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Abstract 

Genetic background often influences the phenotypic consequences of mutations, resulting in 
variable expressivity. How standing genetic variants collectively cause this phenomenon is not fully 
understood. Here, we comprehensively identify loci in a budding yeast cross that impact the growth 
of individuals carrying a spontaneous missense mutation in the nuclear-encoded mitochondrial 
ribosomal gene MRP20. Initial results suggested that a single large effect locus influences the 
mutation’s expressivity, with one allele causing inviability in mutants. However, further dissection 
revealed that in fact many additional loci shape the mutation’s expressivity, collectively leading to 
a wide spectrum of mutational responses. These results exemplify how complex combinations of 
loci can produce a diversity of qualitative and quantitative responses to the same mutation. 

Significance Statement 
 
Mutations can show different phenotypic effects depending on the individuals in which they occur 
(or background effects). These background effects are important to understand because they 
impact the contributions of mutations to traits of biomedical, evolutionary, and agricultural 
significance. While it is known that a main cause of background effects is genetic interactions 
between mutations and pre-existing genetic variants, the architectures of these interactions are not 
well characterized. Here, we use show that a large number of genetic variants influence the effect 
of a spontaneous mutation in a cross of two yeast strains. These loci individually tend to have small 
impacts, but collectively they cause the mutation to show a range of effects that extends from lethal 
to near zero.  
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Main Text 
 
Introduction 
 
Mutations frequently exhibit different effects in genetically distinct individuals (or ‘background 
effects’) (1-3). For example, not all people with the same disease-causing mutations manifest the 
associated disorder or exhibit identical symptoms. A commonly observed form of background effect 
among individuals carrying the same mutation is different degrees of response to that mutation (or 
‘variable expressivity’) (4). Variable expressivity can arise due to a myriad of reasons, including 
genetic interactions (or epistasis) between a mutation and segregating loci (1), dominance (1), 
stochastic noise (5), the microbiome (6), and the environment (1). 
 
The genetic architecture underlying expressivity has proven difficult to study, in part because 
natural populations harbor substantial genetic diversity, which can facilitate complex forms of 
epistasis between segregating loci and mutations (7-20). Mapping the loci involved in these genetic 
interactions is technically challenging. However, the introduction of mutations into diverse strains 
and crosses in the laboratory can enable the identification and genetic dissection of such 
background effects (7, 12, 17-19, 21). 
 
In this paper, we use a series of controlled crosses in the budding yeast Saccharomyces cerevisiae 
to comprehensively characterize the genetic basis of a mutation’s expressivity. We focus on a 
missense mutation in MRP20, an essential nuclear-encoded subunit of the mitochondrial ribosome 
(22). This mutation occurred by chance in a cross between the reference strain BY4716 (‘BY’) and 
a clinical isolate 322134S (‘3S’), and was found to show variable expressivity among BYx3S cross 
progeny. This presented an opportunity to determine how loci segregating in the BYx3S cross 
individually and collectively influence this mutation’s expressivity.  
 
 
Results 
 
A spontaneous mutation increases phenotypic variance in the BYx3S cross 
 
In the BY/3S diploid progenitor of haploid BYx3S segregants, a spontaneous mutation occurred in 
a core domain of Mrp20 that is conserved from bacteria to humans (Fig. 1A, fig. S1, table S1) (22, 
23). This mutation resulted in an alanine to glutamine substitution at amino acid 105 (mrp20-105E) 
and showed variable expressivity among segregants carrying it. Specifically, segregants with this 
mutation showed increased phenotypic variance relative to wild type segregants when ethanol was 
provided as the carbon source, the condition used hereafter (Fig. 1B; Levene’s test, p = 5.9 x 10-
22). Mutant segregants exhibited levels of growth ranging from inviable to wild type, and fit a bimodal 
distribution that centered on 10% and 57% growth relative to the haploid BY parent strain (bimodal 
fit log likelihood 30; fig. S2). 
 
A large effect locus shows epistasis with mrp20-105E 
 
Loci contributing to this variable expressivity should be detectable through their genetic interactions 
with MRP20. To find such loci, we performed linkage scans for two-way epistasis with MRP20. We 
identified a single locus on Chromosome XIV (ANOVA, interaction term p = 4.3 x 10-16; Fig. 2A). 
Individuals with XIVBY showed reduced growth among both MRP20 and mrp20-105E segregants, 
but to a greater degree among the latter (Fig. 2B). The Chromosome XIV locus explained 79% of 
the phenotypic variance among mrp20-105E segregants (ANOVA, p = 3.2 x 10-31) and accounted 
for all observed cases of inviability (Fig. 2B). 
 
To further resolve the Chromosome XIV locus, we crossed an mrp20-105E XIVBY F2 segregant and 
an mrp20-105E XIV3S F2 segregant (supplementary text 2; Fig. 2C, table S1). 361 F3 progeny were 
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genotyped by low-coverage whole genome sequencing and phenotyped for growth. Linkage 
mapping with these data reidentified the Chromosome XIV locus at a p-value of 2.50 x 10-43 
(ANOVA; Fig. 2D, fig. S3) and resolved it to a single SNP in the coding region of MKT1 (Fig. 2E). 
This SNP, which encodes a glycine in BY and a serine in 3S at amino acid 30, was then validated 
by nucleotide replacement in mrp20-105E segregants (Fig. 2F). Notably, this specific SNP was 
previously shown to play a role in mitochondrial genome stability (24), suggesting epistasis 
between MRP20 and MKT1 involves mitochondrial dysfunction, impairing growth on non-
fermentative carbon sources such as ethanol. 
 
Epistasis between MRP20 and MKT1 differs in cross parents and segregants 
 
We attempted to validate the epistasis between MRP20 and MKT1 by introducing all four possible 
combinations of the causal nucleotides at these two genes into haploid versions of both BY and 3S 
(Fig. 3A). The mrp20-105E mutation affected growth in both parent strains (ANOVA, p = 4.3 x 10-

24 and p = 4.0 x 10-4). However, the magnitude of the effect differed between the two: mrp20-105E 
caused inviability in BY but had a more modest effect in 3S. In addition, MKT1 influenced response 
to mrp20-105E in the 3S background (ANOVA, p = 0.01) but not in the BY background (ANOVA, p 
= 0 .99). Furthermore, the phenotypic consequence of epistasis between MRP20 and MKT1 
differed between parent and segregant strains. Specifically, the phenotypes of BY mrp20-105E 
MKT13S , 3S mrp20-105E MKT1BY , and 3S mrp20-105E MKT13S  all differed from the expectations 
established by BYx3S mrp20-105E segregants. These departures from expectation imply that 
additional unidentified loci also influence response to mrp20-105E.  
 
Fixation of mrp20-105E and MKT1 genotypes further expands phenotypic variance 
 
To enable the identification of other loci underlying response to mrp20-105E, we generated two 
new BYx3S crosses (Fig. 3B, table S1). In both crosses, the BY and 3S parents were engineered 
to carry mrp20-105E. Further, one cross was engineered so that both parents carried MKT1BY and 
the other cross was engineered so that both parents carried MKT13S. By altering the parent strains 
in this manner, we increased the chance of detecting additional loci contributing to the variable 
expressivity of mrp20-105E. From these engineered crosses, 749 total segregants were obtained 
through tetrad dissection, genotyped by low-coverage genome sequencing, and phenotyped for 
growth on ethanol. 
 
The new crosses exhibited continuous ranges of phenotypes, in contrast with the bimodal 
phenotypic distribution observed in the original segregants (Fig. 3C). In both the MKT1BY and 
MKT13S crosses, mrp20-105E segregants ranged from inviable to nearly wild type. The distributions 
of phenotypes in the two crosses differed in a manner consistent with their MKT1 alleles, with the 
mean of the MKT1BY segregants lower than the MKT13S segregants (t-test, p = 4.8 x 10-34). These 
data show that regardless of the MKT1 allele present, additional loci can cause mrp20-105E to 
show phenotypic effects ranging from lethal to benign.  
 
Many additional loci affect the expressivity of mrp20-105E 
 
We used the new crosses to map other loci contributing to response to mrp20-105E. Excluding 
MKT1, which explained 18% of the phenotypic variance in the new crosses, linkage mapping 
identified 16 new loci (Fig. 3D, fig. S4, and table S2). We found no evidence for genetic interactions 
among the loci (pairs and trios examined with fixed effects linear models, Bonferroni threshold). Of 
these loci, the BY allele was inferior at 10 and superior at six. These loci individually explained 
between 0.79% and 14% of the phenotypic variance. 13 of these loci resided on a subset of 
chromosomes but were distantly linked: four on Chromosomes XII, three on XIII, two on XIV, and 
four on XV. The three remaining loci were detected on Chromosomes IV, VII, and XI. 
Recombination breakpoints delimited these loci to small genomic intervals spanning one (12 loci), 
two (3 loci) or three (1 locus) genes (table S3). These candidate genes functioned in many 
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compartments of the cell and implicated a diversity of cellular pathways and processes (table S4). 
Thus, the molecular basis of mrp20-105E’s expressivity is complex and cannot be ascribed to a 
single coherent mechanism. 
 
The Chromosome XIV locus contains multiple causal variants 
 
Among the newly detected loci, the largest effect (14% phenotypic variance explained) was on 
Chromosome XIV. The position of maximal significance at this site was located two genes away 
from the end of MKT1, with a 99% confidence interval that did not encompass the causal variant in 
MKT1 (table S3). Thus, the originally identified large effect Chromosome XIV locus in fact 
represents multiple distinct closely linked nucleotides that both genetically interact with MRP20 and 
occur in different genes (Fig. 3E). The new locus on Chromosome XIV was delimited to two genes, 
one of which was SAL1, encoding a mitochondrial ADP/ATP transporter that physically interacts 
with Mrp20. A SNP in SAL1 that segregates in this cross was previously linked to increased 
mitochondrial genome instability in BY (24), suggesting it is likely also causal in our study. For this 
reason, we refer to this additional Chromosome XIV locus as ‘SAL1’. We find no evidence for 
epistasis between MKT1 and SAL1 (ANOVA, p = 0.77). 
 
Although the MKT1-SAL1 locus had a large effect, it explained a minority of the phenotypic variance 
among mrp20-105E segregants in a model including all detected loci (32% for MKT1-SAL1 vs. 36% 
for all other loci collectively). Thus, by enabling MKT1 and SAL1 to segregate independently 
through genetic engineering and examining a large number of mrp20-105E segregants with 
different MKT1-SAL1 genotypes, we observed a greater diversity of mutational responses than was 
originally seen and detected many additional loci. 
 
Aneuploidy also contributes to the variable expressivity of mrp20-105E 
 
Despite the fact that the identified loci explain most of mrp20-105E’s expressivity, some individuals 
exhibited unexpectedly poor growth (Fig. 3F). This finding led to the identification of a Chromosome 
II duplication that reduced growth (ANOVA, 1.2 x 10-48). The aneuploidy was common among 
mrp20-105E segregants, with a higher prevalence when MKT13S was also present (Fisher’s exact 
test, p = 1.5 x 10-43; table S5). The Chromosome II aneuploidy was not seen among wild type 
segregants. These data suggest that mrp20-105E increases the rate of aneuploidization and that 
genetic variation in MKT1 influences the degree to which mrp20-105E segregants duplicate 
Chromosome II. The aneuploidy’s contribution to phenotypic variation was relatively minor, 
explaining 5% of phenotypic variance among mrp20-105E segregants in a model also including all 
identified loci.  
 
Multiple mechanisms underlie poor growth in the presence of mrp20-105E  
 
Evidence suggests mitochondrial genome instability contributes to the variable expressivity of 
mrp20-105E. First, mitochondrial genome instability is known to cause poor growth on non-
fermentative carbon sources, such as ethanol (25, 26). Second, the exact variants that segregate 
in our cross at MKT1 and SAL1 were previously linked to mitochondrial genome instability (24). 
Third, both Mrp20 and Sal1 function in the mitochondria (22, 27). Fourth, two other candidate genes 
in the newly detected loci encode proteins that function in the mitochondria (table S4). 
 
To determine the role of mitochondrial genome instability in the variable expressivity of mrp20-
105E, we measured petite formation, a proxy for spontaneous mitochondrial genome loss (Fig. 4) 
(28). In addition to MRP20 and mrp20-105E BY and 3S parent strains, 16 MRP20 segregants and 
42 mrp20-105E segregants were examined. Despite causing reduced growth in both parents, 
mrp20-105E only led to elevated mitochondrial genome instability in BY (t-test p = 0.013 in BY and 
p = 0.39 in 3S; Fig. 4A). This result indicates that mitochondrial genome instability explains part, 
but not all, of response to mrp20-105E. Supporting this point, mrp20-105E segregants exhibited 
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increased mitochondrial genome instability relative to MRP20 segregants (Wilcoxon rank-sum test 
p = 0.023), especially at lower levels of growth, but a subset of inviable segregants did not show 
elevated petite formation (Fig. 4B and C). These results suggest that mrp20-105E can lead to poor 
growth through mitochondrial genome instability, but this is not the only mechanism determining 
response to mrp20-105E. 
 
Genetic underpinnings of mrp20-105E’s expressivity in segregants and parents 
 
We determined the extent to which our identified loci explained phenotypic variability among 
mutants. Modeling growth as a function of all identified loci and the aneuploidy accounted for the 
majority (78%) of the broad-sense heritability among mrp20-105E segregants (ANOVA, p = 5.2 x 
10-188). Further, phenotypic predictions for segregants based on their genotypes were strongly 
correlated with their observed phenotypes (r = 0.85, p = 4.4 x 10-209; Fig. 5A). 
 
The model was also effective for other genotypes that were not present in the new crosses, but 
had been generated throughout the course of this work. For instance, the model accurately 
predicted the phenotypes of the original mrp20-105E segregant population (r = 0.90, p = 1.6 x 10-

39), as well as the phenotypes of cross parents engineered to carry mrp20-105E (Fig. 5A). 
Moreover, the model explained both qualitative and quantitative variation within and between the 
two Chromosome XIV classes that were originally seen among mrp20-105E segregants. These 
results confirm that the variable expressivity of mrp20-105E is driven by many loci that collectively 
produce a spectrum of mutational responses. 
 
Finally, we examined how diverse combinations of loci collectively produced similar phenotypic 
responses to mrp20-105E. We examined the relationship between growth and the total number of 
detrimental alleles carried by mrp20-105E segregants, keeping track of each individual’s genotype 
at MKT1 and SAL1, the largest effect loci (Fig. 5B). The number of detrimental alleles carried by a 
segregant showed a strong negative relationship with growth, which was not observed in wild type 
segregants (fig. S5). Further, regardless of genotype at MKT1 and SAL1, the effect of mrp20-105E 
ranged from lethal to benign in a manner dependent on the number of detrimental alleles present 
at other loci. These findings demonstrate that many segregating loci beyond the large effect MKT1-
SAL1 locus influence the expressivity of mrp20-105E and enable different genotypes in the cross 
to exhibit a broad range of responses to the mutation. 
 
 
Discussion  
 
We have provided a detailed genetic characterization of the expressivity of a spontaneous 
mutation. Response to this mutation in a budding yeast cross is influenced by at least 18 genetic 
factors in total, with the largest effect due to two closely linked variants. However, at least 15 
additional loci segregate and jointly exert larger effects than the largest two. Different combinations 
of alleles across these loci produce a continuous spectrum of mutational responses. Due to tight 
linkage between MKT1 and SAL1 in the original cross parents, the full extent of this continuum was 
not originally observed, leading to an initial understanding of the expressivity of the mrp20-105E 
mutation that was simplistic. 
 
These findings also show how quantitative variation in mutational response can produce seemingly 
discrete outcomes. In part, whether responses appear qualitative depends on the configuration of 
mutationally responsive alleles in examined mutants. Approaches such as crossing of genetically 
engineered strains can be used to disrupt these configurations that mask the full extent of variation. 
However, another part of this expressivity is the tolerance of a system to quantitative variation in 
key processes, for example mitochondrial genome stability in the case of mrp20-105E. Our data 
suggest that these processes can only tolerate quantitative variation to a point, but also indicate 
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that lethality to the same mutation may arise in different genetic backgrounds due to impairment of 
distinct cellular processes. 
 
Our results inform efforts to understand expressivity in other systems, including humans. For 
example, there is interest in determining why people who carry highly penetrant alleles known to 
cause disease do not develop pathological conditions (3, 29, 30). Such resilience, as observed 
here, may involve numerous loci. This speaks to the complicated and unexpected epistasis that 
can arise between mutations and segregating loci in genetically diverse populations (7-20). It also 
illustrates the importance of characterizing epistasis (31-41), including background effects, as 
these forms of genetic interactions are immediately relevant to evolution and disease, and may not 
emerge from studies that do not directly interrogate natural variation in genetically diverse 
populations. 
 
Materials and Methods 
 
Generation of segregants 
The haploid BYx3S segregants in which mrp20-105E was identified were the hos3∆ F2 segregants 
generated and described in Mullis et al (17). In brief, a BY MATa can1∆::STE2pr-SpHIS5 
his3∆ strain was mated to a 3S MATα ho::HphMX his3∆::NatMX strain to generate a wild type 
BY/3S diploid. PCR-mediated, targeted gene disruption was then used to produce a BY/3S 
HOS3/hos3∆::KanMX strain. Both the wild type and hemizygous deletion strains were sporulated, 
and random BYx3S MATa spores were obtained from each using the magic marker system with 
plating on His- plates containing canavanine (42). Following discovery of the mrp20-105E mutation, 
we performed tetrad dissected of this diploid to obtain mrp20-105E segregants in both HOS3 and 
hos3∆ genetic backgrounds. 
 
To produce haploid mrp20-105E F3 segregants, we deleted URA3 from a BYx3S F2 MATa 
can1∆::STE2pr-SpHIS5 his3∆ hos3∆::KanMX mrp20-105E XIV3S  segregant. We then mating type 
switched the strain by transforming it with a URA3 plasmid containing an inducible HO 
endonuclease, inducing HO, and plating single cells. The mating type-switched BYx3S F2 MATα 
can1∆::STE2pr-SpHIS5 his3∆ ura3∆ hos3∆::KanMX mrp20-105E XIV3S segregant was then mated 
to a BYx3S F2 MATa can1∆::STE2pr-SpHIS5 his3∆ hos3∆::KanMX mrp20-105E XIVBY segregant. 
The resulting diploid was sporulated and random segregants were obtained by plating on His- 
media. 
 
To obtain additional haploid mrp20-105E MKT1BY and MKT13S F2 segregants, we engineered 
mrp20-105E, as well as the 3S and BY causal variants at MKT1 position 467,219 into BY and 3S, 
respectively. BY mrp20-105E was independently mated to 3S mrp20-105E MKT1BY twice. Two 
resultant diploids were sporulated and tetrads were dissected to obtain BYx3S mrp20-105E 
MKT1BY haploid segregants. The same process was followed with BY mrp20-105E MKT13S and 3S 
mrp20-105E strains to obtain BYx3S mrp20-105E MKT13S haploid segregants. 
 
Genotyping 
F2 segregants shown in Fig 1 and Fig 2 A-B were previously genotyped in Mullis et al. using the 
same techniques described below (17). In this paper, F3 segregants and all remaining F2 
segregants shown in Figs 1 and 3-5 were genotyped by low coverage whole genome sequencing. 
Freezer stocks of strains were inoculated into liquid overnight cultures and grown to stationary 
phase at 30°C. DNA was extracted using Qiagen 96-well DNeasy kits (Qiagen P/N 69581). 
Sequencing libraries were prepared using the Illumina Nextera Kit and custom barcoded adapter 
sequences. Segregants from each respective cross (361 F3s and 872 F2s) were pooled in 
equimolar fractions into three separate multiplexes, run on a gel, size selected, and purified with 
the Qiagen Gel Extraction Kit. F2 and F3 segregants were sequenced by Novogene on Illumina 
HiSeq 4000 lanes using 150 bp x 150 bp paired-end reads. 
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Sequencing reads were mapped against the S288C genome (version 
S288C_reference_sequence_R64-2-1_20150113.fsa from the Saccharomyces Genome Database 
https://www.yeastgenome.org) using BWA version 0.7.7-r44 (43).  Samtools v1.9 was then used to 
create a pileup file for each segregant (44). For both BWA and Samtools, default settings were 
employed. Base calls and coverages were gathered for 44,429 SNPs that segregate in the cross 
(14). Low coverage individuals (<0.7x average per site coverage) were removed from analyses. 
Diploid and contaminated individuals were identified by abnormal patterns of heterozygosity or 
sequencing coverage, and were also excluded. For each segregant, a raw genotype vector was 
determined by the percent of calls at each site for the 3S allele. We then used a Hidden Markov 
Model (HMM) implemented in the ‘HMM’ package v 1.0 in R to correct each raw genotype vector 
using the following probability matrices (45):  
transitionProbabilitiy = matrix(c(.9999,.0001,.0001,.9999),2) 
and 
emissionProbability = matrix(c(.0.25,0.75,0.75,0.25),2). 
 
Aneuploidies were identified based on elevated sequencing coverage at particular chromosomes 
within each individual sample. This identified a chromosome II duplication event in a subset of 
BYx3S mrp20-105E MKT1BY and BYx3S mrp20-105E MKT13S segregants. The BY mrp20-105E 
MKT13S x 3S mrp20-105E cross had the highest prevalence (50%), and thus individuals from this 
cross were further examined. We employed the normalmixEM() function from the mixtools library 
in R (46) to determine that coverage on Chr II was bimodal and centered on 0.98 and 1.8 (log 
likelihood of 237). Posterior probabilities were used to call aneuploid individuals which that had an 
average per site coverage of 1.5x or greater. This threshold was also applied to other crosses to 
identify aneuploid individuals. 
 
Phenotyping 
Segregants were inoculated into rich media containing glucose (‘YPD’), which was comprised of 
1% yeast extract (BD P/N 212750), 2% peptone (BD P/N: 211677), and 2% dextrose (BD P/N 
15530). Cultures were grown to stationary phase (two days at 30°C). Strains were then pinned onto 
YP + 2% agar (BD P/N 214050) rich media containing ethanol (‘YPE’). The YPE recipe was 1% 
yeast extract (BD P/N 212750), 2% peptone (BD P/N: 211677), and 2% ethanol (Koptec P/N 
A06141602W). Plates were then grown at 30°C for two days. Growth assays were conducted in a 
minimum of three replicates across three plates. On each plate, a BY control was included. Plates 
were imaged with the BioRAD Gel Doc XR+ Molecular Imager at a standard size of 11.4 x 8.52 
cm2 (width x length) and imaged with epi-illumination using an exposure time of 0.5 seconds. 
Images were saved as 600 dpi tiffs. ImageJ (http://rsbweb.nih.gov/ij/) was used to quantify pixel 
intensity of each colony through the Plate Analysis JRU v1 plugin 
(https://research.stowers.org/imagejplugins/zipped_plugins.html), as described in Matsui et al. 
(47). Growth values were normalized against the same plate BY control, then averaged across 
replicates to produce a single growth value for each segregant. 
 
Linkage mapping 
Initial linkage mapping was conducted with F2 segregants. Initial discovery of the spontaneous 
mrp20-105E mutation resulted from linkage mapping with  385 F2 segregants (164 wild type and 
221 hos3∆) from Mullis et al. (17). We employed the linear model growth ~ hos3∆ + locus + 
hos3∆xlocus + error, from which the hos3∆xlocus interaction term was used to identify loci that 
differentially explained growth in hos3∆ segregants. Examination of the hos3∆xlocus interaction 
term led to discovery of the spontaneous  mrp20-105E mutation on the MRP20BY allele present in 
hos3∆ segregants. Following discovery of mrp20-105E, we used the fixed effects linear model 
growth ~ MRP20 + locus + MRP20 x locus + error using only hos3∆ individuals from Mullis et al. 
(17). From this scan, we examined the MRP20 x locus interaction term. 361 mrp20-105E F3 
segregants were used to better resolve the Chromosome XIV locus. We employed the model 
growth ~ locus + error and examined the locus term. We examined the minimum observed test on 
chromosome XIV to delimit that locus.  
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To find loci affecting growth in the mrp20-105E background, we generated new populations of 
mrp20-105E MKT1BY (353) and mrp20-105E MKT13S (396) haploid segregants. The combined 749 
mrp20-105E segregants were used for linkage mapping that followed a forward regression 
approach. We first obtained residuals from the linear model growth ~ MKT1 + error, and then 
implemented a genome-wide scan using the model residuals ~ locus + error. We examined the 
locus term and significance was determined by using 1,000 permutations with the threshold set at 
the 95th quantile of observed -log10(p-values) (48). A maximum of one locus per chromosome per 
scan was identified as significant. Following the identification of additional loci, we accounted for 
the newly detected loci in a new model, residuals ~ locus 1 + locus 2 + … locus n + error and 
obtained the residuals. These new residuals were used in another genome-wide scan using the 
model residuals ~ locus + error. Permuted thresholds were calculated for each scan. This process 
was repeated for a total of 5 iterations at which point no loci were detected above our significance 
threshold. Chromosome II was excluded from linkage mapping due to the presence of a 
chromosomal duplication in a subset of individuals. The Chromosome II duplication was tested for 
significance using the model growth ~ MKT1 + ChromosomeII + error, from which the Chromosome 
II term was examined. 
 
All linkage mapping was performed in R. Linear models were implemented using the lm() function. 
To call peaks for each scan we required that the local minimum position within each peak be a 
minimum of 150,000 kb away from any other peak. We also required peaks to be more than 20kB 
from the edge of a chromosome. We report 99% confidence intervals as 2-lod intervals surrounding 
the peak position at each locus. 
 
Classification of inviable segregants  
Initial discovery of the MRP20 x MKT1 genetic interaction suggested that expressivity of mrp20-
105E was largely determined by variation at MKT1. Furthermore, mrp20-105E MKT1BY segregants 
exhibited very poor growth, while mrp20-105E MKT13S segregants showed more tolerant, variable 
growth. We termed this initial mrp20-105E MKT1BY segregant population as ‘inviable’. Figures 4 
and 5 include a gray dashed line to denote the highest growth value observed among the original 
inviable segregants. 
 
Delimiting loci with recombination breakpoints 
For each locus examined, we split the appropriate segregants into two groups: individuals carrying 
the BY allele and individuals carrying the 3S allele. Segregants’ haplotypes across the adjacent 
genomic window were then examined. The causal region was determined by identifying the SNPs 
fixed for BY among all BY individuals and fixed for 3S among all 3S individuals. Raw Illumina 
sequencing reads were examined to confirm the delimit of IV to MRP20 among original F2 
segregants, the delimit of XIV to the MKT1 coding SNP at 467,219 among F3 segregants, and the 
delimit of the secondary XIV locus to SAL1 and PMS1 among the new F2 segregants. 
 
Reciprocal hemizygosity experiments 
Four hos3∆ F2 MATa segregants were used in all reciprocal hemizygosity (RH) experiments (49): 
two were hos3∆ IVBY XIVBY and two were hos3∆ IV3S XIVBY. The four segregants were first mating 
type switched to enable mating of these segregants to produce homozygous IVBY/IVBY, 
homozygous  IV3S/IV3S, or heterozygous IVBY/IV3S diploids. Each pairwise mating was performed 
and confirmed by plating on mating type tester plates. These diploid strains were then phenotyped 
on agar plates containing ethanol, which verified that IVBY has an effect in diploids and acts in a 
recessive manner. Using the haploid MATa and MATα versions of these four segregants, we 
individually engineered premature stop codons into DIT1, MRP20 and PDR15 using CRISPR-
mediated targeted gene disruption and lithium acetate transformations (50). Plasmid-based 
CRISPR-Cas9 was employed to target the beginning of each coding region and 20bp repair 
templates which contained a premature stop codon followed by 1bp deletions were incorporated. 
Each sgRNA and repair template was designed so that only the first 15 (of 537), 26 (of 264), and 
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33 (of 1,530) amino acids would be translated for DIT1, MRP20 and PDR15, respectively. 
Engineered strains were confirmed by PCR and Sanger sequencing. After confirmation, wild type 
and knockout strains for each gene were then mated in particular combinations to produce 
reciprocal hemizygotes that were otherwise isogenic. A minimum of two distinct hemizygotes were 
generated for each allele of each gene. 
 
Construction of nucleotide replacement strains 
Single nucleotide replacement strains were generated for MRP20 and MKT1 using a 
CRISPR/Cas9-mediated 10pproach. For a given replacement, the appropriate strain was first 
transformed with a modified version of pML104 that constitutively expresses Cas9 using LiAc 
transformation (50, 51). We then inserted the KanMX gene using co-transformation of a double-
stranded DNA containing KanMX with 30bp upstream and 30bp downstream homology tails and 
gRNAs targeting the region containing the site of interest (52). DNA oligos and PCR were used to 
construct custom sgDNA templates which included crRNA and tracrRNA in a single molecule. Next, 
we employed T7 RNA Polymerase to express sgDNA templates in vitro. Dnase treatment and 
phenol extraction were used to obtain purified sgRNAs. Transformants were selected on media 
containing G418, and KanMX integration was confirmed by PCR. Next, KanMX was replaced with 
the nucleotide of interest. To do this, integrants were co-transformed with four gRNAs targeting 
KanMX, a 60 bp single-stranded DNA repair oligo, and a marker plasmid expressing either HygMX 
or NatMX using electroporation (53). Marker plasmids were constructed by Gibson assembly with 
HygMX or NatMX and pRS316 (54, 55). Repair constructs were 60bp ssDNA oligos ordered from 
Integrated DNA technologies that included upstream homology, the desired nucleotide at the site 
of interest, and downstream homology. Transformants were selected on media containing either 
hygromycin or nourseothricin, depending on what marker plasmid was used. Replacement strains 
were then confirmed by sanger sequencing.  
 
Following this strategy, the mrp20-105E nucleotide was engineered into two hos3∆ IV3S XIVBY 
segregants, and two hos3∆ IVBY XIVBY segregants were restored to MRP20. Similarly, at MKT1 the 
causal, nearest upstream and downstream SNPs were engineered into two hos3∆ IVBY XIV3S 

segregants. Similarly, we generate BY mrp20-105E, BY MKT13S, 3S mrp20-105E, and 3S MKT1BY 

strains in this manner. Each single nucleotide parental replacement strain was then backcrossed 
to its own progenitor. Each subsequent diploid was sporulated and tetrad dissected, and we 
confirmed haploid genotypes by sequencing. The same approach was used to generate 3S mrp20-
105E MKT1BY haploids by crossing 3S mrp20-105E and 3S MKT1BY strains. However, this strategy 
could not be followed to generate BY mrp20-105E MKT13S haploids, because, crossing BY mrp20-
105E and BY MKT13s strains failed to produce any tetrads with 4 viable spores. Instead, we took 
BY MKT13S strains and converted MRP20 to mrp20-105E. 
 
Mitochondrial genome instability experiments 
We performed petite frequency assays as described in Dimitrov et al. (24) In brief, freezer stocks 
were streaked onto solid YPD media and grown for two days at 30°C. Single colonies were then 
resuspended in PBS, plated across dilutions onto YPDG plates (1% yeast extract, 2% peptone, 
0.1% glucose, and 3% glycerol) and grown for five days at 30°C. Plates were then imaged with the 
BioRAD Gel Doc XR+ Molecular Imager at a standard size of 12.4 x 8.9 cm2 (width x length) and 
imaged with epi-illumination using an exposure time of 0.5 seconds. Images were saved as 600 
dpi tiffs. ImageJ (http://rsbweb.nih.gov/ij/) was used to examine growth and quantitate colony size 
as described in Dimitrov et al. (24). Colonies were then classified as petite and grande using a 
threshold defined as the maximum colony diameter of observed petites among BY and 3S wild type 
strains. Petite frequency is the ratio of small colonies to total colonies. 
 
Modeling growth and examining the model  in  additional segregant populations  
We modeled growth for mrp20-105E segregants from the Byx3S crosses fixed for mrp20-105E  
and engineered at MKT1. We incorporated MKT1, the 16 detected loci and the Chromosome II 
duplication in the linear model growth ~ MKT1 + locus1 + locus2 + … locus16 + Chromsome II + 
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error. This model was used to generate predicted growth values. We then compared our observed 
growth values to these predictions. Next, we sought to determine whether loci influencing the 
expressivity of mrp20-105E also affected growth in other strains. To accomplish this, we input the 
genotype information for each strain into our model to obtain predictions for its growth. We then 
compared the predicted values to the observed growth values and obtained Pearson correlations 
when possible. 
 
Relationship between detrimental alleles, growth, and inviability 
At each detected locus influencing response to mrp20-105E, we determined the allele associated 
with worse growth (‘detrimental allele’). Next, we counted the number of detrimental alleles carried 
by each mrp20-105E segregant and examined how phenotypic response to mrp20-105E related to 
it. The MKT1 and SAL1 loci were not included when counting detrimental alleles, so that this 
relationship could be examined across different MKT1-SAL1 genotype classes. 
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Figures 
 

 
 
Figure 1. The mrp20-105E mutation occurred spontaneously, increasing phenotypic variance in 
the BYx3S cross. (A) A spontaneous mutation in a BY/3S diploid gave rise to a BYx3S segregant 
population in which mrp20-105E segregated. (B) The mrp20-105E segregants exhibited increased 
phenotypic variance and a bimodal distribution of phenotypes. Throughout the paper, blue and 
orange are used to denote BY and 3S genetic material, respectively. All growth data presented in 
the paper are measurements of colonies on agar plates containing rich medium with ethanol as the 
carbon source. 
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Figure 2. Epistasis between MRP20 and MKT1 appears to mostly explain response to mrp20-
105E. (A) Linkage mapping in the BYx3S segregants shown in Fig 1 identified a locus on 
Chromosome XIV that exhibits a two-way genetic interaction with MRP20. (B) The 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2020.04.03.024547doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024547
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

17 

 

Chromosome XIV locus had effects in both MRP20 and mrp20-105E segregants but had a 
greater effect among mrp20-105E segregants. (C) To identify the causal gene, we crossed 
two mrp20-105E F2 segregants that differed at the Chromosome XIV locus and gathered a 
panel of F3 segregants. (D) Linkage mapping in the F3 segregants identified the Chromosome 
XIV locus at high resolution, with a peak at position 467,219. Tick marks denote every 100,000 
bases along the chromosome. (E) Recombination breakpoints in the F3 segregants delimited 
the Chromosome XIV locus to a single SNP in MKT1 at position 467,219. Vertical dashed line 
highlights the delimited causal polymorphism, while small vertical lines along the x-axis 
indicate different SNPs in the window that is shown. (F) Engineering the BY allele into mrp20-
105E XIV3S segregants changed growth (left), while substitutions at the nearest upstream and 
downstream variants did not (right). 
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Figure 3. Additional loci govern response to the mutation. (A) We engineered all combinations of 
MRP20 and MKT1 into the BY and 3S cross parents. Expected phenotypes are shown as shaded 
boxes denoting 95% confidence interval based on the originally obtained segregant phenotypes. 
(B) We generated BY x 3S crosses in which all segregants carried mrp20-105E. Two crosses were 
performed: one in which all segregants carried MKT1BY and one in which all segregants carried 
MKT13S. Tetrads were dissected and spores were phenotyped for growth on ethanol. (C) Each of 
the new crosses showed increased growth that extended from inviable to wild type, differing from 
the more qualitative bimodal phenotypes seen among the original mrp20-105E MKT1 segregant 
populations. (D) Linkage mapping identified a total of 16 loci that influenced growth. After four 
iterations of a forward regression, no additional loci were identified. (E) Inviable segregants were 
present among all mrp20-105E MKT1 SAL1 genotype classes. (F) Aneuploid individuals with 
duplicated Chromosome II showed reduced growth. Aneuploid individuals were not evenly detected 
across the different MKT1-SAL1 genotype classes. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 28, 2021. ; https://doi.org/10.1101/2020.04.03.024547doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.03.024547
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

19 

 

 

 
Figure 4. Mitochondrial genome instability partially underlies the expressivity of mrp20-105E. We 
measured petite formation frequency, which estimates the proportion of cells within a clonal 
population capable of respiratory growth. Higher petite frequency is a proxy for greater 
mitochondrial genome instability. (A) We examined MRP20 and mrp20-105E versions of the BY 
and 3S parent strains. For each, average values and 95% bootstrapped confidence intervals are 
shown. BY showed elevated mitochondrial genome instability in the presence of mrp20-105E, while 
3S showed no change. (B) We examined 16 BYx3S MRP20 segregants. These segregants were 
randomly selected and spanned the range of growth values for MRP20 segregants. (C) 45 BYx3S 
mrp20-105E segregants. Poorer growing segregants tended to exhibit higher mitochondrial 
genome instability, though some exhibited wild type levels of mitochondrial genome instability. The 
gray dashed line indicates the threshold used to call inviability. 
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Figure 5. Detected loci quantitatively and qualitatively explain mutant phenotypes. (A) We fit a 
linear model accounting for the effects of all detected loci and the aneuploidy on the growth of 
mrp20-105E segregants. This model not only explained the growth of the new BY x 3S mrp20-
105E crosses generated in this paper, but also accurately predicted the phenotypes of the mutant 
parents and previously generated segregants. (B) We examined growth relative to the sum of 
detrimental alleles carried by a segregant. This relationship shows how collections of loci produce 
a quantitative spectrum of phenotypes, including instances of qualitative phenotypic responses. 
This relationship explains the full range of responses, from inviable to wild type growth, across 
MKT1-SAL1 genotypes. The gray dashed line indicates the threshold used to call inviability. 
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