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Abstract

Proportional-Integral-Derivative (PID) feedback controllers have been the most widely used controllers in industry
for almost a century due to their good performance, simplicity, and ease of tuning. Motivated by their success in
various engineering disciplines, PID controllers recently found their way into synthetic biology, where the design
of feedback molecular control systems has been identified as an important goal. In this paper, we consider the
mathematical realization of PID controllers via biomolecular interactions. We propose an array of topologies that
offer a compromise between simplicity and high performance. We first demonstrate that different Proportional-
Integral (PI) controllers exhibit different capabilities for enhancing the dynamics and reducing variance (cell-to-cell
variability). Next, we introduce several derivative controllers that are realized based on incoherent feedforward loops
acting in a feedback configuration. Alternatively, we show that differentiators can be realized by placing molecular
integrators in a negative feedback loop—an arrangement that can then be augmented by PI components to yield PID
feedback controllers. We demonstrate that the derivative component can be exploited for enhancing system stability,
dramatically increasing the molecular control system’s dynamic performance, and for reducing the noise effect on the
output of interest. The PID controller features are established through various deterministic and stochastic analyses
as well as numerical simulations. The large array of novel biomolecular PID controllers introduced here constitutes
a conceptual and practical advancement in cybergenetics, and present a basis for the design and construction of
advanced high-performance biomolecular control systems that robustly regulate the dynamics of living systems.
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One of the most salient features of biological systems
is their ability to adapt to their noisy environments.

For example, cells often regulate gene expression to coun-
teract all sorts of intrinsic and extrinsic noise in order to
maintain a desirable behavior in a precise and timely fash-
ion. This resilience toward undesired disturbances is often
achieved via feedback control that has proved to be ubiq-
uitous in both natural (e.g. [2–4]) and engineered systems
(e.g. [5,6]). In fact, synthetically engineering biomolecular
controllers is gaining a wide attention from biologists and
engineers (e.g. [7–15]).

A standard general setup for feedback controllers is de-
picted as a block diagram (refer to Box 1. A Primer on
Block Diagrams in the SI) in Figure 1(a). The “Plant”
block represents the process to be controlled. It can
be actuated through its input, denoted here by u, to
dynamically manipulate its output of interest, denoted
here by y. The objective of such control systems is to
design a feedback controller that automatically actuates
the plant in a smart autonomous fashion and guarantees
that the output y meets certain performance goals de-
spite the presence of disturbances in the plant. These
performance goals, described in Figure 1(b), include (but
are not limited to) Robust Perfect Adaptation (RPA),
stability enhancement, desirable transient response and
variance reduction. Control theory developed a wide set
of tools to design feedback controllers that meet certain
performance objectives. For instance, it is well known
in control theory (internal model principle [16]) that a
controller should involve an Integral (I) action to be
able to achieve RPA. Furthermore, Proportional-Integral-
Derivative (PID) feedback controllers – first rigorously in-
troduced by Nicolas Minorsky [17] around a hundred years
ago – adds a Proportional (P) and Derivative (D) action
to the Integrator (I) to be able to tune the transient dy-
namics and enhance stability while preserving RPA. Inter-
estingly, after almost a century, PID controllers are still
the most widely used controllers in industrial applications
spanning a broad range of engineering disciplines such as
mechanical and electrical engineering [18–20].

Originally, PID feedback controllers were designed to
control mechanical (later, electrical) systems such as au-
tomatic ship steering (later, telephone engineering sys-
tems) [21]. Such control systems involve controlling quan-
tities that can take both negative and positive values such
as angles, velocities, electric currents, voltages, etc... Fur-
thermore, traditional PID controllers possess linear dy-
namics since all three operations of a PID are linear. Two
classes of linear PID controllers, adopted from [22, Chap-
ter 10], are shown in Figures 1(c) and (d). In Figure 1(c),
the error signal e(t) := r − y(t) is fed into the three (P,
I, and D) components. The outputs of the three compo-
nents are summed up to yield the control action u which
serves as the actuation input to the plant. However, in Fig-
ure 1(d), the controller has two degrees of freedom since
both the error e and the output y are used separately and
simultaneously. Particularly, the error is fed into the inte-
grator, while the output is fed into the proportional and

derivative components. Observe that both architectures
require that the integrator operates on the error (and not
the output). This is necessary to achieve RPA and can be
easily seen using a very simple argument explained next.
Let uI(t) denote the output of the integrator, that is

uI(t) := KI

t∫

0

e(τ)dτ =⇒ u̇I(t) = KIe(t). (1)

Assuming that the dynamics are stable, then at steady
state we have lim

t→∞
u̇I(t) = 0. This implies that, at steady

state, the error e := r − y has to be zero, and thus
lim
t→∞

y(t) = r, hence achieving the steady-state tracking

property. Observe that this argument does not depend on
the plant, hence achieving the robustness property.

For mechanical and electrical systems, the linearity of
the PID controllers is convenient because of the avail-
ability of basic physical parts (e.g. dampers, springs,
RLC circuits, op-amps, etc...) that are capable of re-
alizing these linear dynamics. However, this realization
quickly becomes challenging when designing biomolecular
controllers. This difficulty arises because (a) biomolecu-
lar controllers have to respect the structure of BioChem-
ical Reaction Networks (BCRN), and (b) the quantities
to be controlled (protein copy numbers or concentrations)
cannot be negative (see [23] for positive integral control).
Furthermore, the dynamics of biochemical reactions are
inherently nonlinear. To achieve RPA, BCRN realizations
of standalone Integral (I) controllers initially received the
widest attention [24–29]. In previous work [26], the An-
tithetic Integral (aI) feedback controller was introduced
to realize integral action that ensures RPA. In fact, more
recently, it was shown in [10] that the antithetic motif is
necessary to achieve RPA in arbitrary intracellular net-
works with noisy dynamics. A detailed mathematical
analysis of the performance tradeoffs that may arise in the
aI controller is presented in [30, 31], and optimal tuning
is treated in [32]. Furthermore, practical design aspects,
particularly the dilution effect of controller species, are
addressed in [28, 29]. Biological implementations of vari-
ous biomolecular integral controllers appeared in bacteria
in vivo [7, 9, 10] and in vitro [14], and more recently in
mammalian cells [15].

In the pursuit of designing high performance controllers
while maintaining the RPA property, BCRN realizations
of PI and PID controllers started receiving more focused
attention [33–38]. Particularly in [33], a proportional com-
ponent is separately appended to the antithetic integral
motif via a repressing hill-type function to tune the tran-
sient dynamics and reduce the variance. The resulting PI
controller follows the concept of Figure 1(d) where error
and output feedback are used to build separate (but non-
linear) P and I components. Several successful attempts
were carried out to devise BCRN realizations that approx-
imate derivatives [39–43]. However, the first focused work
on BCRN realizations of a full PID controller was reported
in [35], where the authors introduced additional controller
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species to obtain a derivative component. The resulting
PID controller uses error feedback (similar to the concept
of Figure 1(c)) to build separate nonlinear P, I, and D
components and successfully improves the dynamic per-
formance in the deterministic setting. Using a different
approach, [37] and [38] exploit the dual-rail representa-
tion from [24], where additional species are introduced
to overcome the non-negativity challenge of the realized
PID controller. The authors demonstrate the resulting im-
provement of the performance in the deterministic setting.

On a different note, [36] analyzed the effects of separate
proportional and derivative controllers on (bursty) gene
expression models in the stochastic setting.

Interestingly, all previous research in this direction have
two intimately related aspects in common. Firstly, the P,
I, and D components are realized separately such that they
enter the dynamics additively. This aspect is motivated by
traditional PID controllers where the controller dynamics
are constrained to be linear, and thus the three compo-
nents has to be added up (rather than multiplied for ex-

a General Setup for Feedback Controllers
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Figure 1: Feedback controller design and performance. (a) The output to be controlled is fed back into the controller via a sensing
mechanism. The controller exploits the set-point, that is typically “dialed in” by the user and computes the suitable control action to
be applied to the plant (or process) via an actuation mechanism. The goal of the control action is to steer the output to the desired
set-point despite external or even internal disturbances. (b) A demonstration of four performance goals that are typically targeted when
designing the controller. Robust Perfect Adaptation (RPA): This is the biological analogue of the notion of Robust Steady-State
Tracking (RSST) that is well known in control theory [1]. A controller achieves RPA if it drives the steady state of the plant output y to
the set-point (or reference, denoted by r) despite varying initial conditions, plant uncertainties and/or constant disturbances. Stability
Enhancement: A typical goal of a controller is to stabilize the dynamics. That is, it forces the output y to converge to a fixed steady-state
value thus avoiding divergent responses and sustained oscillations. Desirable Transient Response: Another typical control objective
is to yield a smooth transient response which is fast enough but doesn’t overshoot or oscillate too much. Variance Reduction: For
stochastic dynamics, it is common to study the time evolution of the output probability distribution and its moments such as the mean
and variance. A natural performance objective is to design a controller that tightens the probability distribution around the mean, e.g.
reduce the variance (cell-to-cell variability). (c), (d), and (e) Various PID control architectures. The classical designs in (c) and (d)
involve separate linear P, I and D operations that are added together to yield the control action u. The difference between (c) and (d) is in
the controller input: in (c) the error signal is the only input, while in (d) the error signal is fed into the I component whereas the output
signal is fed into the P and D components . In this paper, we propose PID control architectures that fit in the more general class depicted
in (e) where the PID components may be nonlinear and inseparable. This gives more mathematical realization flexibility for biomolecular
controllers.
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ample). However, since feedback mechanisms in BCRNs
are inherently nonlinear, there is no reason to restrict the
controller to have linear dynamics and/or additive com-
ponents. Secondly, the proposed designs introduce addi-
tional species to mathematically realize the controller, and
thus making the biological implementation more difficult.
To this end, we consider in this paper (more general) non-
linear PID controllers that do not have to be explicitly sep-
arable into their three (P, I and D) components. This al-
lows controllers to involve P, I , and D architectures in one
(inseparable) block as depicted in Figure 1(e) where both,
error and output, feedbacks are allowed. The nonlinearity
and inseparability features of the proposed PI and PID
controllers provide more flexibility in the BCRN design
and allows simpler architectures that do not require intro-
ducing additional species to the standalone integral con-
troller. Next, we adopt a hierarchical approach to slightly
increase the complexity of the controller designs by intro-
ducing up to two additional controller species. This ap-
proach offers the designer a natural compromise between
simplicity and performance.

Results
General framework for biomolecular feedback con-
trollers. The framework for feedback control systems is
traditionally described through block diagrams (e.g. Fig-
ure 1(a)). In this section, we lay down a general framework
for feedback control systems where both the plant and the
controller are represented by Biochemical Reaction Net-
works (BCRN). With this framework, the controller can
either represent an actual biomolecular circuit or it can be
implemented as a mathematical algorithm in silico [44–46]
to regulate a biological circuit (through light for exam-
ple [47]).

Consider a general plant, depicted in Figure 2, com-
prised of L species X := {X1, · · · , XL} that react
with each other through K reaction channels labeled
as R := {R1,R2, · · · ,RK}. Each reaction Rk (k =
1, 2, · · · ,K) has a stoichiometry vector denoted by ζk ∈
ZL and a propensity function λk : RL+ → R+. Let
S :=

[
ζ1 ζ2 · · · ζK

]
∈ ZL×K denote the stoichiome-

try matrix and let λ :=
[
λ1 λ2 · · · λK

]T
denote the

(vector-valued) propensity function. Then, the plant con-
stitutes a BCRN that is fully characterized by the triplet
N := (X, S, λ) which we shall call the “open-loop” system.

The goal of this work is to design a controller network,
denoted by Nc, that is connected in feedback with the
plant network N , as illustrated in Figure 2(a), to meet
certain performance objectives such as those mentioned
in Figure 1(b). We assume that all the plant species are
inaccessible by the controller except for species X1 and
XL. Particularly, the controller “senses” the plant out-
put species XL, then “processes” the sensed signal via the
controller species Z := {Z1, · · · , ZM}, and “actuates”
the plant input species X1. The controller species are
allowed to react with each other and with the plant in-
put/output species through Kc reaction channels labeled

a

b
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[
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N /Nc Plant/Controller Network

R/Rc Plant/Controller Reactions
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S1/SL Actuation/Sensing Stoichiometry Vector
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or B ∅
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Figure 2: A framework for feedback control of Chemical Re-
action Networks. (a) An arbitrary plant is comprised of L species
{X1, · · · , XL} reacting with each other. Species XL, by definition,
is the output of interest to be controlled, while X1 is assumed to be
the only accessible input species that can be “actuated” (positively
and/or negatively) by the controller network which is comprised of
M species { Z1 , · · · , ZM}. The closed-loop system, with stiochiom-
etry matrix Scl and propensity function λcl, denotes the overall feed-
back interconnection between the plant and controller networks. The
partitioning of Scl and λcl describes the various components of the
closed-loop network. (b) A description of the compact graphical
notation that is adopted throughout the paper. Arrows directed to-
ward species indicate catalytic productions, whereas T-shaped lines
indicate catalytic inhibitions that encompass either repressive pro-
duction or degradation. Note that the propensities of degradation
reactions are considered to be either kAB/(B+κ) if two parameters
(k, κ) are indicated on the arrow, or ηAB if only one parameter η is
indicated on the arrow. Finally, diamonds indicate either production
or inhibition.

as Rc := {R1
c ,R2

c , · · · ,RKcc }. Let S̄c ∈ Z(M+2)×Kc and
λc : RM+2

+ → RKc+ denote the stoichiometry matrix and
propensity function of the controller, respectively. Since
the controller reactions Rc involve the controller species
Z and the plant input/output species X1/XL, the stoi-
chiometry matrix S̄c can be partitioned as

S̄c :=




S1

SL
Sc


 ,

where S1 and SL ∈ Z1×Kc encrypt the stoichiometry co-
efficients of the plant input and output species X1 and
XL, respectively, among the controller reaction chan-
nels Rc. Furthermore, Sc ∈ ZM×Kc encrypts the sto-
ichiometry coefficients of the controller species Z1, · · · ,
ZM. Hence, the controller design problem boils down
to designing S1, SL, Sc and λc. Note that, for simplic-
ity, we consider plants with Single-Input-Single-Output
(SISO) Species. However, this can be straightforwardly
generalized to Multiple-Input-Multiple-Output (MIMO)
Species by adding more rows to S1 and SL. Finally, the
closed-loop system constitutes the open-loop network ap-
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pended by the controller network so that it includes all
the plant and controller species Xcl := {X, Z} and re-
actions Rcl := {R,Rc}. Thus, the closed-loop network,
Ncl := N ∪ Nc, can be fully represented by the closed-
loop stoichiometry matrix Scl and propensity function λcl
described in Figure 2(a). We close this section, by noting
that our proposed controllers range from simple designs
involving M = 2 controller species, up to more complex
designs involving M = 4 controller species.

Antithetic Proportional-Integral (aPI) feedback
controllers. Equipped with the BCRN framework for
feedback control systems, we are now ready to propose
several PI feedback controllers that are capable of achiev-
ing various performance objectives. All of the proposed
controllers involve the antithetic integral motif introduced
in [26] to ensure RPA. However, other additional motifs
are appended to mathematically realize a Proportional (P)
control action.

Consider the closed-loop network, depicted in Figure 3,
where an arbitrary plant is connected in feedback with a
class of controllers that we shall call aPI controllers. Ob-
serve that there are three different inhibition actions that
are color coded. Each inhibition action gives rise to a
single class of the proposed aPI controllers. Particularly,
when no inhibition is present, we obtain the standalone
antithetic Integral (aI) controller of [26] whose reactions
are summarized in the left table of Figure 3. Whereas, aPI
of Class 1 (resp. Class 2) involves the inhibition of X1 by
XL (resp. Z2), and aPI of Class 3 involves the inhibition
of Z1 by XL. Furthermore, each aPI class encompasses
various types of controllers depending on the inhibition
mechanisms that enter the controller network as actuation
reactions. We consider three types of biologically-relevant
inhibition mechanisms detailed in Figure 3: additive, mul-
tiplicative (competitive) and degradation. Considering all
three aPI classes with the various inhibition mechanisms,
Figure 3 proposes eight different aPI control architectures.
Note that, it can be shown that a degradation inhibition
in the case of aPI Class 3 would destroy the RPA property
and is thus omitted. All of these controllers are compactly
represented by a single general closed-loop stoichiometry
matrix Scl and propensity function λcl depicted in Fig-
ure 3. The various architectures can be easily obtained
by suitably selecting the functions h := h+ − h− and g
from the tables of Figure 3. A theoretical linear pertur-
bation analysis is carried out in Section S1.1 of the SI
to verify the proportional-integral control structure of the
proposed controllers. In fact, the analysis applies to any
smooth function h which is monotonically increasing (resp.
decreasing) in z1 (resp. z2, x1 and xL), and any smooth
function g which is monotonically increasing (resp. de-
creasing) in µ (resp. xL).

Deterministic steady-state analysis: Robust Per-
fect Adaptation (RPA) of aPI controllers. The de-
terministic dynamics of the closed loop systems, for all the
aPI controllers given in Figure 3 can be compactly written
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n
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µ
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Figure 3: Antithetic Proportional-Integral (aPI) feedback
controllers. Three different classes of aPI controllers are designed
by appending the standalone aI controller with three inhibitions.
Three biologically-relevant inhibition mechanisms are considered.
Additive Inhibition: The inhibitor species produces the inhib-
ited species separately at a decreasing rate. For instance, in the case
of aPI Class 1 with additive inhibition, both Z1 and XL produce
X1 separately, but Z1 acts as an activator while XL acts as a re-
pressor. This separate inhibition can be modeled as the production
of X1 as a positive actuation reaction R+

a with an additive hill-type
propensity given by h+(z1, xL) = kz1 + α

1+(xL/κ)
n , where n, α and

κ denote the hill coefficient, maximal production rate and repression
coefficient, respectively. This aPI is the closest control architecture
to [33] and [35], since the P and I components are additive and
separable (see Figures 1(c) and (d)). Multiplicative Inhibition:
The inhibitor competes with an activator over a production reac-
tion. In the case of aPI Class 1 with multiplicative inhibition, XL

inhibits the production of X1 by Z1. This can be modeled as the
production of X1 with a multiplicative hill-type propensity given by
h+(z1, xL) = kz1 × 1

1+(xL/κ)
n . Observe that in this scenario, the

Proportional (P) and Integral (I) control actions are inseparable; in-
stead, this actuation reactionR+

a encodes both PI actions simultane-
ously. Degradation Inhibition: The inhibitor invokes a negative
actuation reaction that degrades the inhibited species. For instance,
in the case of aPI Class 1 with degradation inhibition, Z1 produces
X1 (positive actuation reaction R+

a ), while XL degrades X1 (neg-
ative actuation reaction R−

a ). For generality, if the degradation is
assumed to be n-cooperative, the dynamics can be captured by using
a positive actuation with propensity h+(z1) = kz1 and a negative
actuation with propensity h−(x1, xL) = δx1xnL. The total actuation
propensity is defined as h(z1, x1, xL) := h+(z1) − h−(x1, xL). The
three classes with different inhibition mechanisms give rise to eight
controllers that are compactly represented by the closed-loop stoi-
chiometry matrix Scl and propensity function λcl by choosing the
suitable h functions from the tables.

as a set of Ordinary Differential Equations (ODEs) given
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by 



ẋ = Sλ(x) + h(z1, z2, x1, xL)e1

ż1 = g(µ, xL)− ηz1z2
ż2 = θxL − ηz1z2,

(2)

where e1 :=
[
1 0 · · · 0

]T ∈ ZL. Note that the total
actuation and reference propensities h and g take different
forms for different aPI control architectures as depicted in
Figure 3. The fixed point of the closed-loop dynamics can-
not be calculated explicitly for a general plant; however,
the output component (xL) of the fixed point solves the
following algebraic equation

g(µ, xL) = θxL, (3)

where over-bars denote steady-state values (if they exist),
that is xL := lim

t→∞
xL(t). Two observations can be made

based on (3). The first observation is that (3) has a unique
nonnegative solution since g is a monotonically decreasing
function in xL. The second observation is that (3) does not
depend on the plant. As a result, if the closed-loop system
is stable (i.e. the dynamics converge to a fixed point), then
the output concentration converges to a unique set-point
that is independent of the plant. This property is valid
for any initial condition, and is referred to as Robust Per-
fect Adaptation (RPA). Particularly, for the aI and aPI
controllers of Class 1 and 2, the reference propensity is
g(µ, xL) = µ, and thus xL = µ

θ . Furthermore, for the
aPI of Class 3, xL solves a polynomial equation of degree
n+ 1 (see Section S3 in the SI). In conclusion, all the pro-
posed aPI controllers maintain the RPA property that is
obtained by the antithetic integral motif, while introduc-
ing additional control knobs as extra degrees of freedom
to enhance other performance objectives.

Deterministic stability analysis & performance as-
sessment of aPI controllers. To compare the stabil-
ity properties of the various proposed aPI controllers, we
consider a particular plant, depicted in Figure 4(a), that
is comprised of two species X1 and X2 (L = 2). This
plant may represent a gene expression network where X1

is the mRNA that is translated to a protein X2 at a rate
k1. The degradation rates of X1 and X2 are denoted
by γ1 and γ2, respectively. The closed-loop stoichiome-
try matrix and propensity function are also shown in Fig-
ure 4(a). Using the Routh-Hurwitz stability criterion, one
can establish the exact conditions of local stability of the
fixed point (Equation (S17) in Section S3 of the SI) for the
various proposed aPI controllers. These conditions, once
satisfied, guarantee that the dynamics locally converge to
the fixed point.

For the remainder of this section, we consider fast se-
questration reactions, that is, η is large. Under this as-
sumption, one can obtain simpler stability conditions that
are calculated in Section S3 of the SI, and tabulated in
Figure 4(b). The stability conditions are given as inequal-
ities that has to be satisfied by the various parameters of
the closed-loop systems. A particularly significant lumped

parameter group is ρ := kk1θ
γ1γ2(γ1+γ2)

that depends only on

the plant and standalone aI controller parameters. To
study the stabilizing effect of the appended proportional
(P) component, we fix all the parameters related to the
plant and standalone aI controller (hence ρ is fixed), and
investigate the effect of the other controller parameters
related to the appended proportional component. By ex-
amining the table in Figure 4(b), one can see that, com-
pared to the standalone aI, the aPI controller of Class
1 with multiplicative (resp. degradation) inhibition en-
hances stability regardless of the exact values of κ (resp.
δ) and n. This gives rise to a structural stability property:
adding these types of proportional components guarantees
better stability without having to fine-tune parameters.

In contrast, although the aPI controller of Class 1
with additive inhibition may enhance stability, special
care has to be taken when tuning α. In fact, if α is
tuned to be larger than a threshold given by αTH :=
γ1γ2
k1

r [1 + (r/κ)n], then stability is lost. Figure 4(c) elab-
orates more on this type of aPI controller. Three cases
arise here. Firstly, if ρ < 1, that is the standalone aI al-
ready stabilizes the closed-loop dynamics, then the (α, κ)-
parameter space is split into a stable and unstable region.
In the latter (α > αTH), z2 grows to infinity, and the
output x2 never reaches the desired set-point r = µ/θ.
Secondly, if 1 < ρ < 2, that is the standalone aI is un-
stable, then the (α, κ)-parameter space is split into three
regions: (1) a stable region, (2) an unstable region with
divergent response similar to the previous scenario where
ρ < 1, and (3) another unstable region where sustained
oscillations emerge as depicted in the bottom plot of Fig-
ure 4(c). Note that the closer ρ is to 2, the narrower the
stable region is. Thirdly, for ρ > 2, the stable region dis-
appears and thus this aPI controller has no hope of sta-
bilizing the dynamics without re-tuning the parameters
related to the standalone aI controller (e.g. k and/or θ).
Clearly, multiplicative and degradation inhibitions outper-
form additive inhibition if stability is a critical objective.
To this end, Figure 4(d) shows how the settling time and
overshoot can be tuned by the controller parameters α, κ,
and δ for additive, multiplicative, and degradation inhi-
bitions, respectively. It is shown that with multiplicative
and degradation inhibitions, one can simultaneously sup-
press oscillations (settling time) and remove overshoots.
In contrast, a proportional component with additive in-
hibition can suppress oscillations but is not capable of
removing overshoots as illustrated in the simulations of
Figure 4(d) to the right. Furthermore, one can lose sta-
bility if α is increased above a threshold as mentioned
earlier. Nevertheless, for multiplicative and degradation
inhibitions, increasing the controller parameters (κ−1, δ)
too much can make the response slower but can never de-
stroy stability.

It can be shown that the other two classes (2 and 3)
are undesirable in enhancing stability. For instance, ob-
serve that for Class 2, the stability conditions are the same
as the standalone aI controller (in the limit as η → ∞)
with an exception in the case of additive inhibition when
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Figure 4: Performance of aPI
feedback controllers. (a) Gene ex-
pression network controlled by aPI
controllers. (b) Inequalities that
need to be respected by the various
controllers (with η is large enough) to
guarantee closed-loop stability in the
deterministic setting. Multiplicative
and degradation inhibition mecha-
nisms exhibit superior structural sta-
bility properties. (c) aPI controllers
of class 1 with an additive inhibi-
tion mechanism, exhibit different sta-
bility properties for different ranges
of the parameter group ρ (that de-
pends solely on the plant and the
standalone aI controller). In partic-
ular, for ρ < 2, the additive pro-
portional control action can stabi-
lize the dynamics, while for ρ > 2,
it cannot stabilize without re-tuning
the integral component. (d) Set-
tling time and overshoot for the out-
put (X2) response as a function of
controller parameters that are related
to the appended proportional compo-
nents. Multiplicative and degrada-
tion inhibition mechanisms are capa-
ble of ameliorating the performance
without risking instability as opposed
to the additive inhibition mechanism.
(e) Reduction of the output station-
ary variance with aPI controllers.
The aPI controllers of Class 1 with all
three inhibition mechanisms are ca-
pable of reducing the stationary vari-
ance of the output. This is demon-
strated here via the simulations and
the approximate formula shown in
Table 1 as well. For additive inhi-
bition, α has a threshold value αTH

above which ergodicity is lost sim-
ilar to deterministic setting. Fur-
thermore, observe that for values of
α that are close to αTH, the ana-
lytic approximation is less accurate.
In contrast, the multiplicative and
degradation mechanisms are capable
of reducing the variance without the
risk of losing ergodicity, and the an-
alytic approximation remains accu-
rate. The numerical values of all
the parameters can be found in Sec-
tion S8 in the SI.

α > γ1γ2
k1

r. In this case, the inequality is structurally very
different from all other stability conditions. In fact, the
actuation via Z2 dominates Z1, and hence Z2 becomes
responsible for the Integral (I) action instead of Z1. The
detailed analysis of this network is not within the scope of
this paper, and is left for future work. Finally, aPI con-
trollers of Class 3 deteriorates the stability margin, since
the right hand side of the inequalities are strictly less than
one. However, this class of controllers can be useful for
slow plants if the objective is to speed up the dynamics.

Stochastic analysis of the aPI controllers: RPA &
stationary variance. We now investigate the effect of

the aPI controllers on the stationary (steady-state) behav-
ior of the output species XL in the stochastic setting. Par-
ticularly, we examine the stationary expectation Eπ [XL]
and variance Varπ [XL]. The evolution of the expectations
of the various species in the closed-loop network of Fig-
ure 3 are simply given by the differential equation d

dtE [Xcl]
= E [Sclλcl (Xcl)]. By substituting for the closed-loop sto-
ichiometry matrix Scl and propensity function λcl given in
Figure 3, we obtain the following set of differential equa-
tions that describe the evolution of the expectations for
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Stationary Variance Varπ [X2] ≈ r
[
(γ1+γ2+σ3)(γ1γ2+γ2σ3+σ1k1)+k1γ2(γ1+σ4)

(γ1+γ2+σ3)(γ1γ2+γ2σ3+k1σ4)−σ1k1θ

]

Controller h+(z1, x2) h−(x1, x2) σ1 = KI σ3 σ4 = KP1

aI kz1 0 k 0 0

aPI Class 1 (Additive Inhibition) kz1 + α
1+(x2/κ)n

0 k 0 α
r

n(r/κ)n

[1+(r/κ)n]2

aPI Class 1 (Multiplicative Inhibition) kz1
1+(x2/κ)n

0 k
1+(r/κ)n 0 γ1γ2

k1

n(r/κ)n

1+(r/κ)n

aPI Class 1 (Degradation Inhibition) kz1 δxn2
x1

x1+κ1
k δrn κ1(

γ2
k1
r+κ1

)2 nrn δγ2/k1
γ2
k1
r+κ1

Table 1: An approximate analytic formula for the output stationary variance of a gene expression network regulated by the aPI controllers
of Class 1 with various inhibition mechanisms. Recall that the total actuation propensity is defined as h := h+ − h−, and its Jacobian

is defined by ∂h(z1, x1, x2) =:
[
σ1 −σ3 −σ4

]
with σ1 > 0 and σ3, σ4 ≥ 0. Furthermore, recall from Equation (S2) in the SI that

the proportional gain KP1 = σ4 and the integral gain KI = σ1z1+σ2z2
z1+z2

. Since in the limit of large η, z2 ≈ 0 (refer to Section S7 in

the SI), then KI ≈ σ1. Observe that the denominator of the variance expression is positive if the deterministic setting is stable (see
Equation (S18) in the SI). Hence this expression is only valid when the deterministic setting is stable; otherwise, this approximation is
meaningless. For additive inhibition (which is similar to the previous works in [33] and [35] with κ = n = 1), α tunes the proportional gain
separately. In fact, increasing α decreases the stationary variance as demonstrated in Figure 4(e) through both stochastic simulations and
the approximate analytic formula. In contrast, for the case of multiplicative inhibition, tuning κ automatically tunes both the proportional
and integral gains in a beneficial manner to the stationary variance. More precisely, decreasing κ increases the proportional gain KP1 = σ4
and decreases the integral gain KI ≈ σ1, simultaneously. This has the effect of decreasing the variance without risking loss of stability
as demonstrated in Figure 4(e). Finally, for degradation inhibition, increasing δ also increases the proportional gain and thus reduces the
stationary variance as well.

an arbitraty plant.





d

dt
E [X] = E [Sλ(X)] + E [h(z1, z2, x1, xL)]

d

dt
E [Z1] = E [g(µ,XL)]− ηE [Z1Z2]

d

dt
E [Z2] = θE [XL]− ηE [Z1Z2] .

(4)

At stationarity, assuming that the closed-loop network is
ergodic, the time derivatives are set to zero. Particularly,
we have

d

dt
(Eπ [Z1]− Eπ [Z2]) = 0 =⇒ Eπ [g(µ,XL)] = θEπ [XL] .

To achieve RPA at the population level (i.e. expectations),
the stationary expectation Eπ [XL] of the output species
should not depend on the plant parameters. Clearly, this
depends on the function g. In fact, if g is nonlinear in XL,
then there is no guarantee that RPA is achieved because
the nonlinearity couples higher order moments (that may
depend on the plant parameters) with Eπ [XL]. As a re-
sult, RPA is not guaranteed for the aPI controllers of Class
3 in the stochastic setting, although it is guaranteed in the
deterministic setting. Nonetheless if g is affine in XL, then
RPA is guaranteed (once again, assuming ergodicity). In
particular, for the aPI controllers of Class 1 and 2, we have
g(µ,XL) = µ and as a result Eπ [XL] = µ/θ =: r. Clearly,
for these classes of controllers, Eπ [XL] depends only on
the control parameters µ and θ (like the deterministic set-
ting), and thus RPA is ensured as long as the closed-loop
network is ergodic.

Next, we examine the variance of the output species XL.
Unfortunately, a general analysis for an arbitrary plant
cannot be done. As a case study, we consider again the
particular plant given in Figure 4(a) in feedback with the

aPI controller of Class 1. Note that the subsequent anal-
ysis can be generalized to any (affine-linear) plant with
mono-molecular reactions. Even for this particular plant,
one cannot derive an exact expression for Varπ [X2]. This
is a consequence of the moment closure problem that stems
from the inherent nonlinear nature of the antithetic motif
(quadratic propensity: ηz1z2) and the proportional con-
trol (propensity: h(z1, z2, x1, x2)). However, a tailored
moment closure technique was proposed in [33] to give
an approximate expression for Varπ [X2] in the case of
the aPI controller of Class 1 with additive inhibition and
n = κ = 1. This approximate technique exploits the
fact that Eπ [Z1Z2] = µ/η ≈ 0 for large η; and as a re-
sult assumes that Z2 remains close to zero. Furthermore,
a linearized approximation of the function h is also ex-
ploited to circumvent the moment closure problem. Ex-
tending this approximate technique to our more general
controllers allows us to give a general (approximate) ex-
pression for Varπ [X2] that encompasses all three types of
inhibitions with an arbitrary hill coefficient n ≥ 1. The re-
sults are summarized in Table 1, where a general formula
is given for any choice of h. One can easily see from the
general expression in Table 1 that Varπ [X2] is monoton-
ically increasing in the integral gain KI ≈ σ1 and mono-
tonically decreasing in the proportional gain KP1

= σ4.
This conclusion extends the results in [33] to more general
proportional actuations involving different mechanisms of
inhibitions and with cooperativity (n ≥ 1). Figure 4(e)
demonstrates this stationary variance reduction via sim-
ulations and the approximate formula given in Table 1.
Unlike additive inhibition, multiplicative and degradation
inhibitions provide a structural property of decreasing the
stationary variance of the output species X2 without risk-
ing the loss of ergodicity (similar to the deterministic set-
ting).
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Antithetic Proportional-Integral-Derivative feed-
back (aPID) controllers. In this section, we append
a Derivative (D) control action to the aPI (Class 1) con-
troller of Figure 3 to obtain an array of aPID controllers
depicted in Figure 5. The proposed aPID controllers range
from simple second order (involving only two controller
species Z1 and Z2) up to fourth order (involving four con-
troller species Z1 to Z4). Furthermore the various con-
trollers are categorized as two types: N-Type and P-Type.
N-Type (Negative feedback) controllers are usually suit-
able for plants with positive gain (increasing the input
yields an increase in the output), while P-Type (Positive
feedback) controllers are usually suitable for plants with
negative gains. This ensures that the overall control loops
realize negative feedback. Note that one can easily con-
struct hybrid PN-Type controllers, where the individual
P, I and D components have different P/N-Types. This
hybrid design is shown to be very useful for certain plants
(see Figure 7(d) for example).

We start with the N-Type second order design (first
row of Figure 5) whose main advantage is its simplicity.
Intuitively, the antithetic integral motif is cascaded with
an Incoherent FeedForward Loop (IFFL) to yield a PID
architecture whose P, I and D components are insepara-
ble as described in Figure 1(e). More precisely, the out-
put species XL directly inhibits X1 and simultaneously
produces it via the intermediate species Z1. As a result,
Z1 simultaneously plays the role of both an intermediate
species for the IFFL and the AIF control action. It is
shown in Section S1.2.1 in the SI that this simple design
embeds a (low-pass) filtered PID controller. The N-Type
third order design (second row of Figure 5) involves one
additional controller species Z3 to realize an IFFL that is
disjoint from the antithetic motif. This yields an insepara-
ble PD component appended to the separate I controller.
It is shown in Section S1.2.2 in the SI that this design em-
beds a (low-pass) filtered PD + I controller when η is large
enough. In contrast, the N-Type fourth order design (third
row of Figure 5) involves two additional controller species
Z3 and Z4 to realize a completely separable PID control
architecture. It is shown in Sections S1.2.3 and S1.2.4 in
the SI that this design embeds a PI + (low-pass) filtered
D controller when η and η0 are large enough. The key idea
behind mathematically realizing the derivative component
here is fundamentally different from the previous two de-
signs. This controller realizes an “antithetic differentia-
tor”, where the antithetic motif feeds back into itself: Z3

feeds back into Z4 via the rate function g(z3, xL). In fact,
this idea is inspired by a well-known concept in control
theory (see Section S6 in the SI) which basically exploits
an integral controller, in feedback with itself to implement
a low-pass filtered derivative controller. For this fourth
order design, the derivative action can be achieved in two
ways. One way is by mutually producing Z4 and X1 at
a rate g(z3, xL) such that g is monotonically increasing
(resp. decreasing) in z3 (resp. xL). This implementation
is treated separately in Section S1.2.3 of the SI. The other
way is by producing Z4 while degrading X1 at a mutual

rate of g(z3, xL) such that g is monotonically increasing
in both z3 and xL. This implementation is treated sepa-
rately in Section S1.2.4 of the SI. Both designs have the
same underlying PID control structure, but one might be
easier to experimentally implement than the other.

It is straightforward to show that the set-point for the
second order design is given by x̄L = µ

θ−β with the require-
ment that β < θ; whereas the set-point for both higher
order designs are given by x̄L = µ

θ . Furthermore, the ef-
fective PID gains, denoted by (KP ,KI ,KD), and cutoff
frequency ω of the embedded low-pass filter for each of
the proposed aPID controllers can be designed by tun-
ing the various biomolecular parameters: β, η, η0, γ0, µ0

and the parameters of the propensity functions h and g.
These functions, serving as an implementation choice, can
be picked in a similar fashion to the aPI controllers in the
tables of Figure 3 depending on the inhibition mechanism
to be implemented (additive, multiplicative or degrada-
tion). In the subsequent examples, we use degradation
inhibitions, but the other mechanisms can also be used.

Next, we demonstrate various properties of the pro-
posed controller designs in the deterministic setting.
The mappings between the effective PID parame-
ters (KP ,KI ,KD, ω) and the biomolecular parameters
(µ, θ, η, β, γ0, η0, ...) are given in S4 of the SI for each con-
troller. It is fairly straightforward to go back and forth
between the two parameter spaces. For control analysis,
these mappings can compute the various PID parameters
from the biomolecular parameters; whereas, for control de-
sign, these mappings can compute the various biomolec-
ular parameters that achieve some desired PID gains and
cutoff frequency. As a result, one can use existing meth-
ods in the literature (eg. [48]) to carry out the controller
tuning in the PID parameter space, and then map them
to the actual biomolecular parameter space. Neverthe-
less, it is of critical importance to note that different con-
trollers yield different coverage over the PID parameter
space. For instance, for the fourth order design, there are
enough biomolecular degrees of freedom to design any de-
sired positive (KP ,KI ,KD, ω) ∈ R4

+. The lower the order
of the controller, the less the biomolecular degrees of free-
dom, and hence the more constrained the coverage in the
PID parameter space. For instance, for the third order
design, the achievable PID parameters are constrained to
satisfy KP ≤ KDω. For the second order design, the con-
straint becomes even stricter. The details are all rigorously
reported in Section S4 of the SI.

We first show the limitation of aPI controllers, and
then demonstrate the flexibility that comes with an added
derivative component. We also show that the higher order
controllers exhibit more flexibility in shaping the transient
response. Consider the controlled gene expression network
depicted in Figure 6(a) where the ordinary differential
equations of the various controllers are shown to explic-
itly specify the adopted propensity functions h and g. In
this example, we consider both the P and D components
acting on the input species X1 as negative actuation via
degradation reactions. We start by highlighting the fun-
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Figure 5: Antithetic Proportional-Integral-Derivative (aPID) feedback controllers. N-Type (Negative feedback) controllers are
usually suitable for plants with positive gain (increasing the input yields an increase in the output), while P-Type (Positive feedback)
controllers are usually suitable for plants with negative gains. The order of the controllers indicate the number of controller species Zi .
The second order aPID controller has the simplest design where no additional species are added to the aPI design, and only one reaction is
added to produce Z1 catalytically from XL at a rate β < θ. The third order aPID controller adds a single species to the aPI design. This
intermediate species Z3 is produced by the output XL and actuates the input species X1. These actions (indicated by the diamonds) are
allowed to be either activations or both inhibitions. Finally, the fourth order aPID controller adds two species to the aPI design. These
two species form an antithetic differentiator where Z3 is constitutively produced at a rate µ0 and participates with Z4 in a sequestration
reaction with a rate η0. For the N-Type design, the derivative action enters the plant either by mutually producing Z4 and X1 at a rate
g(z3, xL) (see Figure S4) such that g is monotonically increasing (resp. decreasing) in z3 (resp. xL), or by producing Z4 while degrading
X1 at a mutual rate of g(z3, xL) (see Figure S5) such that g is monotonically increasing in both z3 and xL. Intuitively, the second and
third order aPID controllers mathematically realize a derivative action using an incoherent feedforward loop from XL to X1 via Z1 and
Z3, respectively; whereas the fourth order aPID controller realizes a derivative action by placing an additional antithetic integral motif in
feedback with the plant and itself (Z3 feeds back into Z4).
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Figure 6: aPID control of a gene expres-
sion network . (a) Closed-loop dynam-
ics. A gene expression network is controlled
by the various N-Type aPID controllers of
Figure 5. The deterministic dynamics and
the overall control action u are shown here
for each controller to explicitly specify the
adopted propensity functions h and g in this
example. (b) Fundamental limitation of
aPI controllers. The left and middle plots
demonstrate the same root locus of the lin-
earized dynamics as KP is increased. The
left plot depicts the complex plane, while
the middle plot explicitly shows the complex
plane together with the values of the pro-
portional gain KP which is shown to be ap-
proximately equal to δ. These plots verify
that two eigenvalues are confined within a
small region close to the imaginary axis when
γ1 and γ2 are small, and thus imposing a
limitation on the achievable performance as
demonstrated in the simulations shown in the
right plot. (c) Design flexibility offered
by derivative control actions. Exploit-
ing all the components of the full aPID con-
trollers offer more flexibility in achieving su-
perior performance compared to the aPI con-
trollers. This panel shows the steps of a pole-
placement, control design problem where the
four dominant poles are placed on the real
axis of the left-half plane to ensure a stable
and non-oscillating response with a minimal
overshoot. The second order aPID exhibits
a restriction on how far to the left the poles
can be placed; whereas the higher order con-
trollers can place the poles arbitrarily as far
to the left as desired and thus achieving a
response that is as fast as desired without
overshoots nor oscillations. The design prob-
lem starts by picking the poles, then comput-
ing the PID gains(shown here) and cutoff fre-
quency (not shown here), and finally comput-
ing the actual biomolecular parameters that
allows us to obtain the nonlinear simulations
to the right.

damental limitation of aPID controllers alone (without a
D) in Figure 6(b). Using simple root locus arguments (see
Section S5.1), it is shown that two complex eigenvalues
– of the linearized dynamics around the fixed point – ap-
proach a vertical asymptote at −γ1+γ22 as KP is increased,
while one real eigenvalue approaches the origin (due to in-
tegral control). This is numerically demonstrated in the
two root-locus plots of Figure 6(a), where KP ≈ δ (for a
sufficiently small κ1). Clearly, the asymptotic limit is in-
dependent of all other parameters, including the integral
gain KI . This analysis highlights a fundamental limitation
of the aPI controller, because no matter how we tune KP

and KI , two of the eigenvalues are constrained to remain
close to the imaginary axis when γ1 and γ2 are small. In
the time domain, this is interpreted as being restricted to
either a slowly rising response or a faster rising response
but with slowly damped oscillations as illustrated in the
simulation examples of Figure 6(b). This limitation can be
mitigated by appending a derivative control action via the
various aPID controllers. To demonstrate this, we con-
sider a design problem where the end goal is to achieve a

fast response without oscillations and with minimal over-
shoot. This can be achieved by placing the eigenvalues
far to the left on the real axis. Hence the design problem
boils down to the following objective: place the four most
dominant eigenvalues (or poles) at s = −a where a > 0
and make a as large as possible. The design steps start by
first (1) deciding where to place the poles s = −a for some
desired a, then (2) computing the PID parameters – using
equations (S46) in the SI – that place the poles as desired,
and finally (3) mapping the PID parameters to the actual
biomolecular parameters using the formulas in Section S4.
This is pictorially demonstrated in Figure 6(c) for each
aPID controller. However, it is shown in Section S5.2 of
the SI that the second order aPID imposes a lower bound
on the achievable poles given by −(2+

√
2)γ1+γ22 as demon-

strated in Figure 6(c). As a result, with a second order
aPID, the performance can be made better than the aPI
controller; however, the performance is also limited and
cannot be made faster than a threshold – dictated by γ1
and γ2 – without causing overshoots and/or oscillations.
In contrast, it is also shown in Section S5.2 of the SI that
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ż1 = µ+ βx2 − ηz1z2
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ż2 = θx2 − ηz1z2
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ż2 = θx2 − ηz1z2
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Figure 7: aPID control of an unstable and more complex plant. (a) Plant description. The plant considered here involves L = 6
species and embeds a negative feedback from X6 to X2 via an active degradation reaction. The underlying deterministic dynamics of the
plant and the second order aPID controller are shown in this panel. It is demonstrated that the open loop is unstable (orange response),
and integral control alone cannot stabilize the dynamics since two eigenvalues carry on a positive real part for any k ≥ 0. (b), (c) and
(d) Performance of the various aPID controllers. The intensity plots show the Performance Index over a range of biomolecular
parameter values. These plots are overlaid with contours where the PID gains KP ,KI or KD are constant. For the third and fourth order
aPID in (c) and (d), KI ≈ k and thus can be tuned separately with k which is held constant throughout this figure. For the fourth order
aPID in (d), the KP - and KD-contours are orthogonal to the k0- and α2-axes, respectively, and hence can also be tuned separately. For
the third order aPID in (c), the KD-contours are orthogonal to the δ-axis and hence KP can be tuned separately with δ0; whereas, the
inseparability of the PD components forces the KP -contours to be oblique and thus δ tunes both KP and KD simultaneously. Finally, for
the second order aPID in (b), all three contours are not orthogonal to the axes and, as a result, all three PID gains have to be mutually
tuned by the biomolecular parameters. This is due to the inseparability of all PID components. Note that each set of contours are displayed
on a separate intensity plot here for clarity. Observe that the optimal performance for each controller is located in the dark blue regions
where the proportional gains KP are negative. Three different examples, red, green and purple (along with the unstable standalone aI
control in blue), are picked to demonstrate the achievable high performances depicted in the response plots to the right. For the second
and third order aPID, negative KP can be achieved by properly tuning the biomolecular parameters without having to switch the topology
from N-Type to P-Type. However, for the (separable) fourth order aPID controller, a hybrid design with N-Type ID and P-Type P can
also achieve a negative KP which is critical for controlling this plant.
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the third and fourth order aPID can make a as big as de-
sired without any theoretical upper bound. This means
that the added complexity of the higher order controllers
are capable of shaping the response of the gene expression
network freely and as fast as desired with no overshoots
nor oscillations. This is also demonstrated in the simula-
tions depicted in Figure 6(c).

Next, we consider a more complex plant to be con-
trolled. The plant, comprised of L = 6 species, is depicted
in Figure 7(a) where Xi degrades at a rate γi and catalyti-
cally produces Xi+1 at a rate ki. Furthermore, the output
species X6 feeds back into X2 by catalytically degrading it
at a rate γF . This plant is adopted from [35]; however, to
challenge our controllers more, the feedback degradation
rate γF is chosen to be larger to yield a plant that is unsta-
ble when operating in open loop as shown in Figure 7(a).
In fact, the root locus in the integral gain KI ≈ k (for large
η) demonstrates that this plant cannot be stabilized with a
standalone aI controller, that is no matter how we tune k,
the response will remain unstable. It is shown in [35] that,
for this plant, the P control is not useful. This is the case
because the proportional gain KP was restricted to have
a positive value. One of the nice features of our proposed
second and third order aPID controllers is their ability
to achieve negative proportional gains KP (see (S27) and
(S32) in the SI) without having to rewire, that is without
switching topologically from N-Type to P-Type. This is a
consequence of the inseparability of the P component from
other components (I and D for the second order, and D for
the third order). In Figures 7(b) and (c) we show that, for
this plant, tuning KP to be negative is critical to achieve
a high performance where oscillations and overshoots are
almost completely removed while maintaining a fast re-
sponse. This is demonstrated using the intensity plots of
a performance index that quantifies the overshoot, settling
time and rise time of the output response over a range of
the relevant biomolecular controller parameters. With the
completely separable fourth order aPID, the gains cannot
be tuned to be negative; however, one can always switch
between N-Type and P-Type topologies or even resort to
hybrid designs where different PID components are of dif-
ferent P/N Types. For instance, Figure 7(d) shows that
by using a fourth order hybrid aPID controller, a high
performance is achieved.

To demonstrate the effectiveness of aPID control of
high dimensional plants, we consider the control of choles-
terol levels in the plasma depicted in Figure 8. High lev-
els of cholesterol, particularly Low-Density Lipoprotein-
Cholesterol (LDL-C), serve as a major trigger for cardio-
vascular disease. To circumvent that, the body possesses
natural pathways to regulate cholesterol homeostasis [50].
However, these regulatory mechanisms have the tendency
to fail with age leading to elevated levels of plasma choles-
terol due to metabolic disorders and/or poor nutrition
[51]. A whole body mathematical model of cholesterol
metabolism is adopted from [49] and is briefly described
in Figure 8 (see [49] for details). The mathematical model
of the cholesterol network is comprised of 34 state vari-
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Figure 8: aPID Control of a whole-body model of Choles-
terol metabolism. A whole-body model that describes the dy-
namics of cholesterol metabolism is adopted from [49]. The model
tracks the flow of cholesterol, in its different forms, around the body.
In summary, the Intestinal Cholesterol (IC) comes from the daily di-
etary intake or via biliary secretion from the liver (Hepatic Tissue).
It is also locally synthesized in the intestine as well. The IC is either
excreted from the body or absorbed and transported to the liver
where it is then exported into the plasma via the Very-Low-Density
Lipoproteins (VLDL). Excess cholesterol in the peripheral tissue is
transferred to the liver via the High-Density Lipoproteins (HDL).
Two exogenous disturbances are considered here: a 304 mg/day in-
crease of dietary intake at t1 = 0 and 25% increase in absorption
at t2 = 250 days. The first disturbance reflects a change in the
daily diet, while the second reflects an increase of intestinal absorp-
tion efficiency. Both of these disturbances give rise to an increase
in cholesterol levels in the plasma when no feedback control is ap-
plied as demonstrated in the black curve of right plot. To implement
the simplest (second order) aPID control in silico, the IC is consid-
ered here to be the actuated input species, such that Z1 produces IC,
while the output species LDL–C degrades IC. The response of both
the input and regulated output are shown here to demonstrate that
an I alone (with positive actuation) is incapable of achieving RPA;
whereas adding a PD (with negative actuation), not only achieves
RPA, but also reduces oscillations.

ables (species) and 43 parameters whose values are taken
from https://www.ebi.ac.uk/biomodels/ where the model
is coded in SBML format (MODEL 1206010000). Two
different disturbances are applied: (1) an increase in daily
dietary intake and (2) an increase in intestinal absorp-
tion. A second order aPID controller is connected in feed-
back with the network to regulate the LDL-C level and
keep it at 100 mg/dL despite the disturbances. A positive
actuation is realized by the production of the Intestinal
Cholesterol (IC) via Z1 (blue arrow); whereas, a negative
actuation is realized by the degradation of the IC via LDL-
C (red T-shaped line). With positive integral actuation
alone, the controller cannot achieve RPA because both
disturbances increase the levels of LDL-C. Hence, without
negative actuation the controller cannot restore the set-
point. However, the aPID controller appends a negative
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Figure 9: Stochastic performance of the aPID feedback controllers. In (a), the plant is the gene expression network; whereas
in (b), the plant is the 6-Species network from Figure 7(a) but with stable open-loop dynamics (γF is chosen to be smaller). For both
networks, the biomolecular parameters are chosen such that the integral gain KI is constant and the proportional gain KP = 0, while
the derivative gain KD is increased to track the effect of the derivative control action on the stationary variance of the output Varπ [X2].
The first column shows the selected biomolecular parameters that achieve the desired values of KD, while the second column shows
the stationary variance as a function of KD. The third and fourth columns show the stochastic (single-cell) trajectories and stationary
distribution of the output for two particular values of KD (in green and purple). The fifth column shows the evolution of the variance in
time for the four selected values of KD. These simulations demonstrate that the derivative control action increases the stationary variance
of the output for second order aPID design, while it is capable of reducing the variance considerably for the higher order aPID designs. In
fact, for the gene expression plant, the variance can be reduced to a level lower than the mean value = 5.
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actuation and is capable of achieving RPA of LDL-C levels
and also of suppressing the overshoots and oscillations for
both IC and LDL-C.

Effect of derivative control on the stationary vari-
ance. In this section, we examine the effect of the deriva-
tive component in the various aPID controllers on the cell-
to-cell variability (e.g. stationary variance). We consider
two plants: the gene expression network of Figure 6(a) and
the six-species network of Figure 7(a). We fix the integral
gain KI to be a constant and set the proportional gain
KP to zero while we sweep the derivative gain KD. The
biomolecular parameters that achieve these gains can be
easily calculated using the mappings in Section S4 in the
SI. The simulation results are depicted in Figure 9. Un-
like the higher order aPID controllers, the second order
aPID exhibits a hard upper limit on the achievable values
of KD (see S27 in the SI). Figure 9 demonstrates that, for
both plants, the third and fourth order aPID controllers
are capable of reducing the stationary variance; whereas,
the second order aPID increases it.

Alternative differentiators. In Figure 5, the anti-
thetic integral motif is exploited to yield an antithetic
differentiator; however, other integral motifs such as zero-
order [53], [52] and auto-catalytic [25] integrators can also
be similarly exploited as depicted in Figure S8 of the SI.
These differentiators can be carefully appended to the aPI
controllers of Class 1 (see Figure 3) to obtain an alterna-
tive set of aPID controllers depicted in Figure 10. Observe
that these differentiators act on the concentration xL of
the output species to approximate its derivative as a rate
uD := g(z3, xL). This is one of the differences between
our differentiators and those proposed in [43] where the
computed derivative is encoded as a concentration of an-
other species. Having the computed derivative encoded
directly as a rate rather than a concentration is partic-
ularly convenient for controllers with a fewer number of
species. Another technical difference is that our differen-
tiators realize a derivative with a first order low-pass filter;
whereas, the differentiators in [43] realize derivatives with
a second order low-pass filter due to the additional species
introduced. We close this section by noting that it is also
possible to replace the antithetic integral motif by other
integrators to design yet another collection of PID con-
trollers (see Figure S9 of the SI).

Discussion

This paper proposes a library of PID controllers that can
be realized via biochemical reaction networks. The pro-
posed PID designs are introduced as a hierarchy of con-
trollers ranging from simple to more complex designs.
This hierarchical approach that we adopt offers the de-
signer a rich library of controllers that gives rise to a nat-
ural compromise between simplicity and achievable per-
formance. At the lower end of the hierarchy, we introduce
simple PID controllers that are mathematically realized

with a small number of biomolecular species and reactions
making them easier to implement biologically. As we move
up in the hierarchy, more biomolecular species and/or re-
actions are introduced to push the limit on the achievable
performance. More precisely, higher order PID controllers
cover a wider range of PID gains that can be tuned to fur-
ther enhance performance. Of course, this comes at the
price of more complex designs making the controllers more
difficult to implement biologically. The details of the bio-
logical implementations with specific parts are not within
the scope of this paper but will be presented elsewhere.

In this work, we start by introducing a library of PI con-
trollers based on the antithetic integral motif [26] and an
appended feedback control action where the input species
is directly actuated by the output species. This is simi-
lar in spirit to previous works in [33] and [35] where the
proportional control action enters the dynamics additively
via a separate repressive production reaction. While this
mechanism succeeds in enhancing the overall performance,
we introduce other biologically-relevant mechanisms, for
the P component, that are capable of achieving even
higher performance without risking instability and further
reducing the stationary variance (see Figure 4). However,
it is shown rigorously and through simulations (see Fig-
ure 6) that a PI controller alone is limited, while adding
a D component adds more flexibility. Interestingly, it is
shown that the performance of a gene expression network
can be arbitrarily enhanced with full PID controllers: the
PID can be tuned to achieve an arbitrarily fast response
without triggering any oscillations or overshoots. This ex-
ample highlights the power of full PID control. Another
nice feature of PID control is the availability of various sys-
tematic tuning methods in the literature (see [48] for ex-
ample). Well-known design tools in control theory (such as
the pole placement performed in Figure 6) can be exploited
to perform the tuning in the PID parameter space instead
of the biomolecular parameter space. Then the obtained
PID parameters (PID gains and cutoff frequency) can be
mapped by the formulas we derived (see Section S4) to the
actual biomolecular parameters. This novel approach con-
siderably facilitates the biomolecular tuning process. It is
worth mentioning that the biomolecular tuning is the eas-
iest for the fourth order aPID due to the separability of its
components which allows tuning each PID gain separately
with a different biomolecular parameter. In contrast, the
lower order aPID controllers mix the various P, I, and D
components and render them inseparable (see Figure 1(e))
which results in each biomolecular parameter tuning mul-
tiple gains simultaneously. This is the price one has to pay
for obtaining simpler designs. However, this can also be
leveraged in some cases. For example, a single biomolec-
ular parameter can tune both the integral and propor-
tional gains simultaneously to enhance the dynamics and
variance without risking instability (see the multiplicative
aPI in Figure 4). This inseparability also offers a nice ad-
vantage where the proportional gains can be tuned to be
negative without having to switch topologies from N-Type
to P-Type. For certain plants, achieving negative gains is
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Figure 10: PID controllers using integral-based differentiators. Three differentiators are constructed based on three different
integrators. The differentiators appended to the aPI controllers of Class 1 (see Figure 3) give rise to another collection of aPID controllers
of both N- and P-Types. The Inflow and Outflow aPID controllers are based on integrators realized via zeroth-order degradation reactions
[52], [53]. It is shown in Section S6 in the SI that if these degradation reactions are tuned to operate in a saturating regime (κ0 << z3),
then a low-pass filtered derivative action is mathematically realized. The difference between the outflow and inflow aPID controllers is that
the feedback action uD := g(z3, xL) which approximates the derivative of xL enters through a degradation and production reaction of the
additional controller species Z3, respectively. In contrast, the auto-catalytic aPID controller is based on an auto-catalytic integrator [25]
where the additional control species Z3 produces itself. It is shown that for this component to properly function as a differentiator, the
initial concentration of Z3 has to be non-zero and g has to be designed such that g(0, xL) = 0 (see Section S6 in the SI).
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critical to achieve a high performance (see Figure 7).
We would like to point out that the proposed control

structures are all designed based on linear perturbation
analysis (see Section S1 in the SI). This is motivated by the
rich set of existing tools to design and analyze linear con-
trol systems; whereas nonlinear control design and analysis
is challenging and is often treated on a case-by-case basis.
In the linearization, the PID structures are verified and
hence the dynamics behave exactly like what is expected
from classical PID control. However, full nonlinear simu-
lations are always carried out to back up the theoretical
analyses and implications. Of course, the dynamical be-
havior of the nonlinear PID controllers may deviate from
their linear counterparts when the dynamics are (initially)
far from the fixed point. This is a limitation that we be-
lieve can serve as a good future research direction where
small signal analysis should be extended to large signal
analysis as well. Furthermore, in our work we lay down
a general mathematical framework for biomolecular feed-
back control systems which can be used to pave the way
for other possible controllers in the future. We believe that
research along these directions helps building high perfor-
mance controllers that are capable of reliably manipulat-
ing genetic circuits for various applications in synthetic
biology and bio-medicine in the same way that PID con-
trollers revolutionized other engineering disciplines such
as navigation, telephony, aerospace, etc.
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