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 12 

Abstract 13 

Summary: Gut microbiome-based health index (GMHI) has been applied with success, while the 14 

discrimination powers of GMHI varied for different diseases, limiting its utility on a broad 15 

spectrum of diseases. In this work, a Generative Adversarial Network (GAN) model is proposed to 16 

improve the discrimination power of GMHI. Built based on the batch corrected data through GAN 17 

(https://github.com/HUST-NingKang-Lab/GAN-GMHI), GAN-GMHI has largely reduced the 18 

batch effects, and profoundly improved the performance for distinguishing healthy individuals and 19 

different diseases. GAN-GMHI has provided results to support the strong association of gut 20 

microbiome and diseases, and indicated a more accurate venue towards microbiome-based disease 21 

monitoring. 22 

Availability and implementation:  GAN-GMHI is publicly available on GitHub: 23 

https://github.com/HUST-NingKang-Lab/GAN-GMHI. 24 

Contact: ningkang@hust.edu.cn 25 

Supplementary information: Supplementary data are available at Bioinformatics online. 26 

 27 

Introduction 28 

There are important links between many complex chronic diseases and the human gut microbiome 29 

(Gupta, et al., 2020). Specific sets of gut microbes could directly or indirectly influence the 30 

complex chronic diseases, such as the microbiome dysbiosis in the development of rheumatoid 31 

arthritis (Bergot, et al., 2019), thus it is nature that gut microbiome could be utilized for disease 32 
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prediction (Gupta, et al., 2020; Shreiner, et al., 2015). However, a general microbiome-based 33 

index for prediction of a broad spectrum of diseases is lacking. 34 

 35 

A previous work has reported the Gut Microbiome Health Index (GMHI) (Gupta, et al., 2020), a 36 

robust index for assessing health status, based on the species-level taxonomic profile of stool 37 

metagenomic sequencing samples. GMHI values can be used to classify samples as healthy 38 

(GMHI>0), non-healthy (GMHI<0), or neither (GMHI=0), and its results have shown strong 39 

reproducibility on the validation datasets. However, GMHI has limited power to distinguish 40 

samples from different diseases, largely due to the existence of batch effects: as the stool 41 

metagenomes in that study were collected from over 40 published studies, it is nearly impossible 42 

to exclude experimental and technical inter-study batch effects (Gupta, et al., 2020). Thus, the 43 

overall prediction accuracy of GMHI is still far from perfect: 70.72% for distinguishing healthy 44 

individuals and non-healthy individuals. 45 

 46 

Therefore, we introduced GAN-GMHI, based on the Generative Adversarial Network (GAN), for 47 

improved discrimination power of GMHI. GAN was applied to reduce the batch effects on a large 48 

collection of gut microbiome samples from multiple cohorts containing both health and disease 49 

individuals. Then GMHI could be applied on the batch corrected data for prediction. Compared 50 

with original GMHI, GAN-GMHI makes the distribution of GMHI values within the group more 51 

concentrated and the distinction between healthy and non-healthy samples more clearly. The 52 

effectiveness of GAN for cross-cohort batch correction has been demonstrated: the prediction 53 

accuracy of GAN-GMHI has been improved to 88.70% for distinguishing healthy individuals and 54 

non-healthy individuals, compared to the accuracy of 70.95% achieved by GMHI. In summary, 55 

batch effect does exist in data sets from different sources, and GMHI can better predict the status 56 

of health based on GAN corrected data sets. 57 

 58 

Methods 59 

Our GAN-GMHI framework consists of three stages, constructing a dataset containing phenotype 60 

and batch information for all samples, and then GAN guiding the batch effect correction of raw 61 

data, the corrected datasets are output as the training data set for GMHI prediction 62 

(Supplementary Figure 1). The batch effect removal method of iMAP (Wang, et al., 2021), a 63 

GAN method previously applied on single-cell RNA-Seq data, was adapted for batch effect 64 

removal in this study. It is worth noting that the datasets to be batch-corrected by GAN must be 65 

classified based on the phenotype first, and the sub-data sets of each phenotype are regrouped 66 

according to the batch. To ensure that the unwanted technical variations among different datasets 67 

are eliminated, but the biological differences between different phenotypes are not diminished. 68 

 69 

Results 70 

We have performed a comprehensive analysis on the integrated dataset of 2,636 healthy and 1,711 71 

diseased (including 12 disease phenotypes) individuals’ stool metagenomes from 34 published 72 

studies (Gupta, et al., 2020). All of these samples are used as analytical datasets. Additionally, we 73 
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have used 679 samples (118 healthy and 561 diseased) as validation datasets (Gupta, et al., 2020). 74 

The analytical and validation datasets configuration is the same as in (Gupta, et al., 2020). 75 

 76 

We have first assessed and compared prediction results based on the discovery cohort (training 77 

data). By comparison of the species-level GMHI before (RAW) and after (GAN) batch correction 78 

(Figure 1 (A)) for distinguishing samples from healthy and non-healthy individuals, we observed 79 

that the accuracy for prediction of the healthy and diseased groups after correction is 87.03% and 80 

91.29% (with overall accuracy of 88.70%), respectively, compared with 75.61% and 63.76% 81 

before correction (overall accuracy of 70.95%), which has proven the advantage of GAN-GMHI 82 

over GMHI (Supplementary Table 1). Additionally, we compared the abilities of GAN-GMHI 83 

and Shannon diversity indicators to differentiate the gut microbiome of healthy and non-healthy 84 

individuals. The results demonstrated that GAN-GMHI could yield clearer separation compared 85 

with Shannon's diversity in differentiating healthy and non-healthy individuals (Figure 1 (B)). 86 

Furthermore, results on comparison among the healthy group and the 12 non-healthy phenotypes 87 

have showed that: when GMHI was applied, the GMHI values were dispersed over a wide range, 88 

and GMHI values for healthy samples were slightly higher than those for non-healthy samples 89 

except for SA. On the other hand, when GAN-GMHI was applied, the GMHI values were 90 

concentrated for each group, and the healthy group was significantly higher than the 12 disease 91 

phenotypes (p-value < 0.05 for all disease groups), and the third quartile of GMHI was lower than 92 

0 for all disease phenotypes (Figure 1 (C)). Moreover, GMHI’s results are easier for clinical 93 

interpretation. For example, on Type 2 diabetes (T2D), GAN-GMHI has captured Lactobacillus as 94 

biomarkers, which are well founded by published works (Wang, et al.). 95 

 96 

Figure 1. Comparison of GAN-GMHI with other methods under different settings. (A) Violin 97 

plots of GMHI for the healthy and non-healthy groups before (left) and after (right) batch 98 
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correction by GAN. (B) the distribution of corrected GMHI and Shannon diversity. (C) Violin 99 

plots of GMHI index for the healthy and 12 disease phenotypes before (right) and after (left) batch 100 

correction by GAN. ACVD: Arteriosclerosis Cardiovascular Disease, CA: colorectal adenoma, CC: 101 

colorectal cancer, CD: Crohn's disease, IGT: Impaired glucose tolerance, OB: obesity, OW: 102 

overweight, RA: rheumatoid arthritis, SA: Symptomatic arteriosclerosis, T2D: Type 2 Diabetes, 103 

UC: ulcerative colitis, UW: underweight. 104 

 105 

Additionally, we have compared GAN-GMHI and GMHI on the validation datasets. Cross-cohort 106 

batch correction by GAN profoundly improved the performance for distinguishing healthy 107 

individuals and different diseases. The prediction accuracy of GAN-GMHI has been significantly 108 

improved to 88.70% for distinguishing healthy individuals and non-healthy individuals, compared 109 

to the accuracy of 70.95% achieved by GMHI, and GAN-GMHI still outperforms GMHI on the 110 

independent validation cohort (Supplementary Table 1).  111 

 112 

Moreover, GAN is not only applicable for GMHI disease prediction model, but could also be 113 

easily adapted to other models, such as Random Forest (RF). It has already been observed that 114 

GMHI and RF have similar performances on the validation datasets, while GMHI’s results are 115 

easier for clinical interpretation (Supplementary Table 1). We emphasize that although the results 116 

of GAN-GMHI and GAN-RF also have similar accuracies on the validation datasets, GAN-GMHI 117 

has inherited the interpretability of the GMHI method, and thus is more suitable for clinical 118 

interpretation. For example, on Type 2 diabetes (T2D), GAN-GMHI has captured Lactobacillus as 119 

biomarkers, which are well founded by published works (Wang, et al.). 120 

 121 

Conclusion 122 

The association of gut microbiome and diseases has been proven for many diseases, while 123 

transformation of such association to a robust and universal disease prediction model has 124 

remained illusive, largely due to the batch effects presents in multiple microbiome cohorts. 125 

GAN-GMHI is a novel method built based on the batch corrected data through GAN, as well as 126 

GMHI for prediction of a broad spectrum of diseases. Results have shown that it has largely 127 

reduced the batch effects, and profoundly improved the performance for distinguishing disease 128 

and healthy individuals. In summary, Generative Adversarial Network augmented the gut 129 

microbiome-based health index, and GAN-GMHI has indicated a more accurate venue towards 130 

microbiome-based disease monitoring. 131 
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