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ABSTRACT

Context dependency is a key feature in sequential structures of human language, which requires
reference between words far apart in the produced sequence. Assessing how long the past context has
an effect on the current status provides crucial information to understand the mechanism for complex
sequential behaviors. Birdsongs serve as a representative model for studying the context dependency
in sequential signals produced by non-human animals, while previous reports were upper-bounded by
methodological limitations. Here, we newly estimated the context dependency in birdsongs in a more
scalable way using a modern neural-network-based language model whose accessible context length
is sufficiently long. The detected context dependency was beyond the order of traditional Markovian
models of birdsong, but was consistent with previous experimental investigations. We also studied the
relation between the assumed/auto-detected vocabulary size of birdsong (i.e., fine- vs. coarse-grained
syllable classifications) and the context dependency. It turned out that the larger vocabulary (or the
more fine-grained classification) is assumed, the shorter context dependency is detected.

Keywords birdsong, context dependency, Bengalese finch, language modeling, discrete variational autoencoder,
unsupervised clustering, individual normalization

Introduction1

Making behavioral decisions based on past information is a crucial task in the life of humans and animals [1, 2]. Thus,2

it is an important inquiry in biology how far past events have an effect on animal behaviors. Such past records are not3

limited to observations of external environments, but also include behavioral history of oneself. A typical example is4

human language production; The appropriate choice of words to utter depends on previously uttered words/sentences.5

For example, we can tell whether ‘was’ or ‘were’ is the grammatical option after a sentence ‘The photographs that were6

taken in the cafe and sent to Mary ’ only if we keep track of the previous words sufficiently long, at least up to7

‘photographs’, and successfully recognize the two closer nouns (cafe and station) as modifiers rather than the main8

subject. Similarly, semantically plausible words are selected based on the topic of preceding sentences, as exemplified9

by the appropriateness of olive over cotton after “sugar” and “salt” are used in the same speech/document. Such10

dependence on the production history is called context dependency and is considered a characteristic property of human11

languages [3, 4, 5, 6].12
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Figure 1. Schematic diagram of newly proposed syllable classification. (A) Each sound waveform segment was
converted into the time-frequency representations (spectrograms), and was assigned to one of syllable categories by the
unsupervised classification. (B) The unsupervised classification was implemented as a sequence-to-sequence version of
the variational autoencoder, consisting of the attention-based categorical sampling with the Dirichlet prior (“seq2seq
ABCD-VAE”). The ABCD-VAE encoded syllables into discrete categories between the encoder and the decoder. A
statistically optimal number of categories was detected under an arbitrarily specified upper bound thanks to the Dirichlet
prior. The identity of the syllable-uttering individual was informed to the decoder besides the syllable categories;
Accordingly, individual-specific patterns need not have been encoded in the discrete syllable representation.

Birdsongs serve as a representative case study of context dependency in sequential signals produced by non-human13

animals. Their songs are sound sequences that consist of brief vocal elements, or syllables [7, 8]. Previous studies14

have suggested that those birdsongs exhibit non-trivially long dependency on previous outputs [9, 10, 11]. Complex15

sequential patterns of syllables have been discussed in comparison with human language syntax from the viewpoint of16

formal linguistics [8, 12]. Neurological studies also revealed homological network structures for the vocal production,17

recognition, and learning of songbirds and humans [13, 14, 15]. In this line, assessing whether birdsongs exhibit long18

context dependency is an important instance in the comparative studies, and several previous studies have addressed19

this inquiry using computational methods [16, 9, 11, 17, 18]. However, the reported lengths of context dependency20

were often measured using a limited language model (Markov/n-gram model) that was only able to access a few recent21

syllables in the context. Thus, it is unclear if those numbers were real dependency lengths in the birdsongs or merely22

model limitations. Moreover, there is accumulating evidence that birdsong sequencing is not precisely modeled by a23

Markov process [16, 17].24

The present study aimed to assess the context dependency in songs of Bengalese finches (Lonchura striata var.25

domestica) using modern techniques for natural language processing. Recent advancements in the machine learning26

field, particularly in artificial neural networks, provide powerful language models [19, 6], which can simulate various27

time series data without hypothesizing any particular generative process behind them. The neural network-based models28

also have a capacity to effectively use information in 200–900 syllables from the past (when the data include such29

long dependency) [5, 6], and thus, the proposed analysis no longer suffers from the model limitations in the previous30

studies. We performed the context dependency analysis in two steps: unsupervised classification of song syllables31

and context-dependent modeling of the classified syllable sequence. The classification enabled flexible modeling32

of statistical ambiguity among upcoming syllables, which are not necessarily similar to one another in acoustics.33

Moreover, it is preferable to have a common set of syllable categories, which is shared among classifications for all34

birds, to represent general patterns in the sequences and also to provide the language model with as big data as possible.35

Conventional classification methods depending on manual labeling by human experts could spoil such generality due36

to arbitrariness in integrating the category sets across different birds. To satisfy these requirements, we employed a37

novel, end-to-end, unsupervised clustering method (“seq2seq ABCD-VAE”, see Fig. 1). Then, we assessed the context38

dependency in sequences of the classified syllables by measuring the effective context length [5, 6], which represents39

how much portion of the song production history impacts on the prediction performance of a language model. The40

language model we used (“Transformer”, see Fig. 4) behaves as a simulator of birdsong production, which exploits the41

longest context among currently available models [19, 6].42
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Results43

Unsupervised, individual-invariant classification of Bengalese finch syllables44

We first converted birdsong syllables into discrete representations, or “labels”. When predicting an upcoming syllable45

from previous outputs, probable candidates can have non-similar acoustic profiles. For example, “bag” and “beg”46

in English are similar to each other in terms of phonology but have different syntactic and semantic distributions,47

belonging to different grammatical categories (noun and verb, respectively). An appropriate language model must48

assign a more similar probability to syntactically/semantically similar words like “bag” and “wallet” than acoustically49

similar ones like “bag” and “beg”. Likewise, it is desirable to perform the context dependency analysis of birdsong50

based on a flexible model of sequence processing so that it can handle ambiguity about possible upcoming syllables51

that do not necessarily resemble one another from acoustic perspectives. Categorizing continuous-valued signals and52

predicting the assigned discrete labels based on a categorical distribution is a simple but effective way of achieving such53

flexible models, especially when paired with deep neural networks [20, 21, 22]. Syllable classification has also been54

adopted widely in previous studies of birdsong syntax [7, 23, 11, 18].55

Recent studies have explored fully unsupervised classification of animal vocalization based on acoustic features56

extracted by an artificial neural network, called variational autoencoder or VAE [24, 25, 26]. We extended this approach57

and proposed a new end-to-end unsupervised clustering method named ABCD-VAE, which utilizes the attention-based58

categorical sampling with the Dirichlet prior (see also [27]). This method automatically classifies syllables into an59

unspecified number of categories in a statistically principled way. It also allowed us to exploit the speaker-normalization60

technique developed for unsupervised learning of human language from speech recordings [28, 29], yielding syllable61

classification modulo individual variation. Having common syllable categories across different individuals helps us62

build a unified model of syllable sequence processing. Individual-invariant classification of syllables is also crucial63

for deep learning-based analysis that requires a substantial amount of data; i.e., it is hard to collect sufficient data for64

training separate models on each individual.65

We used a dataset of Bengalese finches’ songs that was originally recorded for previous studies [30, 31]. Song syllables66

in the recorded waveform data were detected and segmented by amplitude thresholding. We collected 465,310 syllables67

in total from 18 adult male birds. Some of these syllables were broken off at the beginning/end of recordings. We68

filtered out these incomplete syllables, and fed the other 461,994 syllables to the unsupervised classifier (Fig. 1A).69

The classifier consisted of two concatenated recurrent neural networks (RNNs, see Fig. 1B). We jointly trained the70

entire network such that the first RNN represented the entirety of each input syllable in its internal state (“encoding”71

Fig. 1B) and the second RNN restored the original syllable from the internal representation as precisely as possible72

(“decoding”). The encoded representation of the syllable was mapped to a categorical space (“embedding”) before the73

decoding process. The number of syllable categories was automatically detected as a statistical optimum owing to the74

Dirichlet prior [32].75

As a result, the classifier detected 37 syllable categories in total for all the birds (Fig. 2B). Syllables that exhibited76

similar acoustic patterns tended to be classified into the same category across different birds (Fig. 2A). All birds77

produced not all but a part of syllable categories in their songs (Fig. 2C). The syllable repertoire of each bird covered78

24 to 36 categories (32.39±3.35). The detected syllable vocabulary size was greater than the number of annotation79

labels used by a human expert (5–14) [30]. Conversely, each category consisted of syllables produced by 7 to 18 birds80

(15.76±2.91). The detected categories appeared to align with major differences in the spectrotemporal pattern (Fig. 2B).81

Quantitative evaluation of syllable classification for Bengalese finch82

Speaker-invariant clustering of birdsong syllables should meet at least two desiderata: (i) the resulting classification83

must keep consistency with the conventional bird-specific classification (i.e., clustered syllables must belong to the84

same bird-specific class), and (ii) the discovered syllable categories should be anonymized. Regarding (i), we evaluated85

the alignment of the detected classification with manual annotations by a human expert [30]. We scored the alignment86

using two metrics. One was Cohen’s Kappa coefficient [33], which has been used to evaluate syllable classifications87

in previous studies [9, 30]. A problem with this metric is that it requires two classifications to use the same set of88

categories while our model predictions and human annotations had different numbers of categories and, thus, we needed89

to force-align each of the model-predicted categories to the most common human-annotated label to use the metric90

[9]. For example, suppose that the model classified 300 syllables into a category named “A”. If 100 of the syllables91

in “A” are labeled as “a” by the human annotator and the other 200 are labeled as “b”, then all the syllables in “A”92

received “b” as their force-aligned label of model predictions. This force-alignment makes the 100 syllables misaligned93

with their original label “a”. Thus, the force-alignment scores uniformity of syllables within the model-predicted94
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Figure 2. Clustering results of Bengalese finch syllables based on the ABCD-VAE. (A) Syllable spectrograms and their
classification across individuals. Syllables in each of the first to third rows (orange box) were sampled from the same
individual. Each column (blue frame) corresponds to the syllable categories assigned by the ABCD-VAE. The bottom
row provides the spectrogram of each category with the greatest classification probability (MAP: maximum-a-posteriori)
over all the individuals. The individual-specific examples also had the greatest classification probability (> 0.999)
among the syllables of the same individual and category. (B) Spectrogram of the MAP syllable in each category. (C)
Syllable counts per individual bird (rows) and category (columns). The number of non-zero entries is also reported in
the line plots. (D) Comparison between syllable embeddings by the canonical continuous-valued VAE with the Gaussian
noise (scatter points) and classification by the ABCD-VAE (grouped by the dotted lines). The continuous representation
originally had 16 dimensions and was embedded into the 2-dimensional space by t-SNE. The continuous embeddings
included notable individual variations represented by colors, whereas the ABCD-VAE classification ignored these
individual variations.

categories regarding the manual annotations. To get rid of the force-alignment and any other post-processing, we also95

evaluated the classification using a more recently developed metric called homogeneity [34]. The homogeneity checks96

whether the category-mate syllables according to the ABCD-VAE were annotated with the same manual label (see97

the Method for its mathematical definition). Note that the homogeneity does not penalize overclassification (see the98

supporting information S1.5 for additional evaluation that takes overclassification into account). For example, suppose99

that the ABCD-VAE classified 300 syllables into a category named “A” and another 300 into “B”. The homogeneity is100

maximized even if all the 300 syllables in “A” are labeled “a” and all the 300 in “B” are also labeled as “a”. This is101

because all the category-mate syllables receive the same label. Instead, the homogeneity penalizes label mismatches102

within the model-detected categories, as in the case where 200 of the “A” syllables are labeled “a” and the other 100 are103

labeled “b”. Thus, the homogeneity is considered a unified version of Cohen’s kappa plus force-alignment.104

To assess fulfillment of the second desideratum for ideal clustering (ii), we quantified the speaker-normalization effect105

of the ABCD-VAE by measuring the perplexity of speaker identification. We built a simple speaker identification model106

based on a syllable category uttered by the target bird, fitting the conditional categorical distribution to 90% of all the107

syllables by the maximum likelihood criterion and then evaluating the prediction probabilities on the other 10%. The108

prediction probabilities of the test data were averaged in the log scale (= entropy) and then exponentiated to yield the109

perplexity. Intuitively, the perplexity tells the expected number of birds among whom we have to guess by chance to110

identify the target speaker even after the information about the syllable category uttered by the target bird is provided.111

Thus, greater perplexity is an index of successful speaker-normalization.112

We compared the performance of the ABCD-VAE with baseline scores provided by the combination of the canonical,113

continuous-valued VAE (which we call Gauss-VAE) [24, 25, 26] and the Gaussian mixture model (GMM) [35, 32, 36].114
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Table 1. Quantitative evaluation of the clustering by the ABCD-VAE for Bengalese finch syllables. Cohen’s kappa
coefficient and homogeneity evaluated the alignment of the discovered clusters with manual annotations by a human
expert. These scores for each individual bird were computed separately and their mean, maximum, and minimum over
the individuals were reported since the manual annotation was not shared across individuals (see Method). Additionally,
the perplexity of individual identification scored the amount of individuality included in the syllable categories yielded
by the ABCD-VAE. The best scores are in boldface (results under the all-birds-together and bird-specific settings were
ranked separately).

Method # of clusters Cohen’s Kappa Homogeneity Speaker
(source) mean mean Perplexity

[min,max] [min,max]

ABCD-VAE 37 0.8990 0.9084 8.0434
[0.7740, 0.9929] [0.7635, 0.9868]

Gauss-VAE 37 0.7446 0.7844 4.0783
+ (ABCD-VAE) [0.5956, 0.8912] [0.6004, 0.9086]

GMM 14 0.6057 0.6718 6.7212
(All-Birds- (manual) [0.4250, 0.8972] [0.5053, 0.8536]

Together) ≥128 0.8475 0.8773 1.7112
(auto-detected) [0.5725, 0.9911] [0.6666, 0.9869]

Gauss-VAE 37 0.9304 0.9292 —
+ (ABCD-VAE) [0.6619, 0.9906] [0.6479, 0.9893]

GMM 5–14 0.7888 0.8090 —
(Bird-Specific) (manual) [0.5012, 0.9328] [0.4732, 0.9254]

50–109 0.9516 0.9505 —
(auto-detected) [0.7629, 0.9982] [0.7687, 0.9962]

This baseline model can be seen as a non-end-to-end version of our clustering method, having distinct optimizations115

for feature extraction and clustering. The Gauss-VAE was trained on the same datasets and by the same procedure116

as the ABCD-VAE. On the other hand, the GMM was trained in several ways. First, we built both bird-specific and117

common models: the former consisted of multiple models, each trained on data collected from a single individual118

bird, whereas the latter was a single model trained on the entire data collected from all the birds. The bird-specific119

clusterings provide “topline” scores because the gold-standard annotations by the human expert were also defined in a120

bird-specific way, and hence, they do not suffer from individual variations included in the Gauss-VAE features. On the121

other hand, the all-birds-together classifications tell us how much degree of difficulties exist in the clustering without122

end-to-end optimization or speaker normalization and, thus, serve as a baseline. Another kind of variation in the GMMs123

we tested was the number of syllable categories. We tested three ways of determining the number: (i) equals to the124

results from automatic detection by the ABCD-VAE, (ii) equals to the manual annotations by the human expert, and (iii)125

automatically detected from the distribution of syllable features defined by the Gauss-VAE. (i) and (ii) were obtained by126

specifying the number of mixture components of the GMM and training the GMM by the maximum likelihood criterion.127

On the other hand, (iii) was implemented by Bayesian estimation of active mixture components under the Dirichlet128

distribution prior [32].129

As a result, the ABCD-VAE achieved a greater Kappa coefficient on average than the baseline models without subject-130

specific training (Table 1). Moreover, the comparison of the worst-bird scores (“min” in the table) showed that the131

ABCD-VAE was more robust than the topline models that were optimized to each bird separately. The ABCD-VAE132

achieved “almost perfect agreements” with the human expert (κ > 0.8) for sixteen of the eighteen birds and “substantial”133

agreements (0.6 < κ ≥ 0.8) for the other two [37]. Similarly, the ABCD-VAE outperformed the baseline classifications134

in the average and worst-bird homogeneity scores. This result was also competitive with the topline models, especially135

regarding the worst-bird score. These results suggest that the syllable categories discovered by the ABCD-VAE136

kept consistency with the conventional subject-specific classifications, while the consistency was lost in the other137

all-birds-together classifications without speaker-normalization. In the meantime, the ABCD-VAE scored the greatest138

individual perplexity, indicating that the discovered syllable categories were more anonymized and individual-invariant139

than the baselines (see also Fig. 2D).140
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Figure 3. Clustering results of zebra finch syllables based on the ABCD-VAE. (A) Syllable spectrograms and their
classification across individuals. Syllables in each of the first to third rows (orange box) were sampled from the same
individual. Each column (blue frame) corresponds to the syllable categories assigned by the ABCD-VAE. The bottom
row provides the spectrogram of each category with the greatest classification probability (MAP: maximum-a-posteriori)
over all the individuals. The individual-specific examples had a top-5 classification probability among the syllables of
the same individual and category. (B) Syllable counts per individual bird (rows) and category (columns). The number
of non-zero entries is also reported in the line plots. (C) Mean classification probability of Bengalese finch (left) and
zebra finch (right) syllables per category.

Unsupervised classification of zebra finch syllables141

To further assess the effectiveness/limitations of the ABCD-VAE, the same clustering was performed on zebra finch142

syllables (Taeniopygia guttata). We collected 237,610 syllables from 20 adult male zebra finches. Again, the data143

included incomplete syllables that were broken off at the beginning/end of the syllables, and after filtering out those144

incomplete syllables, we fed the remaining 231,792 to the ABCD-VAE.145

Speaker-normalized classification of zebra finch syllables was not as successful (or interpretable) as that of Bengalese146

finch syllables. While the syllables were classified into 17 categories in total (8 to 14 categories covered by a single147

bird, mean±SD:11.2±1.77), most of the classifications were not confident; 10 out of the 17 detected categories had a148

low mean classification probability under 30% whereas all but two categories of Bengalese finch syllables had a mean149

classification probability over 75% (Fig. 3C). Syllables with seemingly major spectral differences were force-aligned150

across individuals (Fig. 3A). Specifically, syllables consisting of multiple segments with distinct spectral patterns (or151

notes) seem to lack correspondents in different birds’ repertoire (e.g., Category 14 and 16).152

Quantitative evaluation also indicates that the speaker-normalized clustering of zebra finch syllables by the ABCD-VAE153

was not as well-aligned with bird-specific human annotations as that of Bengalese finch (Table 2). While the topline154

bird-specific models scored about 0.9 of Cohen’s kappa coefficient and homogeneity, the scores of the ABCD-VAE155

stayed around 0.7. Nevertheless, it is of note that the ABCD-VAE outperformed the baseline all-birds-together models,156

except the one that automatically detected the number of categories (and achieved the upper bound at 128). This157

auto-detection model achieved high Cohen’s kappa and homogeneity by specializing its categories to individual birds158

(i.e., by resorting to individual-specific classifications); as a result, the model scored a low individual perplexity,159

indicating that each individual was almost completely identifiable from the model-predicted category of a syllable. By160

contrast, the ABCD-VAE only used 17 categories and the high individual perplexity indicates that those categories were161

anonymized. Looking at each individual bird, the ABCD-VAE yielded “almost perfect agreement” with the manual162

annotations (κ > 0.8) for seven of the twenty birds, “substantial” agreement (0.6 < κ ≥ 0.8) for other seven, and163

“moderate agreement” for the remaining two (0.4 < κ ≥ 0.6).164

Analysis of context dependency165

The classification described above provided us sequences of categorically represented syllables. To assess the context166

dependency in the sequence, we then measured differences between syllables predicted from full-length contexts and167

truncated contexts. This difference becomes large as the length of the truncated context gets shorter and contains less168

information. And, the difference should increase if the original sequence has a longer context dependency (Fig. 4A).169

Thus, the context dependency can be quantified as the minimum length of the truncated contexts where the difference170

becomes undetectable [5, 6]. For the context-dependent prediction, we employed the Transformer language model171
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Table 2. Quantitative evaluation of the clustering by the ABCD-VAE for zebra finch syllables. Cohen’s kappa
coefficient and homogeneity evaluated the alignment of the discovered clusters with manual annotations by a human
expert. These scores for each individual bird were computed separately and their mean, maximum, and minimum over
the individuals were reported since the manual annotation was not shared across individuals (see Method). Additionally,
the perplexity of individual identification scored the amount of individuality included in the syllable categories yielded
by the ABCD-VAE. The best scores are in boldface (results under the all-birds-together and bird-specific settings were
ranked separately).

Method # of clusters Cohen’s Kappa Homogeneity Speaker
(source) mean mean Perplexity

[min,max] [min,max]

ABCD-VAE 17 0.7097 0.6793 12.2834
[0.4413, 0.9288] [0.4972, 0.8718]

Gauss-VAE 17 0.6012 0.6177 4.3094
+ (ABCD-VAE) [0.2845, 0.9274] [0.3030, 0.8942]

GMM 13 0.6102 0.6315 5.7021
(All-Birds- (manual) [0.0401, 0.9741] [0.0433, 0.9609]

Together) ≥128 0.8938 0.9016 1.3092
(auto-detected) [0.6843, 0.9915] [0.7643, 0.9894]

Gauss-VAE 17 0.9579 0.9545 —
+ (ABCD-VAE) [0.8847, 0.9938] [0.8828, 0.9905]

GMM 4–13 0.8762 0.8623 —
(Bird-Specific) (manual) [0.7915, 0.9744] [0.7056, 0.9607]

18–47 0.9812 0.9782 —
(auto-detected) [0.9360, 1.0000] [0.9274, 1.0000]

[19, 6]. Transformer is known to capture long-distance dependency more easily than RNNs since it can directly refer to172

any data point in the past at any time while RNNs can only indirectly access past information through their internal173

memory [38, 19]. There is also accumulating evidence that Transformer successfully represents latent structures behind174

data, such as hierarchies of human language sentences [19, 39, 40].175

Each sequence included syllables from a single recording. We report the analysis of both Bengalese and zebra finch176

songs, even though the classification of zebra finches’ syllables was not as reliable as Bengalese finches’. We obtained177

a total of 7,879 sequences of Bengalese finch syllables (each containing 8–338 syllables, 59.06 syllables on average)178

and 11,822 sequences of zebra finch syllables (each containing 1–219 syllables, 20.10 syllables on average), and used179

7,779 and 11,722 of them respectively to train the Transformer (see Table 3). The remaining 100 sequences were used180

to score its predictive performance from which the dependency was calculated. The model predictions were provided of181

the log conditional probability of the test syllables (x) given the preceding ones in the same sequence. We compared182

the model predictions between the full-context (“Full”, Fig. 4A) and the truncated-context (“Truncated”) conditions.183

Then, the context dependency was quantified by a statistical measure of the effective context length [5, 6], which is the184

minimum length of the truncated context wherein the mean prediction difference between the two contexts was not185

significantly greater than the canonical 1% threshold in perplexity [41].186

To see the relation between the number of syllable categories and context dependency, we also performed the same187

analysis based on more coarse/fine-grained syllable classifications into 10 to 80, 160, and 320 categories. These188

classifications were derived from the k-means clustering on the L2-normalized feature vectors of syllables given by the189

ABCD-VAE.190

The statistically effective context length (SECL) of the Bengalese finch song was eight based on the 37 syllable191

categories that were automatically detected by the ABCD-VAE (Fig. 4B). In other words, restricting available contexts192

to seven or fewer preceding syllables significantly decreased the prediction accuracy compared with the full-context193

baseline, while the difference became marginal when eight or more syllables were included in the truncated context.194

When syllables were classified into more fine-grained categories, the difference between the model predictions based195

on the truncated and full contexts became smaller (Fig. 4B; p < 0.001 according to the linear regression of the loss196

difference on the number of syllable categories and the length of truncated contexts, both in the log scale). That is, the197
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Table 3. The size of the training and test data used in the neural language modeling of Bengalese and zebra finch songs.
The “SECL” portion of the test syllables was used to estimate the SECL. The numbers of syllables in parentheses report
the incomplete syllables that were broken off at the start/end of recordings, which were labeled with a distinct symbol.

Species Usage # of sequences # of syllables
Total SECL

Bengalese Finch

Training 7,779 458,992 —
(incomplete) (3,275)

Test 100 6,557 4,657
(incomplete) (41) (36)

Zebra Finch

Training 11,722 234,674 —
(incomplete) (5,763)

Test 100 2,936 1,536
(incomplete) (55) (49)

Figure 4. (A) Schematic diagram of the evaluation metric. Predictive probability of each categorized syllable (denoted
by x) was computed using the trained language model, conditioned on the full and truncated contexts consisting of
preceding syllables (highlighted in blue and orange, respectively). The logarithmic difference of the two predictive
probabilities was evaluated, and SECL was defined by the minimum length of the truncated context wherein the
prediction difference is not statistically significantly greater than a canonical threshold. (B) The differences in the
mean loss (negative log probability) between the truncated- and full-context predictions of Bengalese finch songs and
(C) zebra finch songs. The x-axis corresponds to the length of the truncated context. The error bars show the 90%
confidence intervals estimated from 10,000 bootstrapped samples. The loss difference is statistically significant if the
lower side of the intervals are above the threshold indicated by the horizontal dashed line.

context dependency traded off with the number of syllable categories. When 160 or 320 categories were assumed, the198

SECL of the Bengalese finch songs decreased to 5.199

Zebra finch songs showed the same trade-off between the number of syllable categories and context dependency.200

Although the SECL of zebra finches based on the syllable classification via ABCD-VAE was four and shorter than that201

of Bengalese finches, the difference between the model predictions based on the truncated and full contexts became202

smaller as the number of syllable categories increased (Fig. 4C; p < 0.001 according to the linear regression of the loss203

difference on the number of syllable categories and the length of truncated contexts, both in the log scale).204

Discussion205

This study assessed the context dependency in Bengalese finch’s song to investigate how long individual birds must206

remember their previous vocal outputs to generate well-formed songs. We addressed this question by fitting a state-of-207

the-art language model, Transformer, to the syllable sequences, and evaluating the decline in the model’s performance208

upon truncation of the context. We also proposed an end-to-end clustering method of Bengalese finch syllables, the209

ABCD-VAE, to obtain discrete inputs for the language model. In the section below, we discuss the results of this210

syllable clustering and then move to consider context dependency.211
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Clustering of syllables212

The clustering of syllables into discrete categories played an essential role in our analysis of context dependency in213

Bengalese finch songs, particularly for the comparison to human language in text. Various studies have observed how214

fundamental the classification of voice elements is to animal vocalization [42, 43, 7, 11, 44, 18].215

Our syllable clustering is based on the ABCD-VAE [27] and features the following advantages over previous approaches.216

First, the ABCD-VAE works in a completely unsupervised fashion. The system finds a classification of syllables from217

scratch instead of generalizing manual labeling of syllables by human annotators [30]. Thus, the obtained results are218

more objective and reproducible [45]. Second, the ABCD-VAE automatically detects the number of syllable categories219

in a statistically grounded way (following the Bayesian optimality under the Dirichlet prior) rather than pushing syllables220

into a pre-specified number of classes [46, 28, 29]. This update is of particular importance when we know little about the221

ground truth classification—as in the cases of animal song studies—and need a more non-parametric analysis. Third, the222

ABCD-VAE adopted the speaker-normalization technique used for human speech analysis and finds individual-invariant223

categories of syllables [28, 29]. Finally, the end-to-end clustering by the ABCD-VAE is more statistically principled224

than the previous two-step approach—acoustic feature extraction followed by clustering—because the distinct feature225

extractors are not optimized for clustering and the clustering algorithms are often blind to the optimization objective of226

the feature extractors [25, 26]. We consider that such a mismatch led the combination of Gauss-VAE and GMM to227

detect greater numbers of syllable categories than the ABCD-VAE and manual annotations, even when the clustering228

was specialized for each individual bird and not disturbed by individual variations (see Table 1). Chorowski et al. [29]229

also showed that a similar end-to-end clustering is better at finding speaker-invariant categories in human speech than230

the two-step approach.231

We acknowledge that discrete representation of data is not the only way of removing individual variations; previous232

studies have also explored individual normalization on continuous-valued features using deep neural networks. Varia-233

tional fair autoencoders (VFAE), for example, use speaker embeddings as background information of VAE (in both the234

encoder and decoder while the ABCD-VAE only fed the speaker information to the decoder) [47]. As the authors note,235

however, the use of background information does not completely remove individual variations in the extracted features236

because continuous-valued features can distinguish infinitely many patterns (in principle) and do not have a strong237

bottleneck effect like discrete categories, making V(F)AE lose motivation to remove individual variations from the238

features (see also our supporting information S1.4). Accordingly, VFAE has another learning objective that minimizes239

distances between feature vectors averaged within each speaker. More recently, researchers started to use adversarial240

training to remove individual and other undesirable variations [48]. In adversarial training, an additional classifier241

module is installed in the model, and that classifier attempts to identify the individual from the corresponding feature242

representation. The rest of the model is trained to deceive the individual classifier into misclassification by anonymizing243

the encoded features. Both VFAE and adversarial training are compatible with the ABCD-VAE and future studies may244

combine these methods to achieve stronger speaker-normalization effects. Note, however, that those normalization245

techniques would not yield speaker-invariant categories if there are no such categories; different individuals may246

exhibit completely different syllable repertries and force alignment across individuals can be inappropriate in such247

cases. Specifically, we suspect that simply adopting other normalization methods would not lead to a more reliable248

classification of zebra finch syllables modulo speaker variations, unless we find more appropriate segmentation.249

It should be noted that the classical manual classification of animal voice was often based on visual inspection on the250

waveforms and/or spectrograms rather than auditory inspection [42, 9, 30]. Similarly, previous VAE analyses of animal251

voice often used a convolutional neural network that processed spectrograms as images of a fixed size [25, 26]. By252

contrast, the present study adopted a RNN [49] to process syllable spectra frame by frame as time series data. Owing to253

the lack of ground truth as well as empirical limitations on experimental validation, it is difficult to adjudicate on the254

best neural network architecture for auto-encoding Bengalese finch syllables and other animals’ voice. Nevertheless,255

RNN deserves close attention as a neural/cognitive model of vocal learning. There is a version of RNN called reservoir256

computer that has been developed to model computations in cortical microcircuits [50, 51]. Future studies may replace257

the LSTM in the ABCD-VAE with a reservoir computer to build a more biologically plausible model of vocal learning258

[52]. Similarly, we may filter some frequency bands in the input sound spectra to simulate the auditory perception of259

the target animal [29], and/or adopt more anatomically/bio-acoustically realistic articulatory systems for the decoder260

module [53]. Such Embodied VAEs would allow constructive investigation of vocal learning beyond mere acoustic261

analysis.262

A visual inspection of classification results shows that the ABCD-VAE can discover individual-invariant categories263

of the Bengalese finch syllables (Fig. 2), which was also supported by their alignment with human annotations and264

low individuality in the classified syllables (Table 1). This speaker-normalization effect is remarkable because the265

syllables exhibit notable individual variations in the continuous feature space mapped into by the canonical VAE and266

cross-individual clustering is difficult there [25, 26, 54]. Previous studies on Bengalese finch and other songbirds267
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often assigned distinct sets of categories to syllables of different individuals, presumably because of similar individual268

variations in the feature space they adopted [9, 11, 30, 44].269

By contrast, speaker-normalized clustering of zebra finch syllables was less successful, as evidenced by the lower270

classification probability (Fig. 3B) and consistency with speaker-specific manual annotations (Table 1) than that of271

Bengalese finch syllables. A visual inspection of category-mate syllables across individuals suggests that one major272

challenge for finding individual-invariant categories is the complex syllables that exhibit multiple elements, or ‘notes’,273

without clear silent intervals (gaps; Fig. 3A). Such complex syllables may be better analyzed by segmenting them274

into smaller vocal units [55, 12, 56], and the prerequisite for appropriate voice segmentation is a major limitation of275

the proposed method because the unclarity of segment boundaries in low-level acoustic spaces is a common problem276

in analyses of vocalization, especially of mammals’ vocalization [44], including human speech [57, 58]. A possible277

solution to this problem (in accordance with our end-to-end clustering) is to categorize sounds frame by frame (e.g., by278

spectrum and MFCCs) and merge contiguous classmate frames to define a syllable-like span [29, 27, 59, 60].279

Context dependency280

According to our analysis of context dependency, Bengalese finches are expected to keep track of up to eight previously281

uttered syllables—not just one or two—during their singing. This is evidenced by the relatively poor performance of282

the song simulator conditioned on the truncated context of one to seven syllables compared to the full-context condition.283

Similarly, we estimated that the production of zebra finch’s songs is dependent on four previously uttered syllables.284

Our findings add a new piece of evidence for long context dependency in Bengalese finch songs found in previous285

studies. Katahira et al. [9] showed that the dependent context length was at least two. They compared the first order and286

second order Markov models, which can only access the one and two preceding syllable(s), respectively, and found287

significant differences between them. A similar analysis was performed on canary songs by Markowitz et al. [11], with288

an extended Markovian order (up to seventh). The framework in these studies cannot scale up to assess longer context289

dependency owing to the empirical difficulty of training higher-order Markov models [61, 62]. By contrast, the present290

study exploited a state-of-the-art neural language model (Transformer) that can effectively combine information from291

much longer contexts than previous Markovian models and potentially refer up to 900 tokens [6]. Thus, the dependency292

length reported in this study is less likely to be upper-bounded by the model limitations and provides a more precise293

estimation (or at least a tighter lower-bound) of the real dependency length in a birdsong than previous studies.294

The long context dependency on eight previous syllables in Bengalese finch songs is also evidenced by experimental295

studies. Bouchard and Brainard [63] found that activities of Bengalese finches’ HVC neurons in response to listening296

to a syllable xt encoded the probability of the preceding syllable sequence xt−L, . . . , xt−1 (i.e., context) given xt,297

or p(xt−L, . . . , xt−1 | xt). They reported that the length L of the context encoded by HVC neurons (that exhibited298

strong activities to the bird’s own song) reached 7–10 syllables, which is consistent with the dependency length of299

eight syllables estimated in the present study. Warren et al. [10] also provided evidence for long context dependency300

from a behavioral experiment. They reported that several pairs of syllable categories of Bengalese finch songs had301

different transitional probabilityies depending on whether or not the same transition pattern occurred in the previous302

opportunity. In other words, P(B | AB . . . A ) 6= P(B | AC . . . A ) where A, B, C are distinct syllable categories,303

the dots represent intervening syllables of an arbitrary length (63 A), and the underline indicates the position of B304

whose probability is measured. Moreover, they found that the probability of such history-dependent transition patterns305

is harder to modify through reinforcement learning than that of more locally dependent transitions. These results are306

consistent with our findings. It often takes more than two transitions for syllables to recur (12.24 syllables on average307

with the SD of 11.02 according to our own Bengalese finch data, excluding consecutive repetitions); therefore, the308

dependency on the previous occurrence cannot be captured by memorizing just one or two previously uttered syllable(s).309

There is also a previous study that suggests a longer context dependency in Bengalese finch songs than estimated in this310

study (i.e.,�8). Sainburg et al. [18] studied the mutual information between birdsong syllables—including Bengalese311

finch ones—appearing at each discrete distance. They analyzed patterns in the decay of mutual information to diagnose312

the generative model behind the birdsong data, and reported that birdsongs were best modeled by a combination of313

a hierarchical model that is often adopted for human language sentences and a Markov process: subsequences of314

the songs were generated from a Markov process and those subsequences were structured into a hierarchy. Mutual315

information decayed exponentially in the local Markov domain, but the decay slowed down and followed the power-law316

as the inter-syllable distance became large. Sainburg et al. estimated that this switch in the decay pattern occurred when317

the inter-syllable distance was around 24 syllables. This estimated length was substantially longer than our estimated318

context dependency on eight syllables. The difference between the two results might be attributed to several factors.319

First, the long-distance mutual information may not be useful for the specific task of predicting upcoming syllables that320

defined the context dependency here and in the previous studies based on language modeling. It is possible that all the321

information necessary for the task is available locally while the mutual information does not asymptote in the local322
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domain (see S3 for concrete examples). Another possible factor responsible for the longer context dependency detected323

by Sainburg et al. is that their primary analysis was based on long-sequence data concatenating syllables recorded in a324

single day (amounting to 2,693–34,588 syllables, 11,985.56 on average, manually annotated with 16–26 labels per325

individual). Importantly, they also showed that the bimodality of mutual information decay in the Bengalese finch song326

became less clear when the analysis was performed on bouts (consisting of 8–398 syllables, 80.98 on average). Since327

our data was more akin to the latter, potential long dependency in the hierarchical domain might be too weak to be328

detected in the language modeling-based analysis.329

We also found that the greater number of syllable categories is assumed, the shorter context length becomes sufficient to330

predict upcoming syllables. We attribute this result to the minor acoustic variations among syllables that are ignored as a331

noise in the standard clustering or manual classification but encoded in the fine-grained classifications. When predicting332

upcoming syllables based on the fine-grained categories, the model has to identify the minor acoustic variations encoded333

by the categories. And the identification of such minor variations improved by referring to the local context, rather than334

syllables far apart from the prediction target. This increases the importance of the local context compared to predictions335

of more coarse-grained categories.336

The reported context dependency on previous syllables also has an implication for possible models of birdsong syntax.337

Feasible models should be able to represent the long context efficiently. For example, the simplest and traditional338

model of the birdsong and voice sequences of other animals—including human language before the deep learning339

era—is the n-gram model, which exhaustively represents all the possible contexts of length n− 1 as distinct conditions340

[61, 62, 7]. This approach, however, requires an exponential number of contexts to be represented in the model. In341

the worst case, the number of possible contexts in Bengalese finch songs is 378 = 3, 512, 479, 453, 921 when there342

are 37 syllable types and the context length is eight as detected in this study. While the effective context length343

can be shortened if birds had a larger vocabulary size, the number of logically possible contexts remains huge (e.g.,344

1605 = 104, 857, 600, 000). Such an exhaustive representation is not only hard to store and learn—for both real birds345

and simulators—but also uninterpretable to researchers. Thus, a more efficient representation of the context syllables346

is required [64]. Katahira et al. [9] assert that the song syntax of the Bengalese finch can be better described with347

a lower-order hidden Markov model [65] than the n-gram model. Moreover, hierarchical language models used in348

computational linguistics (e.g., probabilistic context-free grammar) are known to allow a more compact description349

of human language [66] and animal voice sequences [67] than sequential models like HMM. Another compression350

possibility is to represent consecutive repetitions of the same syllable categories differently from transitions between351

heterogeneous syllables [16, 17] (see also [68] for neurological evidence for different treatments of heterosyllabic352

transitions and homosyllabic repetitions). This idea is essentially equivalent to the run length encoding of digital signals353

(e.g., AAABBCDDEEEEE can be represented as 3A2B1C2D5E where the numbers count the repetitions of the following354

letter) and is effective for data including many repetitions like Bengalese finch’s song. For the actual implementation in355

birds’ brains, the long contexts can be represented in a distributed way [69]: Activation patterns of neuronal ensemble356

can encode a larger amount of information than the simple sum of information representable by individual neurons, as357

demonstrated by the achievements of artificial neural networks [50, 51, 70].358

We conclude the present paper by noting that the analysis of context dependency via neural language modeling is not359

limited to Bengalese/zebra finch’s song. Since neural networks are universal approximators and potentially fit to any360

kind of data [71, 72], the same analytical method is applicable to other animals’ voice sequences [42, 11, 67], given361

reasonable segmentation and classification of sequence components like syllables. Moreover, the analysis of context362

dependency can also be performed in principle on other sequential behavioral data besides vocalization, including dance363

[73, 74] and gestures [75, 76]. Hence, our method provides a crossmodal research paradigm for inquiry into the effect364

of past behavioral records on future decision making.365

Materials and methods366

Recording and preprocessing367

We used the same recordings of Bengalese finch songs that were originally reported in our earlier studies [30, 31]. The368

data were collected from 18 Bengalese finches, each isolated in a birdcage placed inside a soundproof chamber. All the369

birds were adult males (>140 days after hatching). All but two birds were obtained from commercial breeders, and the370

other two birds (bird ID: b10 and b20) were raised in laboratory cages. Note that one bird (b20) was a son of another371

(b03), and learned its song from the father bird. No other birds had any explicit family relationship. The microphone372

(Audio-Technica PRO35) was installed above the birdcages. The output of the microphone was amplified using a mixer373

(Mackie 402-VLZ3) and digitized through an audio interface (Roland UA-1010/UA-55) at 16-bits with a sampling374

rate of 44.1 kHz. The recordings were then down-sampled to 32 kHz [30, 31]. Recording process was automatically375
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started upon detection of vocalization and terminated when no voice was detected for 500–1000 msec (the threshold376

was adjusted for individual birds). Thus, the resulting recordings roughly corresponded to bout-level sequences, and we377

used them as the sequence unit for the analysis of context dependency.378

An additional dataset for song recordings of 20 zebra finches were kindly provided by Prof. Kazuhiro Wada (Hokkaido379

University). The recording was performed in the same procedure as previously reported [77, 78].380

Song syllables were segmented from the continuous recordings using the thresholding algorithm proposed in the381

previous studies [30, 31]. The original waveforms were first bandpass-filtered at 1–8 kHz. Then, we obtained their382

amplitude envelope via full-wave rectification and lowpass-filtered it at 200 Hz. Syllable onsets and offsets were383

detected by thresholding this amplitude envelope at a predefined level, which was set at 6–10 SD above the mean of384

the background noise level (the exact coefficient of the SD was adjusted for individual birds). The mean and SD of385

background noise were estimated from the sound level histogram . Sound segments detected from this thresholding386

algorithm were sometimes too close to their neighbors (typically separated by a <5 msec interval), and such coalescent387

segments were reidentified as a single syllable, by lower-bounding possible inter-syllable gaps at 3–13 msec for388

Bengalese finches and 3–10 msec for zebra finches (both adjusted for individual birds). Finally, extremely short sound389

segments were discarded as noise, by setting a lower bound on possible syllable durations at 10–30 ms for Bengalese390

finches and 5–30 msec for zebra finches (adjusted for individual birds). These segmentation processes yielded 465,310391

Bengalese finch syllables (≈ 10.79 hours) and 237,610 zebra finch syllables (≈7.72 hours) in total.392

Clustering of syllables393

To perform an analysis parallel to the discrete human language data, we classified the segmented syllables into discrete394

categories in an unsupervised way. Specifically, we used an end-to-end clustering method, named the seq2seq ABCD-395

VAE, that combined (i) neural network-based extraction of syllable features and (ii) Bayesian classification, both of396

which worked in an unsupervised way (i.e., without top-down selection of acoustic features or manual classification397

of the syllables). This section provides an overview of our method, with a brief, high-level introduction to the two398

components. Interested readers are referred to S1 in the supporting information, where we provide more detailed399

information. One of the challenges to clustering syllables is their variable duration as many of the existing clustering400

methods require their input to be a fixed-dimensional vector. Thus, it is convenient to represent the syllables in such a401

format [79, 80]. Previous studies on animal vocalization often used acoustic features like syllable duration, mean pitch,402

spectral entropy/shape (centroid, skewness, etc.), mean spectrum/cepstrum, and/or Mel-frequency cepstral coefficients at403

some representative points for the fixed-dimensional representation [9, 30, 67]. In this study, we took a non-parametric404

approach based on a sequence-to-sequence (seq2seq) autoencoder [81]. The seq2seq autoencoder is a RNN that first405

reads the whole spectral sequence of an input syllable frame by frame (encoding; the spectral sequence was obtained406

by the short-term Fourier transform with the 8 msec Hanning window and 4 msec stride), and then reconstructs the407

input spectra (decoding; see the schematic diagram of the system provided in the upper half of Fig. 1B). Improving408

the precision of this reconstruction is the training objective of the seq2seq autoencoder. For successful reconstruction,409

the RNN must store the information about the entire syllable in its internal state—represented by a fixed-dimensional410

vector—when it transitions from the encoding phase to the decoding phase. And this internal state of the RNN served411

as the fixed-dimensional representation of the syllables. We implemented the encoder and decoder RNNs by the LSTM412

[49].413

One problem with the auto-encoded features of the syllables is that the encoder does not guarantee their interpretability.414

The only thing the encoder is required to do is push the information of the entire syllables into fixed-dimensional vectors,415

and the RNN decoder is so flexible that it can map two neighboring points in the feature space to completely different416

sounds. A widely adopted solution to this problem is to introduce Gaussian noise to the features, turning the network417

into the variational autoencoder [24, 81, 82]. Abstracting away from the mathematical details, the Gaussian noise418

prevents the encoder from representing two dissimilar syllables close to each other. Otherwise, the noisy representation419

of the two syllables will overlap and the decoder cannot reconstruct appropriate sounds for each.420

The Gaussian VAE represents the syllables as real-valued vectors of an arbitrary dimension, and researchers need to421

apply a clustering method to these vectors in order to obtain discrete categories. This two-step analysis has several422

problems:423

i The VAE is not trained for the sake of clustering, and the entire distribution of the encoded features may not424

be friendly to existing clustering methods.425

ii The encoded features often include individual differences and do not exhibit inter-individually clusterable426

distribution (see Figuref 2D and the supporting information S1.4).427
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To solve these problems, this study adopted the ABCD-VAE, which encoded data into discrete categories with a428

categorical noise under the Dirichlet prior, and performed end-to-end clustering of syllables within the VAE (Fig. 1B).429

The ABCD-VAE married discrete autoencoding techniques [46, 28, 29] and the Bayesian clustering popular in430

computational linguistics and cognitive science [35, 36]. It has the following advantages over the Gaussian VAE +431

independent clustering (whose indices, except iii, correspond to the problems with the Gaussian VAE listed above):432

i Unlike the Gaussian VAE, the ABCD-VAE includes clustering in its learning objective, aiming at statistically433

grounded discrete encoding of the syllables.434

ii The ABCD-VAE can exploit a speaker-normalization technique that has proven effective for discrete VAEs:435

The “Speaker Info.” is fed directly to the decoder (Fig. 1B), and thus individual-specific patterns need not be436

encoded in the discrete features [28, 29].437

iii Thanks to the Dirichlet prior, the ABCD-VAE can detect the statistically grounded number of categories on its438

own [32]. This is the major update from the previous discrete VAEs that eat up all the categories available439

[46, 28, 29].440

Note that the ABCD-VAE can still measure the similarity/distance between two syllables by the cosine similarity of441

their latent representation immediately before the computation of the classification probability (i.e., logits).442

The original category indices assigned by the ABCD-VAE were arbitrarily picked up from 128 possible integers and443

not contiguous. Accordingly, the category indices reported in this paper were renumbered for better visualization.444

Other clustering methods445

Clustering results of the ABCD-VAE were evaluated in comparison with baselines and toplines provided by the446

combination of feature extraction by the Gaussian VAE [24, 25, 26] and clustering on the VAE features by GMM447

[35, 32, 36]. The number K of GMM clusters was either predetermined or auto-detected. The former fit K multivariate448

Gaussian distributions by the expectation maximization algorithm while the latter was implemented by Bayesian449

inference with the Dirichlet distribution prior, approximated by mean-field variational inference. Since a single run450

of the expectation maximization and variational inference only achieved a local optimum, the best among 100 runs451

with random initialization was adopted as the clustering results. We used the scikit-learn implementation of GMMs452

(GaussianMixture and BayesianGaussianMixture) [83]. The default parameter values were used unless otherwise453

specified above.454

In the analysis of context dependency, we obtained fine-/coarse-grained classifications of syllables based on the features455

extracted immediately before the computation of classification logits by the ABCD-VAE. The ABCD-VAE computes456

the classification probability based on the inner-product of those features and the reference vector of each category.457

Thus, we can compute the similarity among syllables by their cosine in the feature space, and accordingly, we applied458

k-means clustering on the L2-normalized features. We again adopted the scikit-learn implementation of k-means459

clustering [83].460

Evaluation metrics of syllable clustering461

The syllable classification yielded by the ABCD-VAE was evaluated by its alignment with manual annotation by a462

human expert. We used two metrics to score the alignment: Cohen’s Kappa coefficient [33] and homogeneity [34].463

Cohen’s Kappa coefficient is a normalized index for the agreement rate between two classifications, and has been used464

to evaluate syllable classifications in previous studies [9, 30]. One drawback of using this metric is that it only works465

when the two classifications use the same set of categories. This requirement was not met in our case, as the model466

predicted classification and human annotation had different numbers of categories, and we needed to force-align each467

of the model-predicted categories to the most common human-annotated label to compute Cohen’s Kappa [9]. On the468

other hand, the second metric, homogeneity, can score alignment between any pair of classifications, even with different469

numbers of categories. Homogeneity is defined based on the desideratum that each of the predicted clusters should470

only contain members of a single ground truth class. Mathematically, violation of this desideratum is quantified by the471

conditional entropy of the distribution of ground truth classes C given the predicted clusters K:472
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homogeneity(C,K) :=

{
1 H(C) = 1

1− H(C|K)
H(C) Otherwise

(1)

H(C | K) :=−
∑
k∈K

∑
c∈C

|c ∩ k|
N

log
|c ∩ k|
|k|

(2)

H(C) :=−
∑
c∈C

|c|
N

log
|c|
N

(3)

where N denotes the total number of data points, and |c ∩ k| is the number of data that belong to the ground truth473

class c and the model-predicted category k. The non-conditional entropy H(C) normalizes the homogeneity so that it474

ranges between 0 and 1. As we noted in the Result section, homogeneity does not penalize overclassification, so it is475

often combined with another evaluation metric for scoring overclassification, called completeness, and constitutes a476

more comprehensive metric named V-measure [34]. We report the completeness and V-measure scores of the syllable477

clustering results in the supporting information S1.5.478

Language modeling479

After the clustering of the syllables, each sequence, x := (x1, . . . , xT ), was represented as a sequence of discrete480

symbols, xt. We performed the analysis of context dependency on these discrete data.481

The analysis of context dependency made use of a neural language model based on the current state-of-the-art482

architecture, Transformer [19, 6]. We trained the language model on 7,779 sequences of Bengalese finch syllables483

(amounting to 458,753 syllables in total; see Table 3) and 11,722 sequences of zebra finch syllables (234,674 syllables484

in total). These training data were defined by the complement of the 100 test sequences that were selected in the485

following way so that they were long enough (i) and at least one sequence per individual singer was included (ii):486

i The sequences containing 15 or more syllables were selected as the candidates.487

ii For each of the 18 Bengalese finches and 20 zebra finches, one sequence was uniformly randomly sampled488

among the candidates uttered by that finch.489

iii The other 82/80 sequences were uniformly randomly sampled from the remaining candidates.490

The training objective was to estimate the probability of the whole sequences x conditioned on the information about491

the individual s uttering x: That is, P(x | s). Thanks to the background information s, the model did not need to infer492

the singer on its own. Hence, the estimated context dependency did not comprise the correlation among syllables with493

individuality, which would not count as a major factor especially from a generative point of view.494

The joint probability, P(x | s), was factorized as P(x | s) =
∏T

t=1 P(xt | x1, . . . , xt−1, s), and, the model took a form495

of the left-to-right processor, predicting each syllable xt conditioned on the preceding context <sos>, x1, . . . , xt−1,496

where <sos> stands for the special category marking the start of the sequence. See the supporting information S2 for497

details on the model parameters and training procedure.498

While the VAE training excluded incompletely recorded syllables positioned at the beginning/end of recordings, we499

included them in the language modeling by assigning them with a distinct category. This corresponds to the replacement500

of non-frequent words with the “unk(nown)” label in natural language processing.501

Measuring context dependencies502

After training the language model, we estimated how much of the context x1, . . . , xt−1 was used effectively for the503

model to predict the upcoming syllable xt in the test data. Specifically, we wanted to know the longest length L of the504

truncated context xt−L, . . . , xt−1 such that the prediction of xt conditioned on the truncated context was worse (with505

at least 1% greater perplexity) than the prediction based on the full context (Fig. 4A). This context length L is called the506

effective context length (ECL) of the trained language model [5].507

One potential problem with the ECL estimation using the birdsong data was that the test data was much smaller in508

size than the human language corpora used in the previous study. In other words, the perplexity, from which the ECL509

was estimated, was more likely to be affected by sampling error. To obtain a more reliable result, we bootstrapped the510

test data (10,000 samples) and used the five percentile of the bootstrapped differences between the truncated and full511
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context predictions. Note that the bootstrapping was performed after the predictive probability of the test syllables was512

computed, so there was no perturbation in the available contexts or any other factors affecting the language model. We513

call this bootstrapped version of ECL the statistically effective context length (SECL). It is more appropriate to estimate514

the SECL by evaluating the same set of syllables across different lengths of the truncated contexts. Accordingly, only515

those that were preceded by 15 or more syllables (including <sos>) in the test sequences were used for the analysis516

(4,918 syllables of Bengalese finches and 1,536 syllables of zebra finches; see Table 3).517

Supporting information518

S1–3 Supplementary Methods & Discussion Detailed information of the proposed methods and comparison of the519

language-modeling and information-theoretic approaches to context dependency.520
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