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1 Development and performance of the trophic mode model

1.1 Description of the model and Heterotrophy Index

We used a variable selection algorithm and Random Forest machine learning model framework in
order to predict the likely trophic mode of the eukaryotic TOPAZ MAGs described in this study.
Transcriptomes from the MMETSP and EukProt were manually-annotated as phototroph, mixotroph,
or heterotroph based on the literature (Supplementary Table 5). We tested our model with a randomly
subset test set comprised of the 25% of MMETSP and EukProt transcriptomes (Keeling et al., 2014;
Richter et al., 2020) that were excluded from the model building procedure. With this test subset we
obtained an accuracy of 94.6% (Figure S23), meaning that nearly 95% of taxonomic annotations de-
rived from the machine learning model aligned with their manually-assigned trophic mode annotation
(Figure S23). When applied to the TOPAZ MAGs, all MAGs were either classified as phototrophs
or heterotrophs, with none classified as mixotrophs. This likely reflects that the model was generally
conservative when it came to assigning genomes or transcriptomes as mixotrophs (Figure S27). As
a consequence, we developed a secondary metric for assessing the extent of heterotrophy in the test
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genomes and transcriptomes using the KOs selected by the vita selection process (n = 1787), but in-
stead of using the presence or absence of these KOs as a binary indicator to inform the classification
of the MAGs, we used the presence or absence as part of an equation to more sensitively assess the
number of KOs present that tend to be indicative or either heterotrophy or phototrophy. The result was
the “Heterotrophy Index” (H-index), a metric for assessing trophy based on KEGG pathway presence
or absence.

The H-index is a sliding scale that weights the presence of heterotrophy, phototrophy- and mixotrophy-
indicative KOs to assess the overall likely trophic state of an organism, and will consequently better
show when an organism is more likely mixotrophic or possessing traits from both heterotrophy and
phototrophy. Because mixotrophs were less common in our test dataset, there are natural concerns
about the skill of the model when it comes to identifying them (Vabalas et al., 2019).We did not
attempt to address the imbalance of the categorical training data in the model as other papers have
recently explored (Utkin, 2020; Collins et al., 2020), hence our model retains the bias of reduced
sensitivity when the distribution of the training data categories cannot be compared directly to the
“true” incidence of mixotrophy among eukaryotic organisms (Khalilia et al., 2011). Because the ma-
jority of test and training transcriptomes were phototrophs or heterotrophs, it is more conservative
for a Random Forest model to assign these modes more frequently. As the TOPAZ MAGs covered
lineages with known mixotrophic members (Jones, 2000), and with comparison and feedback from
an alternative trophic model as described in Section 1.2, we applied the H-index to provide more sen-
sitivity in the identification of likely mixotrophs. In particular, with the Random Forest design, if a
MAG has characteristics of both heterotrophs and phototrophs that are present in the training data, but
does not align with the limited sample of mixotroph transcriptomes (which is also problematic due
to the opportunistic nature of the sampling, see Section 1.3), these MAGs would be assigned the best
guess between phototrophy and heterotrophy, when in reality this combination of traits may indicate
some form of mixotrophy. The H-index also serves as a confidence metric for the trophy estimate.
For example, a MAG with a large positive H-index would more confidently be called a heterotroph,
as this would indicate a strong frequency and degree of alignment with heterotroph references (and,
specifically, alignment with those heterotrophic references for KOs identified by the vita algorithm as
important for distinguishing trophic mode within the training set). By contrast, a small (or near zero)
positive H-index may be mixotrophic or represent a less complete MAG.

1.2 Comparison to Burns and Lambert models

In order to assess the performance of our model, which relies solely on assessment of KOs (Kane-
hisa, 2019) that were determined computationally to be important and assessed for function after
the fact (Figure S25), we applied the model from Burns et al. (2018) (heretofore referred to as the
Burns model) to the same highly complete eukaryotic MAGs, as well as to the MMETSP transcrip-
tomes. This model assigns a score from zero to one for individual characteristics related to trophy,
including photosynthetic ability, phagocytosis, and prototrophy (Burns et al., 2018). Using Hidden
Markov Models for selected genes which have known association with the aforementioned trophic
strategies, the Burns model instead looks for a set of genes consistent with each trait, to assess the
“completeness” of the genome or transcriptome with respect to the machinery known to be involved
with each function. We found the Burns model results to be consistent with our H-index procedure in
the following ways. Among the MMETSP transcriptomes, 93.1% (n=81) of the transcriptomes with
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a positive H-index (indicative of net heterotrophy) also had a photosynthesis score of less than 0.5
as assigned by the Burns model, and 90.8% (n=79) had a photosynthesis score of less than 0.05 via
the Burns model (Figure S26). Similarly, 87.3% (n=226) of MMETSP transcriptomes with a negative
H-index (indicative of net phototrophy) had a photosynthesis score of greater than 0.5 as assigned
by the Burns model (52.9% (n=137) had negative H-index and Burns photosynthesis score greater
than 0.95). MMETSP transcriptomes with a zero or near-zero H-index, which corresponds to putative
mixotrophy, had varying photosynthesis scores according to the Burns model, but were more likely
to have high (0.6-1) photosynthesis scores, which is consistent with mixotrophy (Figure S26). How-
ever, several of the MAGs which were predicted to be mixotrophs by the Random Forest model and
were annotated manually as mixotrophs from the available metadata had mid- to high- photosynthesis
scores in the Burns model, yet negative-leaning H-index scores (Supplementary Table 10). These tran-
scriptomes also tended to have high (>0.7) phagocytosis predictions per the Burns model, consistent
with the presence of genetic resources for both heterotrophic and phototrophic strategies. Broadly,
we found that, similarly to our H-index and Random Forest model annotations, the Burns photosyn-
thesis prediction results tended to align with the expected lifestyle of each MAG based on EUKulele
(Krinos et al., 2021) taxonomic annotations, with expected heterotrophs like Amoebozoa, Fungi, and
Opisthokonta scoring low on photosynthetic ability, while expected phototrophs like Ochrophyta and
Chlorophyta tended to score highly for photosynthetic ability (Figure S26). Most disagreement was
found within the SAR clade and Crypophyta, wherein a range of photosynthesis scores were found by
the Burns model, and sometimes these scores contradicted the annotation found by the H-index and
Random Forest model (fig. S26 and Supplementary Tables 9 and 10). This would indicate potentially
cryptic and variable trophic strategies and lifestyles within these annotated groups.

When split into classes of photosynthetic ability based on Burns model scores (to isolate “highly”
or “not at all” photosynthetic: 0-0.1, 0.1-0.45, 0.45-0.55, 0.55-0.9, 0.9-1), MMETSP transcriptomes
with “no” photosynthesis according to the Burns model (photosynthesis prediction < 0.1) had an
average H-index of 38.85 £ 68.19, while transcriptomes with “high” photosynthesis (photosynthesis
prediction > 0.9) had an average H-index of —272.34 +119.94 (Figure S24). As far as the TOPAZ
MAGs, we similarly found that the MAGs predicted to be heterotrophic had low variance in photosyn-
thesis prediction as reported by the Burns model, yet the variability in the photosynthetic prediction
was high, in particular among those MAGs of higher (less negative, hence closer to “mixotrophic”)
H-index (Figure S27).

1.3 The future of trophic mode models

The model we developed relies solely upon references that were derived from expression-level data
(transcriptomics). Additionally, we used the entire MMETSP (Keeling et al., 2014) and EukProt
(Richter et al., 2020) databases with manually assigned trophic strategies based on the literature
(Supplementary Table 5). Both of these choices carry issues that may be responsible for our un-
der prediction of mixotrophy. First, as they were transcriptomic datasets, the experimental conditions
that were used to generate the reference transcriptome are important, in that if a culture was main-
tained in phototrophy-favorable conditions (e.g. high light, sufficient inorganic nutrients) as opposed
to heterotrophy-favorable conditions (e.g. low light, external carbon source), the transcripts recon-
structed from these experiments may result in a reference that is skewed towards phototrophy or
heterotrophy, respectively. Regardless of the conditions in which the organism was grown, it is likely
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that genes present in the genome of the organism were not recovered by transcriptomics. While this
means that important genes related to trophic strategy may be missed from the prediction workflow,
this is also exciting, as there is much room for growth for these already accurate and skillful models.
As genomic references become available and the number of transcriptomic experiments continue to
grow, we can expect to further constrain the classes of genes that decide trophic mode. As databases
grow, they may be pruned to include only experiments in which the trophy of the organism was known
exactly, which would enable the patterns of expression which decide trophic mode to be pinpointed
more precisely. Ideally, a complete core set of protein families necessary for heterotrophy and for pho-
totrophs could be identified. A fundamental question that remains, however, is if there are any genes
or protein families that are characteristic of mixotrophic organisms only or if these organisms are bet-
ter characterized based on the co-occurrence of genes indicative of phototrophy and heterotrophy. If
the latter, mixotrophy would be best characterized by the proportion of these sets which overlap in the
genome or the expression profile of the candidate organism. While this is in principle the aim of the
Burns model (Burns et al. (2018), Section 1.2), this approach might still be augmented by machine
learning-based techniques that have the capacity to identify important genes that may not have yet
been annotated.

2 Taxonomic group correlations with environmental parameters

The relative abundance of eukaryotic MAGs across samples was correlated with environmental pa-
rameters (Figure S12) and were found to broadly cluster by course taxonomic grouping, as such
abundances were summed by broad taxonomic group to assess (Figure S13) general trends and cor-
relations in patterns of abundance. Globally, we note that metazoan MAG abundance significantly
(Bonferroni corrected p < 0.001) positively correlated with temperature, salinity, and retention time
(defined as the average length of time that a particle has been trapped in an eddy), and significantly
negatively correlated with a variety of nutrients (phosphate, nitrate+nitrite, silica), CDOM, and depth
(meaning they are more abundant in surface samples). This suggests that the metazoan MAGs we
are recovering are likely abundant in the subtropical and tropical waters of the large ocean gyres that
are oligotrophic. Notably, Choanozoa and Amoebozoa clustered with Metazoans, forming a distinct
cluster from other more typically photosynthetic and planktonic groups. Chlorophyta, Apusozoa,
Cryptophyta, Dinoflagellata, Ochrophyta, SAR, and Haptophyta clustered separately from Metazoa
and were typified by significant positive correlation with oxygen, a, and nitrite (Figure S13). Ad-
ditionally, MAGs recovered that belonged to Ochrophyta were found to be significantly negatively
correlated with temperature. This suggests that these MAGs were likely associated with more polar
or subpolar regions.

Supplementary Tables

All Supplementary tables are available through the open science framework at https://osf.io/
twz2f/.

* Supplementary Table 1. Assembly group description, sample inclusion, and basic assembly
statistics.
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Supplementary Table 2. TOPAZ Eukaryotic MAG taxonomy, genomic characteristics (e.g.,
total length, GC content, N50, number of predicted proteins,), and estimated completeness and
contamination.

Supplementary Table 3. TOPAZ Prokaryotic MAG taxonomy as estimated by GTDB, dataset
indication (non-redundant representatives (NR), total size, and estimated completeness and con-
tamination.

Supplementary Table 4. TOPAZ Prokaryotic MAG summary of recovered MAGs across
phyla. Total counts are shown for all MAGs (All), the non-redundant subset of MAGs (AIINR),
and the high-quality, non-redundant MAGs (HQNR).

Supplementary Table 5. Reference transcriptomes used in the construction and testing of the
trophic model. The manually annotated trophic status and details, relevant reference literature,
and taxonomic information are noted. Additionally, a presence/absence matrix is provided for
all eukaryotic KEGG ids considered here.

Supplementary Table 6. Vita selected KOs and their associated heterotrophy, phototrophy,
and mixotrophy ratios as described in equations 1-4.

Supplementary Table 7. KEGG presence and absence for the TOPAZ eukaryotic MAGs, as
was used in the trophic model.

Supplementary Table 8. Pfam presence and absence across the TOPAZ eukaryotic MAGs.

Supplementary Table 9. Eukaryotic TOPAZ MAG predicted trophic status and heterotrophy
index (H-index).

Supplementary Table 10. Burns model (Burns et al., 2018) predicted prototrophy, photosyn-
thetic ability, and phagocytosis for the TOPAZ eukaryotic MAGs.

Supplementary Table 11. Network analysis community composition.

Supplementary Table 12. Eukaryotic cluster groups derived from average nucleotide identity
clustering of eukaryotic TOPAZ MAGs with the Delmont eukaryotic MAGs (Delmont et al.,
2020) based on an ANI cutoff of 99%.

Supplementary Table 13. Environmental correlations with network derived communities.

Supplementary Figures
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Figure S9: Genomic traits of recovered eukaryotic completeness, protein predictions, and annotation of the highly complete eukaryotic
TOPAZ MAGs (n=485). The number of predicted proteins, proportion coding sequences, proportion repeat content, BUSCO complete-
ness, percent annotation with Pfam and KEGG ontology are shown as box and whisker plots for the major higher-level groups that we
define for this paper.
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Figure S12: A Spearman correlation between the metagenomic abundance of each of the 485 high-
completion eukayrotic TOPAZ MAGs and environmental parameters from the sampling (Tara Oceans
Consortium and Tara Oceans Expedition, 2016), modeled mesoscale physical features based on
d'Ovidio et al. (2010) (indicated with *) , and averaged remote sensing products (indicated with **).
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Figure S13: A Spearman correlation between the summed metagenomic abundance of each taxonomic
group and environmental parameters from the sampling (Tara Oceans Consortium and Tara Oceans
Expedition, 2016), modeled mesoscale physical features based on d'Ovidio et al. (2010) (indicated
with *) , and averaged remote sensing products (indicated with **). Significant Spearman correlations,
those with a Bonferroni adjusted p < 0.01, are indicated with a dot on the heatmap.
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Figure S14: A concatenated protein phylogeny containing TOPAZ and Delmont (Delmont et al.,
2020) eukaryotic MAGs that were estimated to be greater than 30% complete as well as reference
genomes from cultured isolates. The maximum likelihood tree was inferred from a concatenated pro-
tein alignment of 49 proteins from the eukaryotic BUSCO gene set that were found to be commonly
present across at least 75% of the 485 TOPAZ eukaryotic MAGs that were estimated to be >30% com-
plete based on BUSCO ortholog presence (the same proteins that were used in Figure 1). Branches
(nodes) corresponding to TOPAZ MAGs are colored based on consensus protein annotation estimated
by EUKulele and MMSeqs.
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Figure S15: Average nucleotide identity (ANI) between the High Completion TOPAZ and Delmont
MAGs. The ANI as estimated by FastANI between all eukaryotic TOPAZ MAGs and Delmont Eu-
karyotic MAGs is depicted. The taxonomic affiliation of the TOPAZ MAGs is depicted by color along
the x-axis. A clustering was done with a cutoff of 99% ANI generating 83 unique clusters of MAGs,
of which 46 contained a representative from both TOPAZ and Delmont (Supplementary Table 12).
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Figure S16: Intersection of shared or unique KEGG IDs across 24 SAR and Dictyochophyceae
TOPAZ MAGs. Subset of MAGs (named on the left) indicated by dot grid (top; ggupset) and the
total number of shared KEGG IDs (bottom) as barplots. The largest 30 sets of shared or unique
KEGG ID intersections is shown. Combination of MAG intersections show by colors denote the
KEGG module, where NA (white) indicates that the KEGG ID did not belong to a KEGG module.
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Figure S17: Relative counts per million (CPM) of 25 selected SAR and Dictyochophyceae TOPAZ
MAGs (x-axis) by sample (y-axis and color bar). CPM of MAGs were summed by sample type, size
fraction, depth, and ocean region, and Z-score tradgformed (heatmap signature) for visualization with
pheatmap (R; v1.0.12). MAGs and samples are clustered based on average distance.
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Figure S18: Metagenomic abundance plots for the 24 SAR and Dictyochophyceae TOPAZ MAGs
considered. The relative abundance in CPM is shown as a bubble size. Color indicates the depth of
the sample.
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Figure S19: Principle component analysis derived from metatranscriptome reads, from the surface
and smallest size fraction, mapped to shared orthologs (Shared in all MAGs in (Figure 5 b)) among
selected 24 TOPAZ MAGs. Symbol size designates Heterotrophy Index, while symbol color denotes
each TOPAZ MAG.
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Figure S20: Concatenated BUSCO phylogeny of the 24 selected TOPAZ MAGs with a selection of
other stramenopile MAGs and SMAGs from Delmont et al. (2020). The phylogeny is pictured with
iTOL. Collapsed clades include a mixture of TOPAZ and Delmont-generated MAGs that are listed.
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Figure S21: Lollipop plot showing the relative CPM of mapped transcripts associated with more phototrophic (left) or heterotrophic
(right) traits for 4 Dictyochophyceae MAGs (left to right). Relative abundance is shown by MAG for each sample (y-axis and color bar).
Shown TOPAZ MAGs were classified as primarily phototrophic (low H-index, reported next to each TOPAZ MAG name), but relative
abundance of mapped transcripts varies by sample type.
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Figure S22: Lollipop plot showing the relative CPM of mapped transcripts associated with more phototrophic (left) or heterotrophic
(right) traits for 4 SAR TOPAZ MAGs (left to right). Relative abundance is shown by MAG for each sample (y-axis and color bar).
TOPAZ MAGs selected are a subset from the SAR clade closely related to stramenopiles and were predicted to be heterotrophic (high
H-index; reported next to each TOPAZ MAG name).
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Figure S23: Confusion matrix generated from Random Forest model construction on the 25% of the
reference transcriptomes used for testing. The x categorical axis is the manually-annotated trophic
mode, while the y categorical axis is the predicted trophic mode via the Random Forest model. The

greatest number of erroneous predictions involved mixotrophy (8 of 12).

28



6¢C

complete photosynthesis -

Annotated TM

¢ Heterotroph

high photosynthesis

A Mixotroph

o Phototroph

mid photosynthesis -

Burns

© no photosynthesis

o low photosynthesis
© mid photosynthesis
© high photosynthesis

low photosynthesis 1 © complete photosynthesis

no photosynthesis A

400 200 0 200
Heterotrophy Index

Figure S24: Comparison of Heterotrophy Index scores with the Burns model prediction for photosynthetic ability. On the y axis,
MAG:s are split into categories based on their photosynthesis score from the Burns model (which ranges from zero to one): “complete
photosynthesis” (0.9-1), “high photosynthesis” (0.55-0.9), “mid photosynthesis” (0.45-0.55), “low photosynthesis” (0.1-0.45) and “no
photosynthesis” (0-0.1).
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trophic mode modeling process. The top boxplot panel shows the mean presence of the KEGG IDs implicated in the listed pathways for
each of the three identified trophic modes, while the bottom heatmap panel shows the average presence of each individual KO along the

horizontal axis for reference transcriptomes annotated as each major trophic mode (vertical axis).
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Figure S26: Comparison of the Burns (Burns et al., 2018) model to our Random Forest predictions
and Heterotrophy Index calculations for the reference MMETSP transcriptomes. Left: Burns Burns
et al. (2018) photosynthesis predictions vs. composite Heterotrophy Index, scaled by the phagocytosis
prediction and colored by the manually-annotated trophic mode. Right: predicted photosynthetic
ability by taxonomic grouping, colored by the calculated Heterotrophy Index.
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Figure S27: Comparison of the Burns (Burns et al., 2018) model to our Random Forest predictions
and Heterotrophy Index calculations for the TOPAZ MAGs. Left: Burns Burns et al. (2018) photo-
synthesis predictions vs. composite Heterotrophy Index, scaled by the phagocytosis prediction and
shape indicating the Random Forest-derived predicted trophic mode (note there is no color because
trophic mode could not be manually annotated). Right: predicted photosynthetic ability by taxonomic
grouping, colored by the calculated Heterotrophy Index.
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Figure S28: Heterotrophy Index scores as a function of BUSCO completeness, faceted by taxonomy
phylum. The strongest association of Heterotrophy Index with completeness was found within Meta-
zoa, for which it appears that the magnitude of the Heterotrophy Index is tightly coupled to the level
of completeness of the MAG. By contrast, Cryptophyta (which are known to be mixotrophic (Jones,
2000)) showed a much weaker coupling of completeness with the magnitude of the Heterotrophy
Index, and all values of the Index were closer to zero.
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Figure S29: Comparison of the genomic characteristics between the TOPAZ MAGs and GORG SAGs
belonging to the phyla, Bacteroidota, Cyanobacteria and Proteobacteria. The distributions of GC %
content, estimated genome size (Mbp), number of CAZY hits per genome, number of CAZY hits per
Mbp per genome, number of peptidase genes per genome and number of peptidase genes per Mbp per
genome are presented as box plots.
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Figure S30: Supporting figures for the network analysis section. A and B: FastANI clustering does not typically group together eu-
karyotic MAGs of different overall taxonomic classification (A) or taxonomic order (B). C: Justification for ANI cutoff of 95% (and
correlation coefficient 0.504) for considering eukaryotic MAGs to be sufficiently similar to be clustered. The majority of MAGs with
pairwise ANI scores of >95 have correlation coefficients of >0.8. D: Taxonomic composition of the 7 identified communities from the
main text.
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Figure S31: Extended environmental correlations figure displaying the strength and directions of environmental correlations as tracked
by both taxonomic group and network-based community.
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Figure S32: Distribution of identified communities across Tara Oceans Samples. The summed
metagenomic abundance (CPM) of each of the seven identified communities from the network analy-
sis (Figure 6) is shown for each size fraction. The size of the bubble indicates the relative abundance
of the community in a given sample.
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Figure S33: Genomic characteristics of the Community 1 MAGs. MAG names are color-coded based
on the taxonomic affiliations estimated by GTDB-tk. The presence of the high oxygen affinity cy-
tochromes db ubiquinol oxidase and cbb3, as well as the reductases (involved in anaerobic processes)
DMSO family type II, nitric oxide and nitrite are noted with grey in the left panel of the heat map.
The presence of genes involved in CAZy pathways for the hydrolysis/degradation of amorphous cellu-
lose, arabinan, arabinose cleavage, beta-galactan, beta-mannan, chitin, mixed-linkage glucans, pectin,
rhamnose cleavage, starch, sulf-polysachharides, xylans, xyloglucan are noted with grey in the right
panel of the heat map. The estimated size of the genomes is shown as a bar plot.
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