinal cord (Fogarty et al., 2005). Interestingly, these 
waves in mouse undergo a process of transcriptional convergence, 
giving rise to OPCs with equivalent properties at post-natal stages 
(Marques et al., 2018; Zeisel et al., 2018), with similar potential 
regarding the capacity to differentiate into distinct mature OLs 
(Floriddia et al., 2020). This could also apply for the human OPC 
developmental waves, although further investigation will be 
required to determine if that is indeed the case, and what would be 
the biological functional of such waves. 
Velocity back-tracing revealed several states along a possible 
trajectory of OPCs, which seem to be mainly NKX2-1, GSX1, and 
GSX2 restricted. Expression withinthese clusters indicates a 
departure from the VZ into the SVZ or beyond, perhaps becoming 
intermediate progenitors or transit amplifying cells. Our 
differential expression analysis between preOPC/glioblast 
population (cluster 15) and OPCs show great differences 
indicating a considerable transcriptional overhaul in a seemingly 
short developmental window. Our data also suggests two distinct 
EGFR+ populations as sources of OPC. As Kriegstein and 
colleagues have previously shown (Nowakowski et al., 2017; 
Pollen et al., 2015) that outer radial glia at the second trimester 
also has this capacity. Our results indicate that at the first trimester, 
both radial glia and a HOPX-negative outer radial glia population 
also have the potential to become OPCs. Thus, in this aspect 
human oligodendrogenesis differs from mouse, where the first 
wave is restricted to the MGE (Kessaris et al., 2006), while in 
human at least two distinct domains of origin occur in the first 
trimester. 
Further analysis of regulatory network controlling the transition 
between pre-OPCs to OPCs highlights canonical OL transcription 

factors such as SOX10, OLIG2, SOX8, NKX2.1, among others 
but also others that have not been previously involved in this 
process, such as SALL3, LUZP2, NCALD, ETV1, MITF, TRAF4 
and DLX genes. The expression of DLX genes in the populations 
of origin seem to contradict conventional transcriptional programs 
where oligodendrocyte fate is repressed by DLX genes. Although 
it has been reported that DLX positive progenitor populations can 
generate OPCs (He et al., 2001; Kriegstein and Alvarez-Buylla, 
2009), it is not clear if that is the case in our captured populations, 
and additionally, we observe downregulation of DLX genes before 
upregulation of OLIG2 occurs. However, DLX5 expression is still 
observed in some OPCs indicating that DLX expression might 
repress OL fate, but not completely.  
Our results also place NOTCH signaling central to OPC 
specification.  NOTCH signaling had previously been shown to 
either prevent (Genoud et al., 2002; Hammond et al., 2014; Wang 
et al., 2017, 1998) or promote (Hu et al., 2003) OPC differentiation 
in mouse. Mouse and zebrafish OPC specification is driven by 
Notch signaling (Grandbarbe et al., 2003; Kim et al., 2008; Park, 
2005) and our data indicates that this most likely is also the case 
in human. Future investigations will determine if the newly 
identified transcription factors and NOTCH signaling indeed are 
essential for these early transitions during oligodendrogenesis, and 
if they can be used to improve the reprogramming of pluripotent 
cells or differentiated cells into OPCs. 
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Methods 

Human Tissue            

Human first trimester forebrain tissue was obtained from elective abortions (8-11 weeks post-conception) with written 
informed consent of the pregnant woman and in accordance with the ethical permit given by the Swedish Ethical Review 
Authority (Stockholm, Sweden, reference no. 2007/1477-31/3 with amendments 2011-1101-32, 2013-564-32, 2016-589-
31, 2018_2497_32), and the National Board of Health and Welfare. Human fetal forebrain tissue was collected and stored 
in hibernation media with the addition of GlutaMAX and B-27 supplements according to the manufacturer’s instructions 
(overnight, 4 °C, Hibernate-A, Thermo-Fisher). Tissue was then cut into small cubic pieces of approximately 1–2 mm 
length. Tissue was dissociated using a dissociation kit (Miltenyi, Neural Tissue Dissociation Kit (P)) according to the 
manufacturer’s instructions. In brief, tissue was prepared in the kit buffer containing 0.067 mM β-mercaptoethanol. After 
addition of enzyme mix 1 and 2, the tissue was mechanically dissociated using three increasingly smaller gauges of fire-
polished Pasteur pipettes, pipetted 20, 15 and 10 times up and down, respectively. Finally, collected cells were stored on 
ice in PBS containing 1% BSA and immediately prepared for single-cell library preparation.  Single-cell RNA sequencing 
was performed using the 10x Genomics Chromium V2 and v3 kit, following the manufacturer’s protocol, and sequenced 
on an Illumina Hiseq 2500.  

For scATAC-Seq, the nuclei Isolation for 10x Genomics Single Cell ATAC Sequencing demonstrated protocol was used 
(CG000169, 10x Genomics, 2019), and sequenced on an Illumina Hiseq 2500. 

Data analysis, clustering and integration with Harmony 

FAST-q data obtained from single-cell RNA-seq was processed using Kalisto (Bray et al., 2016). The reads were separated 
into unspliced and spliced counts. Quality control was performed on the spliced matrix and only the cells that passed the 
quality control were analyzed further. After quality control we obtained 25161 cells which were subjected to downstream 
analysis. Cells were normalized so that the total counts in the cells summed up to 1 and then multiplied by a factor of 10000 
to avoid any numerical problems. 

We then calculated features using a common support vector regression model on the coefficient of variation versus the 
magnitude of expression for each gene, and performed dimensional reduction on the obtained expression matrix, after 
which we used Harmony (Korsunsky et al., 2019) to integrate technical batch effects due to V2 and V3 kits of 10X, on 50 
components. 

Reintegration of V2 and V3 datasets. 

We projected the V2 and V3 data into each PCA reduced space, and generated a JSD matrix for both PCA spaces, which 
were then summed to create a distance matrix in which we determined nearest neighbours. We then proceeded to integrate 
the 10 nearest neighbours of each V3 cell in the V2 data and calculated the correction matrix as performed in Seurat and 
MNN (Haghverdi et al., 2018; Stuart et al., 2019), integrating V3 with V2 data. 

Generating count matrix and RNA velocity diffusion maps 

To generate a manifold respecting both the RNA velocity and transcriptional similarity-based distances between cells, we 
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used the corrected PCA space from the integration between the V2 and V3 data as input for scVelo (Bergen et al., 2019) 
to obtain a transition matrix of cell velocities. We generated a diffusion map using the destiny/DPT R package (Haghverdi 
et al., 2016) on the integrated PCA space to obtain a transition matrix of transcriptomic similarities. Next, we performed 
canonical correlation analysis (CCA) on both these transition probability matrices (velocity and integrated PCA space) and 
used these components (40 components) as input to the final diffusion map to generate a manifold and transition matrix 
congruent with transcriptional and velocity distances that can capture non-linear relationships. However, the directionality 
of the RNA velocity transition matrix is lost. 

Path tracing and end point determination. 

Using the generated manifold diffusionmap, we then traced paths from all clusters to all clusters by using the calculated 
diffusion pseudotimes. To trace from all populations to all others, we iterated the following sequence, we started from the 
one population and took small steps (10 nearest neighbours) in the direction of the desired fate (the source of the cluster to 
target). By only selecting the cells in that step on the network that actually were closer to the desired fate (as measured by 
diffusion pseudotime), and continuing with the new (now closer to the target population) position, we continued stepping 
until we reached the destination point (diffusion pseudotime = 0). After completing a walk from cluster A to all other 
clusters, we mapped the number of times a path was traced over each cell. We did this for all clusters. We then calculated 
a z-score for each cluster set and set the arbitrary cutoff of  >0.5 to belong to a pathtrace. We then binarized the path to 0 
or 1 and smoothed the path values over the manifold by taking nearby neighbours and using a weighted mean to smooth 
over the 100 nearest neighbours we iterated the smoothening for a total of 5 times, using the weights as defined by the 
transition matrix of the diffusionmap.  
We then calculated end points as normalizing the pathvalues for each cluster and calculating the proportion of contribution 
of each path to each cell. We then set clusters that obtained a contribution of 0.8 or higher as end Figure 5. points. 

KL divergence expression transformation to rank genes. 

We transformed the expression matrix by calculating the KL divergence for each cell to every other cell. By first converting 
the expression of each cell to a probability distribution by normalizing over all counts of the cell, forcing each cells 
expression to sum to 1. For each cell compared to every other cell, we calculated the KL vector as the following. 

𝑃(𝑥)𝑙𝑜𝑔 (
𝑃(𝑥)
𝑄(𝑥)* 

We then calculated the KL divergence as follows, again for each cell compared to every other cell. 

𝐷!"(𝑃 ∥ 𝑄) = 	/𝑃(𝑥)log	 (
𝑃(𝑥)
𝑄(𝑥)*

#∈%

 

We then performed a matrix multiplication with the KL vectors of each cell multiplied by the KL divergence. After 
repeating the procedure for each cell, we obtain a matrix where each cells genes are ranked according to the relative 
distances between cells, we then normalized over the cells to have all gene contributions sum up to 1 for each cell. Over 
which we subsequently performed a comparison between cells to obtain a difference value to rank cells as follows. Where 
ClusterA and ClusterB are a vector for all the gene values belonging to each respective cluster. Where in this case ClusterB 
would be background (i.e. all cells not belonging to ClusterA) 

𝐺𝑒𝑛𝑒𝑅𝑎𝑛𝑘𝑖𝑛𝑔 =
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴
∑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴 −

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵
∑𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐵 

Lineage backdiffusion and lineage membership assignment 

To obtain lineage information, we proceeded to walk back from all clusters across the manifold. Here we used a similar 
approach as earlier used in CellRank (Lange et al., 2020), where we joined the Velocity transition matrix with the distance 
matrix based on counts. We combined both matrices in the following ratio 0.8 * backwards velocity ransition matrix + 0.2 
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* transitionmatrix of diffusionmap based on counts. We then proceeded to walk back using weighted mean stats R package 
(R Development Core Team, 2010), by giving every clusters 50 most distant cells (as measured by the diffusion pseudotime 
from the path tracing steps) a value of 1, we then proceeded to diffuse back using weighted means with 1000 nearest 
neighbors, however as our kernel does not have values for all cells (K-NN cutoff in diffusion map) stetting a high threshold 
like 1000 neighbours would then automatically use the maximum cutoff in neighbors from both the transition matrix and 
the diffusionmap. We iterated this for 15 steps, and at the start of every diffusion step we added back the initial start values 
on top of the diffused values. Effectively feeding the diffusion to produce a gradient from each cluster diffusion back to 
startcells as measured using velocity. Lineage scores were then calculated, where we calculated lineage score as the KL 
divergence between lineages in the same manner as we did for cells in the ranking step (see KL divergence expression 
transformation to rank genes), but now for lineage information, so that lineages are now ranked according to the relative 
distances between cells, as dictated by the lineage scores. Lineage membership was determined by normalizing over the 
rows (lineages) and then normalizing over the columns (cells).   
We calculated the overall position of each cell in development as the sum of all the lineage scores, and defined the 
differentiation score as the highest lineage membership value for each cell. 

Regulatory network 

To calculate regulons we implemented the SCENIC pipeline (pySCENIC) (Aibar et al., 2017; Van de Sande et al., 2020) 
according to default settings.  

scATAC-seq analysis 

Raw data was processed using CellRanger ATAC v1.2 platform. Reads were mapped to human reference genome GRCh38 
provided by 10x Genomics. Most of the analysis was performed using ArchR v1.01 framework 
(https://doi.org/10.1038/s41588-021-00790-6) on R v4.1.0. In the quality control, cells were filtered based on the 
transcription start site (TSS) enrichment (>10) and the total number of fragments (>1000). After QC, ArchR used a 2kb 
genome widow to create a cell-by-bin matrix. At the same time, it also generates a gene activity matrix, calculating the 
number of reads on the gene body and distal regions that do not overlap with other gene bodies and normalizes by the 
distance from TSS.  Dimensionality reduction was performed on the genomic bin space using an iterative (n=3) LSI (TF-
IDF normalization followed by SVD). Clusters were obtained by Louvain clustering (resolution = 1). Following clustering, 
cells were annotated by label transfer with scRNA-seq using Seurat v4 (https://doi.org/10.1016/j.cell.2021.04.048). 
Clusters were annotated based on the proportion of each predicted cell type. Peak calling was performed by cluster with 
MACS2. Differential analysis (Wilcoxon) was performed on two levels: Gene activity and peaks. Transcription factors 
motif enrichment was performed using ChromVAR (doi: 10.1038/nmeth.4401.) 

 

Hybridization-based In Situ Sequencing (HybISS) 

Human tissue at week 8 post conception was embedded in Tissue-Tek® O.C.T. (Sakura) and flash frozen in dry ice/ethanol 
bath, sectioned in 10 µm-thick cryosections and stored at -80°C until HybISS was applied. HybISS was performed as 
described by Gyllborg et al. (Gyllborg et al., 2020). Briefly, after fixation, sections were permeabilized with 0.1 M HCl 
and washed with PBS. A hydrophobic barrier was drawn along the tissue sections using an ImmEdge Hydrophobic Barrier 
PAP Pen (Vector Laboratories) to keep reagents localized over the tissue sections. cDNA synthesis was performed by 
reverse transcription overnight with reverse transcriptase (BLIRT), RNase inhibitor, and priming with random decamers. 
The next day, sections were post-fixed before padlock probe (PLP) hybridization and ligation at a final concentration of 
10 nM/PLP, with Tth Ligase and RNaseH (BLIRT). This was performed at 37°C for 30 min and then moved to 45°C for 
1.5 h. Sections were washed with PBS and RCA was performed with phi29 polymerase (Monserate) and Exonuclease I 
(Thermo Scientific) overnight at 30°C. Bridge-probes (10 nM) were hybridized at room temperature (RT) for 1 h in 
hybridization buffer (2XSSC, 20% formamide). This was followed by hybridization of readout detection probes (100 nM) 
and DAPI (Biotium) in hybridization buffer for 1h at RT. Sections were washed with PBS and mounted with SlowFade 
Gold Antifade Mountant (Thermo Fisher Scientific). After each imaging round, coverslips were removed and sections 
washed 5 times with 2XSSC and then bridge-probe/detection oligos were stripped with 65% formamide and 2XSSC for 
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30 min at 30°C. This was followed by 5 washes with 2XSSC. Now the next cycle of bridge-probes could be hybridized as 
above. 

Imaging was performed with a Leica DMi8 epifluorescence microscope equipped with LED light source (Lumencor® 
SPECTRA X), sCMOS camera (Leica DFC9000GTC), and 20× objective (HC PL APO, 0.80). Each field-of-view (FOV) 
was imaged with 21 z-stack planes with 0.5 μm spacing and 10% overlap between FOVs.  

Image processing and decoding of HybISS data 

After imaging, each FOV was maximum intensity projected to obtain a flattened two-dimensional image. Imaging data 
was then analyzed with in-house custom software that handles image processing and gene calling based on the python 
package Starfish. Each two-dimensional FOV was exported, and preprocessed including alignment between cycles and 
stitched together using the MIST algorithm. Stitching was followed by retiling to create smaller non-overlapping 
6000x6000 pixel images that were then used for decoding. The decoding pipeline can be found on the Moldia GitHub page 
(https://github.com/Moldia/iss_starfish/). In short, the images were initially filtered (using the Filter module from 
Starfish) applying a white top hat filter with a masking radius of 15. The filtered images were subsequently normalized 
(using the Filter module from Starfish). Following the normalization, spots were detected using the FindSpots module from 
Starfish and decoded using PerRoundMaxCannel decoding.  

Cell type mapping 

Probabilistic cell maps were created using probabilistic cell typing by in situ sequencing (pciSeq; 
https://github.com/acycliq/pciSeq, REF Qian et al., 2020). pciSeq assigns genes to cells and cells to cell types. The 
assignment is done using a probabilistic framework based on a single-cell RNA sequencing data. Due to the density of 
nuclei in the tissue, a compartment-based approach was employed in which each compartment was defined as 50x50 pixel 
grid (~16x16 µm).   
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Legends for Main Figures  
 
Figure 1. Single cell RNA-seq reveals a continuous manifold of developmental transitions into glial fates already at the human PCW 8-10 
forebrain. A) Heatmap showing the top 10 genes enriched for each cluster. B) UMAP of 25161 cells depicting the clusters and their inferred identities 
based on marker expression. C) Coarse clusters showing the main developmental stages in the early brain. D) UMAP depicting the different post 
conception ages in the experiment. E) Representative genes for the coarse cluster, expression overlayed in UMAP from Panel B. 

 
Figure 2. Convergent paths from radial glia, through glioblasts, to OPCs in the human PCW8-10 forebrain. A) UMAP showing the OPC lineage 
association score (Left), and the joint expression profile of the major OL lineage markers OLIG2, OLIG1, NKX2-1, NKX2-2 and SOX10 for comparison 
(Right) B) UMAP showing the estimated differentiation score of every cell in the dataset according to the lineage analysis over all lineages (Left). C) 
Violin plot showing estimated differentiation score for every cluster. Cluster number according to Figure 1B.  D) Smoothed depiction of the top 100 
genes correlating with the OL lineage, ordered over time. Color bar colored according to the coarse clustering. Blue color bar on the left highlights 
expression of early lineage genes mainly involving patterning genes. Red bar, genes expressed during and after the glioblast stage. E) The top 100 genes 
filtered for genes lacking both spliced and unspliced counts, showing the difference between the min/max normalized smoothed expression within the 
lineage cells, Red = positive residual (possible upregulation of gene), Blue = negative residual (possible downregulation of gene). Genes are ordered 
according to residual value. Color bar colored according to the coarse clustering. F) UMAPs depicting LHX5, SP5, GATA3, and HOPX expression, 
showing possible outer radial glia progenitor groups. G) UMAPs of patterning genes expressing along the OL lineage. 

 
Figure 3. Transcriptional network connects early and late regulon activity along the OL lineage. A) Heatmap of enriched regulons for all cells in 
the dataset (Z-score of regulon activity). B) Top 25 regulons, estimated to be lineage drivers due to correlation to the OL lineage membership score. C) 
Selection of regulons activity profiles related to the OL lineage. D) Regulon network of top 20 regulons and top 100 genes associated to the lineage. 

 
Figure 4. Regulons along the preOPC to OPC transition involves NOTCH signaling. . A) Module scores for the top genes correlating with OPC 
“budding” from the glioblast state. B, C) Top 8 correlating genes and regulons with OPC “budding” from the glioblast lineages. D) Regulon network of 
top 20 regulons and top 100 genes associated to the “budding” from the glioblast lineage. E) Velocity vector field showing lineage score towards glioblast 
state and OPC state respectively, illustrating the relatively large RNA velocity change accompanied with the initiation of the OPC state progression. 
Colored by normalized expression of each respective gene. 

 
Figure 5 - Chromatin accessibility on the OPC lineage in first trimester human forebrain. A) UMAP of 10487 cells distributed in 17 clusters 
annotated via label transfer with the scRNA-seq as reference. B) Cell distribution according to post-conceptional week age in UMAP representation 
(upper) and its proportion in each cluster. 
 
Figure 6 – Accessible Genes with chromatin acessibility in OPCs and preOPCs. A) Track plots of genes differentially accessible in OPCs (upper), 
pre-OPCs (middle) or primed in pre-OPCS (lower).  The first row in each plot represents normalized pseudo-bulk coverage. Second row represents a 
sample of 30 cells from each cluster and its binary signal. Last row depicts the locus. B) Density plot of ChromVar motif deviation score in OPCS and 
pre-OPCS.  C) Expression of genes with chromatin accessibility in both OPCs and Pre-OPCs. 

 
Figure 7. Spatial transcriptomics of PCW8 brain highlights the ventral forebrain as a region of early oligodendrogenesis. A) PciSeq HyISS 
showing all clusters from Figure 1B mapped to spatial coordinated using probabilistic mapping. B) Individual clusters grouped as shown in Figure 1C. 
C) The average OPC potential by cluster translated to spatial coordinates using the cluster assignment as in A (softscaled potential0.1 for visualization). 
D, E) Spot recordings of probes referring to a selection of genes showing DAPI staining in white. 

 
 
 Legends for Supplementary Figures 
 
Figure S1.  A) Violin plot showing the distribution of the number of counts and number of features over all samples. B) Violin plot showing the 
distribution of the number of counts and number of features over all clusters. C) Barplot showing the distribution of age over the clusters. D) UMAP 
plots of selected genes. E) Volcano-plot showing differential expression results for preOPC compared to OPC. F) Volcano-plot showing differential 
expression results for preOPC compared to OPC but only annotated transcription factors and co-factors.  
 
Figure S2. A) Left, UMAP showing the clustering performed for the lineage analysis after integration. Right, Endpoint assignment results of the lineage 
analysis. B) Lineage membership scores calculated for each cluster (softscaled (exp)0.1). C) UMAP of the benchmark test set as from the pancreatic 
dataset. D) Endpoint assignment results of the lineage analysis on the pancreatic dataset. E) Lineage membership scores for all clusters of the pancreatic 
dataset. F) Gene ordering and cell ordering towards the Alpha lineage in the pancreatic dataset. 
 
Figure S3. A) Gene ordering and cell ordering towards the Oligodendrocyte lineage. B) Top 16 genes positively correlating with the differentiation score 
over the whole dataset (Pearson R, Fishertest, FDR 5%). C) Top 16 genes negatively correlating with the differentiation score over the whole dataset 
(Pearson R, Fishertest, FDR 5%). D) Reactome pathway analysis over the significantly positively correlating genes over the whole dataset (Pearson R, 
Fishertest, FDR 5%). E) Network view of results in D. F) Reactome pathway analysis over the significantly negatively correlating genes over the whole 
dataset (Pearson R, Fishertest, FDR 5%). G) Network view of results in F.   
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Figure S4. A) Custom layout of OPC lineage score on the x-axis and glioblast lineage score on the y-axis, showing shared cells between the lineages and 
a branching point towards the OPC state and glioblast state (arrows). B,C) Top 16 correlating genes for OPC (B) and glioblast (C) lineages (Pearson R, 
Fishertest, FDR 5%), D) Top 16 regulon scores positively correlating with the differentiation score over the whole dataset (Pearson R, Fishertest, FDR 
5%). E) Top 16 regulon scores negatively correlating with the differentiation score over the whole dataset (Pearson R, Fishertest, FDR 5%). F) Reactome 
pathway analysis over the significantly correlating regulons over the whole dataset (Pearson R, Fishertest, FDR 5%), for both positive and negative 
correlation respectively. G) Network view of results in F. J) Gene expression of selection of genes overlayed with the measured velocity vector field.   
 
Figure S5 - snATAC-seq cell quality control and label transfer scores. - related to Figures 5 and 6. A) Number of fragments and Transcription Start 
Site (TSS) enrichment of each cell. Color represent number of cells. B) Seurat prediction score based on scRNA-seq annotation. First panel represent the 
maximum score for all cell types. Middle panel shows prediction score for preOPCs cluster. Last panel shows prediction score for OPCs. 

 
Figure S6. PciSeq HyISS of three coronal brain slices ranging from the anterior to posterior axis of PCW 8 human forebrain, images are separated by 
estimated coarse cluster membership according to probabilistic mapping. 
 
Figure S7. PciSeq HyISS of three coronal brain slices ranging from the anterior to posterior axis of PCW 8 human forebrain. A) The measured 
coordinates of the panel of 50 probes used for the most anterior slice. B) The measured coordinates of the panel of 50 probes used for the slice in between 
the most anterior and posterior. C) The measured coordinates of the panel of 50 probes used for the most posterior slice. D) DAPI staining showing the 
dense structure of the radial glial neuroepithelium for all three slices. 

 
Legends for Supplementary Tables 
 
Supplementary Table 1 - Differential expression test per cluster as in Seurat v4 using wilcoxon rank sum test, logFC 
0.25, pct 0.25 
 
Supplementary Table 2 - Differential snATAC-Seq gene activity (Wilcoxon rank sum) of OPCs vs preOPCs (FDR < 0.01) 
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