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Summary6

Temperature is a main driver of plant growth and development. New phenotyping tools enable quantify-7

ing the temperature response of hundreds of genotypes. Yet, particularly for field-derived data, the process of8

temperature response modelling bears potential flaws and pitfalls with regard to the interpretation of derived pa-9

rameters. In this study, climate data from three growing seasons with differing temperature distributions served10

as starting point for a wheat stem elongation growth simulation, based on a four-parametric Wang-Engel temper-11

ature response function. To extract dose-responses from the simulated data, a novel approach to use temperature12

courses with high temporal resolution was developed. Linear and asymptotic parametric modelling approaches13

to predict the cardinal temperatures were investigated. An asymptotic model extracted the base and optimum14

temperature of growth and the maximum growth rate with high precision, whereas simpler, linear models failed15

to do so. However, when including seasonally changing cardinal temperatures, the prediction accuracy of the16

asymptotic model was strongly reduced. We conclude that using an asymptotic model based on temperature17

courses with high temporal resolution is suitable to extract meaningful parameters from field-based data. Conse-18

quently, applying the presented modelling approach to high-throughput phenotyping data of breeding nurseries19

may help selecting for climate suitability.20

Keywords: growth, high-throughput field phenotyping, stem elongation, wheat (Triticum aestivum).21

1. Introduction22

Already in 1996, van Haren noted that the knowledge of crop responses to weather extremes is incomplete and23

not explicitly included in crop models. Today, high-throughout field phenotyping (HTFP) potentially enables to24

quantify crop growth—and consequently crop response—of hundreds of genotypes under field conditions (Araus25

et al., 2018). Understanding crop responses to environmental factors is essential to secure global food demands:26

Improvement in wheat yields stagnated on a global scale in the past three decades (Brisson et al., 2010; Laidig27
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et al., 2017). It was suspected that for Europe, the changing climate increasingly impacts wheat yields (Brisson28

et al., 2010). Mitigating these changes in plant breeding to improve yield requires understanding crop responses29

to environmental factors (Ramirez-Villegas et al., 2015). A main driver of plant growth and development is30

temperature (Porter and Gawith, 1999).31

1.1. Approaches to quantify temperature responses under controlled conditions32

The effects of changes in temperature on crops are well studied in controlled environments, but the translation33

of insights to the field is not straightforward. The temperature response of developmental processes is usually34

studied by exposing plants to different temperature regimes—often during rather short time period of their life35

cycle. Two different approaches are used: one can either (1) expose different plants of the same genotype36

to different temperatures (Slafer and Rawson, 1995; Hund et al., 2012; Reimer et al., 2013), or (2) apply short37

phases of different temperatures to the same plant. Examples of the latter approach are the studies on leaf growth38

performed in the indoor platform ‘Phenoarch’, summarized by Parent and Tardieu (2012). This approach requires39

that the temperature response is measured at a constant growth phase, during which growth is linear when the40

temperature remains constant. Hence, response-pattern can be observed non-destructively on the same plant,41

offering a high throughput. In such experiments, the conditions of all but one covariate may be kept constant.42

Furthermore, the reversibility of the process can be tested by repeatedly applying the same conditions during the43

course of the experiment.44

In general, developmental processes follow some sort of peak function in response to increasing temperatures,45

i.e., there is a base temperature Tmin at which growth starts, an optimal temperature Topt at which growth reaches46

its maximum rate rmax, and a maximum temperature Topt at which growth stops (Porter and Gawith, 1999).47

Depending on the research field, different models are used to approximate such functions—for an overview see,48

e.g., Wang et al. (2017); Parent et al. (2019) for plants, and Rebaudo et al. (2018); Rebaudo and Rabhi (2018) for49

ectoterms (i.e., animals whose regulation of body temperature depends on external sources). In their work, Wang50

et al. (2017) distinguish four types of temperature response functions with increasing complexity. Clearly, type51

4 functions (linear or curvilinear functions with three cardinal temperatures) are most appropriate to describe52

temperature responses. Among the most widely used type 4 functions for plants are the Wang-Engel cardinal53

temperature function (Wang et al., 2017) and a modified version of the reaction rates equation from Johnson54

et al. (1942) applied to different growth processes in a variety of major crops by Parent and Tardieu (2012). We55

will refer to these different response functions in detail further down.56

1.2. Cardinal temperatures of wheat57

For wheat, meta-analyses summarizing cardinal temperatures of different developmental processes are to58

some extent controversial. Porter and Gawith (1999) summarized 65 studies with regard to the minimum (Tmin),59

optimum (Topt) and maximum (Tmax) temperature. Mean cardinal temperatures for shoot growth were 3.0 °C60

(Tmin), 20.3 °C (Topt) and > 20.9 °C (Tmax). Notably, Topt and Tmax were very close together in many studies.61
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In contrast to the comparably low Topt summarized by Porter and Gawith (1999), Parent and Tardieu (2012)62

reported a significantly higher Topt of 27.7 °C when summarizing 8 studies and own data. We speculate that the63

discrepancies between the two studies are caused by the fact that the former is based mainly on studies using64

long-term exposure of individual plants, and the latter on studies that applied short-term changes in temperatures65

on a growing organ. In the present study we will use the more conservative, i.e., lower, temperature optimum66

reported by Porter and Gawith (1999).67

There is evidence that cardinal temperatures are not constant during the lifetime of a crop: Slafer and Rawson68

(1995) examined Tmin and Topt for leaf appearance rates of vernalized winter wheat plants within three phases, i)69

after vernalization up to the terminal spikelet, ii) from the terminal spikelet up to heading, and iii) from heading70

to anthesis. The authors found that, averaged across cultivars, Tmin was -1.9 °C, 1.2 °C and 8.1 °C, while Topt71

was < 22 °C, 25 °C and > 25 °C for the three different phases, respectively. In addition, the cultivars differed72

substantially for the two parameters. Consequently, one may assume that particularly the base temperature73

may change cultivar-specific throughout the season. Nevertheless, the estimates from Slafer and Rawson (1995)74

of cardinal temperatures and their changes were derived from a controlled environment study. The benefits75

of controlled environment phenotyping lies in the ability to test a wide range of temperature regimes while76

keeping other influential factors, such as vapor pressure deficit and light, constant. However, plants usually do77

not experience such conditions in the field, as discussed by Slafer and Rawson (1995).78

1.3. Approaches to quantify temperature responses with high-throughput in the field79

Under field conditions, the temperature regimes are distinctly different from the controlled-environment stud-80

ies considered so far. The environmental covariates in the field follow an annual and diurnal pattern to which81

plants adjust their life cycle. HTFP offers the possibility to assess crop growth under such more realistic con-82

ditions with high temporal and spatial resolution (Rebetzke et al., 2019). Hence, one can use the temperature83

course during the season to quantify the genotype-specific temperature responses. Still, such studies are sparse.84

Grieder et al. (2015) extracted the base temperature and response to increasing temperatures at early growth85

stages before terminal spikelet formation. The authors were able to extract heritable slopes and intercepts of86

linear responses. Kronenberg et al. (2020a) were able to extract heritable response traits for the stem elongation87

phase based on data from three seasons. Again, the authors used linear regressions of growth versus temperature88

as model. Kronenberg et al. (2020a) argued that the recorded average temperatures in the measuring intervals89

were well below the optimum temperature of 27.7 °C reported by Parent and Tardieu (2012), which would justify90

approximating a curvilinear with a linear function. However, the optimum temperature of 20.3 °C summarized91

by Porter and Gawith (1999) is distinctly lower. Following those results, it is likely that growth reached its op-92

timum during several hours of the day during their measurement period. Therefore, the extracted temperature93

response (slope) may be greatly affected by the optimum temperature and maximum growth rate at this temper-94

ature. Thus, modelling plant response to temperature based on HTFP-derived data bears several challenges, e.g.,95
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the comparably sparse measuring frequency, the unpredictable range of temperatures, the changes of cardinal96

temperatures during the measuring period, and confounding effects between earliness and seasonal temperature97

development.98

1.4. Research aims99

HTFP data are characterized by irregular and long trait measurement intervals but regular and short covariate100

measurement intervals. Our main research question was how to parameterize genotype-specific temperature101

response pattern from such HTFP data. Using the stem elongation phase of winter wheat as an example, we aimed102

to evaluate a new modelling approach with regard to its suitability. Therefore, we simulated the temperature-103

response in the stem elongation phase using a Wang-Engel response function. The chosen parameters were104

based on existing literature on cardinal temperatures in winter wheat (Porter and Gawith, 1999; Parent and105

Tardieu, 2012) and enhanced with realistic temperature recordings of the stem elongation phase at the FIP site106

(Kronenberg et al., 2020a). To evaluate the strengths and limitations of our approach, we added changing107

cardinal temperatures, shifts in the start and end of the elongation phase, measurement noise, and spatial field108

inhomogeneities to our simulation.109

2. Background110

2.1. Parametric versus semi-parametric approaches111

Semi-parametric approaches (e.g., using P-splines) are often favored to extract traits related to growth pro-112

cesses from HTFP time series (van Eeuwijk et al., 2019), as they avoid the daunting task of modeling explicitly113

the—potentially unknown—influence of time-dependent covariate courses. In a previous research, we have114

shown that semi-parametric approaches are suitable to extract timing of key stages and quantities at defined115

time points or periods from simulated HTFP data. Those data were generated using a dose-response curve that116

was unknown to the model being fitted, and corresponding covariate dependencies masked by a “smoothing”117

part in the model (Roth et al., 2021).118

In contrast, to extract temperature responses, one cannot avoid modeling a dose-response curve explicitly, as119

one is interested in its parameters. Consequently, we hereafter propose a parametric approach. Although our120

focus is on HTFP data, the approach is also directly applicable to indoor platform data, but additionally considers121

HTFP specific characteristics.122

In comparison to greenhouse or climate chamber data, HTFP data have two major drawbacks: (i) Field-based123

measurements are notoriously noisy due to environmental and soil inhomogeneities and measurement errors;124

(ii) the suitability of measured trait time series and covariate courses to answer a research question depends on125

the good luck of the scientist to catch a meaningful season. Research in agriculture has already addressed some126

of these limitations with the development of highly specialized experimental designs and matching statistical127

analysis. We could already show that following these principles is of advantage for HTFP as well (Roth et al.,128
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2021). For brevity, we therefore focus on the extraction of response traits from time series but refrain from further129

processing to adjusted genotype means. To allow determining and comparing the performance of non-linear and130

linear models, we use a simulation that is parametrized based on real field data.131

2.2. Temperature response functions132

The linear temperature response model used in Grieder et al. (2015) and Kronenberg et al. (2020a) is defined133

as134

rlinear(T ) = a · (T − Tmin) , (1)

where T is the temperature, a is the slope of the response, and Tmin the base temperature. Note that such a model135

causes negative growth rates r for T < Tmin and does not include an optimum temperature Topt. Therefore, it136

is likely that the extracted temperature response (slope) is affected by the optimum temperature and maximum137

growth rate at this temperature. Additionally, using such a Type 1 response will come to its limitation when data138

ranges span a whole growing season where temperatures also expand to supra-optimal ranges (Parent et al.,139

2019). In the crop model community, models describing the response to temperature vary widely, but most of140

them consider an optimum temperature beyond which the growth rate levels off (Bonhomme, 2000; Parent et al.,141

2010; Wang et al., 2017).142

Arrhenius type functions were shown to adequately describe the dose-response relationship between temper-143

ature and growth across a wide range of temperatures and species (Parent et al., 2010; Parent and Tardieu, 2012).144

However, it was disputed whether this approach allows for a mechanistic interpretation of the different model145

parameters (Clavijo Michelangeli et al., 2016). Evidently, research in wheat mainly focused on determining car-146

dinal temperatures such as the lower and upper base temperature of growth Tmin and Tmax and the optimum147

temperature Topt where the growth rate r is maximal (Porter and Gawith, 1999). Wang et al. (2017) could148

show that using the Wang-Engel temperature function (Wang and Engel, 1998) allows to adequately replace an149

Arrhenius type functions to describe growth rates using these cardinal temperatures,150

rWang-Engel(T ) = rmax ·
�

(2(T − Tmin)α(Topt − Tmin)α − (T − Tmin)2α

(Topt − Tmin)2α

�β

(2)

α=
ln(2)

ln
�

(Tmax − Tmin)/(Topt − Tmin)
� (3)

β = 1 , (4)

where T is the temperature, rmax the maximum growth rate at the temperature optimum Topt, Tmin the lower151

base temperature and Tmax the upper base temperature of growth.152

The Wang-Engel temperature function is a Type 4 response (Wang et al., 2017) in regards that it is based on153

three cardinal temperatures Tmin, Tmax and Topt. If aiming to extract genotype-specific cardinal temperatures as154

well as the maximum growth rate rmax from HTFP data, this would require to fit a four-parametric non-linear155
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model with parameters that have interdependent constrains (e.g., Tmin < Topt). In our experience, extracting156

meaningful parameters by fitting such a model to noisy HTFP data is practically impossible for different rea-157

sons, i.e., (i) the optimum temperature Topt and maximum growth rate rmax are closely correlated, (ii) for field158

experiments performed in target environments (without stress treatments), the maximum temperature Tmax is159

typically outside the range of observed data, and (iii) proximity of cardinal temperatures Tmin and Topt may pre-160

vent model conversions. Some authors have reacted to these restrictions by fixing one or multiple parameters161

and normalizing growth rates (Parent and Tardieu, 2012).162

As a previously unconsidered alternative, we propose a Type 2 response that integrates an optimum temper-163

ature (Wang et al., 2017) to approximate the Arrhenius type functions of Parent and Tardieu (2012) based on an164

asymptotic model (Figure 1c),165

r = rmax · (1− exp (−exp (lrc) · (T − Tmin))) (5)

rasym(T ) =







r, r > 0

0, otherwise
, (6)

where T is the temperature, rmax is the maximum growth rate (and therefore the asymptote of the curve), Tmin166

the base temperature where the growth rate is zero, and lrc characterizes the steepness of the response as the167

natural logarithm (l) of the rate (r) constant (c), thus lrc. The proposed asymptotic model does not consider168

a maximum temperature and therefore supra-optimal range, and has no inflection point (Paine et al., 2012). It169

requires to fit a three-parametric non-linear model.170

2.3. Combining irregular and long trait measurement intervals with constant and short covariate measurement171

intervals172

Independent of the specific dose-response model, one can describe a phenotype y at time point t (Figure 1a)173

as the result of such a dose-response model r() (Figure 1c) dependent on a temperature course Tt (Figure 1b)174

Figure 1: Schematic drawing of trait measurements with irregular and long intervals (a), covariate measurements with short and constant
intervals (b), and the asymptotic dose-response model based on a maximum growth rate (rmax), minimum temperature (Tmin), and steepness
of the response (lrc) (c).
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and a genotype-specific set of crop model parameters θ , e.g., θ = (Tmin, Topt, Tmax, rmax),175

yt =

∫ t

t0

r(Tt ′ ,θ ) d t ′ , (7)

where t0 is the time point were growth started and therefore a timing of key stage trait that needs to be determined176

beforehand. Trait and covariates such as canopy height and temperatures are only measured at certain points in177

time, dependent on the measurement interval ∆m. We therefore may discretize Equation 7 to178

yt =
t
∑

t ′=t0

r(Tt ′ ,θ ) ·∆m , (8)

where t ′ are measurement time points with (t ′ = t0, t0 +∆m, t0 + 2∆m, . . . , t), e.g., days.179

Note that fitting Equation 8 to data implies the same measurement interval for traits yt and temperatures Tt ′ .180

Although the goal of HTFP is to measure at small measurement intervals, unfavorable weather conditions may181

prevent regular measurements at all times, while registering covariates is weather-independent and done with182

constant high frequency. Outdoor phenotyping therefore produces trait measurements with irregular and long183

measurement intervals∆md (e.g., measurements every 3–4 days) but covariate measurements with constant and184

short measurement intervals ∆mh (e.g., hourly measurements). Therefore, before applying Equation 8 to data,185

an aggregation step is required.186

A common technique is to align trait and covariate measurements by aggregating the covariate values to a187

mean (e.g., Kronenberg et al., 2017, 2020a),188

yt =
t
∑

d=t0

�

r
�

T d,θ
�

·∆md

�

, (9)

where T d is the mean of all covariate measurements made in the time period between successive trait measure-189

ment time points d where (d = t0, t0 +∆m1, t0 +∆m1 +∆m2, . . . , t). In this study, we propose an alternative190

approach: One may also apply the dose-response function r to each covariate value Tdh where h indexes covariate191

values between successive trait measurement time points d, (h= 1, . . . , nd), and sum up the responses to the trait192

measurements,193

yt =
t
∑

d=t0

� nd
∑

h=1

r (Tdh,θ ) ·∆mh

�

. (10)

In the following, the first method is denoted the Tmean method and the second method the Tcourse method.194

3. Materials and Methods195

3.1. Simulation of canopy height data196

The canopy growth of wheat genotypes was simulated using a growth function gT that was based on the197

Wang-Engel dose-response model of Equation 4 parameterized with four genotype-specific dose-response crop198
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model parameters θ C = (Tmin, Topt, Tmax, rmax). This model was extended with time points for the start and199

end of growth, parameterized with two genotype-specific timing traits θ T = (tPHstart, tPHstop). An environment200

inhomogeneity factor u and a measurement error e were added, leading to the model201

yit = gT (t,θ
C
i ,θ T

i ; Tdh) + uit + et , (11)

where yit is the measured canopy height (phenotype) for the ith genotype at campaign time points t in intervals202

of three days (t = 1,4, 7, . . . , T), θ C
i and θ T

i are genotype-specific crop growth model parameters respectively203

timing traits, Tdh are hourly (h) temperature readings nested in measurement days (d), uit a time point and204

genotype-specific inhomogeneity error (i.e., simulating the influence of other covariates than temperature) and205

et a time point specific measurement error (i.e., simulating random measurement errors). The growth function206

gT was specified as an implementation of Equation 10 based on the Wang-Engel function of Equation 4,207

gT (t,θ
C ,θ T ; Tdh) =

t
∑

d=1







∑72
h=1 rWang-Engel(Tdh,θ C) tPHstart < d < tPHstop

0, otherwise .
(12)

The genotype-specific traits θ C
i and θ T

i and the errors uit and eit were simulated using normal distributions208

(∼N (µ,σ2)) for genotype traits respectively first order auto-correlations (∼ AR1(σ,ρ)) for the errors. Specific209

µ and σ2 were chosen based on literature if available, and otherwise based on own field data (Roth, 2021).210

Corresponding sources and chosen distributions for all simulation input parameter are summarized in Table 1.211

Two alternative simulations were performed: One with changing cardinal temperatures with time (indicated with212

‘→’ in Table 1), and one with fixed cardinal temperatures (set to the mean of changing cardinal temperatures213

indicated in Table 1).214

Canopy growth was simulated for a measurement interval of three days for a period between the 15th of March215

and 20th of July based on temperature courses of three years (Figure 2). A total of 1,000 differing genotypes216

were assumed, resulting in 3,000 genotype time series. As temperature data source, real weather data of three217

consecutive years at the ETH research station of agricultural sciences in Lindau Eschikon, Switzerland (47.449218

N, 8.682 E, 556 m a.s.l.) were used.219

3.2. Extracting dose-response curves220

To extract the Wang-Engel dose-response curve parameters Tmin, Topt and rmax, the linear and asymptotic221

growth response models (Equation 1 and 6) were fitted to canopy height data between tPHstart and tPHstop for222

two covariate options, Tmean based on averaged temperatures between measurements (Equation 9), and Tcourse223

based on temperature courses with a period of one hour (Equation 10).224

Maximum-likelihood optimization was used to fit Equation 9 to a set of t data points, X t = (T̄t , yt − y(t−1)).225

Fitting Equation 10 to data required modifying the definition of the data set so that X t = (~Tt , yt − y(t−1)), where226

~Tt is a vector of covariate readings between trait measurement time points t − 1 and t.227
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Table 1: Model input parameters for the simulation.

Values Source

θ T
i N

�

µ,σ2
�

µTmin
= 1.5→ 9.5 °C Porter and Gawith (1999) (Terminal spikelet→Anthesis)

σTmin
= 2 °C Assumption

µTopt
= 10.6→ 21 °C Porter and Gawith (1999) (Terminal spikelet→Anthesis)

σTopt
= 2 °C Assumption

µTmax
= 30→ 35 °C °C Porter and Gawith (1999) (Anthesis −1/+4 °C)

σTmax
= 2 °C Assumption

µrmax
= 1.05 mm h-1, σrmax

= 0.12 mm h-1 Roth (2021)

θ PH
i N

�

µ,σ2
�

2016: µtPHstart
= 108 d, σtPHstart

= 2.8 d Kronenberg et al. (2020a)
2017: µtPHstart

= 103 d, σtPHstart
= 3.0 d Kronenberg et al. (2020a)

2018: µtPHstart
= 101 d, σtPHstart

= 3.1 d Roth (2021)

2016: µtPHstop
= 165 d, σtPHstop

= 2.5 d Kronenberg et al. (2020a)

2017: µtPHstop
= 162 d, σtPHstop

= 3.5 d Kronenberg et al. (2020a)

2018: µtPHstop
= 158 d, σtPHstop

= 4.0 d Roth (2021)

uit AR(1) ρ = 0.9, σ = 0.003 m d-1 Assumption
et AR(1) ρ = 0.3, σm = 0.01 m Roth et al. (2020)

→ connects lower and upper limit of cardinal temperature ramps

2016 2017 2018

0 10 20 0 10 20 0 10 20
0.00

0.05

0.10

0.15

Temperature (°C)

D
en

si
ty

Tcourse Tmean

Figure 2: Measured temperatures in the stem elongation phase of winter wheat at the FIP site on an hourly scale (Tcourse) and aggregated to
a 3-day scale (Tmean).
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As an independent random measurement errors was assumed, the maximum-likelihood optimization param-228

eter σ was fixed to the well-known measurement error of the device, herein the simulation input σm (Table 1).229

Parameters were optimized in R using the method L-BFGS-B of the function optim.230

To allow examining the effect of noise caused by inhomogeneities and measurement errors, the extraction231

was once performed on raw simulated data, once on data contaminated with the measurement error e, and once232

with both measurement and inhomogeneities errors e and u. Bias, variance, root-mean squared error (RMSE)233

and Pearson’s correlation were calculated after extracting the parameters Tmin, lrc and rmax for the asymptotic234

model and a (slope) and Tmin for the linear model.235

4. Results236

Aggregating measured temperatures at the FIP site to hourly means (Tcourse) and 3-day means (Tmean) reveled237

sever differences in their distribution (Figure 2): Temperatures close to the cardinal temperatures Tmin and Topt238

were frequent for Tcourse, but almost absent for Tmean. Simulating the stem elongation by combining the Tcourse239

measurements with a Wang-Engel dose-response function resulted in an average final height slightly higher than240

observed for elite varieties under field conditions (Kronenberg et al., 2020b), but realistic individual plant height241

time series with characteristic starts, stops, and lag phases (Figure 3). Fitting the asymptotic model based on242

Tcourse to the simulated data converged for 96% of all genotypes. All other models converged for all genotypes. In243

a preliminary run, we also tried to fit the Wang-Engel model to simulated data, but failed to extract meaningful244

parameters. This was partly due to the complexity of defining valid non-overlapping ranges for the cardinal245

temperatures, but mainly because the model did not converge in most cases.246

Based on the RMSE, the maximum growth rate rmax and base temperature Tmin were best estimated with the247

asymptotic dose-response model (Equation 5 and 6) based on Tcourse covariates (Table 2). While the variance was248

drastically lower for both parameters if using Tcourse, the bias slightly increased for rmax but decreased for Tmin.249

The RMSE, bias and variance of the linear model for the parameter Tmin was much higher than for the asymptotic250

model.251

Introducing a systematic measurement error e did not affect the slope estimated by the linear model; extracted252

values correlated 1:1 for the simulation with and without noise (Table 3). In contrast, the Pearson’s r for Tmin was253

close to zero, but a Spearman’s rank correlation revealed nevertheless a high robustness of the extracted ranking254

to noise. The asymptotic model was more susceptible to noise than the linear model (Table 3). Using temperature255

courses instead of mean temperatures was of benefit for the parameters rmax and Tmin, but of disadvantage for256

lrc.257

Correlating simulated versus predicted parameter values revealed further differences between the methods258

(Figure 4): While the asymptotic model based on Tcourse was able to extract rmax and Tmin with very strong259

correlations to the input values, the same model based on Tmean yielded only moderate correlations for rmax and260

Tmin.261
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Figure 3: Simulated growth rates (a) and canopy heights (b) for 100 out of 1000 simulated genotypes and three years. Simulated growth
rates are based on a Wang-Engel dose-response curve model.

Table 2: Bias, variance and root-mean squared error for the linear and asymptotic model based on mean temperature and temperature courses
for simulated data without noise.

Parameter Model Bias Var RMSE

rmax Asymptotic Tmean 0.0805 0.0347 0.103
Asymptotic Tcourse 0.0949 0.00309 0.0959

Tmin Linear Tmean 9.21 1.96e+08 10.6
Asymptotic Tmean 0.764 2.24 1.04
Asymptotic Tcourse -0.352 0.575 0.439

a (slope) Linear Tmean 0.0657 0.00272 0.0657

Table 3: Pearson’s and Spearman’s correlation between parameters extracted on simulated data with systematic measurement error noise
and without noise.

Model Parameter Pearson’s r Spearman’s r

Linear Tmean a (slope) 1.00 1.00
Tmin 0.00 0.88

Asymptotic Tmean rmax 0.61 0.79
Asymptotic Tcourse rmax 0.85 0.92

Asymptotic Tmean Tmin 0.60 0.66
Asymptotic Tcourse Tmin 0.77 0.72

Asymptotic Tmean lrc 0.69 0.73
Asymptotic Tcourse lrc 0.46 0.70
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Table 4: Bias, variance, root-mean squared error and Pearson’s correlation of the asymptotic model based on temperature courses with
simulated noise due to measurement errors and field and environment inhomogeneities.

Parameter Noise Bias Var RMSE Correlation

rmax - 0.0949 0.00309 0.0959 0.89
e 0.0971 0.119 0.114 0.3
e+ u 0.0964 0.116 0.113 0.3

Tmin - -0.352 0.575 0.439 0.92
e -0.108 5.55 1.27 0.48
e+ u -0.112 5.67 1.28 0.47

e: systematic measurement error noise
u: field and environment inhomogeneities

The parameter rmax extracted by the asymptotic model based on Tmean was not only correlated with the262

simulated rmax, but also moderately related to Topt. Using Tcourse reduced this moderate bias for the parameter263

estimates of rmax but introduced a new weak bias for the parameter estimates of Tmin towards Topt. The asymptotic264

model additionally allowed estimating Topt using lrc as proxy with a high correlation to input values.265

For the linear model, both parameter estimates of slope and Tmin were uncorrelated with the corresponding266

simulated input parameter (Figure 4b). Instead, the slope was related to rmax, Tmin and Topt, while Tmin based on267

the estimated intercept was not correlated to any input parameter. Both the linear and asymptotic model were268

not affected by supra-optimal temperatures: the input parameter Tmax that defined growth in the supra-optimal269

range above Topt was uncorrelated with any extracted parameter.270

Adding noise to the simulated growth time series led to increased variances for the parameter estimates of271

rmax and Tmin based on the asymptotic model (Table 4). While the RMSE drastically increased by a factor of three272

for Tmin and the correlation to input values dropped below 0.5, it remained low for rmax while the correlation273

with input parameter dropped to 0.3. The bias for rmax remained unchanged, while the bias for Tmin decreased.274

Adding additional noise caused by highly auto-correlated spatial inhomogeneities did not further decrease the275

RMSE or increase the variance and bias.276

Simulating changing cardinal temperatures for all genotypes alike decreased correlations of extracted param-277

eters for all models (Figure 4c). The differences between Tmean and Tcourse for the asymptotic model disappeared:278

While both models were able to extract rmax with moderate correlations, they failed to extract Tmin. The curvature279

parameter lrc was now moderately correlated with Tmin and Topt for Tmean and weakly correlated with Tmin and280

Topt for Tcourse. The slope extracted by the linear model was moderately related to Tmin and weakly to rmax and281

Topt. Again, Tmax was uncorrelated with any extracted parameter.282

5. Discussion283

Although the growth of simulated canopies was based on a Wang-Engel temperature dose-response curve,284

using a corresponding model to extract parameters turned out to be not suitable, mainly because of failed con-285
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Figure 4: Pearson’s correlations of simulated data versus extracted temperature response parameters. Provided are results for the simulation
without noise (a) versus extracted temperature response parameters with fixed cardinal temperatures (b) and changing cardinal temperatures
with time (c) for the linear model based on mean temperature (Linear Tmean) and the asymptotic growth model based on mean temperature
(Asym Tmean) and temperature courses (Asym Tcourse). Note that the slope is derived from the relation slope = rmax/Topt−Tmin and therefore
not an independent input parameter of the simulation. Black bold boxes indicate correlations between predicted and true values for identical
parameters.
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vergence. Presumably, non-existing measurements at supra optimal temperatures (¦ 30 °C, Figure 2) prevented286

estimating the required parameter Tmax. As suspected, the asymptotic model performed better with percentages287

of converged time series close to 100%. Using temperature courses instead of aggregated mean values allowed es-288

timating independent parameters with higher correlations to input parameters, to the cost of a slightly decreased289

convergence rate. Especially the parameter Tmin profited from taking temperature courses into account (Table290

2), which indicates that in the early phase where stem elongation starts the distribution of temperatures and291

therefore temperature courses are essential to describe temperature responses (® 5 °C, Figure 2). Additionally292

to Tmin, the asymptotic model will extract the maximum growth rate rmax and the parameter lrc which is related293

to the optimum temperature Topt, and therefore allow to fully describe temperature responses between the lower294

base temperature Tmin and optimum temperature Topt. A limitation of the proposed asymptotic approach may be295

the high optimum temperatures: Although the extracted base temperature Tmin and maximum growth rate rmax296

were strongly correlated with input parameters, they were also slightly biased by the optimum temperature Topt.297

Noise and environment inhomogeneities reduced the correlation to input parameters drastically, independent298

on whether RMSE stayed stable or not (Table 4). It seems reasonable to assume that this reduction in correlation299

will lead to reduced heritabilities of measured traits in HTFP. The simulation was not including a randomized field300

experiment set-up, but only independent genotype time series. Nevertheless, we assume based on our previous301

study on two other intermediate traits (Roth et al., 2021) that also for dose-response curve traits it is essential302

to follow the three principles of experimental design, i.e., replication, randomization and blocking (Kempton,303

1984). Such an experimental design will allow to process the extracted plot-based parameters using, e.g., linear304

mixed models to compensate for measurement errors and environment inhomogeneities and therefore ensure305

the overall heritability.306

Simulating changing cardinal temperatures drastically reduced the ability of the asymptotic model to extract307

meaningful cardinal temperatures (Figure 4c). We suspect that this effect was overamplified by the simulation308

and that supposed cardinal temperature ramps in Porter and Gawith (1999) may be too extreme for wheat elite309

cultivar sets. Nevertheless, in the worst case that cardinal temperature ramp assumptions were justified, the310

asymptotic model would yield less heritable parameters than in the optimum case of fixed cardinal temperatures,311

but not introduce additional biases.312

In contrast, one may conclude that using a ‘simple’ linear model to avoid the complexity of curvy dose-313

response models is not advisable. The results of this study demonstrated that the extracted linear response to314

temperature (slope) was similarly related to both cardinal temperatures Tmin and Topt but also to the maximum315

growth rate rmax, while unrelated to the simulated slope (Figure 4b). Thus, the apparent temperature response316

is mainly driven by cardinal temperatures. When fitting a linear model to a wide temperature range, with sig-317

nificant number of hours in temperature ranges beyond the optimum (Figure 2), it will inevitably compensate318

for both the maximum growth rate at the optimum and the base temperature of growth. Using a linear model if319

cardinal temperatures are not fixed is even more harmful: The relation of the slope may switch from Topt towards320
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Tmin (Figure 4c). Depending on the examined genetic material, applying a linear model may therefore lead to321

completely different conclusions. Eventually, one has to review existing literature that refers to slopes as temper-322

ature responses (e.g., Kronenberg et al., 2020a) being at least partly affected by growth at optimum temperature,323

maximum growth rate, and changing cardinal temperatures.324

Using modeling we aimed to simulate different aspects of temperature-response during the important phase325

of stem elongation of wheat. A major advantage of this approach is that it can be used to test different approaches326

to parameterize temperature-response. This approach is particularly valuable as other factors such as, e.g., the327

effect of drying soil, extremely low vapor pressure deficit, or low radiation, do not have to be included. For real328

field data, such influences will have to be considered to improve the model.329

6. Conclusion330

Adequate models to quantify the different aspects of growth response to temperature may greatly improve331

our understanding of crop adaptation to certain climatic scenarios. Asymptotic models represent a valid choice332

if sampling winter wheat genotypes in an environment where the decrease in growth after reaching an opti-333

mum temperature is negligible. Using temperature courses with high temporal resolution as covariate input for334

the model fit instead of aggregated mean temperatures is advisable. Changing cardinal temperatures—related335

to advancing phenology—may reduce the ability to extract parameters with an asymptotic model but will not336

severely bias results. Nevertheless, measurement noise and environment and field inhomogeneities may signifi-337

cantly increase the variance of extracted parameters. Care should be taken if interpreting existing literature based338

on linear temperature growth response models, as extracted response reactions may be strongly biased by base339

and optimum temperature, maximum growth rate at optimum temperature, and changing cardinal temperatures340

with time. As supra optimal temperatures before flowering are hardly ever reached in a temperate climate, we341

conclude that models including maximal temperatures will neither deliver any benefit under these conditions.342
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