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Abstract
Whole genome sequencing studies applied to large populations or biobanks with extensive
phenotyping raise new analytic challenges. The need to consider many variants at a locus or
group of genes simultaneously and the potential to study many correlated phenotypes with
shared genetic architecture provide opportunities for discovery and inference that are not
addressed by the traditional one variant, one phenotype association study. Here, we introduce a
Bayesian model comparison approach that we refer to as MRP (Multiple Rare-variants and
Phenotypes) for rare-variant association studies that considers correlation, scale, and direction
of genetic effects across a group of genetic variants, phenotypes, and studies. The approach
requires only summary statistic data. To demonstrate the efficacy of MRP, we apply our method
to exome sequencing data (N = 184,698) across 2,019 traits from the UK Biobank, aggregating
signals in genes. MRP demonstrates an ability to recover previously-verified signals such as
associations between PCSK9 and LDL cholesterol levels. We additionally find MRP effective in
conducting meta-analyses in exome data. Notable non-biomarker findings include associations
between MC1R and red hair color and skin color, IL17RA and monocyte count, IQGAP2 and
mean platelet volume, and JAK2 and platelet count and crit (mass). Finally, we apply MRP in a
multi-phenotype setting; after clustering the 35 biomarker phenotypes based on genetic
correlation estimates into four clusters, we find that joint analysis of these phenotypes results in
substantial power gains for gene-trait associations, such as in TNFRSF13B in one of the
clusters containing diabetes and lipid-related traits. Overall, we show that the MRP model
comparison approach is able to improve upon useful features from widely-used meta-analysis
approaches for rare variant association analyses and prioritize protective modifiers of disease
risk.
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Introduction
Sequencing technologies are quickly transforming human genetic studies of complex traits. It is
increasingly possible to obtain whole genome sequence data on thousands of samples at
manageable costs. As a result, the genome-wide study of rare variants (minor allele frequency
[MAF] < 1%) and their contribution to disease susceptibility and phenotype variation is now
feasible.1–4

In genetic studies of diseases or continuous phenotypes, rare variants are hard to assess
individually due to the limited number of observations of each rare variant. Hence, to boost the
power to detect a signal, evidence is usually aggregated across variants in blocks. When
designing an aggregation method, there are three questions that are usually considered. First,
across which biological units should variants be combined (e.g. genes); second, which variants
within those units should be included5; and third, which statistical model should be used?6 Given
the widespread observations of shared genetic risk factors across distinct diseases, there is
also considerable motivation to use gene discovery approaches that leverage the information
from multiple phenotypes jointly. In other words, rather than only aggregating variants that may
have effects on a single phenotype, we can also bring together sets of phenotypes for which a
single variant or set of variants might have effects.

In this paper, we present a Bayesian Multiple Rare-variants and Phenotypes (MRP) model
comparison approach for identifying rare-variant associations as an alternative to current,
widely-used univariate statistical tests. The MRP framework exploits correlation, scale, and/or
direction of genetic effects in a broad range of rare-variant association study designs including
case-control, multiple diseases and shared controls, a single continuous phenotype, multiple
continuous phenotypes or a mixture of case-control and multiple continuous phenotypes
(Figure 1). MRP makes use of Bayesian model comparison, whereby we compute a Bayes
Factor (BF) defined as the ratio of the marginal likelihoods under two models: 1) a null model
where all genetic effects are zero; and 2) an alternative model where factors like correlation,
scale and direction of genetic effects are considered. For MRP, the BF represents the statistical
evidence for a non-zero effect for a particular group of rare variants on the phenotype(s) of
interest and can be used as an alternative to p-values from traditional significance testing.
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Figure 1. MRP study overview. 1A) MRP is suitable for a broad range of rare variant association study
designs, including, from left to right: i) case-control, ii) multiple diseases with shared controls, iii) single
quantitative phenotype, and iv) mixtures of case-control and quantitative phenotypes. 1B) Diagram of
factors considered in rare variant association analysis including the correlation matrices: Rstudy (expected
correlation of genetic effects among a group of studies), Svar (expected covariance of genetic effects
among a group of variants, potentially accounting for annotation of variants), and Rphen (expected
correlation of genetic effects among a group of phenotypes). MRP can take into account both scale and
direction of effects. 1C) We focused on 184,698 individuals across 6 ancestry groups in the UK Biobank
and analyzed 5,850,789 rare coding variants (492,151 PTVs, 5,358,638 PAVs)  in the whole exome
sequencing data via single-trait and multi-trait meta-analyses, with a specific focus on 35 biomarker traits.
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While many large genetic consortia collect both raw genotype and phenotype data, in practice,
sharing of individual genotype and phenotype data across groups is difficult to achieve. To
address this, MRP can use summary statistics, such as estimates of effect size and
corresponding standard errors from typical single-variant/single-phenotype linear or logistic
regressions, as input. Furthermore, we use insights from Liu et al.7 and Cichonska et al.,8 which
suggest the use of additional summary statistics like covariance estimates across variants and
studies, respectively, for the lossless ability to detect gene-based association signals using
summary statistics alone.

Aggregation techniques rely on variant annotations to assign variants to groups for analysis.
MRP allows for the inclusion of priors on the scale of effect sizes that can be adjusted
depending on what type of variants are included in the analysis. For instance, protein truncating
variants (PTVs)9,10 are highly likely to be functional because they often disrupt the normal
function of a gene. Additional deleteriousness metrics, such as MPC (which combines subgenic
constraints with variant-level data for deleteriousness prediction)11 and pLI (derived from a
comparison of the observed number of PTVs in a sample to the number expected in the
absence of fitness effects, i.e. under neutrality, given an estimated mutation rate for the gene)12,
can further attenuate or accentuate these granular signals. Furthermore, since PTVs typically
abolish or severely alter gene function, there is particular interest in identifying protective PTV
modifiers of human disease risk that may serve as targets for future therapeutics.13–15 We
therefore demonstrate how the MRP model comparison approach can improve discovery of
such protective signals by modeling the direction of genetic effects; this prioritizes variants or
genes that are consistent with protecting against disease.

To evaluate the performance of MRP, we use simulations and compare it to other commonly
used approaches. Some simple alternatives to MRP include univariate approaches for rare
variant association studies including the sequence kernel association test (SKAT)16, and the
burden test6, which are special cases of the MRP model comparison when we assign the prior
correlation of genetic effects across different variants to be zero or one, respectively.

We apply MRP to summary statistics computed on a tranche of N = 184,698 exomes for
thousands of traits in the UK Biobank for which we have exome data for N ≥ 1000 white British
individuals, focusing on a meta-analysis context across six UK Biobank subpopulations as
defined previously (Methods).17 We additionally apply multi-phenotype MRP on clusters of
biomarker traits within a single-population context (white British individuals). These analyses
show that MRP recovers results from single variant-single phenotype association analyses while
increasing the power to detect new rare variant associations, including protective modifiers of
disease risk.
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Methods

Description of MRP
In this section, we provide an overview of the MRP model comparison approach (the
Supplementary Note contains additional details). MRP models GWAS summary statistics as
being distributed according to one of two models: the null model, where the effect sizes across
all studies for a group of variants and a group of phenotypes is zero, and the alternative model,
where effect sizes are distributed according to a multivariate normal distribution with a non-zero
mean and/or covariance matrix. MRP compares the evidence between  the alternative model
and the null model using a Bayes Factor (BF) that is the ratio of the marginal likelihoods under
the two models given the observed data.

To define the alternative model, we must specify the prior correlation structure, scale, and
direction of the effect sizes. Let N be the number of individuals and K the number of phenotype
measurements on each individual. Let M be the number of variants in a testing unit G, where G
can be, for example, a gene, pathway, or a network. Let S be the number of studies from which
data is obtained 一 this data may be in the form of a) raw genotypes and phenotypes, or b)
summary statistics including linkage-disequilibrium coefficients, effect sizes, and corresponding
standard errors. When considering multiple studies (S > 1), multiple rare variants (M > 1), and
multiple phenotypes (K > 1), we define the prior correlation structure of the effect sizes as an
SMK x SMK matrix, U. In practice, we define U as a Kronecker product, of three sub-matrices:

● an S x S matrix Rstudy containing the correlations of genetic effects among studies that
can model the level of heterogeneity in effect sizes between populations18;

● an M x M matrix Svar containing the covariances of genetic effects among genetic
variants, which may reflect, e.g., the assumption that all the PTVs in a gene may have
the same biological consequence9,10,19 or prior information on scale of the effects
obtained through integration of additional functional data 5,20; by assuming zero
correlation of genetic effects,  MRP becomes a dispersion test similar to C-alpha21,22 and
SKAT16; and

● a K x K Rphen matrix containing the correlations of genetic effects among phenotypes,
which may be estimated from common variant data.23–25

The variance-covariance matrix of the effect size estimates may be obtained from readily
available summary statistics such as in-study LD matrices, effect size estimates (or log odds
ratios), and the standard errors of the effect size estimates (Supplementary Note).

MRP allows users to specify priors that reflect knowledge of the variants and phenotypes under
study. For instance, we can define an independent effects model (IEM) where the effect sizes of
different variants are not correlated at all. In this case, Svar is the identity matrix, and MRP
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behaves similarly to dispersion tests like C-alpha21,22 and SKAT16. We can also define a similar
effects model (SEM) by setting every value of Rvar to ~ 1, where Rvar is the correlation matrix
corresponding to covariance matrix Svar. This model assumes that all variants under
consideration have similar effect sizes (with, possibly, differences in scale; like in the burden
test). Such a  model may be appropriate for PTVs, where each variant completely disrupts the
function of the gene leading to a gene knockout. The prior on the scale of effect sizes can be
used to denote which variants may have larger effect sizes. For instance, emerging empirical
genetic studies have shown that within a gene PTVs may have stronger effects than missense
variants.26 This can be reflected by adjusting the prior variances of effect sizes (σ) for different
categories of variants (Supplementary Note).

Finally, we can utilize a prior on the expected location and direction of effects to specify
alternative models where we seek to identify variants with protective effects against disease. By
default, we have assumed that the prior mean, of genetic effects is zero, which makes it
possible to analyze a large number of phenotypes without enumerating the prior mean across
all phenotypes. To proactively identify genetic variants that are consistent with a protective
profile for a disease, we can include a non-zero vector as a prior mean of genetic effects
(Supplementary Note). For this, we can exploit information from Mendelian randomization
studies of common variants, such as recent findings where rare protein-truncating
loss-of-function variants in PCSK9 were found to decrease LDL and triglyceride levels and
decrease CAD risk13,27,28 to identify situations where such a prior is warranted.

Applying MRP to variants from a testing unit G yields a BF for that testing unit that describes the
evidence that rare variants in that testing unit have a nonzero effect on the traits used in the
model. We can turn this evidence into probability via Bayes rule. Namely, a multiplication of
prior-odds of association by BF transforms the prior-odds to posterior-odds. For example, if our
prior probability for one particular gene to be associated with a phenotype is 10-4, then an
observed BF of 105 means that our posterior probability of association between the gene and
the phenotype is over 90%.  Although we see advantages in adopting a Bayesian interpretation
for MRP, our approach could also be used in a frequentist context by using BF as a test statistic
to compute p-values (Supplementary Note).

UK Biobank Data

Population definitions

Population Nexome Narray

White British 137,920 337,138

Non-British White 10,432 24,905
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African 2,716 6,497

South Asian 3,569 7,885

Semi-Related 18,100 44,632

Admixed 11,961 28,551

Total 184,698 449,608

Table 1. Number of individuals per population per genotyping platform (exome/array).

We used a combination of self-reported ancestry (UK Biobank field ID 21000) and principal
component analysis to identify six subpopulations in the study: white British, African, South
Asian, non-British white, semi-related, and an admixed population. To determine the first four
populations, which contain samples not related closer than the 3rd degree, we first used the
principal components of the genotyped variants from the UK Biobank and defined thresholds on
principal component 1 and principal component 2 and further refined the population definition.17

Semi-related individuals were grouped as individuals whose genetic data (after passing UK
Biobank QC filters; sufficiently low missingness rates; and genetically inferred sex matching
reported sex), using a KING relationship table, were between conditional third and conditional
second degrees of relatedness to samples in the first four groups. Admixed individuals were
grouped as unrelated individuals who were flagged as “used_in_pca_calculation” by the UK
Biobank and were not assigned to any of the other populations.

GWAS Summary Statistics
We performed genome-wide association analysis on 2,019 UK Biobank traits in the six
population subgroups as defined above using PLINK v2.00a (20 October 2020). We used the
--glm Firth fallback option in PLINK to apply an additive-effect model across all sites.
Quantitative trait values were rank normalized using the --pheno-quantile-normalize flag. We
used the following covariates in our analysis: age, sex, array type, and the first ten genetic
principal components, where array type is a binary variable that represents whether an
individual was genotyped with UK Biobank Axiom Array or UK BiLEVE Axiom Array. For variants
that were specific to one array, we did not use array as a covariate.

For the admixed population, we conducted local ancestry-corrected GWAS. We first assembled
a reference panel from 1,380 single-ancestry samples in the 1000 Genomes Project,29 the
Human Genome Diversity Project,30 and the Simons Genome Diversity Project,31 choosing
appropriate ancestry clusters by running ADMIXTURE32 with the unsupervised setting. Using
cross-validation, eight well-supported ancestral population clusters were identified: African,
African Hunter-Gatherer, East Asian, European, Native American, Oceanian, South Asian, and
West Asian. We then used RFMix v2.0333 to assign each of the 20,727 windows across the
phased genomes to one of these eight ancestry clusters (for all individuals in the UK Biobank).
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These local ancestry assignments were subsequently used with PLINK2 as local covariates in
the GWAS for the admixed individuals for SNPs within those respective windows. PLINK2
allows for the direct input of the RFMix output (the MSP file, which contains the most likely
subpopulation assignment per conditional random field [CRF] point) as local covariates using
the “local-cov”, “local-psam”, and “local-haps” flags, the “local-cats0=n” flag (where n is the
number of assignments), and the “local-pos-cols=2,1,2,7” flag (for a typical RFMix MSP output
file - see https://www.cog-genomics.org/plink/2.0/assoc).

Variant Quality Control and Metadata Generation
For quality control (QC), In total, we ensured that variant-level missingness was less than 10%,
that the p-value for the Hardy-Weinberg equilibrium test (computed within unrelated individuals
of white British ancestry) was greater than 10-15, and that the variant was uniquely represented
(the “CHROM:POS:REF:ALT” variant string was uniquely identified) in the PLINK dataset file. In
total, we removed 195,920 variants that failed to meet all of these criteria, except for 134
variants on the Y chromosome.

For the remainder, we used Variant Effect Predictor (VEP)34 to annotate the most severe
consequence, the gene symbol, and HGVSp of each variant in the UK Biobank exome and
array data. We calculated minor allele frequencies using PLINK. MPC11 values (variant-level)
and pLI gene memberships12 were annotated from source. To determine LD independence
criteria, we used PLINK’s --indep-pairwise function with a window size of 1000kb, a step size of
1, and an r2 threshold of 0.1 on those variants that pass QC. As our analyses focused on PTVs
and PAVs, we then performed this same LD independence analysis on only these, overriding
assignments in the first analysis if necessary. We provide these essential metadata, which are
necessary for MRP, in exome
(https://biobankengine.stanford.edu/static/ukb_exm_oqfe-consequence_wb_maf_gene_ld_inde
p_mpc_pli.tsv.gz) and array
(https://biobankengine.stanford.edu/static/ukb_cal-consequence_wb_maf_gene_ld_indep_mpc_
pli.tsv.gz) tables, available for direct download via the Global Biobank Engine.35

Applications
For exome applications, we chose variants with MAF ≤ 1% and that were LD-independent
according to the criteria mentioned above. For quantitative traits, we removed variants whose
regression effect size had standard error greater than 100, and for binary traits, we removed
variants whose regression effect size had standard error greater than 0.2. For array
applications, we chose variants with MAF ≤ 1% and removed variants whose regression effect
size had standard error greater than 0.2. While MRP is capable of handling all variant types
(e.g. proximal coding and intronic variants), we included only protein-altering variants (PAVs)
and protein-truncating variants (PTVs) in both exome and array analyses (exome data features
many more PAVs and thus potential for power gain; Table S1; Figure S2). These sets
respectively contain the following consequence annotations:
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● PAVs: protein_altering_variant, inframe_deletion, inframe_insertion,
splice_region_variant, start_retained_variant, stop_retained_variant, missense_variant

● PTVs: frameshift_variant, splice_acceptor_variant, splice_donor_variant, stop_gained,
start_lost, stop_lost

For both quantitative and binary traits, PTVs were assigned a σ (standard deviation of prior on
effect size) of 0.2, whereas PAVs were assigned a σ value of 0.05. We also incorporated MPC
and pLI deleteriousness metrics into our exome analyses. For those PTVs with a pLI of > 0.8,
we increased σ to 0.5, and for those PAVs with an MPC ≥ 1, we set σ = 0.05 x MPC. These
adjustments serve to further granularize and weight MRP results in biologically meaningful ways
(Table S3; Figure S4). For the exome meta-analysis, we assumed a similar effects model
across studies and an independent effects model across variants.

We also studied how the application of MRP to multiple phenotypes together would potentially
boost power to detect rare-variant associations. We calculated pairwise genetic correlation
between 35 biomarker phenotypes17 using LD score regression,25 and then used the hclust
algorithm in the R stats package36 to generate phenotype clusters. For each of these clusters,
using the array data, we performed MRP in the multi-phenotype setting.
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Results

Figure 2A. From single-variant and single-phenotype to multiple-variant and multiple-phenotype
gene discovery. ROC curves for detecting simulated gene association to any of the phenotypes using
single variant/single phenotype association (blue) to multiple-variant and multiple-phenotype association
(red).

Simulations
To study the behavior of MRP going from a single phenotype to multiple phenotypes, we
conducted a simulation study where we assumed an allelic architecture consistent to that
discovered for APOC3 in relation to triglycerides, low-density lipoprotein cholesterol (LDL-C),
and high-density lipoprotein cholesterol (HDL-C).37–39 We simulated three continuous
phenotypes with a total correlation consistent with that observed for triglycerides, LDL-C, and
HDL-C. Furthermore, we introduced effects to four variants consistent with the effects observed
in four PTVs (approximately 0.35 standard deviations away from the population mean) and to
another four variants consistent with the effects observed for missense variants (approximately
0.2 standard deviations away from the population mean) all with minor allele frequency of
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0.05%. The PTV group of variants had the same effects, whereas out of the missense variants,
half had positive and the other half had negative effect sizes. The correlation of effects between
the group of phenotypes was set to be directionally consistent with the direction of genetic
effects observed for lipid phenotypes and PTVs in APOC3, i.e. proportional effects for
triglycerides and LDL-C, and inversely proportional for LDL-C and HDL-C, and triglycerides and
HDL-C. We simulated 1000 genes where 50 of the genes contained non-zero effects on the
multivariate phenotype. Given we know which of the 1000 genes contained non-zero effects, we
could compute the true positive rates and false positive rates for a given BF threshold. We
analyze the data as follows: i) single-variant and single-phenotype, ii) multiple variants and
single-phenotype, iii) single-variant and multiple-phenotypes, and iv) multiple-variants and
multiple-phenotypes (Figure 2A). We find that in some scenarios, analyzing multiple-variants
and multiple-phenotypes jointly improved the ability to detect signals.

Figure 2B. From single to multiple populations. Scatterplot showing number of genes with log10 BF ≥ 5
for white British population only (x-axis) versus meta-analysis (y-axis) across 35 biomarkers. Assuming
that BFs are correctly calibrated in both analyses and that meta-analysis is not inflated compared to white
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British-only MRP, suggests a ~26% increase in power when incorporating summary statistics across
multiple populations.

Exome single-phenotype meta-analyses
MRP was used to perform exome meta-analysis on 2019 traits across six UK Biobank
populations as described in Methods. Among the best powered and represented traits were a
set of 35 biomarkers, the focus of a previous publication17. We see the number of log10 BF ≥ 5
genes increasing from a single-population to a meta-analysis setting. Since we expect that the
meta-analysis over different ancestries cannot be more confounded than the analysis of a single
ancestry, we interpret the increase in the number of genes as an increase in the statistical
power to detect rare-variant associations (Figure 2B).

We categorize these biomarkers into six categories as in Sinnott-Armstrong et. al.17 (Bone and
Joint, Cardiovascular, Diabetes, Hormone, Liver, and Renal - Figure 3) and we recover several
known gene-trait associations and discover several others.

Among the “Bone and Joint” biomarkers (alkaline phosphatase, calcium, and vitamin D), we
recover associations between CASR and calcium40 and HAL and vitamin D41. As compared to
results from array data as found in Sinnott-Armstrong, et. al.17, we also recover exome-specific
associations between ALDH5A1 and alkaline phosphatase42 and PDE3B and vitamin D41.

For the “Cardiovascular” phenotypes (apolipoprotein A, apolipoprotein B, C-reactive protein,
total cholesterol, HDL cholesterol, LDL cholesterol, lipoprotein A, and triglycerides), MRP
recovers array associations between: PLG, LPA, and lipoprotein A43; APOC3 and triglycerides44;
ANGPTL3 and triglycerides45; APOB and apolipoprotein B46 and LDL cholesterol47; ABCA1 and
apolipoprotein A44 and HDL cholesterol47; PCSK9 and total cholesterol48; and CRP and
C-reactive protein49. Exome-only signals recover associations such as between ZPR150 and
SIK344 and triglycerides.

In the two diabetes-related phenotypes (glucose and HbA1c), we recover associations between
G6PC2 and glucose48 as well as PIEZO1 and HbA1c51 and an additional exome association
between G6PD and HbA1c51. Hormonal recoveries include those between SHBG and SHBG
and testosterone levels and GH1 and IGF-1 levels.

MRP applied to liver-related phenotypes recover known associations between: UGT genes and
bilirubins52; GOT1 and aspartate aminotransferase53; FCGRT and albumin42; and GPT and
AST-ALT ratio49. in the exome sequencing, we additionally recover associations between GGT1
and gamma glutamyltransferase54, TMEM236 and aspartate aminotransferase42, and SLCO1B3
and bilirubin.55

The renal traits similarly feature a mix of array recoveries and exome discoveries. We recover
signal between: SLC22A2 and creatinine56; CST3 and Cystatin C46; COL4A4 and
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microalbumin57; TNFRSF13B and non-albumin protein42; FCGRT and total protein; WDR1,
RASGRP2, DRD5, and urate58,59; and LRP2 and eGFR levels60. We additionally discover novel
gene-trait associations (not found in the NHGRI-EBI catalog or Open Targets Genetics) across
these biomarker categories, including: GLPD1 and alkaline phosphatase; NKPD1 and
apolipoprotein B; RENBP/MAP3K15 and Hba1c; PARPBP and IGF-1; NLGN2 and SHBG; ALB
and albumin; ALPL and phosphate; RBM47 and urea; ALDH16A1 and urate; THBD and
Cystatin C; ITPR3 and phosphate; SLC22A7 and creatinine; and FCGR2B and non-albumin
protein.

For the 2,019 traits for which MRP was performed, there were also a considerable number of
associations found amongst non-biomarker traits. We found associations between: TUBB1 and
platelet distribution width and mean platelet volume61; IL17RA and monocyte count and
percentage61; OCA2/MC1R and skin color/hair color62–65; IQGAP2 and mean platelet volume61;
SLC24A5, HERC2, TCF25, TYR and skin color66; SH2B3, JAK2 and platelet crit67 and count68;
KALRN and mean platelet volume61; HBB and mean corpuscular volume69, mean corpuscular
hemoglobin70, and red blood cell count71; and CXCR2 and neutrophil count61.

We have published the full set of associations (log10 BF ≥ 5) from an independent effects model
amongst PAVs, from a similar effects model amongst PAVs, as well as from a similar effects
model amongst PTVs on the Global Biobank Engine for exomes
(https://biobankengine.stanford.edu/RIVAS_HG38/mrpgene/all) and array data
(https://biobankengine.stanford.edu/RIVAS_HG19/mrpgene/all).

MRP was implemented using Python (dependencies: pandas v1.1.5, numpy v1.16.4, rpy2
v3.0.4, scipy v1.3.0). The requirements, code, and metadata files can be found at
https://github.com/rivas-lab/mrp.
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Figure 3. Manhattan plots showing log10 BF under an independent effects variant model amongst
protein-altering variants for 6 categories across 35 biomarkers. Scale is logarithmic after log10 BF ≥
10. Genes found in Sinnott-Armstrong, et.al.17 are annotated in grey, whereas the other genes are
annotated in black.
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Array single-population multi-phenotype analyses

Figure 4A. Hierarchical clustering dendrogram. Based on genetic correlationderived from an LD-score
regression-based distance matrix between 35 biomarker traits.

In order to demonstrate the effectiveness of MRP to boost signal in a multi-phenotype context,
we used LD-score regression25 to determine genetic correlations between the 35 biomarker
traits (Figure S5) that were a focus of a previous paper17. This correlation matrix was then used
for hierarchical clustering followed by dynamic tree cutting, which formed four clusters of
between seven and ten traits each (Figure 4A). We generated the correlation plots as shown in
Figure 4B.

Multi-phenotype MRP results in several substantial power gains throughout the four clusters;
one of these clusters is highlighted in Figure 4C. As compared to the maximum log10 BF from
the constituent phenotypes, the multi-phenotype analysis generally fares comparably, while also
highlighting clear targets. We found evidence for association between rare coding variants in
several genes and the clusters above; TNFRSF13B (log10 BFmulti-trait = 204.5, max[log10 BFsingle-trait]
= 141.0), APOB (log10 BFmulti-trait = 197.9, max[log10 BFsingle-trait] = 128.0), SNX8 (log10 BFmulti-trait =
96.0, max[log10 BFsingle-trait] = 43.8) receive a boost in log10 BF of over 50 units for cluster 1
(Alanine aminotransferase, Aspartate aminotransferase, Gamma glutamyltransferase, Glucose,
HbA1c, Total protein, Apolipoprotein B, Cholesterol, LDL cholesterol, and Non-albumin protein).
Several other genes that are clearly below 5 (in log10 BF)  in the single-trait settings become
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above 5 in the joint setting (e.g., G6PC; log10 BFmulti-trait = 5.3, max[log10 BFsingle-trait] = 1.3). The
G6PC gene provides instructions for making the glucose 6-phosphatase enzyme, found on the
membrane of the endoplasmic reticulum. The enzyme is expressed in active form in the liver,
kidneys, and intestines, and is the main regulator of glucose production in the liver; given the
traits included in cluster 1, the increase in power may be biologically relevant72. These results
demonstrate that MRP can identify biologically meaningful targets that may be missed by
standard GWAS approaches.

Figure 4B. LD-score regression-based genetic correlation plots of candidate clusters. Derived from
the dendrogram in Figure 4A using a dynamic tree cutting algorithm.
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Figure 4C. Cluster vs. single-trait power analysis. Power comparison of genes with log10 BF ≥ 5 in
either i) any of the single-trait analyses of the traits within the cluster or ii) the multi-trait analysis, for a
cluster of biomarkers (Alanine aminotransferase, Aspartate aminotransferase, Gamma
glutamyltransferase, Glucose, HbA1c, Total protein, Apolipoprotein B, Cholesterol, LDL cholesterol, and
Non-albumin protein). x-axis depicts the maximum log10 BF of the gene amongst any of the constituent
single-trait analyses, and y-axis depicts the multi-trait result. Multi-trait analyses roughly equal the
highest-powered single-trait analyses, while also substantially boosting signal in some genes.

Discussion
In this study, we developed MRP, a Bayesian model comparison approach that shares
information across variants, phenotypes, and studies to identify rare variant associations. We
used simulations to verify that jointly considering both variants and phenotypes can improve the
ability to detect associations. We also applied the MRP model comparison framework in a
meta-analysis setting to exome summary statistics across the UK Biobank, identifying strong
evidence for the previously described associations between, for example, HAL and vitamin D41,
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and discovering several novel associations, such as between GLPD1 and alkaline phosphatase.
We made the full results set available on the Global Biobank Engine
(https://biobankengine.stanford.edu/)35. We also leveraged MRP to boost signal in a
multi-phenotype setting using the array data (which has many more samples than the exome
data), finding genes such as G6PC that do not come up in the single-trait context but show
strong evidence in the joint analysis. These results demonstrate the ability of the MRP model
comparison approach to leverage information across multiple phenotypes and variants to
discover rare variant associations.

As genetic data linked to high-dimensional phenotype data is increasingly being made available
through biobanks, health systems, and research programs, there is a large need for statistical
approaches that can leverage information across different genetic variants, phenotypes, and
studies to make strong inferences about disease-associated genes. The approach presented
here relies only on summary statistics from marginal association analyses, which can be shared
with less privacy concerns compared to raw genotype and phenotype data. Combining joint
analysis of variants and phenotypes with meta-analysis across studies offers new opportunities
to identify gene-disease associations.
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Supplementary Materials

Trait gene
Number of
PAVs, array

log10BF,
array

Number of
PAVs, exome

log10BF,
exome log10BF Difference

Total bilirubin UGT1A7 5 1.2 247 213 211.8

Direct bilirubin UGT1A7 5 0.6 228 133 132.4

Lipoprotein A PLG 57 38.9 583 165 126.1

SHBG SHBG 7 2.7 284 114 111.3

LDL cholesterol PCSK9 94 4.0 759 99 95.0

Total bilirubin MROH2A 33 4.6 1649 85.8 81.2

Apolipoprotein B PCSK9 94 3.1 756 80.7 77.6

Cholesterol PCSK9 94 4.0 760 80.9 76.9

IGF-1 GH1 5 2.1 301 55.1 53.0

Direct bilirubin MROH2A 33 2.9 1497 55.7 52.8

Gamma
glutamyltransferase GGT1 5 0.008 545 52.1 52.1

Triglycerides ANGPTL3 7 -0.02 337 39.9 39.9

Cholesterol ANGPTL3 7 -0.6 337 34.3 34.9

Cholesterol APC 1409 -34.7 1882 -0.5 34.2

LDL cholesterol APC 1410 -33.7 1882 -0.5 33.2

Apolipoprotein B APC 1405 -32.7 1876 -0.7 32.0

Total bilirubin UGT1A5 12 2.0 225 33 31.0

Albumin APC 1366 -31.6 1807 -1.2 30.4

Vitamin D APC 1379 -29.8 1828 0.2 30.0

Creatinine APC 1411 -31.4 1883 -1.9 29.5

Table S1. Genes with considerable power gain in exome data as compared to array data.
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Figure S2. From array to exome. Scatterplot showing the increase in number of protein-altering variants
in genes used in the analysis when comparing array (x-axis) to exome (y-axis) data. Data is taken from
MRP calculations across 35 biomarker traits within the UK Biobank.

Trait Gene
Number of

PAVs

log10BF
without

MPC

Number of
MPC-augmented

PAVs

Number of
pLI-augmented

PAVs

log10BF
with
MPC

log10BF
Difference

Alkaline
phosphatase ALPL 198 126 93 0 160 34

Lipoprotein A LPA 512 109 20 0 114 5

Apolipoprotein A APOA1 102 11.7 30 0 15.7 4

HDL cholesterol APOA1 103 9.36 30 0 13.2 3.84

Aspartate
aminotransferase SLC30A10 112 3.76 50 6 7.2 3.44

Phosphate ALPL 192 10.9 91 0 14.3 3.4
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Lipoprotein A IGF2R 763 29.8 153 27 33.1 3.3

HDL cholesterol SCARB1 220 5.45 66 0 8.29 2.84

Apolipoprotein B APOE 142 5.48 60 0 8.27 2.79

Alanine
aminotransferase SLC30A10 112 2.94 50 6 5.56 2.62

Table S3. Power comparison between variant annotation-based MRP and MPC/pLI-augmented
MRP analyses across 35 biomarkers. We see considerable gains in power in several gene/trait
combinations.

Figure S4. ALPL gene plot. Gene plot showing variants for which MPC pathogenicity information was
incorporated, resulting in a power gain for ALPL gene that encodes alkaline phosphatase; for the Alkaline
phosphatase phenotype, the incorporation of this information resulted in a log10BF gain of 34 (Table S3).
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Figure S5. LD-score regression-based genetic correlation plots of all 35 biomarkers included in
the multi-trait analyses. The traits are ordered by hierarchical clustering.
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