
Kalikar et al. Page 12 of 14

Supplementary Data

Table S1 Architectural specifications of three processors: Skylake, Cascade Lake, and Ice Lake which were used for the experiments.

Intel® Xeon® Intel® Xeon® Intel® Xeon®

Platinum Platinum Platinum
8180 8280 8360Y

Skylake Cascade Lake Ice Lake
Sockets ⇥ Cores ⇥ Threads 1⇥ 28⇥ 2 1⇥ 28⇥ 2 1⇥ 36⇥ 2
AVX register width (bits) 512, 256, 128 512, 256, 128 512, 256, 128
Vector Processing Units (VPU) 2/Core 2/Core 2/Core
Base Clock Frequency (GHz) 2.5 2.7 2.4
L1D/L2 Cache (KB) 32/1024 32/1024 48/1280
L3 Cache (MB) / Socket 38.5 38.5 54
DRAM (GB) / Socket 96 96 132
Bandwidth (GB/s) / Socket 112 128 204

Compiler Version ICPC v. 19.1.3.304 ICPC v. 19.1.3.304 ICPC v. 19.1.3.304

Table S2 Memory-consumption (GB) of minimap2 and mm2-fast evaluated with various datasets using 28-core multi-threaded
execution.

Query dataset minimap2 mm2-fast
ONT: HG002 33.5 34.1
PacBio CLR: HG002 23.2 23.5
PacBio HiFi: HG002 28.1 30.3
Assembly: HG002 (hap2) 28.9 29.3



Kalikar et al. Page 13 of 14

Figure S1 Speedups achieved using multi-threaded execution of mm2-fast using single socket with 28 cores. X-axis shows query
datasets used, and y-axis shows the ratio of single threaded execution time and 28-core execution time.

Figure S2 Performance comparison of mm2-fast against minimap2 as well as a version of minimap2 in which its max skip chaining
heuristic is disabled by setting max skip parameter to 1. X-axis shows various datasets used, and y-axis is the normalized time with
respect to the mapping time taken by minimap2. Minimap2 slows down by up to 1.7⇥ (ONT and HiFi datasets) when its max skip
heuristic is turned o↵.



Kalikar et al. Page 14 of 14

Supplementary Note1: Correctness check
We ensure that minimap2 (v2.18) and mm2-fast produce identical output. Minimap2 uses max skip heuris-
tic to speed up the performance at the cost of the chaining accuracy. The default minimap2 configuration
uses max skip=25. For better accuracy, max skip can be set to a higher value using the command-line flag
--max-chain-skip. A larger value of max skip heuristic provides better mapping accuracy. We do not use
the max skip heuristic in our vectorized chaining implementation. Therefore, the output of mm2-fast should
match the most accurate mapping output of minimap2, i.e., with max skip heuristic disabled. For verifying the
correctness of mm2-fast, minimap2 should run with --max-chain-skip=1. Following are the steps to verify the
correctness of mm2-fast. The example commands below use sample filenames ref-seq and read-seq for a reference
sequence and a read sequence files respectively, and map-ont as a preset parameter.
Clone minimap2 (v2.18):
git clone https://github.com/lh3/minimap2.git -b v2.18

Compile and run:
cd minimap2 && make
./minimap2 -ax map-ont ref-seq read-seq --max-chain-skip=1000000 > minimap2 output

Clone mm2-fast:
git clone --recursive https://github.com/lh3/minimap2.git -b fast-contrib mm2-fast-contrib

Compile:
cd mm2-fast-contrib && make multi
The above command should generate three executable files: 1. mm2-fast 2. mm2-fast-lhash 3. mm2-fast-no-opt.

By default, mm2-fast applies two optimizations, AVX512 based chaining and AVX2/AVX512 based alignment.
On top of these two optimizations, mm2-fast-lhash uses learned hash tables. The optimizations in mm2-fast
require architectural support of AVX2/AVX512. In the absence of AVX2/AVX512, mm2-fast-no-opt can be
used to run with all optimizations turned o↵.

0.1 Correctness check with mm2-fast
Run mm2-fast
./mm2-fast -ax map-ont ref-seq read-seq > mm2-fast output

Match output files
diff minimap2 output mm2-fast output > diff result
The file diff result should show a clean-di↵ with the di↵erence of 2 lines, i.e., the lines containing the

command-line parameters for minimap2 and mm2-fast.

Enabling learned hash tables
To make the correctness verification seamless, by default, we have disabled learned hash tables as it requires
an additional installation. Learned hash-table uses an external training library that runs on Rust. Following are
the steps to enable learned hash table optimization in mm2-fast:

• Install Rust and add installation path to .bashrc file. This is fairly quick and can be done by a single
command given at https://rustup.rs/.

• Create learned hash table index for a reference sequence and a preset parameter (say map-ont).
./build rmi.sh ref-seq map-ont
Index building is one-time task for a reference sequence and a preset parameter, and can be reused for all
subsequent executions. Note that, for a given reference sequence, the hash index changes with di↵erence
preset parameters.

• Once the index is built, run mm2-fast-lhash.
./mm2-fast-lhash -ax map-ont ref-seq read-seq > mm2-fast-lhash output
The output file mm2-fast-lhash output should also be identical to minimap2 output file produced above.

https://rustup.rs/

	Abstract
	Correctness check with mm2-fast


