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 2 

Abstract 1 

 2 

Selection and integration of information based on current goals is fundamental for goal-3 

directed behavior. Reward motivation has been shown to improve behavioral performance, yet 4 

the neural mechanisms that link motivation and control processes, and in particular its effect 5 

on context-dependent information processing, remain unclear. We used functional magnetic 6 

resonance imaging (fMRI) in 24 human volunteers (13 females) to test whether reward 7 

motivation enhances the coding of task-relevant information across the frontoparietal cortex, 8 

as would be predicted based on previous experimental evidence and theoretical accounts. In a 9 

cued target detection task, participants detected whether an object from a cued visual category 10 

was present in a subsequent display. The combination of the cue and the object visual category 11 

determined the behavioral status of the objects. To manipulate reward motivation, half of all 12 

trials offered the possibility of a monetary reward. We observed an increase with reward in 13 

overall univariate activity across the frontoparietal control network when the cue and 14 

subsequent object were presented. Multivariate pattern analysis (MVPA) showed that 15 

behavioral status information for the objects was conveyed across the network. However, in 16 

contrast to our prediction, reward did not increase the discrimination between behavioral status 17 

conditions in the stimulus epoch of a trial when object information was processed depending 18 

on a current context. In the high-level general-object visual region, the lateral occipital 19 

complex, the representation of behavioral status was driven by visual differences and was not 20 

modulated by reward. Our study provides useful evidence for the limited effects of reward 21 

motivation on task-related neural representations and highlights the necessity to unravel the 22 

diverse forms and extent of these effects. 23 

 24 
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 4 

Abbreviations 1 

MD: multiple-demand 2 

LOC: lateral occipital complex 3 

LDC: linear discriminant contrast 4 

 5 

Additional neuroanatomical abbreviations: 6 

pdLFC: posterior/dorsal lateral prefrontal cortex 7 

aMFG: anterior part middle frontal gyrus 8 

mMFG: middle part of the middle frontal gyrus 9 

pMFG: posterior part of the middle frontal gyrus 10 

IPS: intraparietal sulcus 11 

preSMA: pre-supplementary motor area 12 

ACC: anterior cingulate cortex 13 

AI: anterior insula 14 

FO: frontal operculum 15 

pFs: posterior fusiform region 16 

LO: lateral occipital region 17 

 18 

 19 

  20 
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 5 

1. Introduction 1 

 2 

A fundamental aspect of flexible goal-directed behavior is the selection and integration of 3 

information depending on a current goal to determine its relevance to behavior and lead to a 4 

decision. With growing interest in recent years in the link between cognitive control and reward 5 

motivation, it has been proposed that reward enhances control processes by sharpening 6 

representation of task goals and prioritizing task-relevant information across the frontoparietal 7 

control network and other regions associated with cognitive control (Botvinick and Braver, 8 

2015; Etzel et al., 2016; Kruglanski et al., 2002; Simon, 1967). In line with this idea, it has 9 

been shown that motivation, usually manipulated as monetary reward, increases task 10 

performance (Padmala and Pessoa, 2011, 2010). Neuroimaging studies linked increased 11 

activity with reward in frontoparietal regions across a range of tasks, including working 12 

memory (Pochon et al., 2002; Taylor et al., 2004), selective attention (Krebs et al., 2012; 13 

Mohanty et al., 2008), response inhibition (Padmala and Pessoa, 2011), and problem solving 14 

(Shashidhara et al., 2019).  15 

Although the accumulating evidence at the behavioral and neural level in humans are consistent 16 

with this sharpening and prioritization account (Braver, 2012; Chiew and Braver, 2014; 17 

Kruglanski et al., 2002; Miller et al., 1960; Pessoa, 2009; Simon, 1967), they do not directly 18 

address the effect of reward motivation on the coding of task-related information and selection 19 

and integration processes. Some support for this idea comes from single-neuron data recorded 20 

from the prefrontal cortex of non-human primates: reward was associated with greater spatial 21 

selectivity, enhanced activity related to working memory and modulated task-related activity 22 

based on the type of reward (Kennerley and Wallis, 2009; Leon and Shadlen, 1999; Watanabe, 23 

1996). A more direct evidence in humans was recently demonstrated by Etzel et al. (2016). 24 

They showed that reward enhances coding of task cues across the frontoparietal cortex and 25 

suggested that task-set efficacy increases with reward. It remained an open question whether 26 
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 6 

this facilitative effect of reward is limited to preparatory cues, or if reward also enhances the 1 

coding of behaviorally relevant information when the cue and a subsequent stimulus are 2 

integrated, leading to the behavioral decision. Effects of reward during both cue and stimulus 3 

epochs of a trial are complementary to one another, and processing during both epochs is vital 4 

when reaching a decision. In a recent electroencephalogram (EEG) study, Hall-McMaster et 5 

al. (Hall-McMaster et al., 2019) showed that reward increases coding of task cues. However, 6 

these increases were observed only for ‘switch’ trials where task rules had to be updated. In 7 

addition, they also provided some evidence that the representation of task-relevant features is 8 

enhanced when reward level is high. Given the limited spatial resolution of EEG, it is unclear 9 

whether these effects of reward are specific to the frontoparietal control network. Taken 10 

together, these previous findings demonstrate that the effects of reward on representation of 11 

task-related information may not be generalized and robust but rather specific to certain 12 

cognitive demands and trial epochs. 13 

To further shed light on the extent of the effects of reward on neural representations, here we 14 

focus on the attentional saliency of task-relevant information as determined by the nature of 15 

the task. Consistent with the idea that the frontoparietal network is involved in selection and 16 

integration of task-relevant information, in previous work we showed that top-down attentional 17 

saliency of items from different visual categories, as determined by their likelihood of being 18 

targets, drives representation across this network (Erez and Duncan, 2015). Thus, rather than 19 

representation of the visual categories themselves, it was the attentional saliency, or behavioral 20 

status of the items, as determined by the integration of cue and stimulus input, that was the 21 

task-relevant aspect represented across the network. In the current study, we ask whether 22 

reward motivation enhances the representation of task-related behavioral status across the 23 

frontoparietal network. Furthermore, previous studies have associated reward with decreased 24 

conflict in interference tasks (Krebs et al., 2013; Padmala and Pessoa, 2011; Stürmer et al., 25 
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2011), suggesting that any effect of reward may be particularly important for high-conflict 1 

items, in other words, a conflict-contingent effect. We therefore also asked whether such 2 

facilitative effect of reward is selective for highly conflicting items. We used fMRI and 3 

multivariate pattern analysis (MVPA) to measure representation of the task-related behavioral 4 

status as well as visual categories in distributed patterns of response in the human brain. 5 

Specifically, we tested whether pattern discriminability increased with reward in the a priori 6 

chosen frontoparietal ‘multiple-demand’ (MD) network (Duncan, 2010; Fedorenko et al., 7 

2013), which has been associated with multiple aspects of cognitive control, such as working 8 

memory, task sets, conflict monitoring, task switching, and task-dependent categorical 9 

decisions (Cole et al., 2016; Erez and Duncan, 2015; Fedorenko et al., 2013; Li et al., 2007; 10 

Muhle-Karbe et al., 2017; Nastase et al., 2017; Vergauwe et al., 2015; Wisniewski et al., 2016). 11 

Lastly, it is commonly accepted that top-down signals from the frontoparietal MD network to 12 

the visual cortex play an important role in the processing of task-related information. Therefore, 13 

we tested whether similar effects of reward would be observed in the high-level general-object 14 

visual region, the lateral occipital complex (LOC). 15 

 16 

2. Materials and Methods 17 

 18 

2.1 Participants  19 

 20 

24 participants (13 females), between the ages of 18-40 years (mean age: 25) took part in the 21 

study. Four additional participants were excluded due to large head movements during the scan 22 

(greater than 5 mm). The sample size was determined prior to data collection as typical for 23 

neuroimaging studies, in accordance with sample sizes in previous fMRI studies that showed 24 

sufficient power to detect representation of behavioral status and effects of reward on coding 25 

of task information (Erez and Duncan, 2015; Etzel et al., 2016), and to comply with counter-26 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2021. ; https://doi.org/10.1101/609537doi: bioRxiv preprint 

https://doi.org/10.1101/609537
http://creativecommons.org/licenses/by/4.0/


 

 8 

balancing requirements of the experimental design across participants. All participants were 1 

right-handed with normal or corrected-to-normal vision and had no history of neurological or 2 

psychiatric illness. The study was conducted with approval by the Cambridge Psychology 3 

Research Ethics Committee. All participants gave written informed consent and were 4 

monetarily reimbursed for their time. 5 

2.2 Task design 6 

 7 

Participants performed a cued target detection categorization task in the MRI scanner (Figure 8 

1A). On each trial, integration of a preceding cue and the presented object determined the 9 

behavioral status of the object. Our primary question concerned the representation during the 10 

stimulus epoch of a trial where cue and stimulus are integrated, and we therefore designed the 11 

task accordingly. At the beginning of each trial, one of three visual categories (sofas, shoes, 12 

cars) was cued, determining the target category for that trial. Participants had to indicate 13 

whether the subsequent object matched this category or not by pressing a button. For each 14 

participant, only two of the categories were cued as targets throughout the experiment. 15 

Depending on the cue on a given trial, objects from these categories could be either Targets, or 16 

nontargets with high conflict as they could serve as targets on other trials (High-conflict 17 

nontarget). The third category was never cued, therefore objects from this category served as 18 

Low-conflict nontargets. This design yielded three behavioral status conditions: Targets, High-19 

conflict nontargets and Low-conflict nontargets (Figure 1B). Critically, following the 20 

integration of the cue and presented object, the relevant information that is expected to be 21 

represented across the MD network is the behavioral status of a given category, rather than the 22 

visual category itself (Erez and Duncan, 2015). Therefore, the task-relevant distinctions that 23 

were tested using MVPA were pairs of categories with different behavioral status. The 24 

assignment of the categories to be cued (and therefore serve as either Targets or High-conflict 25 
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 9 

nontargets) or not (and serve as Low-conflict nontargets) was counter-balanced across 1 

participants.  2 

To manipulate motivation, half of the trials were cued as reward trials in which a monetary 3 

reward was offered. On these reward trials, participants had the chance of earning £1 if they 4 

completed the trial correctly and within a time limit. Four random reward trials out of 32 in 5 

each run were assigned the £1 reward, thus ensuring an incentive on all reward trials. To avoid 6 

longer reaction times when participants try to maximize their reward, a response time threshold 7 

was used for reward trials, set separately for each participant as the average of 32 trials in a 8 

pre-scan session. The participants were told that the maximum reward they could earn is £24 9 

in the entire session (£4 per run) and were not told what the time threshold was. Therefore, to 10 

maximize their gain, participants had to treat every reward trial as a £1 trial and respond as 11 

quickly and as accurately as possible, just as in no-reward trials.  12 

Each trial started with a 1 s cue, which was the name of a visual category that served as the 13 

target category for this trial. On reward trials, the cue included three red pound signs presented 14 

next to the category name. The cue was followed by a fixation dot in the center of the screen 15 

presented for 0.5 s and an additional variable time of either 0.1, 0.4, 0.7 or 1 s, selected 16 

randomly, in order to make the stimulus onset time less predictable. The stimulus was then 17 

presented for 120 ms and was followed by a mask. The stimulus duration was fixed and 18 

identical for all trials. Participants indicated by a button press whether this object belonged to 19 

the cued target category (present) or not (absent). Following response, a 1 s blank inter-trial 20 

interval separated two trials. For both reward and no-reward trials, response time was limited 21 

to a maximum of 3 s, after which the 1 s blank inter-trial interval started even when no response 22 

was made. For reward trials, an additional subject-specific response time threshold was used 23 

as mentioned above to determine whether the participants earned the reward or not, but this 24 

time threshold did not affect the task structure and was invisible to the participants. 25 
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 10 

We used catch trials to decorrelate the BOLD signals of the cue and stimulus phases. 33% of 1 

all trials included cue followed by fixation dot for 500 ms, which then turned red for another 2 

500 ms indicating the absence of the stimulus, followed by the inter-trial interval. 3 

The combination of multiple factors in the task design resulted in a cognitively demanding task 4 

that was expected to recruit MD regions. These factors include frequent cue changes, short 5 

stimulus presentation duration, short inter-trial interval and change of response mapping. We 6 

also note that there are multiple aspects of information selection that are of interest when 7 

considering the effect of reward motivation on neural representation, one of which is how it 8 

may bias attention to reward-associated stimuli when two or more stimuli are presented 9 

simultaneously and compete for attention. Here we focus on single stimulus displays and the 10 

integration of cue and stimulus that generates the behavioral status of the stimuli as a starting 11 

point, while attentional competition may be address in future studies. 12 
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 1 

Figure 1: Experimental paradigm. A. An example trial. A trial began with a cue (1 s) 2 

indicating the target category, followed by 500 ms fixation period. Reward trials were cued 3 

with three red £ symbols next to the target category. After an additional variable time (0.4, 0.7, 4 

1.0 or 1.3 s), an object was presented for 120 ms. The object was then masked (a scramble of 5 

the all the stimuli used), until response or for a maximum of 3 s. The participants pressed a 6 

button to indicate whether the object was from the cued category (Target trials) or not 7 
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(Nontarget trials). 33% of all trials were catch trials. These included cue followed by fixation 1 

dot for 500 ms, which then turned red for another 500 ms indicating the absence of the stimulus, 2 

followed by the inter-trial interval. B. Experimental conditions. For each participant, two 3 

categories served as potential targets depending on the cue, and a third category never served 4 

as target. Here as an example, shoes and sofas are the cued categories and cars as the uncued 5 

category. In the Target trials, the presented object matched the cued category. In the High-6 

conflict nontarget trials, the object did not match the cued category, but was from the other 7 

cued category, therefore could serve as a target on other trials. In the Low-conflict nontarget 8 

trials, the presented object was from the category that was never cued. Overall, this design 9 

yielded three levels of behavioral status: Targets, High-conflict nontargets, and Low-conflict 10 

nontargets. The design was used for both no-reward and reward conditions. 11 

 12 

2.3 Stimuli 13 

 14 

Objects were presented at the center of the screen on a grey background. The objects were 15 

2.95° visual angle along the width and 2.98° visual angle along the height. Four exemplars 16 

from each visual category were used. Exemplars were chosen with similar colors, dimensions, 17 

and orientation across the categories. All exemplars were used an equal number of times in 18 

each condition and in each run to ensure that any differences between the experimental 19 

conditions will not be driven by the variability of exemplars. To increase the task demand, 20 

based on pilot data, we added Gaussian white noise to the stimuli. The post-stimulus mask was 21 

generated by randomly combining pieces of the stimuli that were used in the experiment. The 22 

mask was the same size as the stimuli and was presented until a response was made or the 23 

response time expired. 24 

2.4 Structure and design 25 

 26 
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 13 

Each participant completed 6 functional runs of the task in the scanner (mean duration ± SD: 1 

6.2 ± 0.13 min). Each run started with a response-mapping instructions screen (e.g., left = target 2 

present, right = target absent), displayed until the participants pressed a button to continue. 3 

Halfway through the run, the instructions screen was presented again with the reversed 4 

response mapping. All trials required a button response to indicate whether the target was 5 

present or absent, and the change of response mapping ensured that conditions were not 6 

confounded by the side of the button press. Each run included 104 trials. Out of these, 8 were 7 

dummy trials following the response mapping instructions (4 after each instructions screen) 8 

and were excluded from the analysis. Of the remaining 96 trials, one-third (32 trials) were cue-9 

only trials (catch trials). Of the remaining 64 trials, 32 were no-reward trials and 32 were reward 10 

trials. Of the 32 no-reward trials, half (16) were cued with one visual category, and half (16) 11 

with the other. For each cued category, half of the trials (8) were Target trials, and half of the 12 

trials (8) were nontarget trials, to ensure an equal number of target (present) and nontarget 13 

(absent) trials. Of the nontarget trials, half (4) were High-conflict nontargets, and half (4) were 14 

Low-conflict nontargets. There were 4 trials per cue and reward level for the High- and Low-15 

conflict nontarget conditions, and 8 for the Target condition, with the latter split into two 16 

regressors (see 2.7.2 General Linear Model (GLM) for the Main Task section below). A similar 17 

split was used for reward trials. The task included an overall of 96 Target trials, 48 High-18 

conflict nontarget trials, and 48 Low-conflict nontarget trials for each reward level (no-reward 19 

and reward) across runs and cued categories. An event-related design was used, and the order 20 

of the trials was randomized in each run. At the end of each run, the money earned in the reward 21 

trials and the number of correct trials (across both reward and no-reward trials) were presented 22 

on the screen. 23 

2.5 Functional localizers 24 

 25 
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 14 

In addition to the main task, we used two other tasks in order to functionally localize MD 1 

regions and LOC in individual participants using independent data. These functional localizer 2 

data were used for subject-specific ROI definitions within anatomical constraints of ROI 3 

templates for MD regions and LOC (Fedorenko et al., 2010; Shashidhara et al., 2020). See 4 

2.7.5 ROI definition and 2.7.6 Subject-specific ROIs for more details. For consistency, this 5 

approach was used for all the univariate and multivariate pattern analyses. 6 

To localize MD regions, we used a spatial working memory task (Fedorenko et al., 2013). This 7 

task has been previously shown to robustly recruit the MD network similarly to other tasks 8 

across multiple cognitive domains (Fedorenko et al., 2013). Furthermore, when used as a 9 

localizer task in conjunction with anatomical constraints (i.e., the same approach as we use in 10 

the current study), decoding levels in an independent task across the MD network were similar 11 

to other MD localizer tasks (Shashidhara et al., 2020), thus supporting its suitability for subject-12 

specific localization of the MD network, in particular when addressing pattern discriminability. 13 

On each trial, participants remembered 4 locations (Easy condition) or 8 locations (Hard 14 

condition) in a 3X4 grid. Each trial started with fixation for 500 ms. Locations on the grid were 15 

then highlighted consecutively for 1 s (1 or 2 locations at a time, for the Easy and Hard 16 

conditions, respectively). In a subsequent two-alternative forced-choice display (3 s), 17 

participants had to choose the grid with the correct highlighted locations by pressing the left or 18 

the right button. Feedback was given after every trial for 250 ms. Each trial was 8 s long, and 19 

each block included 4 trials (32 s). There was an equal number of correct grids on the right and 20 

left in the choice display. Participants completed 2 functional runs of 5 min 20 sec each, with 21 

5 Easy blocks alternated with 5 Hard blocks in each run. We used the contrast of Hard vs. Easy 22 

blocks to localize MD regions. 23 

As a localizer for LOC, we used a one-back task with blocks of objects interleaved with blocks 24 

of scrambled objects. The objects were in grey scale and taken from a set of 61 everyday objects 25 
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(e.g., camera, coffee cup, etc.). Participants had to press a button when the same image was 1 

presented twice in a row. Images were presented for 300 ms followed by a 500 ms fixation. 2 

Each block included 15 images with two image repetitions and was 12 s long. Participants 3 

completed two runs of this task, with 8 object blocks, 8 scrambled object blocks, and 5 fixation 4 

blocks. The objects vs. scrambled objects contrast was used to localize LOC. 5 

2.6 Scanning session 6 

 7 

The scanning session included a structural scan, 6 functional runs of the main task, and 4 8 

functional localizer runs – 2 for MD regions and 2 for LOC. The scanning session lasted up to 9 

100 minutes, with an average 65 minutes of EPI time. The tasks were introduced to the 10 

participants in a pre-scan training session. The average reaction time of 32 no-reward trials of 11 

the main task completed in this practice session was set as the time threshold for the reward 12 

trials to be used in the scanner session. All tasks were written and presented using 13 

Psychtoolbox3 (Brainard, 1997) and MatLab (The MathWorks, Inc). 14 

2.6.1 Data acquisition 15 

 16 

fMRI data were acquired using a Siemens 3T Prisma scanner with a 32-channel head coil. We 17 

used a multi-band imaging sequence (CMRR, release 016a) with a multi-band factor of 3, 18 

acquiring 2 mm isotropic voxels (Feinberg et al., 2010). Whole-brain scans were acquired. 19 

Other acquisition parameters were: TR = 1.1 s, TE = 30 ms, 48 slices per volume with a slice 20 

thickness of 2 mm and no gap between slices, in plane resolution 2 × 2 mm, field of view 205 21 

mm, flip angle 62°, and interleaved slice acquisition order. No iPAT or in-plane acceleration 22 

were used. T1-weighted multiecho MPRAGE (van der Kouwe et al., 2008) high-resolution 23 

images were also acquired for all participants, in which four different TEs were used to generate 24 

four images (voxel size 1 mm isotropic, field of view of 256 × 256 × 192 mm, TR = 2530 ms, 25 

TE = 1.64, 3.5, 5.36, and 7.22 ms). The voxelwise root mean square across the four MPRAGE 26 

images was computed to obtain a single structural image.  27 
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2.7 Data and statistical analysis 1 

 2 

The primary analysis approach was multi-voxel pattern analysis (MVPA), to assess 3 

representation of behavioral status distinctions with and without reward. An additional ROI-4 

based univariate analysis was conducted to confirm the recruitment of the MD network. 5 

Preprocessing, GLM and univariate analysis of the fMRI data were performed using SPM12 6 

(Wellcome Department of Imaging Neuroscience, London, England; www.fil.ion. ucl.ac.uk), 7 

and the Automatic Analysis (aa) toolbox (Cusack et al., 2014). The analysis choices described 8 

below were determined a priori to conducting the analyses. 9 

We used an alpha level of .05 for all statistical tests. Bonferroni correction for multiple 10 

comparisons was used when required, and the corrected p-values and uncorrected t-values are 11 

reported. All t tests that were used to compare two conditions were paired due to the within-12 

subject design. A one-tailed t test was used when the prediction was directional, including 13 

testing for classification accuracy above chance level. All other t tests in which the a priori 14 

hypothesis was not directional were two-tailed. Additionally, effect size (Cohen’s dz) was 15 

computed. We note that using a t test for group level inference of classification accuracy above 16 

chance may be limited in its interpretation as true accuracies cannot be below chance level 17 

(Allefeld et al., 2016). We emphasize that tests for classification accuracies above chance are 18 

reported in the Results as a complementary measure while the main research question concerns 19 

the change in decoding level with reward. A post-hoc sensitivity power analysis was conducted 20 

for the effect of reward modulation of decoding in MD regions, with alpha level of 0.05, power 21 

of 0.8 and one tail (Faul et al., 2007).  All analyses were conducted using custom-made 22 

MATLAB (The Mathworks, Inc) scripts, unless otherwise stated. 23 

2.7.1 Pre-processing 24 

 25 

Initial processing included motion correction and slice time correction. The structural image 26 

was coregistered to the Montreal Neurological Institute (MNI) template, and then the mean EPI 27 
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was coregistered to the structural. The structural image was then normalized to the MNI 1 

template via a nonlinear deformation, and the resulting transformation was applied on the EPI 2 

volumes. Spatial smoothing of FWHM = 5 mm was performed for the functional localizers 3 

data only. 4 

2.7.2 General Linear Model (GLM) for the main task 5 

 6 

We used GLM to model the main task and localizers’ data. Regressors for the main task 7 

included 12 conditions during the stimulus epoch and 4 conditions during the cue epoch. 8 

Regressors during the stimulus epoch were split according to reward level (no-reward, reward), 9 

cued visual category (cue 1, cue 2), and behavioral status (Target, High-conflict nontarget, 10 

Low-conflict nontarget). Since the combination of cued category and the stimulus category on 11 

each trial determined the behavioral status, the regressors for each reward level included all 12 

possible combinations of cued and stimulus category: cue1-stimulus1 (Target), cue1-stimulus2 13 

(High-conflict nontarget), cue1-stimulus3 (Low-conflict nontarget), cue2-stimulus 2 (Target), 14 

cue2-stimulus1 (High-conflict nontarget), cue2-stimulus2 (Low-conflict nontarget). To ensure 15 

an equal number of target present and target absent trials, the number of Target trials in our 16 

design was twice the number of High-conflict and Low-conflict nontarget trials. The Target 17 

trials included two repetitions of each combination of cue, visual category and exemplar, with 18 

a similar split for reward trials. These two Target repetitions were modelled as separate Target1 19 

and Target2 regressors in the GLM to make sure that all the regressors were based on an equal 20 

number of trials but were invisible to the participants. All the univariate and multivariate 21 

analyses were carried out while keeping the two Target regressors separate to avoid any bias 22 

of the results, and they were averaged at the final stage of the results. Overall, the GLM 23 

included 16 regressors of interest for the 12 stimulus conditions. Each regressor was based on 24 

data from all correct trials in the respective condition in each run (up to 4 trials), i.e., the 25 

regressors were computed separately for each run. To account for possible effects of reaction 26 
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time (RT) on the beta estimates because of the varying duration of the stimulus epoch, and as 1 

a consequence their potential effect on decoding results, these regressors were modelled with 2 

durations from stimulus onset to response (Woolgar et al., 2014). This model assumes that 3 

activity in each voxel continues throughout the phase, and as long as the participant is 4 

performing the trial. This ensured that we capture the entire cognitive processing of integration 5 

of stimulus and cue until a decision is reached in all trials, but we emphasize that the actual 6 

stimulus duration was fixed for all trials. Since this model scales the regressors based on the 7 

reaction time, the beta estimates reflect activation per unit time and are comparable across 8 

conditions with different durations. In addition to regressors during the stimulus epoch, we also 9 

modelled the cue epoch. Cue regressors included both task and cue-only (catch) trials and were 10 

split by reward level and cued category, modelled with duration of 1 s. Cue regressors were 11 

based on 16 trials per regressor per run. As one-third of all trials were catch trials, the cue and 12 

stimulus epoch regressors were decorrelated and separable in the GLM. All the regressors were 13 

convolved with the canonical hemodynamic response function (HRF). The 6 movement 14 

parameters and run means were included as covariates of no interest. 15 

As one of our control analyses, we classified patterns of activity of motor response (left vs. 16 

button presses) in motor areas. For this analysis, we constructed a separate GLM. This GLM 17 

was similar to the above GLM of the main task, with the only difference being the stimulus 18 

phase regressors. For this model, we used two regressors (right press, left press) for each of the 19 

two reward levels (no-reward, reward), a total of four regressors. 20 

2.7.3 GLM for the functional localizers 21 

 22 

For the MD localizer, regressors included Easy and Hard blocks. For LOC, regressors included 23 

objects and scrambled objects blocks. Each block was modelled with its duration. The 24 

regressors were convolved with the canonical hemodynamic response function (HRF). The 6 25 

movement parameters and run means were included as covariates of no interest.  26 
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2.7.4 Univariate analysis 1 

 2 

We conducted an ROI analysis to test for the effect of reward on overall activity for the 3 

different behavioral status conditions and cues. We used individually defined ROIs based on 4 

subject-specific independent functional localizer data within anatomical constraints of 5 

templates for the MD network and for LOC as defined below (see 2.7.5 ROI definition 2.7.6 6 

and subject-specific ROIs). Using the MarsBaR toolbox (http://marsbar.sourceforge.net; Brett 7 

et al., 2002) for SPM 12, beta estimates for each regressor of interest were extracted and 8 

averaged across runs, and across voxels within each ROI, separately for each participant and 9 

condition. For the MD network, beta estimates were also averaged across hemispheres (see 10 

2.7.5 ROI definition below). Second-level analysis was done on beta estimates across 11 

participants using repeated measures ANOVA. The data for the Target condition was averaged 12 

across the two Target1 and Target2 regressors, separately for the no-reward and reward 13 

conditions. 14 

 15 

2.7.5 ROI definition 16 

 17 

MD network template. ROIs of the MD network were defined a priori using an independent 18 

data set (Fedorenko et al. 2013; see t-map at http://imaging.mrc-19 

cbu.cam.ac.uk/imaging/MDsystem). These included the anterior, middle, and posterior parts 20 

of the middle frontal gyrus (aMFG, mMFG, and pMFG, respectively), a posterior dorsal region 21 

of the lateral frontal cortex (pdLFC), AI-FO, pre-SMA/ACC, and IPS, defined in the left and 22 

right hemispheres. The visual component in this template is widely accepted as a by-product 23 

of using largely visual tasks and is not normally considered as part of the MD network. 24 

Therefore, it was not included in the analysis. The MD network is highly bilateral, with similar 25 

responses in both hemispheres (Fedorenko et al., 2013). We therefore averaged the results 26 

across hemispheres in all the analyses. 27 
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LOC template. LOC was defined using data from a functional localizer in an independent study 1 

with 15 participants (Lorina Naci, PhD dissertation, University of Cambridge). In this localizer, 2 

forward- and backward-masked objects were presented, as well as masks alone. Masked 3 

objects were contrasted with masks alone to identify object-selective cortex (Malach et al., 4 

1995). Division to the anterior part of LOC, the posterior fusiform region (pFs) of the inferior 5 

temporal cortex, and its posterior part, the lateral occipital region (LO) was done using a cut-6 

off MNI coordinate of Y=-62, as previous studies have shown differences in processing for 7 

these two regions (Erez and Yovel, 2014; MacEvoy and Epstein, 2011). 8 

Motor regions template. For one of our control analyses, we used two anatomical masks for 9 

motor regions from the FSL (FMRIB Software Library) Harvard-Oxford atlas (Desikan et al., 10 

2006).The precentral gyrus and the supplementary motor cortex. 11 

2.7.6 Subject-specific ROIs 12 

 13 

To define subject-specific ROIs, we used independent functional localizer data for each subject 14 

within the anatomical constraints of the MD network and LOC templates (Fedorenko et al., 15 

2010; Shashidhara et al., 2020). This has allowed us to use both a template, consistent across 16 

participants, as well as subject-specific data as derived from the functional localizers. This 17 

approach was used for all the univariate and multivariate pattern analyses in the MD network 18 

and the LOC. For the multivariate analysis, using this approach also ensured controlled ROI 19 

size for comparison between regions within the MD network and between sub-regions in LOC. 20 

For each participant, beta estimates of each condition and run were extracted for each ROI 21 

based on the MD network and LOC templates. For each MD ROI, we then selected the 200 22 

voxels with the largest t-value for the Hard vs. Easy contrast as derived from the independent 23 

subject-specific functional localizer data. This number of voxels was defined prior to any data 24 

analysis (Erez and Duncan, 2015; Shashidhara et al., 2020). The 200 voxels captured 19.5% of 25 

voxels in each MD ROI on average. For each LOC sub-region, we selected 180 voxels with 26 
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the largest t-values of the object vs. scrambled contrast from the independent subject-specific 1 

functional localizer data. The selected voxels were used for the voxelwise patterns in the 2 

MVPA for the main task. The number of voxels that was used for LOC was smaller than for 3 

MD regions because of the size of the pFs and LO masks. For the analysis that addressed 4 

decoding of visual categories and compared MD regions with the visual regions, we used 180 5 

voxels from all regions to keep the ROI size the same. On average, the 180 voxels captured 6 

17.5% of voxels in each MD ROI and 45% of each LOC ROI. Figure S1 shows probabilities 7 

maps of the distribution of subject-specific ROIs across MD and LOC ROIs. 8 

To ensure that the decoding results are robust and do not depend on the choice of the number 9 

of selected voxels in each ROI, we repeated the main decoding analysis for MD regions with a 10 

range of ROI sizes (100, 150, 250 and 300 voxels). 11 

2.7.7 ROI-based multivoxel pattern analysis (MVPA) 12 

 13 

We used MVPA to test for the effect of reward motivation on pattern discriminability between 14 

the task-related behavioral status pairs. Voxelwise patterns using the selected voxels within 15 

each template were computed for all the task conditions in the main task. We applied our 16 

classification procedure on all possible pairs of conditions as defined by the GLM regressors 17 

of interest during the stimulus presentation epoch, for the no-reward and reward conditions 18 

separately (Figure 1B). The beta estimates for each condition and run were used for the MVPA 19 

and were not normalized at any point during the analysis process. For each pair of conditions, 20 

MVPA was performed using a support vector machine classifier (LIBSVM library for 21 

MATLAB, c=1) implemented in the Decoding Toolbox (Hebart et al., 2015). We used leave-22 

one-run-out cross-validation in which the classifier was trained on the data of five runs (training 23 

set) and tested on the sixth run (test set). This was repeated 6 times, leaving a different run to 24 

test each time, and classification accuracies were averaged across these 6 folds. Classification 25 

accuracies were then averaged across pairs of different cued categories, yielding discrimination 26 
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measures for three pairs of behavioral status (Targets vs. High-conflict nontargets, Targets vs. 1 

Low-conflict nontargets, and High-conflict vs. Low-conflict nontargets) within each reward 2 

level (no-reward, reward). Because the number of Target trials in our design was twice the 3 

number of High-conflict and Low-conflict nontarget trials, each discrimination that involved a 4 

Target condition was computed separately for the two Target regressors (Target1 and Target2) 5 

and classification accuracies were averaged across them. We note that for each participant, 6 

while the visual categories were balanced for Targets and High-conflict nontargets, the visual 7 

category that was assigned as Low-conflict nontarget did not serve as a Target or High-conflict 8 

nontarget. Nevertheless, based on previous work, it is expected that behavioral status will be 9 

represented across the MD network with little or no effect of the visual category itself (Erez 10 

and Duncan, 2015). 11 

The Target and High-conflict nontarget pairs of conditions included cases when both 12 

conditions had an item from the same visual category as the stimulus (following different cues), 13 

as well as cases in which items from two different visual categories were displayed as stimuli 14 

(following the same cue). To test for the contribution of the visual category to the 15 

discrimination, we split the Target vs. High-conflict nontarget pairs of conditions into these 16 

two cases and the applied statistical tests accordingly. 17 

Although our main hypothesis addressed the behavioral status of the presented stimuli, several 18 

studies showed that information related to stimulus features is also represented across the MD 19 

network (Jackson et al., 2017; Woolgar et al., 2015). Rather than increased representation of 20 

the behavioral status with reward as we hypothesized, information about the visual categories 21 

themselves could increase. We therefore also tested for decoding of visual categories when 22 

both stimuli are Targets or both are High-conflict nontargets, and whether this is modulated by 23 

reward. 24 
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To ensure that our results for the main study question are robust across different pattern analysis 1 

techniques, we tested for the modulation of the representation of behavioral status by reward 2 

using a linear discriminant contrast (LDC) (Carlin and Kriegeskorte, 2017; Nili et al., 2014), 3 

in addition to SVM. The LDC is the cross-validated Mahalanobis distance between two classes 4 

and provides unbiased distances. Larger LDC indicates greater pattern dissimilarity, i.e., 5 

greater discriminability, and 0 reflects no discriminability. The MVPA analysis as described 6 

above was repeated with the LDC measure and using the same voxel selection procedure. For 7 

each participant, LDC was computed for all possible pairs of conditions and LDC values were 8 

then averaged as described above to address each of the questions. The LDC analysis was 9 

implemented using the Representational Similarity Analysis toolbox (Nili et al., 2014). 10 

As one of our control analyses, we tested for classification of right vs. left button presses in 11 

motor regions for no-reward and reward trials. This analysis was used as a quality check for 12 

the data and the correctness of the MVPA pipeline. We used beta estimates from a separate 13 

GLM in which trials were modelled for right/left button press only for each of the two reward 14 

levels. Decoding accuracies were computed for each reward level separately and then averaged 15 

across reward levels. The analysis was performed similarly to the MVPA described above 16 

using a support vector machine classifier (LIBSVM library for MATLAB, c=1), implemented 17 

in the Decoding Toolbox (Hebart et al., 2015), and using a leave-one-run-out cross-validation. 18 

All voxels within the motor ROIs were used. 19 

2.7.8 Whole-brain searchlight pattern analysis 20 

 21 

To test whether regions outside the MD network show change in discriminability between 22 

voxelwise patterns of activity of task-related behavioral status when reward is introduced, we 23 

conducted a whole-brain searchlight pattern analysis (Kriegeskorte et al., 2006) using the 24 

Decoding Toolbox (Hebart et al., 2015). This analysis enables the identification of focal 25 

regions that carry relevant information, unlike the ROI-based analysis, which tests for a more 26 
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widely distributed representation of information across larger ROIs. For each participant, data 1 

was extracted from spherical ROIs with a 5 mm radius (maximum 65 voxels), centered on each 2 

voxel in the brain. These voxels were used to perform the same MVPA analysis using SVM as 3 

described above. Thus, for each voxel, we computed the classification accuracies for the 4 

relevant behavioral status distinctions, separately for the reward and no-reward conditions. 5 

These whole-brain maps were smoothed using a 5 mm FWHM Gaussian kernel. The t-statistic 6 

from a second level random-effects analysis on the smoothed maps was thresholded at the 7 

voxel level using FDR correction (p < 0.05). 8 

2.7.9 Data and code accessibility 9 

All raw data and code used in this study will be deposited on a departmental repository upon 10 

publication and will be available upon any request. 11 

3. Results 12 

 13 

3.1 Behavior 14 

 15 

Overall accuracy levels were high (mean ± SD: 92.51% ± 0.08%). Mean and SD accuracy rates 16 

for the Target, High-conflict nontarget and Low-conflict nontarget conditions in the no-reward 17 

trials were 91.2% ± 5.8%, 89.1% ± 8.8%, and 96.6% ± 3.8%, respectively; and for the reward 18 

trials they were 94.2% ± 5.0%, 87.8%± 8.7%, 96.1% ± 4.4%, respectively (Figure 2A). A two-19 

way repeated measures ANOVA with reward level and behavioral status as within-subject 20 

factors showed no main effect of reward (F1, 23 = 0.49, p = 0.49), confirming that the added 21 

time constraint for reward trials did not lead to drop in performance. There was a main effect 22 

of behavioral status (F2, 23 = 29.64, p < 0.001) and an interaction between reward level and 23 

behavioral status (F2, 23 = 5.81, p < 0.01). Post-hoc tests with Bonferroni correction for multiple 24 

comparisons showed larger accuracies for Low-conflict nontargets compared to Targets and 25 

High-conflict nontargets in the no-reward trials (Two-tailed t-test: t23 = 5.64, p < 0.001, dz = 26 
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1.15; t23 = 5.50, p < 0.001, dz = 1.12 respectively), as expected given that the Low-conflict 1 

nontarget category was fixed throughout the experiment. In the reward trials, performance 2 

accuracies were larger for Targets compared to High-conflict nontargets (t23 = 4.45, p < 0.001, 3 

dz = 0.91) and Low-conflict nontargets compared to High-conflict ones (t23 = 5.92, p < 0.001, 4 

dz = 1.2), with only marginal difference between Targets and Low-conflict nontargets (t23 = 5 

2.49, p = 0.06). Accuracies for Target trials were larger for the reward trials compared to no-6 

reward (t23 = 2.92, p = 0.008, dz = 0.61), indicating a possible behavioral benefit of reward. 7 

There was no difference between reward and no-reward trials for High-conflict and Low-8 

conflict nontargets (t23 < 1.1, p > 0.1, for both). 9 

RT of successful trials for the three behavioral status conditions, Target, High-conflict 10 

nontarget and Low-conflict nontarget, in the no-reward trials were 589 ± 98 ms, 662 ± 103 ms, 11 

and 626 ± 107 ms, respectively (mean ± SD); RTs for these conditions in the reward trials were 12 

541 ± 99 ms, 614 ± 99 ms, 585 ± 97 ms, respectively (mean ± SD) (Figure 2B). A two-way 13 

repeated measures ANOVA with reward level (no-reward, reward) and behavioral status as 14 

within-subject factors showed a main effect of reward (F1, 23 = 40.07, p < 0.001), with reward 15 

trials being shorter than no-reward trials, as expected from the experimental design that 16 

required a response within a time limit to receive the reward. An additional main effect of 17 

behavioral status (F2, 23 = 50.97, p < 0.001) was observed, with no interaction between reward 18 

and behavioral status (F2, 23 = 0.63, p = 0.54). Subsequent post-hoc tests with Bonferroni 19 

correction for multiple comparisons showed that RTs for Target trials were faster than High-20 

conflict and Low-conflict nontarget trials (t23 = 10.03, p < 0.001, dz = 2.05; t23 = 5.17, p < 0.001, 21 

dz = 1.06 respectively), and Low-conflict nontarget trials were faster than the High-conflict 22 

ones (t23 = 4.96, p < 0.001, dz = 1.01), as expected from a cued target detection task. 23 

 24 
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 1 

Figure 2: Behavioral results. A. Accuracy rates. Proportion of correct trials is presented for 2 

Targets (T), High-conflict nontargets (HC) and Low-conflict nontargets (LC) for no-reward 3 

and reward trials. B. Reaction times. Error bars indicate S.E.M. Asterisks show significance 4 

levels following a two-tailed paired t-test, corrected for 3 comparisons. ** p < 0.01, *** p < 5 

0.001. 6 

 7 

3.2 Activity across the MD network during the cue epoch 8 

 9 

To address our primary research question, the analysis focused on the stimulus epoch. 10 

However, to get a full picture of the data and for comparability with previous studies that 11 

showed increase in cue information, we also report the results for the cue epoch here. This 12 

analysis focuses only on the MD network and not the LOC, since no object stimuli were 13 

presented at this epoch of the trial. 14 

We first tested for a univariate effect of reward during the cue phase (averaged across the β 15 

estimates of the two cues) across the subject-specific ROIs for all MD regions. A two-way 16 

repeated measures ANOVA with reward (2: no-reward, reward) and ROI (7) as factors showed 17 

a main effect of reward (F1, 23 = 20.53, p < 0.001) with increased activity during the reward 18 
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trials compared to the no-reward trials. There was also a main effect of ROI (F6, 138 = 11.63, p < 1 

0.001) and an interaction of reward and ROI (F6, 138 = 14.74, p < 0.001). Post-hoc tests showed 2 

that all regions except aMFG showed increased activation for reward trials compared to no-3 

reward trials (Two tailed, Bonferroni corrected for 7 comparisons: t23 > 3.36, p < 0.019, dz > 4 

0.69 for all ROIs except aMFG; a trend for aMFG: t23 = 2.9, p = 0.057, dz = 0.59). Overall, the 5 

MD network showed a strong univariate reward effect during the cue epoch. 6 

 7 

We next asked whether the cues were decodable as measured using MVPA, and whether 8 

decoding levels increased with reward as has been previously reported (Etzel et al., 2016; Hall-9 

McMaster et al., 2019). Decoding between the two cues separately for the two reward levels 10 

were computed in each of the MD ROIs. A two-way repeated measures ANOVA with reward 11 

(2) and ROI (7) as factors showed no main effects or interactions (F < 1.9, p > 0.08). Decoding 12 

levels averaged across all MD ROIs were (mean ± SD) 51.71% ± 4.39% and 50.55% ± 6.69% 13 

for the reward and no-reward conditions, respectively. There was a marginally significant cue 14 

decoding for reward conditions, and no significant decoding for no-reward conditions. (One-15 

tailed t-test, reward: t23 = 1.9, p = 0.07, dz = 0.39; no-reward: t23 = 0.4, p = 0.7, dz = 0.07). 16 

Overall, our results show that despite substantial increases in overall univariate activity with 17 

reward during the cue epoch across the MD network, the cues were not decodable in both no-18 

reward and reward conditions. 19 

3.3 Univariate activity in the MD network during the stimulus epoch 20 

 21 

We started our analysis for the stimulus epoch by testing for the effect of reward motivation 22 

on the overall activity in MD regions, and whether such effect is different for the three 23 

behavioral status conditions. We used averaged β estimates for each behavioral status (Target, 24 

High-conflict nontarget, Low-conflict nontarget) and reward level (no-reward, reward) in each 25 

of the subject-specific MD ROIs (Figure 3).  26 
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Average β estimates across MD regions for both no-reward and reward conditions across all 1 

behavioral status conditions were significantly above 0 (Figure 3A), confirming their 2 

recruitment during the task, and providing an indication that it was cognitively demanding (no-3 

reward: 1.06 ± 0.58, t23 = 8.85, corrected p < 0.001, dz = 1.81; reward: 1.71 ± 1.22, t23 = 6.83, 4 

corrected p < 0.001, dz = 1.39; two-tailed t-test, Bonferroni corrected for 2 comparisons). A 5 

three-way repeated measures ANOVA with reward (2), behavioral status (3) and ROI (7) as 6 

within-subject factors showed a significant main effect of reward (F1, 23 = 8.66, p = 0.007). 7 

There was an interaction of reward level and ROI (F6, 138 = 14.83, p < 0.001), with AI/FO, IPS, 8 

and preSMA showing reward effect following post-hoc tests and Bonferroni correction for 9 

multiple (7) comparisons (AI: t23 = 5.26, p < 0.001, dz = 1.07; IPS: t23 = 3.31, p = 0.021, dz = 10 

0.68; preSMA: t23 = 3.36, p = 0.019, dz = 0.69). The mMFG showed a reward effect that did 11 

not survive multiple comparisons (t23 = 2.26, uncorrected p = 0.037, corrected p = 0.26, dz = 12 

0.46). Importantly, there was no main effect of behavioral status (F2, 46 = 2.25, p = 0.12) and 13 

no interaction of reward and behavioral status (F2, 46 = 0.52, p = 0.6). Overall, the univariate 14 

results indicated increased BOLD response with reward across large parts of the MD network 15 

with similar levels of activity for the three behavioral status conditions. 16 
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Figure 3: Univariate activity across the MD network during the stimulus epoch. A. 1 

Univariate results averaged across the subject-specific ROIs for all MD regions. Results are 2 

averaged across the behavioral status conditions for no-reward (blue bar) and reward (red bar) 3 

conditions. B. Average univariate activity across the MD network is shown separately for each 4 

behavioral status condition for no-reward (blue bars) and reward (red bars) conditions. T: 5 

Target, HC: High-conflict nontarget, LC: Low-conflict nontarget). C. Univariate results for the 6 

individual MD regions. Post-hoc tests showed that activity increased with reward in the AI/FO, 7 

IPS and preSMA, as well as an increase in mMFG that did not survive correction for multiple 8 

comparisons. The MD network template is shown for reference. pdLFC: posterior/dorsal lateral 9 

prefrontal cortex, IPS: intraparietal sulcus, preSMA: pre-supplementary motor area, ACC: 10 

anterior cingulate cortex, AI: anterior insula, FO: frontal operculum, aMFG, mMFG, pMFG: 11 

anterior, middle and posterior middle frontal gyrus, respectively. Error bars indicate S.E.M. 12 

 13 

3.4 Effect of reward motivation on discrimination of task-related behavioral 14 

status in the MD network 15 

 16 

Our main question concerned the representation of task-related behavioral status information 17 

across the MD network and its modulation by reward, and we used MVPA to address that. For 18 

each participant and subject-specific ROI, we computed the classification accuracy above 19 

chance (50%) for the distinctions between Target vs. High-conflict nontarget, Target vs. Low-20 

conflict nontarget and High-conflict vs. Low-conflict nontargets, separately for no-reward and 21 

reward conditions (Figure 4). The analysis was set to test for discrimination between behavioral 22 

status conditions within each reward level, and whether these discriminations are larger when 23 

reward is introduced compared to the no-reward condition. A three-way repeated-measures 24 

ANOVA with reward (2), behavioral distinction (3) and ROI (7) as within-subject factors 25 

showed no main effect of ROI (F6, 138 = 0.97, p = 0.45) or any interaction of ROI with reward 26 
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and behavioral distinction (F < 1.16, p > 0.31). Therefore, the classification accuracies were 1 

averaged across ROIs for further analysis (Figure 4A). First, we looked at the overall 2 

discrimination of behavioral status pairs. Averaged across the three pairs of behavioral status, 3 

decoding accuracies were (mean ± SD) 51.4% ± 2.8% and 51.8% ± 3.5% for the no-reward 4 

and reward conditions, respectively. Decoding levels were above chance (50%) for both the 5 

no-reward and reward trials (one-tailed t-test against chance, corrected for 2 comparisons, no-6 

reward: t23 = 2.34, corrected p = 0.03, dz = 0.48; reward: t23 = 2.5, corrected p = 0.02, dz = 0.5). 7 

The decoding levels above chance for the individual pairs of behavioral status for the no-reward 8 

and reward conditions are summarized in Table 1. Overall, our results show that on average 9 

behavioral status distinctions are represented across the MD network in both no-reward and 10 

reward conditions, with some differences between individual pairs of behavioral status. 11 

In our critical analysis we tested for the modulatory effect of reward on the discriminability 12 

between pairs of behavioral status. In contrast to our prediction, a two-way repeated measures 13 

ANOVA with reward (2) and behavioral distinction (3) as within-subject factors showed no 14 

main effects of reward or behavioral distinction (F1, 23 = 0.26, p = 0.6; F2, 46 = 1.37, p = 0.26, 15 

respectively), and no interaction of the two (F2, 46 = 0.74, p = 0.48). In contrast to our prediction, 16 

decoding levels across behavioral status pairs were not larger for reward trials compared to no-17 

reward trials (one-tailed paired t-test: t23 = 0.52, p = 0.3, dz = 0.44). To test for the specific 18 

prediction that reward might increase discrimination for the high conflict pair of conditions 19 

that may not have been picked up by the ANOVA, we compared decoding levels for the Target 20 

vs. High-conflict nontarget for the no-reward and reward conditions. Classification accuracy 21 

was not larger in the reward trials compared to the no-reward trials for the Target vs. High-22 

conflict nontarget distinction (One-tailed paired t-test: t23 =1.07, p = 0.15, dz = 0.22). A post-23 

hoc sensitivity power analysis yielded an effect size of dz = 0.52 as the minimum detectable 24 

effect. In summary, although the average decoding levels of behavioral status were above 25 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2021. ; https://doi.org/10.1101/609537doi: bioRxiv preprint 

https://doi.org/10.1101/609537
http://creativecommons.org/licenses/by/4.0/


 

 32 

chance across the MD network, we did not find increases in decodability with reward. The 1 

study had sufficient power to detect a reward modulation with a moderate effect size of 0.52 2 

or more, but not a smaller one. 3 
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 1 

Figure 4: Reward does not modulate distinctions of behavioral status across the MD 2 

network. A. Classification accuracy is presented as percentage above chance (50%), averaged 3 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2021. ; https://doi.org/10.1101/609537doi: bioRxiv preprint 

https://doi.org/10.1101/609537
http://creativecommons.org/licenses/by/4.0/


 

 34 

across all MD regions and behavioral status pairs, for no-reward (blue bars) and reward (red 1 

bars) trials.  Behavioral status was decodable but not modulated by reward. Asterisks above 2 

bars show significant decoding above chance (One-tailed, Bonferroni corrected for 2 3 

comparisons). B. The data in A is shown separately for the three distinctions of Target vs. 4 

High-conflict nontarget, Target vs. Low-conflict non-target, and High- vs. Low-conflict 5 

nontargets. T: Target, HC: High-conflict nontarget, LC: Low-conflict nontarget. Asterisks 6 

above bars show one-tailed significant discrimination between behavioral categories above 7 

chance without correction (black), and Bonferroni corrected for multiple (6) comparisons (red). 8 

See Table 1 for details. C. Decoding results are shown for the individual MD regions. The MD 9 

network template is shown for reference. pdLFC: posterior/dorsal lateral prefrontal cortex, IPS: 10 

intraparietal sulcus, preSMA: pre-supplementary motor area, ACC: anterior cingulate cortex, 11 

AI: anterior insula, FO: frontal operculum, aMFG, mMFG, pMFG: anterior, middle and 12 

posterior middle frontal gyrus, respectively. Error bars indicate S.E.M. + p < 0.06, * p < 0.05, 13 

** p < 0.01. 14 

 15 

We conducted several control analyses to confirm the robustness of the results across analysis 16 

choices. First, a similar pattern of results was evident across a range of ROI sizes (100, 150, 17 

250 and 300 voxels), confirming that the results do not depend on the choice of ROI size. A 18 

two-way repeated measures ANOVA with reward (2) and behavioral distinction (3) as within-19 

subject factors showed no main effects of reward or behavioral distinction and no interaction 20 

of the two in any of the ROI sizes (F < 1.5, p > 0.23). Additionally, the classification accuracy 21 

of Targets vs. High-conflict nontargets was not larger in reward trials compared to no-reward 22 

trials in any of the ROI sizes (one-tailed paired t-test: t23 < 1.17, p > 0.13, dz < 0.24). 23 

Second, to demonstrate that the results do not depend on our choice to use subject-specific 24 

ROIs, we repeated the analysis using the entire MD network template. Overall, the results were 25 
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similar to those obtained using the subject-specific ROIs. Averaged across all MD ROIs, 1 

discrimination of behavioral status was significantly above chance for both no-reward and 2 

reward trials (no-reward: 51.6% ± 2.9%, t23 = 2.65, corrected p = 0.014, dz = 0.54; reward 3 

52.22% ± 4%, t23 = 2.73, corrected p = 0.012, dz = 0.56; one-tailed t-test against chance, 4 

Bonferroni corrected for 2 comparisons). A two-way repeated measures ANOVA with reward 5 

(2) and behavioral distinction (3) as within-subject factors showed no effect of reward or 6 

behavioral distinction (F1, 23 = 0.44, p = 0.51; F2, 46 = 2.22, p = 0.12, respectively), and no 7 

interaction of the two (F2, 46 = 1.21, p = 0.31). A specific comparison of classification accuracy 8 

for the Target vs. High-conflict nontarget distinction showed that decoding was not larger in 9 

the reward trials compared to the no-reward trials (One-tailed paired t-test: t23 =1, p = 0.16, dz 10 

= 0.21). 11 

Third, we used another multivariate discriminability measure, linear discriminant contrast 12 

(LDC), to assess the difference in dissimilarity of distributed patterns of activity of the 13 

behavioral status pairs with and without reward. A larger LDC value for a pair of conditions 14 

indicates greater pattern dissimilarity between them, i.e., greater discriminability, with zero 15 

indicating no discriminability. Overall, the LDC results were highly similar to decoding results. 16 

Behavioral status pairs were significantly discriminable across the MD network in the reward 17 

condition and marginally significant after correction in the no-reward condition (averaged 18 

across MD ROIs and the three behavioral status pairs, one-tailed t-test against zero, corrected 19 

for 2 comparisons, no-reward: t23 = 1.92, corrected p = 0.068, dz = 0.39; reward: t23 = 3.09, 20 

corrected p =0.005, dz = 0.63). The discriminability above chance as obtained with LDC (i.e., 21 

above zero) for the individual pairs of behavioral status for the no-reward and reward 22 

conditions were again highly consistent with the decoding results. Discriminability above 23 

chance when uncorrected for multiple comparisons was significantly above chance for Targets 24 

vs. High-conflict nontargets and Targets vs. Low-conflict nontargets, for both no-reward and 25 
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reward conditions (one-tailed t-test: t23 > 1.91, p < 0.035), but not for High- vs. Low-conflict 1 

nontargets (one-tailed t-test: t23 < 1.5, p > 0.075). Discriminations between Targets vs. High-2 

conflict nontargets in the reward condition, and Targets vs. Low-conflict nontargets in the no-3 

reward condition survived Bonferroni correction for 6 comparisons (corrected p < 0.016; for 4 

the other comparisons: corrected p > 0.1). 5 

To test for the effect of reward on pattern discriminability of behavioral status as measured 6 

with LDC, we used a two-way repeated measures ANOVA with reward (2) and behavioral 7 

distinction (3) as within-subject factors. There were no effects of reward or behavioral 8 

distinction (F1, 23 = 1.03, p = 0.32; F2, 46 = 0.96, p = 0.39, respectively), and no interaction of 9 

the two (F2, 46 = 1.36, p = 0.27), demonstrating that discriminability was not different between 10 

the reward and the no-reward conditions. A further specific comparison of discriminability 11 

between Targets and High-conflict nontargets showed a trend of larger pattern dissimilarity for 12 

the reward compared to the no-reward condition (one-tailed paired t-test: t23 =1.59, p = 0.06, dz 13 

= 0.33). 14 

Fourth, we conducted a complementary whole-brain searchlight analysis to test for increased 15 

discriminability of behavioral status with reward across the brain. In a second-level random-16 

effects analysis of behavioral status classification maps (average across the three pairs of 17 

behavioral status) of reward vs. no-reward conditions, none of the voxels survived an FDR 18 

threshold of p < 0.05. A separate searchlight analysis for classification of Targets vs. High-19 

conflict nontargets showed similar results, with no voxels surviving FDR correction (p < 0.05). 20 

Therefore, this analysis did not reveal any other brain regions that showed increase in 21 

discriminability with reward. 22 

Fifth, to ensure that our results do not depend on accounting for RT in the GLM regressors, we 23 

repeated the analysis using regressors for the stimulus phase with fixed duration (delta 24 

function). All the other GLM regressors remained as before. A two-way repeated measures 25 
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ANOVA with reward (2) and behavioral distinction (3) as within-subject factors showed no 1 

main effects of reward or behavioral distinction (F1, 23 = 0.04, p = 0.84; F2, 46 = 0.85, p = 0.44, 2 

respectively), and no interaction of the two (F2, 46 = 0.68, p = 0.51). There was no increase in 3 

classification accuracy in the specific comparison of the Target vs. High-conflict nontarget 4 

distinction in reward trials compared to the no-reward trials (One-tailed paired t-5 

test: t23 =0.6, p = 0.28, dz = 0.12). 6 

 7 

Lastly, as a quality check for the data and analysis pipeline, we classified right vs. button 8 

presses in two motor regions, the precentral gyrus and the supplementary motor cortex. 9 

Decoding accuracies averaged across no-reward and reward conditions were high and 10 

significantly above chance (50%) in both regions, as would be expected, thus providing support 11 

for the good quality of the data and the analysis procedure. (precentral gyrus: 75.35% ± 9.65%, 12 

t23 = 12.88, corrected p = 0.001, dz = 2.63; supplementary motor cortex: 81.6% ± 12.88%, t23 13 

= 12.02, corrected p = 0.001, dz = 2.45; one-tailed t-test against chance, Bonferroni corrected 14 

for 2 comparisons). 15 

 16 

3.5 Effects of reward motivation on task-related behavioral status in LOC 17 

 18 

It is widely accepted that the frontoparietal MD network exerts top-down control on visual 19 

areas, contributing to task-dependent processing of information. As a comparison to the MD 20 

network, we performed similar univariate and multivariate analyses during the stimulus epoch 21 

in the high-level general-object visual region, the lateral occipital complex (LOC), separately 22 

for its two sub-regions, LO and pFs. We report decoding in subject-specific ROIs driven by 23 

the visual categories themselves, as would be expected in LOC, in the following sections.  24 

We first conducted univariate analysis to test for an effect of reward and behavioral status on 25 

overall activity in LOC. A four-way repeated-measures ANOVA with reward (2), behavioral 26 
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status (3), ROI (2), and hemisphere (2) as within-subject factors showed no main effect of 1 

reward (F1, 23 = 2,15 p = 0.16), a main effect of ROI (F1, 23 = 14.70 p < 0.001), and a main effect 2 

of hemisphere (F1, 23 = 14.97, p< 0.001). There was an interaction of reward and ROI (F1, 23 = 3 

12.5, p = 0.002), and post-hoc tests with correction for multiple (2) comparisons showed that 4 

activity was larger for reward compared to no-reward trials in LO (Two-tailed t-test: t23 = 5 

2.55, p = 0.036, dz = 0.52), but not in pFs (Two-tailed t-test: t23 = 0.028, p > 0.9, dz = 6 

0.006). There was a main effect of behavioral status (F2, 46 = 6.92, p = 0.002), but importantly 7 

there was no interaction of behavioral status and reward (F2, 46 = 0.73, p = 0.50). Altogether, 8 

the univariate results show that reward effects in LOC were partial and limited to LO. 9 

We then tested for the representation of the behavioral status conditions in LOC (Figure 5). 10 

Decoding levels averaged across all pairs of behavioral status and the two LOC ROIs were 11 

above chance for both no-reward and reward conditions (mean ± SD: 53.23% ± 3.64% and 12 

53.76% ± 4.14% for the no-reward and reward conditions, respectively. One-tailed t-test 13 

against chance, corrected for 2 comparisons, no-reward: t23 = 4.34, corrected p < 0.001, dz = 14 

0.9; reward: t23 = 4.45, corrected p < 0.001, dz = 0.9). Importantly, decoding levels were not 15 

larger for the reward conditions compared to the no-reward conditions for any of the behavioral 16 

status distinctions, with similar results for both LO and pFs. A four-way repeated-measures 17 

ANOVA with reward (2), behavioral distinction (3), ROIs (2) and hemispheres (2) as within-18 

subject factors showed no main effect of reward (F1, 23 = 0.34, p = 0.56) or interaction of reward 19 

and ROI (F1, 23 = 1.14, p = 0.29). No other main effects or interactions were significant (F < 20 

3.15, p > 0.05). Overall, these results demonstrate that reward did not modulate the coding of 21 

the task-related behavioral status distinctions in LOC. 22 
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 1 

Figure 5: Reward motivation does not increase coding of behavioral status in LOC. A. 2 

Classification accuracy averaged across all behavioral status pairs is presented as percentage 3 

above chance (50%), averaged across LO and pFS and both hemispheres. Classification 4 

accuracies for no-reward (blue bars) and reward (red bars) conditions are similar and above 5 

chance. Asterisks above bars show significant decoding level above chance, (one-tailed 6 

Bonferroni corrected for 2 comparisons). B. Classification accuracies are similar for all three 7 

behavioral status distinctions. T: Target, HC: High-conflict nontarget, LC: Low-conflict 8 

nontarget. Asterisks above bars show one-tailed significant discrimination between behavioral 9 

categories above chance without correction (black), and corrected for multiple (6) comparisons 10 

(red). C. Classification accuracies for LO and pFs are presented separately, averaged across 11 

hemispheres. The LOC template is shown on sagittal and coronal planes, with a vertical line 12 
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dividing it into posterior (LO) and anterior (pFs) regions. Error bars indicate S.E.M. + p < 0.06, 1 

* p < 0.05, ** p < 0.01, *** p < 0.001. 2 

 3 

3.6 Conflict-contingent vs. visual category effects 4 

 5 

An important aspect of the Target and High-conflict nontarget conditions in this experiment 6 

was that they both contained the same visual categories, which could be either a target or a 7 

nontarget (Figure 1B). Therefore, the Target vs. High-conflict nontarget pairs of conditions in 8 

our decoding analysis included cases where the stimuli in the two conditions were items from 9 

different visual categories (e.g. shoe and sofa following a ‘shoe’ cue), as well as cases where 10 

the two stimuli were items from the same visual category (e.g. shoe following a ‘shoe’ cue and 11 

a ‘sofa’ cue). We further investigated whether the representation in the MD network and in the 12 

LOC was driven by the task-related high conflict nature of the two conditions or by the different 13 

visual categories of the stimuli, and whether there was a facilitative effect of reward which is 14 

limited to the representation of the visual categories. Figure 6A shows Target vs. High-conflict 15 

nontarget distinctions for no-reward and reward conditions, presented separately for pairs of 16 

conditions in which the stimuli belonged to the same visual category (different cue trials), and 17 

for pairs in which the stimuli belonged to different visual categories (same cue trials), for both 18 

the MD and LOC. The data in the figure is the same as in Figure 5 for LOC. For MD, we 19 

repeated the same analysis as shown in Figure 4, except for selecting 180 voxels in each 20 

subject-specific ROI, in order to keep the ROI size the same for MD and LOC. For both MD 21 

and LOC regions, there was no interaction with ROI or hemisphere, therefore accuracy levels 22 

were averaged across hemispheres and ROIs for the MD network and LOC (repeated measures 23 

ANOVA with reward (2), distinction type (2, same or different visual category), ROIs (7 for 24 

MD, 2 for LOC) and hemispheres (2, just for LOC) as within-subject factors: F < 3.15, p > 25 

0.05 for all interactions with ROI and hemisphere).  26 
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We next tested for the effect of reward and distinction type (same or different visual category) 1 

on decoding levels in each the two systems. In the MD network, a two-way repeated measures 2 

ANOVA with reward (2) and distinction type (2) as factors showed no main effect of reward 3 

(F1, 23 = 0.92, p = 0.35) and no effect of category distinction or their interaction (F1, 23 = 2.9, p 4 

= 0.1; F1, 23 = 0.1, p = 0.8, respectively). These results show that there was no effect of reward 5 

on high conflict items that may be specific for the distinction between visual categories. In 6 

contrast, a similar ANOVA for LOC showed a main effect of distinction type (F1, 23 = 25.9, p 7 

< 0.001) and no effect of reward or their interaction (F1, 23 = 0.05, p = 0.8; F1, 23 = 0.46, p = 8 

0.50, respectively). Together, these results demonstrate that representation was driven by visual 9 

categories in LOC, but not in the MD network. To further establish this dissociation between 10 

the two systems, we used a three-way repeated measures ANOVA with distinction type (2, 11 

same or different visual category), reward (2), and brain system (2, MD or LOC) as within-12 

subject factors. There was no main effect of brain system (F1, 23 = 1.2, p = 0.3), allowing us to 13 

compare between the two systems. An interaction between distinction type and system (F1, 23 14 

= 16.7, p < 0.001) confirmed that decoding levels in the two systems were affected differently 15 

by visual category. Critically, reward did not lead to increased decoding in either of the systems 16 

(no main effect of reward or interactions with reward: F < 0.77, p > 0.39). 17 

 18 

 19 

3.7 Representation of visual categories 20 

 21 

While the main focus of the study was the representation of behavioral status, we further tested 22 

whether information about the visual categories themselves is represented across the MD 23 

network and in LOC and whether this representation is modulated by reward. Figure 6B shows 24 

accuracy levels of visual categories when both have the same behavioral status, i.e. both 25 

Targets or both High-conflict nontargets, for no-reward and reward conditions, for both MD 26 

and LOC, averaged across ROIs and hemispheres. In the MD network, repeated measures 27 
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ANOVA with reward (2), behavioral status (Targets, High-conflict nontargets) and ROIs (7) 1 

as within-subject factors showed no main effect of reward (F1,23 = 0.25, p = 0.61) or behavioral 2 

status (F1,23 = 2.38, p = 0.14). There was a marginally significant interaction of behavioral 3 

status and ROI (F6,138 = 2.17, p = 0.049), and post-hoc tests revealed greater decoding for 4 

Targets compared to High-conflict nontargets in the preSMA only (corrected p = 0.025, 5 

corrected for 7 comparisons). Averaged across ROIs, decoding of visual category in the MD 6 

network was not above chance when the stimuli were either Targets or High-conflict 7 

nontargets, and for either no-reward or reward conditions (t23 < 1.73, corrected p > 0.19). These 8 

results show that visual categories with the same behavioral status were not represented across 9 

the MD network, and this representation did not increase with reward. 10 

In LOC, classification accuracies of visual categories averaged across ROIs and hemispheres 11 

was above chance for Targets in the no-reward condition (one-tailed t-test against chance, 12 

corrected for multiple (4) comparisons: t23 = 3.94, corrected p = 0.001) and marginally above 13 

chance in the reward condition (t23 = 2.32, corrected p = 0.06). For High-conflict nontargets, 14 

decoding was above chance in the reward condition (t23 =3.11, corrected p = 0.01) but not in 15 

the no-reward condition (t23 = 0.83, corrected p = 0.83). Repeated measures ANOVA with 16 

reward (2), behavioral status (Targets, High-conflict nontargets), ROIs (2) and hemispheres (2) 17 

as within-subject factors showed no main effects or interactions (F < 3.94, p > 0.059), except 18 

for an interaction of behavioral status and reward (F1.23 = 5.4, p = 0.03). However, none of the 19 

post-hoc comparisons were significant (corrected p > 0.08, corrected for 2 comparisons). 20 

Overall, in contrast to the MD network, visual categories in LOC were decodable, at least in 21 

part. A further ANOVA demonstrated this dissociation between the systems, with larger 22 

accuracy levels in LOC compared to the MD network (repeated measures ANOVA with 23 

behavioral status (2), reward level (2) and brain system (2, MD or LOC) as within subject 24 

factors: main effect of system: F1.23 = 18.27, p < 0.001; no other significant main effects or 25 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2021. ; https://doi.org/10.1101/609537doi: bioRxiv preprint 

https://doi.org/10.1101/609537
http://creativecommons.org/licenses/by/4.0/


 

 43 

interactions: F < 3.49, p > 0.075). Importantly, despite the larger decodability of visual 1 

categories in LOC, there was no effect of reward in any of the systems. 2 

 3 

Figure 6: Decoding of visual categories. A. Decoding of highly conflicting behavioral status 4 

distinctions in the MD network and LOC. Classification accuracies above chance (50%) are 5 

presented for no-reward and same-visual-category distinctions (light blue), no-reward and 6 

different-visual-category distinctions (dark blue), reward and same-visual-category 7 

distinctions (light red), and reward and different-visual-category distinctions (dark red), 8 

separately for the MD network and the LOC, averaged across regions and hemispheres in each 9 

system. In the MD network, neither reward nor visual category modulated the discrimination 10 

of Target vs. High-conflict nontarget. In contrast, classification accuracies in the LOC are 11 

larger when the displayed objects are from two different visual categories compared to when 12 

they belong to the same visual category, irrespective of the reward level. B. Decoding of visual 13 

categories with the same behavioral status. Classification accuracies above chance (50%) are 14 

presented for no-reward Target categories (light blue), no-reward High-conflict nontargets 15 

(dark blue), reward Targets (light red), and reward High-conflict nontargets (dark red), 16 

separately for the MD network and for the LOC, averaged across regions and hemispheres in 17 
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each system. Asterisks above bars show one-tailed significant discrimination above chance 1 

without correction (black), and corrected for multiple (4) comparisons (red). Error bars indicate 2 

S.E.M. + p < 0.06, * p < 0.05, ** p < 0.01, *** p < 0.001. 3 

 4 

4. Discussion 5 

 6 

In this study we used a cued target detection task to test for the effect of reward motivation on 7 

the coding of task-relevant information in the frontoparietal MD network as reflected in 8 

distributed patterns of fMRI data. Reward motivation, in the form of monetary reward, led to 9 

overall increase in activity across large parts of the MD network. Using MVPA, we showed 10 

that information about the behavioral status during the stimulus epoch of a trial was represented 11 

across the MD network. However, in contrast to our prediction, reward motivation did not 12 

enhance the distinctions between the three behavioral status conditions across the MD network. 13 

Additionally, we did not find evidence for a selective facilitative effect of reward on 14 

discriminability of highly conflicting items (competition-contingent effect). In the LOC, 15 

information about the behavioral status of the presented stimuli was primarily driven by visual 16 

categories, as expected, and was not modulated by reward motivation. 17 

Previous reports showed an enhancement effect of reward on overall activity in the 18 

frontoparietal control network (Botvinick and Braver, 2015; Dixon and Christoff, 2012; 19 

Padmala and Pessoa, 2011), in line with our data that showed increase in univariate activity 20 

with reward during both the cue and stimulus epochs. Our results replicated our previously 21 

reported findings that demonstrated the representation of behavioral status information across 22 

the frontoparietal cortex (Erez and Duncan, 2015), as measured by decoding distinctions 23 

between the behavioral status levels. However, despite increases in overall univariate activity 24 

with reward across the MD network, our results did not show an increase in representation in 25 
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reward trials, and we did not observe a selective increase in representation for the highly 1 

conflicting items, namely Targets vs. High-conflict nontargets. Recently, Hall-McMaster et al., 2 

(2019) showed some increases in task-relevant stimulus features information when reward 3 

levels were high, using distributed patterns in EEG data. In the task used in the current study, 4 

we tested for representation of behavioral status of the presented items, rather than stimulus 5 

features. We did not observe changes in representation similar to the ones observed by Hall-6 

McMaster et al. There may be several possible reasons for that, including the type of 7 

representations that were tested (features vs. behavioral status), multiple differences in the 8 

design that contribute to our ability to detect multivariate representations, low spatial 9 

specificity in the EEG data compared to the more focused ROIs in our fMRI study, and perhaps 10 

the most significant being the limited time window where such differences were observed in 11 

EEG that cannot be detected with the low temporal resolution fMRI data. 12 

More generally, several reasons can provide potential explanations for the results obtained in 13 

our study, showing no facilitative effect of reward on pattern discriminability of behavioral 14 

status. Indeed, it is possible that in contrast to reward effects on overall activity, its effect on 15 

neural representations is limited to cue decoding when the task context is set, as has been 16 

previously demonstrated (Etzel et al., 2016), and does not extend to the stimulus phase when 17 

information is processed based on the cue. Another possibility may be related to the reward 18 

being offered on a trial-by-trial basis, which may not be sufficiently strong to generate 19 

detectable reward-related effects on decoding. It has been recently demonstrated that stable 20 

longer-term cue-reward associations that are learned prior to scanning lead to increased 21 

decoding of task-related information in visual and parietal areas (Tankelevitch et al., 2020). 22 

Other possible explanations may include a reward manipulation that was not sufficiently strong 23 

to make a difference to pattern discriminability, and multiple factors in the experimental design 24 

that make small effects hard to detect with current MVPA methods, particularly across the 25 
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frontoparietal cortex where low decoding accuracies are widely common for reasons that are 1 

not yet well understood (Bhandari et al., 2018). We note, however, that the results were 2 

consistent across several control analyses, including ROI size, multivariate discriminability 3 

measure, and whole-brain searchlight analysis. Beyond the above potential explanations, 4 

insufficient power is always a concern when reporting null results. A post-hoc sensitivity power 5 

analysis showed that the study had sufficient power to detect a moderate effect size with respect 6 

to reward modulation of decoding behavioral distinctions, but not a smaller one. For fMRI 7 

MVPA results in general, and more so given the sparse evidence in the literature relevant for 8 

our main research question, it is hard to establish an expected effect size. Therefore, a 9 

reasonable interpretation of our results would be that reward does not lead to moderate or large 10 

increase in decoding but could possibly lead to increased decoding if this is relatively small. 11 

We note that the study had sufficient power to detect univariate effects as well as other 12 

complementary pattern discriminations. First, our overall decoding levels for behavioral status 13 

were above chance, with decoding for the no-reward conditions similar to previously reported 14 

results (Erez and Duncan, 2015). Second, decoding in LOC showed a clear pattern of 15 

contingency on visual category representation, as expected in the visual cortex, in contrast to 16 

distinct pattern of decoding across the MD network that did not depend on the visual category 17 

of the presented items. Such decoding patterns in LOC are consistent with previous studies that 18 

showed only weak, or non-existing, task effects (Bugatus et al., 2017; Harel et al., 2014; Hebart 19 

et al., 2018). Lastly, in a control analysis we observed high decoding accuracies for motor 20 

responses (right vs. left button presses) in the motor cortex, as expected for these regions. This 21 

provides an indication for the quality of the data and the analysis procedure and demonstrates 22 

sufficient power to detect these responses. 23 

Our predictions were based on the sharpening and prioritization account, which postulates that 24 

reward motivation leads to a sharpened neural representation of relevant information depending 25 
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on the current task and needs. Previous neurophysiological evidence provide support for this 1 

aspect: reward has been associated with firing of dopaminergic neurons (Bayer and Glimcher, 2 

2005; Schultz et al., 1997), and dopamine has been shown to modulate tuning of prefrontal 3 

neurons and to sharpen their representations (Ott and Nieder, 2016; Thurley et al., 2008; 4 

Vijayraghavan et al., 2007). The prioritization aspect can be related to the expected value of 5 

control (EVC) theory (Shenhav et al., 2013) and reward-based models for the interaction of 6 

reward and cognitive control, essentially a cost-benefit trade-off (Botvinick and Braver, 2015). 7 

Cognitive control is effortful and hence an ideal system would allocate it efficiently, with a 8 

general aim of maximizing expected utility. Despite the appeal of this account, our results did 9 

not show experimental support for this view. At the behavioral level though, we observed some 10 

evidence for such a benefit of reward. Accuracy levels of performance in the task for Target 11 

trials were higher in the reward compared to the no-reward condition. Additionally, while in 12 

the no-reward condition Target trials were less accurate than Low-conflict nontargets, as is 13 

well established in the visual search literature (Schneider and Fisk, 1983; Shiffrin and 14 

Schneider, 1977), there were no differences between them in the reward condition. We did not 15 

observe a similar benefit in reaction times, most likely due to the time threshold that we used 16 

for reward trials, which reduced the reaction time on all the reward trials and may have masked 17 

an interaction with reward. 18 

The nature of the conflict addressed in our study concerns the effect of current task goals (i.e., 19 

cue) on the behavioral relevance and processing of the presented stimuli. This is a fundamental 20 

aspect of cognitive control which have been addressed by us and others in the field in different 21 

ways, both in human and non-human primate studies (Erez and Duncan, 2015; Freedman et al., 22 

2001; Hall-McMaster et al., 2019; Kadohisa et al., 2015). There are several other important 23 

aspects of the potential effect of reward motivation on goal-directed information processing 24 

that cannot be addressed in our data and may be addressed in future studies. For example, one 25 
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aspect is related to how reward motivation may bias response towards reward-associated 1 

stimuli when stimuli are presented simultaneously and compete for attention. Another aspect 2 

is how reward motivation may affect encoding of visual features of the stimulus, e.g., as can 3 

be tracked using inverted encoding models (Myers et al., 2015; Sprague et al., 2016). These 4 

aspects are complementary and provide different perspectives to better understand control 5 

processes. 6 

The visual categorization aspect of our task allowed us to investigate effects of reward on 7 

representation in LOC compared to the MD network, and in particular whether there is a 8 

specific effect of reward that is driven by visual differences. In the MD network, decoding 9 

levels were similar between conditions with the same visual category and different visual 10 

category, and there was no modulation by reward in any of them. In contrast, the discrimination 11 

in LOC was driven by the visual categories, as expected in the visual cortex, with Targets and 12 

High-conflict nontargets being discriminable only when items belonged to two different visual 13 

categories. In a complementary analysis, we tested for representation of the visual categories 14 

themselves, while keeping the behavioral status fixed, i.e., when both stimuli are Targets or 15 

both are High-conflict nontargets. As expected, decoding levels of visual categories were larger 16 

in LOC compared to MD. Additionally, visual categories with the same behavioral status were 17 

not represented in the MD network, in line with previously reported findings (Erez and Duncan, 18 

2015). Importantly, reward did not lead to increased decodability of the visual categories in 19 

either the MD network or in the LOC. While it is widely agreed that the frontoparietal cortex 20 

exerts top-down effects on visual areas, there is no clear prediction as to whether any effects 21 

of reward should be observed in the visual cortex. Our results provide evidence that the effects 22 

of reward were not present in LOC. Previous studies have shown differences in representations 23 

between pFs and LO (Harel et al., 2014; Jiang et al., 2007; Li et al., 2007), however, our results 24 

were similar for both regions. 25 
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Although our primary question addressed the representation of task-related information during 1 

the integration of stimulus and cue, we also tested for an effect of reward in the cue epoch. The 2 

use of catch trials ensured that the cue and stimulus GLM regressors were appropriately 3 

decorrelated. The overall univariate activity across the MD network increased with reward 4 

during the cue epoch, possibly reflecting an increase in cognitive effort due to the reward. 5 

However, we did not observe cue decoding above chance, in contrast to previously reported 6 

results (Etzel et al., 2016). One reason for this difference may be related to the design of the 7 

current task. We used words of the category names as cues, which appeared together at the 8 

same time with the no-reward/reward indication – the reward trial cues had additional red 9 

pound signs. The choice of words as cues allowed for high task performance (compared to 10 

using abstract symbols, which is more difficult), as confirmed in pilot experiments. This may 11 

have come at the expense of cue decodability, which was not the focus of the study. The 12 

visually salient reward signal presented simultaneously with the cues may have also 13 

contributed to reduced cue decoding levels, and the longer delay period in their study probably 14 

led to longer active maintenance of the task rule in working memory. Other reasons for the 15 

different results compared to Etzel et al. may be related to the size of the effect and our ability 16 

to detect it. The effect of reward on cue decoding reported by Etzel et al. was observed across 17 

all ROIs, but was inconsistent in individual ROIs, with only one region showing a significant 18 

difference between reward and no-reward conditions. Even for decoding across all ROIs, 19 

statistical significance was reached in one statistical test but was only marginal in another. It 20 

could be that the effect of reward on cue decoding is relatively small and therefore hard to 21 

detect. Among others, our ability to detect such effect may be affected by the areas chosen, 22 

number of trials and runs completed per subject etc. The contributions of many of these factors 23 

to decoding levels in the frontoparietal network more generally are not yet well understood 24 

(Bhandari et al., 2018). The similarities and differences in task design and results that we report 25 
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here together with those reported previously (Etzel et al., 2016) may be used to better 1 

understand the factors that affect decoding levels of contextual cues across the frontoparietal 2 

network and inform future studies. Enhancement of cue decoding following reward was also 3 

recently reported using EEG (Hall-McMaster et al., 2019). This facilitative effect was observed 4 

for ‘switch’ trials but not ‘stay’ trials. Our study design was not controlled for ‘switch’ and 5 

‘stay’ trials, and it could be that cue decoding would emerge if these could be considered. An 6 

additional prominent difference between the EEG results and ours is the spatial specificity, 7 

with much more widespread activity contributing to decoding in EEG data. 8 

There is a growing interest of the scientific community in the interaction between reward 9 

motivation and control processes, its neural correlates, and its implementation in computational 10 

models of reinforcement learning. Here, we report increases in overall univariate activity with 11 

reward but primarily null results for an effect of reward on task-related representations across 12 

the frontoparietal network and we believe that these results may be useful for future studies 13 

that seek to address similar questions. Our findings point out that the extent of effects of reward 14 

on neural representation may be limited and dependent on specific task demands and trial 15 

epochs. Limited effects were also reported by Hall-McMaster et al., (2019), where increased 16 

cue decoding was observed only when the cue changed from one trial to another, but not in 17 

trials where the cue remained the same. Reports on the effect of reward on task representation 18 

are so far limited, and with the movement towards open and replicable science, it is important 19 

to establish the best possible pool of evidence for such effects. Our results will ultimately 20 

contribute to the overall estimates of the extent of effects of reward on neural representation. 21 

Additionally, they may be used as a starting point for future studies and particularly for power 22 

estimates, with respect to both the expected effect size as well as aspects of the experimental 23 

design that may contribute to the detectability of reward effects. Different measures can be 24 

taken to further increase power within scanning time limits. These might include, but not 25 
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limited to, collecting a larger amount of data per participant, possibly over more than one 1 

scanning session, as well as using other methods that have been used recently to address neural 2 

representation for fMRI data such as repetition suppression (Garvert et al., 2015). 3 

 4 

Conclusions 5 

 6 

With growing interest in the interaction between control processes and reward motivation, our 7 

study provides important experimental evidence for the limited extent of effects of reward on 8 

task-relevant neural representations. Future studies will be required to further investigate the 9 

factors that determine how and when reward shapes neural representations and the mechanisms 10 

that underlie the profound effects of reward on behavior.  11 
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Tables 1 

 2 

Table 1: Decoding accuracies for pairs of behavioral status across the MD network. 3 

t values are for a one-tailed t-test against chance level (50%). Corrected p values were obtained 4 

using Bonferroni correction for 6 comparisons. + p < 0.06, * p < 0.05, ** p < 0.01 5 

Distinction Reward 

level 

Mean ± 

S.E.M 

(%) 

t23 

value 

Uncorrected 

p 

corrected 

p 

Effect 

size 

Target vs. 

High-conflict 

nontarget 

No-reward 50.9 ± 0.6 1.43 0.083 0.5 0.29 

Reward 52 ± 0.8 2.56 ** 0.009 + 0.053 0.52 

Target vs. 

Low-conflict 

nontarget 

No-reward 52.4 ± 0.7 3.24 ** 0.002 * 0.011 0.66 

Reward 52.1 ± 0.9 2.23 * 0.02 0.11 0.45 

High-conflict 

vs. Low-

conflict 

nontargets 

No-reward 50.9 ± 0.9 1.32 0.2 1 0.20 

Reward 51.4 ± 1.1 0.96 0.1 0.6 0.27 

 6 
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