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Abstract 14 

Bacteriophage (“phage”) are both predators and evolutionary drivers for bacteria, notably 15 

contributing to the spread of antimicrobial resistance (AMR) genes by generalised transduction. Our 16 

current understanding of the dual nature of this relationship is limited. We used an interdisciplinary 17 

approach to quantify how these interacting dynamics can lead to the evolution of multi-drug resistant 18 

bacteria. We co-cultured two strains of Methicillin-resistant Staphylococcus aureus, each harbouring 19 

a different antibiotic resistance gene, with 80 generalized transducing phage. After a growth phase 20 

of 8h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, the level of 21 

which was dependent on the starting concentration of phage. We detected double-resistant bacteria 22 

as early as 7h, indicating that transduction of AMR genes had occurred. We developed multiple 23 

mathematical models of the bacteria and phage relationship, and found that phage-bacteria dynamics 24 

were best captured by a model in which the phage burst size decreases as the bacteria population 25 

reaches stationary phase, and where phage predation is frequency-dependent. We estimated that 26 

one in every 108 new phage generated was a transducing phage carrying an AMR gene, and that 27 

double-resistant bacteria were always predominantly generated by transduction rather than by 28 

growth. Our results suggest a fundamental shift in how we understand and model phage-bacteria 29 

dynamics. Although rates of generalised transduction may seem insignificant, they are sufficient to 30 

consistently lead to the evolution of multi-drug resistant bacteria. Currently, the potential of phage to 31 

contribute to the growing burden of AMR is likely underestimated.   32 
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Main 33 

To counter the rapidly increasing global public health threat of antimicrobial resistance (AMR), we 34 

must urgently develop new solutions 1. “Phage therapy” is one such tool which has recently seen a 35 

renewed interest 2. This relies on using bacteriophage (or “phage”), major bacteria predators and the 36 

most abundant organisms on the planet 3, as antimicrobial agents. However, phage are also natural 37 

drivers of bacterial evolution through horizontal gene transfer by “transduction” 4,5. AMR genes can 38 

be transferred by transduction at high rates, both in vitro and in vivo 6–8. The dual nature of phage 39 

(predation and transduction) makes them a double-edged sword in the fight against AMR, as they are 40 

themselves capable of contributing to the spread of the problem they aim to solve, yet our 41 

understanding of these dynamics and how to best represent them is limited. 42 

There are two types of transduction; here, we focus on “generalised transduction”, which occurs 43 

during the phage lytic cycle, when non-phage genome DNA is mistakenly packaged in a new phage 44 

particle (Fig. 1). The resulting transducing phage released upon lysis can then inject this genetic 45 

material into another bacterium. Current guidelines for phage therapy recommend that exclusively 46 

lytic phage should be used, removing the risk of the second type of transduction which relies on 47 

lysogeny (“specialised transduction”) 9,10. The possibility of generalised transduction remains, yet is 48 

currently widely dismissed as too rare to be significant, despite being a common mechanism for the 49 

transfer of plasmids, major vectors of AMR genes 4. Previous reviews have highlighted the necessity 50 

to further investigate the potential impact of transduction in the context of phage therapy 11–13. 51 

Mathematical models have been used to gain insights into phage predation dynamics which cannot 52 

be obtained solely with experimental work 14. Such models typically assume a density-dependent 53 

interaction, with new phage infections calculated as the number of susceptible bacteria, multiplied by 54 

the number of phage and an adsorption constant 14–16. This approach has limitations, as density-55 

dependent models have failed to predict equilibriums observed in vitro between phage and E. coli 17. 56 
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Moreover, phage and bacterial replication are likely to be linked, as they both rely on the bacterial 57 

machinery; phage predation may slow as bacteria reach stationary phase 14,17–23. This is still unclear, 58 

as models often only rely on data of phage-bacteria interactions measured once per day, or for a few 59 

hours 17–19,24. A current lack of detailed data means that capturing these underlying dynamics which 60 

occur in less than an hour has not yet been possible. 61 

To the best of our knowledge, only three modelling studies have included transduction of AMR genes 62 

25–27. All three modelled complex environments, including resistance to phage, antibiotics, and both 63 

lytic and lysogenic cycles. This complexity, combined with the fact that these studies were not paired 64 

with complementary in vitro or in vivo data, means that they relied on assumptions and previously 65 

published estimates, instead of parameter values derived from a single environment and set of 66 

conditions. This limits the wider reliability of conclusions made using these models 13. 67 

In this article, we investigate the dual nature of phage dynamics using the clinically relevant bacteria 68 

Methicillin-resistant Staphylococcus aureus (MRSA) 28. Transduction is the main mechanism of 69 

horizontal gene transfer driving evolution for these bacteria 29, and phage therapy is currently being 70 

investigated to treat MRSA infections 30,31. We generate novel in vitro data on the interaction between 71 

MRSA and phage capable of generalised transduction, while simultaneously developing mathematical 72 

models to clarify the underlying dynamics. 73 

 74 
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75 

Fig. 1: Phage lytic cycle and generalised transduction. In this environment, only some bacteria carry 76 

an antimicrobial resistance (AMR) gene (shown in green). The lytic cycle starts when a lytic phage 77 

infects a bacterium by binding and injecting its DNA (1). Phage molecules degrade bacterial DNA and 78 

utilise bacterial resources to create new phage components and replicate (2). These components are 79 

then assembled to form new phage particles (3). At this stage, bacterial DNA leftover in the cell can 80 

be packaged by mistake instead of phage DNA, which creates a transducing phage and starts the 81 

process of generalised transduction. In our example, the transducing phage carries the AMR gene. 82 

After a latent period of typically several minutes, the phage trigger lysis of the bacterium, bursting it 83 

and releasing the phage (4). The transducing phage can infect another bacterium, binding and injecting 84 

the AMR gene it is carrying (5). If this gene is successfully integrated into the bacterial chromosome 85 

(6), this creates a new transductant bacterium carrying this AMR gene (7). Note that the transduced 86 

bacterial DNA could also be a plasmid, in which case it would circularise instead of integrating into the 87 

chromosome of the transductant bacterium. Not to scale.  88 
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Results 89 

Transduction and phage predation dynamics in vitro 90 

We focused on two laboratory strains of Staphylococcus aureus, each resistant to either erythromycin 91 

(and referred to as BE) or tetracycline (BT). In our experimental conditions, the antimicrobial resistance 92 

(AMR) genes can only be transferred between bacteria by generalised transduction mediated by 93 

exogenous phage. Transduction of either AMR gene to the other strain will result in the formation of 94 

double-resistant progeny (referred to as BET). 95 

We conducted a co-culture with only the two single-resistant strains and exogenous lytic phage 80 96 

(PL) capable of generalised transduction. We grew the bacteria and phage over 24h, with hourly counts 97 

of bacteria and lytic phage between 0-8h and 16-24h. The starting concentration of bacteria was 104 98 

colony-forming units (cfu) per mL, and of phage was approximately either 103, 104 or 105 plaque-99 

forming units (pfu) per mL, equivalent to multiplicities of infection of 0.1, 1 and 10 (defined as starting 100 

ratio of phage to bacteria 32). 101 

We detected double-resistant progeny (BET) as early as 7h in our co-cultures, indicating that transfer 102 

of AMR genes by generalised transduction had occurred (Fig. 2). BET numbers remained below 100 103 

cfu/mL after 24h, but were consistently generated in each of our experimental replicates. 104 

The starting concentration of exogenous phage affected the equilibrium values in our co-cultures (Fig. 105 

2). With a starting concentration of either 103 or 104 pfu/mL, lytic phage reached an equilibrium after 106 

8h (at approximately 105 pfu/mL for a starting concentration of 103, and 107 pfu/mL for 104). In both 107 

cases, bacteria replicated for 8h before reaching an equilibrium around 109 cfu/mL, similar to what 108 

was seen in the absence of exogenous phage (Supplementary Fig. 1). With a starting phage 109 

concentration of 105 pfu/mL, we did not see an equilibrium, as phage numbers kept increasing up to 110 
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1010 pfu/mL by 24h, and bacteria numbers started decreasing after 20h. The datasets are shown 111 

overlaid in Supplementary Fig. 2. 112 

We confirmed that the equilibriums described were not due to bacteria becoming resistant to phage 113 

during the 24h co-culture by repeating our experiment with an inocula of bacteria previously exposed 114 

to the phage for 24h, instead of stock bacteria. We did not see any difference in phage and bacteria 115 

numbers after 24h when using either the previously exposed or stock bacteria (data not shown).  116 

 117 

 118 

Fig. 2: The starting concentration of exogenous phage 80 affected the equilibrium values of phage 119 

and bacteria in our co-cultures. The starting concentration of both single-resistant S. aureus parent 120 

strains (BE to erythromycin & BT to tetracycline) was 104 colony-forming units (cfu) per mL. Each panel 121 

shows the results with a different starting concentration of exogenous phage 80 (PL): either 103, 104 122 

or 105 plaque-forming units (pfu) per mL. We detected double-resistant progeny (BET) as early as 7h, 123 
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indicating that transduction occurred rapidly. Error bars indicate mean +/- standard error, from 3 124 

experimental replicates. There is no data for the time period 9h-15h. 125 

Bacterial growth estimates in the absence of exogenous phage 126 

When grown together in the absence of exogenous phage, single and double resistant bacteria 127 

replicated exponentially and reached stationary phase after 8h at 109 colony-forming units (cfu) per 128 

mL (Supplementary Fig. 1). BE did not show a significant fitness cost relative to BT over 24h of growth 129 

(mean relative fitness 1.02, sd 0.03). The double-resistant progeny BET did not show a significant fitness 130 

cost relative to either single-resistant parent strain (mean relative fitness to BE: 0.96, sd 0.06; mean 131 

relative fitness to BT: 0.98, sd 0.03). 132 

We obtained growth rate estimates by fitting a logistic growth model to the in vitro data. The median 133 

estimated growth rates were 1.61 for BE (95% credible interval 1.59-1.63), 1.51 for BT (1.49-1.53) and 134 

1.44 for BET (1.42-1.47), with a total carrying capacity of 2.76 x 109 cfu/mL (2.61 x 109 - 2.98 x 109). 135 

 136 

Investigation of possible phage-bacteria interactions using a flexible 137 

modelling framework 138 

Model structure 139 

We designed a mathematical model to reproduce the in vitro phage-bacteria dynamics, including 140 

generalised transduction of resistance genes. During our experiment, our co-culture contained up to 141 

three strains of bacteria: the two single-resistant parents (BE, BT) and the double-resistant progeny 142 

(BET). Although we were only able to count lytic phage (PL), based on the biology of generalised 143 

transduction (Fig. 1) we know that there were also transducing phage carrying either the erythromycin 144 
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resistance gene (PE), or the tetracycline resistance gene (PT). The corresponding model diagram is 145 

shown in Fig. 3a. The complete model equations can be found in Methods.  146 

Using this modelling framework, we explored a combination of different phage-bacteria interactions, 147 

described below (Fig. 3b-c). By fitting the models to our experimental data, we could rule out certain 148 

interactions and suggest the best model to reproduce the phage-bacteria dynamics seen in vitro. 149 

 150 

 151 
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Fig. 3: Phage predation and generalised transduction model diagram, and different phage-bacteria 153 

interactions considered. (a) Model diagram. Each bacteria strain (BE resistant to erythromycin, BT 154 

resistant to tetracycline, or BET resistant to both) can replicate (purple). The lytic phage (PL) multiply 155 

by infecting a bacterium and bursting it to release new phage (gold). This process can create 156 

transducing phage (PE or PT) carrying a resistance gene (ermB or tetK respectively) taken from the 157 

infected bacterium (green). These transducing phage can then generate new double resistant progeny 158 

(BET) by infecting the bacteria strain carrying the other resistance gene (green). (b) Phage predation 159 

in the model is either density- or frequency-dependent. With a density-dependent interaction, the 160 

number of infections scales linearly with the number of phage and bacteria (top). A frequency-161 

dependent interaction illustrates that some phage may not infect a bacterium, or that multiple phage 162 

may infect the same bacterium (bottom). (c) Phage predation in the model can decrease as bacterial 163 

growth decreases. A change in bacterial growth phase can affect surface receptors, leading to a 164 

reduced phage adsorption rate (top). Since phage replication relies on bacterial processes, a reduced 165 

bacterial growth can translate into a reduced phage burst size (bottom). (d) Proposed function linking 166 

phage predation parameters to bacterial growth. This shows the multiplier applied to decrease phage 167 

parameters as the bacterial population increases towards carrying capacity, equivalent to a decrease 168 

in bacterial growth. Here, the carrying capacity is 2.76 x 109 colony-forming units (cfu)/mL, estimated 169 

from our data.  170 

 171 

First phage-bacteria interaction: density versus frequency-dependent phage predation 172 

The most common approach to model phage-bacteria dynamics is to assume that phage predation is 173 

density-dependent 14. This means that, over one time step, the number of phage infecting bacteria 174 

and the number of bacteria infected by phage are both equal to the product of the number of bacteria 175 

(B), phage (P), and phage adsorption rate (), as shown in equation (1). 176 

𝐵 ∗ 𝑃 ∗ 𝛽  (1) 177 
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The density-dependent interaction implies that the number of new infections scales linearly with the 178 

number of phage and bacteria (Fig. 3b). Therefore, even if we keep a constant number of phage, 179 

increasing bacteria numbers always leads to a linear increase in the estimated number of new 180 

infections. Although this simplification is useful and holds for a range of values, it has been suggested 181 

that it is not biologically realistic for small numbers of phage or bacteria, since in reality one phage can 182 

only infect one bacterium over one time step 17.  183 

To overcome these issues, we consider an alternative interaction, where phage predation is 184 

frequency-dependent 33. This accounts for the fact that one phage does not necessarily always lead to 185 

one infection. For example, phage may sometimes fail to bind to bacteria, or multiple phage may bind 186 

to the same bacterium 32 (Fig. 3b). Importantly, this mathematical interaction guarantees that, at any 187 

given time point, the number of phage infecting bacteria and the number of bacteria infected by phage 188 

can never be greater than the total number of phage or bacteria in the system. Over one time step, 189 

the proportion of phage infecting any bacteria () is defined by equation (2). 190 

𝜆 = (1 − 𝑒𝑥𝑝 (−𝛽 ∗ 𝐵) ) (2) 191 

Similarly, the proportion of bacteria being infected by at least one phage () is calculated with 192 

equation (3). 193 

φ = (1 − 𝑒𝑥𝑝 (−
𝜆∗𝑃

𝐵
) ) (3) 194 

On their own, the density and frequency-dependent interactions shown above cannot reproduce the 195 

equilibriums seen in our experimental data (see Supplementary Information for the equilibrium 196 

analysis). Despite these being common methods to represent phage-bacteria interactions in 197 

mathematical models, previous analyses have suggested that these do not capture the equilibrium 198 

levels we and others have seen 18,34. Instead, phage-bacteria co-existence may be explained by 199 

variations in phage predation parameters depending on bacterial resources availability, or bacterial 200 
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growth rate 14,17–22. However, to the best of our knowledge a simple mathematical expression linking 201 

phage predation to bacterial growth has not yet been developed. 202 

 203 

Second phage-bacteria interaction: dependence of phage predation on bacterial growth  204 

Here, we consider that a decrease in bacterial growth as bacteria reach stationary phase could firstly 205 

affect the phage adsorption rate , due to changes in receptors on bacterial surfaces, which affect 206 

opportunities for phage to bind (Fig. 3c). Secondly, this could affect phage production, and thus burst 207 

size , as phage replication relies on bacterial processes and may decrease when bacterial growth 208 

slows down (Fig. 3c). Using a single phage predation multiplier, with the same principle of logistic 209 

growth applied to bacteria, we allow either or both  and  to decrease as bacterial growth decreases 210 

in our model (equations (4) and (5)). 211 

𝛽 = β𝑚𝑎𝑥 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
)  (4) 212 

𝛿 = δ𝑚𝑎𝑥 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
)  (5) 213 

These equations imply that, as bacterial population size increases towards carrying capacity (Bmax), 214 

phage parameters will be reduced (Fig. 3d). 215 

 216 

Identification of the best-fitting phage-bacteria interactions to 217 

reproduce the in vitro dynamics 218 

Overall, we considered 6 different models, either density- or frequency-dependent, and with either or 219 

both the phage adsorption rate and burst size linked to bacterial growth. Note that we did not include 220 
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a phage decay rate in these models, as this did not affect the dynamics of the system over 24h, for a 221 

wide range of decay rates (Supplementary Fig. 3).  222 

We used a Bayesian methodology to fit the models simultaneously to the lytic phage and double-223 

resistant progeny numbers from the transduction co-culture datasets with starting phage 224 

concentrations of 103 and 105 pfu/mL (Fig. 2), and tested whether the estimated parameters could 225 

reproduce the dynamics seen with the starting phage concentration of 104 pfu/mL.  226 

All models successfully reproduced the trends seen in vitro when the phage were started at either 103 227 

and 104 pfu/mL (Fig. 4a-b). However, only the two models where only phage burst size decreases as 228 

the bacteria population approaches carrying capacity were able to reproduce the increase in phage 229 

numbers seen in the later hours of the 105 pfu/mL dataset, despite all models having been fitted to 230 

this dataset (Fig. 4a-b). This was confirmed by calculating the average Deviance Information Criteria 231 

(DIC) value for the models, which favours best-fitting models while penalising more complex models 232 

(i.e. with more parameters) 35. The two models where only phage burst size decreases as the bacteria 233 

population approaches carrying capacity had the lowest DIC values, indicating that they were the 234 

better-fitting models (Table 1). 235 

Our initial experiments considered the dynamics over 24h for varying phage starting concentrations. 236 

To test the ability of our model to recreate the dynamics under changing bacterial levels, we replicated 237 

our transduction co-culture experiments with starting concentrations of 106 cfu/mL bacteria instead 238 

of 104 cfu/mL, varying the starting phage concentration between 104 and 106 pfu/mL, and measuring 239 

bacteria and phage numbers after 24h of co-culture. We then used the estimated parameter values 240 

(Table 1) to try to reproduce these 24h numbers of bacteria and phage. 241 

Increasing the starting phage concentration led to an increase in the number of phage after 24h (Fig. 242 

4c). For a starting phage concentration between 104 and 106 pfu/mL, increasing starting phage 243 

numbers did not affect single-resistant parents BE and BT numbers after 24h, but led to a progressive 244 
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increase in double-resistant progeny BET numbers. Increasing starting phage numbers above 106 245 

pfu/mL caused bacteria numbers after 24h to decrease. 246 

Using the estimated parameter values (Table 1) with the model where only burst size is linked to 247 

bacterial growth, we see that the density model cannot reproduce these dynamics as it predicts that 248 

bacteria become extinct rapidly (Fig. 4c).  The frequency-dependent model is able to reproduce these 249 

trends, but fails to recreate the exact same numbers of phage and bacteria, predicting a decline in 250 

bacterial levels when the starting phage concentration increases above 105 pfu/mL, a lower threshold 251 

than seen in the data (Fig. 4c). The same overall trends are seen for the models where only the 252 

adsorption rate is linked to bacterial growth, or both adsorption rate and burst size (Supplementary 253 

Fig. 4).  254 

 255 

 256 
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Fig. 4: Accuracy of the best-fitted models to reproduce in vitro phage-bacteria dynamics. (a-b) The 257 

models with only phage burst size linked to bacterial growth are the most accurate to reproduce in 258 

vitro trends in lytic phage (a) and double resistant bacteria (b) numbers, starting from a bacteria 259 

concentration of 104 cfu/mL and varying phage concentrations. All models (dashed lines) can 260 

reproduce the trends seen in vitro when phage are started at 103 or 104 pfu/mL (data in solid lines), 261 

but only the models with just the phage burst size linked to bacterial growth (coloured model output) 262 

can reproduce the trend seen when phage are started at 105 pfu/mL. Other models (grey) either only 263 

have the phage adsorption rate linked to bacterial growth, or both the phage adsorption rate and 264 

burst size. Models are fitted to the 103 and 105 data, and tested with the 104 data. Parameter values 265 

used are the median fitted values (Table 1). Shaded areas indicate standard deviation generated from 266 

Poisson resampling of model results. Error bars for the data (solid lines) indicate mean +/- standard 267 

error, from 3 experimental replicates. (c) When further testing fitted model dynamics starting from 268 

106 cfu/mL bacteria and varying phage concentrations, the density-dependent model incorrectly 269 

predicts bacterial extinction, while the frequency-dependent model reproduces the trend, but not 270 

the exact values of the 24h data. In the co-culture used to generate the data, each single-resistant 271 

parent strain (BE and BT) is added at a starting concentration of 106 cfu/mL, and no double-resistant 272 

progeny (BET) are initially present. The starting concentration of lytic phage (PL) varies (x axis). Points 273 

indicate mean results, and are each slightly shifted horizontally to facilitate viewing. Error bars indicate 274 

either mean +/- standard deviation for the models (left/centre panels), or mean +/- standard error for 275 

the data (right panel). Parameter values used are the median fitted values (Table 1).276 
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Table 1: Estimated parameter values from fitting to in vitro data. Values show median and 95% credible intervals for posterior distributions. Parameter units 

are indicated in parentheses. Fitting was performed using the Markov chain Monte Carlo Metropolis–Hastings algorithm and the data from the co-culture 

with a starting bacterial concentration of 104 cfu/ml and phage concentration of 103 and 105 pfu/ml. DIC: Deviance Information Criteria.  A smaller DIC 

indicates better model fit. DIC values are relative to the smallest DIC calculated, which is for the frequency-dependent model with only burst size linked to 

bacterial growth (line 5, parameters in bold). 

Interaction 

type 

Adsorption 

rate linked 

to growth 

Burst size 

linked to 

growth 

Adsorption rate  (phage-1 

bacteria-1 hour-1) 

Burst size  

(phage) 

Transducing phage proportion 

(proportion of burst size) 

Phage latent 

period  (hour) 

DIC 

Density 

dependent 

Yes No 4.5 x 10-9 (4.1 x 10-9 ; 5.0 x 10-9) 12 (10 ; 14) 3.1 x 10-8 (1.5 x 10-8 ; 5.8 x 10-8) 0.64 (0.55 ; 0.73) 610 

No Yes 1.6 x 10-10 (1.5 x 10-10 ; 1.7 x 10-10) 79 (72 ; 86) 1.4 x 10-8 (1.1 x 10-8 ; 1.7 x 10-8) 0.65 (0.62 ; 0.69) 63 

Yes Yes 4.3 x 10-9 (3.9 x 10-9 ; 4.6 x 10-9) 43 (37 ; 49) 1.2 x 10-8 (6.4 x 10-9 ; 2.3 x 10-8) 0.93 (0.86 ; 0.99) 298 

Frequency 

dependent 

Yes No 5.1 x 10-9 (3.7 x 10-9 ; 6.7 x 10-9) 10 (8 ; 12) 3.1 x 10-7 (2.3 x 10-7 ; 4.3 x 10-7) 0.60 (0.50 ; 0.69) 680 

No Yes 2.3 x 10-10 (2.1 x 10-10 ; 2.4 x 10-10) 76 (70 ; 83) 1.0 x 10-8 (8.5 x 10-9 ; 1.4 x 10-8) 0.72 (0.69 ; 0.77) 0 

Yes Yes 4.7 x 10-9 (3.8 x 10-9 ; 5.8 x 10-9) 31 (26 ; 37) 1.7 x 10-7 (1.3 x 10-7 ; 2.1 x 10-7) 0.88 (0.79 ; 0.96) 370 
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Analysis of phage predation and transduction dynamics 1 

Parameter estimates for our best-fitting model (with a frequency-dependent interaction and a link 2 

between phage burst size and bacterial growth only) suggest that the adsorption rate is 2.3 x 10-10 3 

(95% credible interval: 2.1 x 10-10 - 2.4 x 10-10) which is the smallest estimate from the models (Table 4 

1). On the other hand, the estimated burst size is relatively large at 76 (70 - 83) phage, and is higher 5 

than a previous in vitro estimate for 80 of 40 36. However, due to the decrease in burst size when 6 

bacteria are in stationary phase, we expect that this number would change depending on the 7 

conditions under which it is measured (Fig. 5a). Finally, the estimated latent period of 0.72h (0.69 - 8 

0.77) is slightly longer than a previous in vitro estimate of 0.67h 36. Regarding the other models, we 9 

note some biologically unlikely parameter estimates which further suggest that these models are 10 

inappropriate, such as the low burst size for the models with only the adsorption rate linked to 11 

bacterial growth (12 (10 - 14) and 10 (8 - 12)), or the high latent period for the models with both 12 

adsorption rate and burst size linked to bacterial growth (0.93 (0.86 - 0.99) and 0.88 (0.79 - 0.96)) 13 

(Table 1). 14 

We used our best-fitting model to reproduce our in vitro data (Fig. 2) and uncover the underlying 15 

phage-bacteria dynamics. Due to the link between phage burst size and bacterial growth, burst size 16 

decreases as bacteria reach carrying capacity after 8h (Fig. 5a-b). This is reflected in the relative change 17 

in phage numbers, which tends towards 0 after 8h (Fig. 5b). After this point, phage incidence remains 18 

stable for the 103 and 104 pfu/mL dataset, but starts increasing again significantly after 20h for the 105 19 

pfu/mL dataset as bacteria numbers start decreasing due to phage predation, allowing burst size to 20 

increase again (Fig. 5a-c). 21 

We estimate that for every 108 new lytic phage released during burst, there was approximately one 22 

transducing phage carrying an antibiotic resistance gene (Table 1, Fig. 5c). Note that new double-23 

resistant progeny (DRP) can either be generated by transduction, or by replication of already existing 24 

DRP. Using the model, we found that DRP were always predominantly generated by transduction 25 
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rather than by growth (Fig. 5d). This is because DRP only appear after 2 to 4h, while after 4h bacterial 1 

growth rate starts decreasing as the total bacteria population approaches carrying capacity (Fig. 2 

5b&d).  3 

 4 

 5 

Fig. 5: Underlying phage and bacteria dynamics generated by the best-fitting frequency-dependent 6 

model with burst size linked to bacterial growth. Model parameters are the median estimates from 7 
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model fitting (Table 1). (a) Phage burst size over time, by starting phage concentration. As bacteria 1 

reach stationary phase after 8h, phage burst size decreases. In the 105 dataset, we see that burst size 2 

is predicted to increase again after 20h. This is due to bacterial numbers decreasing as bacteria are 3 

being lysed by phage. (b) Relative change in phage and bacteria numbers over time, by starting 4 

phage concentration. The number of new phage generated at each time step increases (positive 5 

value) until bacteria reach stationary phase around 8h. This applies to lytic and transducing phage. In 6 

the 105 dataset, phage keep increasing after 10h, eventually causing a decrease in bacterial numbers 7 

(negative value), which translates into a further acceleration in the increase in phage numbers due to 8 

the increased burst size (Fig. 5a). After 8h, the relative changes in lytic and transducing phage numbers 9 

are identical. (c) Incidence of lytic (gold) and transducing (green) phage over time, by starting phage 10 

concentration (linetype). For any dataset and time-point, there is approximately 1 new transducing 11 

phage generated for each 108 new lytic phage. (d) Fraction of double-resistant progeny (DRP) 12 

generated by transduction each hour over time, by starting phage concentration (linetype). DRP 13 

generation always occurs predominantly by transduction, rather than by growth of already existing 14 

DRP. Note that the time at which DRP are first generated varies by starting phage concentration.   15 
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Discussion 1 

We observed rapid in vitro horizontal gene transfer of antimicrobial resistance (AMR) by generalised 2 

transduction in Staphylococcus aureus, alongside equilibriums in phage and bacteria numbers which 3 

varied depending on the starting number of phage. The most accurate mathematical model to 4 

replicate phage-bacteria dynamics, including generalised transduction, represented phage predation 5 

as a frequency-dependent interaction, and linked phage burst size to bacterial growth. To the best of 6 

our knowledge, these two elements have both been suggested previously 17,18,33, yet never combined. 7 

Density-dependent models have been compared to data at less fine time scales (e.g. daily time points) 8 

or over smaller time periods (e.g. less than 8h), where they were able to reproduce in vitro values 9 

from experiments in chemostats, and have been helpful to improve our basic understanding of phage-10 

bacteria dynamics 14–16. However, here we show that this type of interaction is not able to reproduce 11 

finer hourly dynamics, and does not perform consistently when varying concentrations of starting 12 

phage and bacteria. Using this, alongside a critique of the mathematical implications of this process, 13 

we argue that density-dependence is not a biologically accurate representation of phage predation, 14 

as it fails to reproduce these dynamics at high or low numbers of phage and bacteria, which would 15 

correspond to scenarios potentially seen during phage therapy.  16 

Our work adds to the growing body of evidence that phage predation depends on bacterial growth 17 

14,17–23. This has implications for antibiotic-phage combination therapy, as it suggests that 18 

bacteriostatic antibiotics, which prevent bacterial growth, could reduce phage predation. This effect 19 

has been previously seen in S. aureus 37. 20 

Our experimental design is both a strength and a limitation of our study. Since we jointly designed the 21 

experiments and models, we are confident that we have included in our mathematical model all the 22 

organisms and interactions present in vitro. We are therefore confident in the conclusions on model 23 

structure, however, the usage of such a specific experimental system with two bacterial strains of the 24 
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same genetic background and one phage limits the generalisability of our parameter values, as these 1 

will likely vary for different bacteria and phage. Growth conditions will likely also differ between the 2 

in vitro environment studied here, and in vivo conditions. Here, our model assumes that phage do not 3 

decay, that bacteria do not become resistant to phage, and that they can grow indefinitely as they are 4 

observed in a rich medium for 24h only, but over longer periods of time it may be necessary to revisit 5 

these assumptions 38. Finally, we assumed that the proportion of transducing phage created was 6 

independent of the gene being transduced (ermB, on the bacterial chromosome, or tetK, on a 7 

plasmid). This was supported by preliminary work (not shown), but should be further investigated to 8 

improve our understanding of the factors that can facilitate or prevent transduction of different genes. 9 

To answer all of these questions, future work should investigate both phage predation and 10 

transduction dynamics over longer time periods, with different strains of bacteria and phage. 11 

All our models captured certain aspects of the trends seen in vitro, but also underestimated phage 12 

numbers between 5-7h by up to 20 times. This is likely a consequence of our experimental design. To 13 

count lytic phage, we centrifuged and filtered the co-culture to remove bacteria. This could have 14 

caused the premature burst of some phage-infected bacteria, artificially increasing the numbers of 15 

phage we then counted 39. Since the period between 5-7h is when phage infections are highest (Fig. 16 

5b), this is why we would see such a large discrepancy at this stage. We also note that the models with 17 

only phage burst size linked to bacterial growth underestimated the number of double-resistant 18 

progeny (DRP). This small difference (up to 10 cfu/mL) is likely due to our choice of using a 19 

deterministic model. This type of model is useful for our purpose of fitting to in vitro data and analysing 20 

the underlying dynamics here, but mathematically allows for fractions of bacteria to exist, instead of 21 

just whole numbers. Future analyses using a stochastic model would better capture random effects, 22 

which can have an important impact at low numbers.  23 

Multiplicity of infection (MOI, starting ratio of phage to bacteria) is a commonly used metric to present 24 

results of experiments with these organisms 32. With a starting concentration of 104 bacteria per mL, 25 

we were able to fit our model to the dynamics for two MOI (0.1 and 10), and replicate those of a third 26 
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(1). However, when trying to use the same model for these same three MOI, but with a starting 1 

bacterial concentration to 106, we found differences between our model and values seen after 24h. 2 

This indicates that MOI is not appropriate to summarise all the complexity of the underlying phage-3 

bacteria dynamics. Future experimental studies should express their results as a function of their 4 

starting concentration of phage and bacteria, not just MOI. 5 

In any case, the failure of our model to replicate 24h values with a different starting bacteria 6 

concentrations shows that, whilst we have reduced the model structure uncertainty, we are still not 7 

fully capturing the phage-bacteria interaction. Currently, our model predicts that, for a starting 8 

concentration of 106 bacteria, a starting concentration of 105 phage or more will be enough to cause 9 

a decrease in bacterial numbers after 24h, while our data shows that the starting concentration of 10 

phage must be higher than 106 for this to happen. In vitro, it is likely that slower bacterial growth 11 

simultaneously affects the phage adsorption rate, latent period and burst size, each to varying extents 12 

14,17–23. This would explain why we would need a higher starting concentration of phage for a higher 13 

starting concentration of bacteria, to exert a strong enough predation pressure before bacteria reach 14 

stationary phase, causing a reduction in phage predation. However, here we have only made the first 15 

step in this process, having linked the burst size linearly to the bacterial growth rate, instead of trying 16 

to link different phage predation parameters to bacterial growth using different functions. These 17 

complexities need to be explored further, supported by in vitro work measuring phage predation 18 

parameters at various time points. 19 

Despite being recognised as a major mechanism of horizontal gene transfer, thus far there have been 20 

limited mathematical modelling studies on the dynamics of transduction of AMR 13. Using our model, 21 

we are able to estimate numbers of transducing phage which we cannot count in vitro, and see that 22 

approximately 1 generalised transducing phage is generated per 108 lytic phage, consistent with 23 

previous estimates 40,41. Here, we show that this number, which may seem insignificant, is enough to 24 

consistently lead to the successful horizontal gene transfer of AMR, resulting in DRP after only 7h, 25 

substantially less than the usual duration of antibiotic treatment. We also show that transduction is 26 
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the dominant mechanism to create new DRP throughout the entire experiment, rather than growth 1 

of existing DRP. This echoes the conclusions of previously published work on the importance of 2 

transduction, including in vivo experiments and with other Staphylococcus species 6,7,29,42.  3 

Our findings suggest that transduction is currently under-emphasised in the exploration of phage-4 

bacteria dynamics. Future studies on this topic should not assume that transduction can be dismissed 5 

by default, but instead investigate whether it is relevant in their system. This requires further in vitro 6 

and in vivo monitoring to identify scenarios where transduction plays a significant role in the transfer 7 

of AMR genes, likely depending on the environment, and characteristics of the bacteria and phage 8 

present. This will require new experimental designs, since counting phage numbers can be difficult, 9 

notably with clinical strains of bacteria. This should also be investigated in the presence of antibiotics, 10 

where the importance of selection enters, increasing the fitness of the small numbers of DRP 11 

generated by transduction.  12 

In conclusion, the dual nature of phage (predation and transduction) leads to complex interactions 13 

with bacteria. These dynamics must be clarified, to correctly evaluate the extent to which phage 14 

contribute to the global spread of AMR. We must also understand this dual nature to guarantee a safe 15 

design of phage therapy. Otherwise, ignoring transduction may lead to worse health outcomes in 16 

patients if phage contribute to spreading AMR instead of overcoming it. Interdisciplinary work will be 17 

essential to answer these urgent public health questions in the near future.  18 
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Methods 1 

All analyses were conducted in R 43. The underlying code and data are available in a GitHub repository: 2 

https://github.com/qleclerc/mrsa_phage_dynamics.  3 

Experimental methods 4 

Strains and phage used 5 

The Staphylococcus aureus parent strains used for our transduction experiment were obtained from 6 

the Nebraska Transposon Mutant Library 44. These were strain NE327, carrying the ermB gene 7 

encoding erythromycin resistance and knocking out the 3 integrase gene, and strain NE201KT7, a 8 

modified NE201 strain with a kanamycin resistance cassette instead of the ermB gene knocking out 9 

the 2 integrase gene, and a pT181 plasmid carrying the tetK gene encoding tetracycline resistance 45. 10 

Growing these strains together in identical conditions as our co-culture below, but without the 11 

addition of exogenous phage, does not lead to detectable horizontal gene transfer (HGT; data not 12 

shown). To enable HGT, exogenous 80 phage was used, a well-characterised lytic phage of S. aureus 13 

capable of generalised transduction 46. To count lytic phage, S. aureus strain RN4220 was used, a 14 

restriction deficient strain highly susceptible to phage infection 47. 15 

 16 

Transduction co-culture protocol 17 

Pre-cultures of NE327 and NE201KT7 were prepared separately in 50mL conical tubes with 10mL of 18 

Brain Heart Infusion Broth (BHIB, Sigma, UK), and incubated overnight in a shaking water bath (37°C, 19 

90rpm). The optical densities of the pre-cultures were checked at 625nm the next day to confirm 20 

growth. The pre-cultures were diluted in phosphate-buffered saline (PBS), and added to a glass bottle 21 

of fresh BHIB to reach the desired starting concentration in colony forming units per mL (cfu/mL) for 22 
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each strain, forming a master mix for the co-culture. CaCl2 was added at a concentration of 10mM to 1 

the master mix. Phage 80 stock was diluted in phage buffer, and added to the master mix to reach 2 

the desired starting concentration in plaque forming units per mL (pfu/mL). Ten 50mL conical tubes 3 

were prepared (one co-culture tube for each timepoint, from 0 to 8h and 16 to 24h), each with 10mL 4 

from the master mix. Each co-culture tube was then incubated in a shaking water bath (37°C, 90rpm) 5 

for the corresponding duration. 6 

Bacteria counts for each timepoint were obtained by diluting the co-culture in PBS before plating 50μL 7 

on selective agar, either plain Brain Heart Infusion Agar (BHIA, Sigma, UK), BHIA with erythromycin 8 

(Sigma, UK) at 10mg/L, BHIA with tetracycline (Sigma, UK) at 5mg/L, or BHIA with both erythromycin 9 

and tetracycline (10mg/L and 5mg/L respectfully). Note we plated 500μL instead of 50 on the plates 10 

with both antibiotics, to increase the sensitivity of the assay. This allowed distinction between each 11 

parent strain, resistant to either erythromycin or tetracycline, and the double resistant progeny (DRP) 12 

generated by transduction. Plates were then incubated at 37°C for 24h, or 48h for plates containing 13 

both antibiotics. Colonies were counted on the plates to derive the cfu/mL in the co-culture for that 14 

timepoint. Colonies on the double antibiotic plates were screened using polymerase chain reaction to 15 

confirm that they contained both resistance genes ermB and tetK, and had not instead gained 16 

resistance to either antibiotic by mutation (Supplementary Fig. 5). 17 

Lytic phage counts for each timepoint were obtained using the agar overlay technique 48. Briefly, the 18 

co-culture was centrifuged at 4000rpm for 15 minutes, filtered twice with 10μm filters, and diluted in 19 

Nutrient Broth No. 2 (NB2, ThermoFisher Scientific, UK). 15mL conical tubes were prepared with 300μl 20 

of RN4220 grown overnight in NB2, and CaCl2 at a concentration of 10mM. 200μl of diluted phage 21 

were added, and the tubes were left to rest on the bench for 30 minutes. The contents of the tubes 22 

were then mixed with 7mL of phage top agar, and poured on phage agar plates. Phage agar was 23 

prepared using NB2, supplemented with agar (Sigma, UK) at 3.5g/L for top agar and 7g/L for plates. 24 
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The plates were incubated overnight at 37°C. Clear spots in the bacterial lawn were counted to derive 1 

the pfu/mL in the co-culture for that timepoint.  2 

Growth co-culture protocol 3 

To estimate the growth rate of bacteria in the absence of exogenous phage, another experiment was 4 

conducted following the same methodology as described above, but without the addition of 80, and 5 

starting the three strains (NE327, NE201KT7 and DRP) at a concentration of 104 cfu/mL. The relative 6 

fitnesses W of the strains were calculated using equation (6). 7 

𝑊 =  
𝑙𝑛[

𝑆1(24)
𝑆1(0)

]

𝑙𝑛[
𝑆2(24)
𝑆2(0)

]
  (6) 8 

Where S1(t) and S2(t) represent the number of bacteria (in cfu/mL) from the chosen strains 1 and 2, 9 

at times t = 0 or 24 hours. 10 

 11 

Mathematical modelling methods 12 

General model structure 13 

We designed a deterministic, compartmental model to replicate our experimental conditions. We 14 

included 6 populations: BE (corresponding to ery-resistant NE327), BT (tet-resistant NE201KT7), BET 15 

(double resistant progeny, DRP), PL (lytic phage), PE (phage transducing ermB) and PT (phage 16 

transducing tetK). Their interactions are represented in Fig. 2.  17 

Bacteria from each strain  ( ∈ {E, T, ET}) can multiply at each time step t following logistic growth at 18 

rate , with a maximum value max which declines as the total bacteria population N (= BE + BT + BET) 19 

approaches carrying capacity Nmax. 20 

𝜇𝜃 =  𝜇𝑚𝑎𝑥𝜃
∗ (1 −

𝑁

N𝑚𝑎𝑥
)  (7) 21 
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At each time step t, a proportion  of lytic phage (PL) infect a number of bacteria (L), replicate, and 1 

burst out from the bacteria with a burst size  + 1 after a latent period . During phage replication, a 2 

proportion  of new phage are transducing phage. The nature of the transducing phage (PE or PT) 3 

depends on the bacteria being infected (e.g. BE bacteria can only lead to PE phage). Then, a proportion 4 

 of these transducing phage (PE or PT) infect a number of bacteria (E or T). If they successfully infect 5 

a bacterium carrying the other resistance gene (e.g. PE phage infecting a BT bacterium), this creates 6 

double resistant progeny (BET). The complete model equations can be found below. 7 

𝑑𝐵𝐸

𝑑𝑡
= 𝜇𝐸 ∗ (𝐵𝐸 − ω ∗ ((𝜑𝐿 + 𝜑𝑇) ∗

𝐵𝐸

𝑁
)) − (𝜑𝐿 + 𝜑𝑇) ∗

𝐵𝐸

𝑁
   (8) 8 

{Change in BE = growth of BE – infections by PL – infections by PT} 9 

𝑑𝐵𝑇

𝑑𝑡
= 𝜇𝑇 ∗ (𝐵𝑇 − ω ∗ ((𝜑𝐿 + 𝜑𝐸) ∗

𝐵𝑇

𝑁
)) − (𝜑𝐿 + 𝜑𝐸) ∗

𝐵𝑇

𝑁
  (9) 10 

{Change in BT = growth of BT – infections by PL – infections by PE} 11 

𝑑𝐵𝐸𝑇

𝑑𝑡
= 𝜇𝐸𝑇 ∗ (𝐵𝐸𝑇 − ω ∗ (𝜑𝐿 ∗

𝐵𝐸𝑇

𝑁
)) − 𝜑𝐿 ∗

𝐵𝐸𝑇

𝑁
+ 𝜑𝐸 ∗

𝐵𝑇

𝑁
+ 𝜑𝑇 ∗

𝐵𝐸

𝑁
 (10) 12 

{Change in BET = growth of BET – infections by PL + infections of BT by PE + infections of BE by PT} 13 

𝑑𝑃𝐿

𝑑𝑡
= 𝜑𝐿(𝑡 − τ) ∗ 𝛿 ∗ (1 − α ∗

𝐵𝐸+𝐵𝑇+2∗𝐵𝐸𝑇

𝑁
) − 𝜆 ∗ 𝑃𝐿 (11) 14 

{Change in PL = new PL phage – PL phage infecting bacteria} 15 

𝑑𝑃𝐸

𝑑𝑡
= 𝜑𝐿(𝑡 − τ) ∗ 𝛿 ∗ α ∗

𝐵𝐸+𝐵𝐸𝑇

𝑁
− 𝜆 ∗ 𝑃𝐸   (12) 16 

{Change in PE = new PE phage – PE phage infecting bacteria} 17 

𝑑𝑃𝑇

𝑑𝑡
= 𝜑𝐿(𝑡 − τ) ∗ 𝛿 ∗ α ∗

𝐵𝑇+𝐵𝐸𝑇

𝑁
− 𝜆 ∗ 𝑃𝑇  (13) 18 

{Change in PT = new PT phage – PT phage infecting bacteria} 19 
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Some parameters (, , ) are constant, while others (E, T, ET, , L, E, T, ) can change at each 1 

time step and depending on the specified interaction mechanism. Note that  is a special parameter 2 

equal to 0 if the model is density-dependent, or 1 if it is frequency-dependent.  3 

 4 

Density-dependent interaction 5 

Over one time step, both the number of phage infecting bacteria and the number of bacteria infected 6 

by phage are equal to the product of the number of phage, bacteria, and phage adsorption rate. In 7 

our equations for density-dependence, given the phage adsorption rate , the proportion  of phage 8 

that infect any bacteria is: 9 

𝜆 = 𝛽 ∗ 𝑁 (14) 10 

And the number of bacteria infected by a phage  ( ∈ {L, E, T}) is: 11 

𝜑𝜃 = 𝜆 ∗ 𝑃𝜃 (15) 12 

Note that the parameter  is set to 0 in this case. 13 

 14 

Frequency-dependent interaction 15 

Using this interaction prevents the number of phage infecting bacteria over one time step to be higher 16 

than the total number of phage in the system (and the number of bacteria being infected one time 17 

step to be higher than the total number of bacteria in the system). Equations (14) and (15) then 18 

become: 19 

𝜆 = (1 − 𝑒𝑥𝑝 (−𝛽 ∗ 𝑁) )  (16) 20 

𝜑𝜃 = (1 − 𝑒𝑥𝑝 (−𝜆 ∗
𝑃𝜃

𝑁
) ) ∗ 𝑁 (17) 21 
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With the frequency-dependent interaction, we set the parameter  to 1. This ensures that, over one 1 

time step and for any bacterium, phage infection and bacteria replication are mutually exclusive 2 

events. Without this modification, phage infections would not be able to reduce bacterial population 3 

size due to mathematical constraints (see Supplementary Information). 4 

 5 

Link between bacterial growth and phage predation 6 

We consider that reduced bacterial growth can lead to decreased phage predation, through reduced 7 

adsorption () and/or burst size (). Equations (18) and (19) allow these parameters to decrease as 8 

bacterial growth decreases, using the same principle of logistic growth as seen in equation (7). 9 

𝛽 = β𝑚𝑎𝑥 ∗ (1 −
𝑁

N𝑚𝑎𝑥
)  (18) 10 

𝛿 = δ𝑚𝑎𝑥 ∗ (1 −
𝑁

N𝑚𝑎𝑥
)  (19) 11 

If we do not link these parameters to bacterial growth, we assign them their maximum values. 12 

𝛽 = β𝑚𝑎𝑥 (20) 13 

𝛿 = δ𝑚𝑎𝑥 (21) 14 

 15 

Model fitting 16 

We fit our model to the in vitro data using the Markov chain Monte Carlo Metropolis–Hastings 17 

algorithm. For every iteration, this algorithm slightly changes the parameter values, runs the model, 18 

assesses the resulting model fit to the data, and accepts or rejects these new parameter values based 19 

on whether the model fit is better or worse than with the previous set of values. We run the algorithm 20 

with two chains, and once convergence has been reached (determined using the Gelman-Rubin 21 

diagnostic, once the multivariate potential scale reduction factor is less than 1.2 49), we generate 22 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 24, 2021. ; https://doi.org/10.1101/2021.07.24.453184doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.24.453184
http://creativecommons.org/licenses/by/4.0/


 

31 

50,000 samples from the posterior distributions for each parameter. Convergence and posterior 1 

distribution plots for our best-fitting model are shown in Supplementary Fig. 6. 2 

In a first instance, we used our growth co-culture data, where phage are absent, to calibrate the 3 

bacterial growth rate parameters max for each bacteria strain  ( ∈ {E, T, ET}), as well as the carrying 4 

capacity Nmax using a simple logistic growth model (equation (7)). All other parameters related to 5 

phage predation were set to 0. 6 

The phage predation parameters (, , max, max) were jointly estimated by fitting to the phage and 7 

double resistant bacteria numbers from the transduction co-culture data. Fitting was performed by 8 

evaluating the log-likelihood of each in vitro data point being observed in a Poisson distribution, with 9 

the corresponding model data point as a mean. 10 

To mirror our experimental sampling variation, in vitro data points were scaled down to be between 11 

1 and 100 before fitting, with the same correction applied to the corresponding model-predicted value 12 

for the same timepoint. For example, if at 1h there are 1.4 x 104 phage in vitro, this is scaled down to 13 

14, and if the corresponding model value is 5.3 x 106, this is scaled down by the same magnitude (i.e. 14 

103), resulting in a value of 5300.  15 

Previous research estimated that the latent period for 80 in S. aureus was approximately 40mins 16 

(0.67h), and that the burst size was approximately 40 phage per bacterium 36. Since this study did not 17 

provide error values for these point estimates, we assumed the standard deviation and chose the 18 

following informative priors for these parameters: ~ Normal(0.67, 0.07) (95% confidence interval: 19 

0.53-0.81) and max~ Normal(40, 7) (95% confidence interval: 54-26). Due to a lack of available data, 20 

we used uninformative priors for the remaining parameters:  ~ Uniform(0, 1) and max ~ Uniform(0, 21 

1). 22 

 23 

 24 
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