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Shuffling one’s genetic material with another individual seems a risky endeavor more likely to
decrease than to increase offspring fitness. This intuitive argument is commonly employed to explain
why the ubiquity of sex and recombination in nature is enigmatic. It is predicated on the notion
that natural selection assembles selectively well-matched combinations of genes that recombination
would break up resulting in low-fitness offspring – a notion often stated in the literature as a self-
evident premise. We show however that, upon closer examination, this premise is flawed: we find
to the contrary that natural selection in fact has an encompassing tendency to assemble selectively
mismatched gene combinations; recombination breaks up these selectively mismatched combinations
(on average), assembles selectively matched combinations, and should thus be favored. The new
perspective our findings offer suggests that sex and recombination are not so enigmatic but are
instead unavoidable byproducts of natural selection.

I. INTRODUCTION

It seems recombination should be disadvantageous
most of the time. High-fitness genotypes that are ampli-
fied by natural selection (products of natural selection),
it seems, should carry “good” (selectively well-matched)
combinations of genes. And recombination, which shuf-
fles genes across individuals, should only break up these
good combinations and thus should be evolutionarily sup-
pressed. In this light, the overwhelming prevalence of
recombination across the tree of life is a mystery.

The foregoing paragraph outlines a line of reasoning
commonly employed to demonstrate why the ubiquity
of sex and recombination is enigmatic. The premise of
this line of reasoning – that natural selection will tend
to amplify genotypes carrying “good” (selectively well-
matched) combinations of genes – is so intuitive that it
is considered self-evident in much of the literature [3–12]
and has largely gone unquestioned.

We define a product of natural selection to mean any
genotype that has become locally prevalent at any scale –
e.g., population, subpopulation, deme, niche, competing
clone, etc. – through the local action of natural selection.

Recombination can only have an effect on offspring fit-
ness if the genetic makeup of the parents differ. In a
structured population, local evolution can lead to diver-
gence in genetic makeup. If two parents come from two
different locally-evolved subpopulations, therefore, they
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will likely differ in their genetic makeup. The question
then becomes, will they differ in such a way that tends
to enhance or diminish the fitness of their offspring? In
other words, will the offspring of different products of nat-
ural selection (as defined above) tend to be superior or in-
ferior to their parents? The standard argument outlined
in the first paragraph would imply that offspring fitness
should be inferior to parent fitness, because recombina-
tion would break up good gene combinations that each
parent had acquired in their local environments.

An answer to this question came early on from agri-
culture. That the out-crossing of inbred lineages tends
to confer vigorous offspring (later dubbed “hybrid vigor”
or “heterosis” [13–16]) is an observation that has likely
been part of farmer folklore for centuries. The earliest
known systematic study of this phenomenon was con-
ducted by Darwin himself [17, 18]; his study was perhaps
motivated, at least in part, by his search for a theory of
inheritance that was consistent with his theory of nat-
ural selection [18, 19]. Observations of heterosis gave
his “blending” theory of inheritance a plausible foothold:
either chance differences in the founding individuals of
two locally-evolving subpopulations or divergent selec-
tion pressures in these subpopulations would give rise to
persistent genetic differences across subpopulations de-
spite local blending within each subpopulation.

Translated to the language used in the present study,
what Darwin was documenting in these early studies was
that recombination between two products of selection
tends to produce high-fitness offspring (assuming that
fitness and “vigor” are correlated). This observation con-
tradicted Darwin’s theory of blending inheritance which
predicts offspring fitness at the midpoint between parent
fitnesses; heterosis, it would seem, had the potential at
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least to reveal the flaw in his theory.
That these early studies of inbreeding and heterosis are

relevant to the evolution of sex and recombination is not
a new idea [11, 20, 21], and is subsumed under Lewon-
tin’s general proclamation that “every discovery in clas-
sical and population genetics has depended on some sort
of inbreeding experiment” [20, 22, 23]. Since these early
studies, several more recent studies have shown that dif-
ferent kinds of population structure can create conditions
that make recombination across locally-evolving subpop-
ulations favorable [10–12, 24–29]. These studies find that
population structure can help to maintain the variation
without which recombination would be neither advanta-
geous nor disadvantageous, and they identify conditions
under which recombination is advantageous. Spatially
heterogeneous selection can, for example, create nega-
tive fitness associations if selection acts more strongly
on one gene (one locus) in one spatial “patch” and acts
more strongly on a different locus in a neighboring patch
[24, 25, 29]. The negative fitness associations that arise
in such a scenario would be broken up by recombination
thus giving recombination-competent (rec+) lineages a
selective advantage. The prevalence of such scenarios in
nature, however, is unknown and questionable [25].

Generally speaking, recombinants whose parents are
two distinct products of natural selection will carry an
immediate selective advantage, on average, when the
ensemble of such products harbors an excess of selec-
tively antagonistic (mismatched) gene combinations and
a deficit of synergistic (well-matched) combinations: by
randomly shuffling different gene variants (or alleles)
across different products of selection, recombination will
on average increase offspring fitness. The challenge in ex-
plaining the ubiquity of sex and recombination in nature
is to identify a source of this selective imbalance that
is comparably ubiquitous. One feature of living things
whose prevalence approximates that of sex and recombi-
nation is evolution by natural selection. In the present
study, we assess the effects of natural selection by itself on
selective imbalance among products of selection. In do-
ing so, we determine the selective value of recombination
in structured (e.g., spatially structured) populations. We
find that natural selection by itself has an encompassing
tendency to amplify selectively mismatched combinations
of alleles, thereby promoting the evolution of recombina-
tion across different products of selection.

II. MEASURING SELECTIVE IMBALANCE

In much of the relevant literature, the measure of selec-
tive mismatch across loci affecting the evolution of recom-
bination is linkage disequilibrium (LD) [26, 30–35], which
measures the covariance in allelic states across two loci
[36] (i.e., it measure the bias in allelic frequencies across
loci) but does not retain information about the selective
value of those alleles.

For the sake of presentation, we here consider an or-

ganism with just two fitness-related genes (or two loci)
whose fitness contributions are represented by random
variables X and Y . We have found (see pre2 [2] ) that
the expected selective advantage of newly-formed recom-
binants (and the advantage of recombination over the
course of a single generation) is

ŝr = −σXY ,

where σXY is the covariance between X and Y . This
measure of selective imbalance is superior to LD in that it
retains information about both the frequencies and selec-
tive value of alleles and it directly gives the selective ad-
vantage of recombinants. Furthermore, we show in pre2
[2] that ŝr defined in this way provides a lower bound for
the selective advantage of a rec+ lineage within a single
population. Our results will thus be given in terms of
covariance.

III. NATURAL SELECTION: SIMULATIONS

As an introduction to how we model the selective value
of recombination across different products of selection, we
begin by describing simple simulations. We encourage in-
terested readers to perform these very simple simulations
to see for themselves the counter-intuitive outcome and
its remarkable robustness to the choice of distribution.

In order to isolate the effects of natural selection, we
assume the population size to be infinite so that dy-
namics are deterministic (as stated in companion stud-
ies [1, 2]). As we will show later, however, our findings
are fairly robust to relaxation of this assumption. We
will assume the organism in question has two loci. The
simulations begin by generating a set of n distinct geno-
types; this is achieved simply by drawing n genic fitness
pairs (xi, yi), i = 1, 2, ..., n at random from some bivari-
ate distribution. The bivariate distribution can be any
distribution with any covariance.

Next, the simulation simply records the (xi, yi) pair
whose sum xi + yi is the largest and puts this pair into
a new array that we will denote by (x̂j , ŷj). This mimics
natural selection acting in an infinite population; in an
infinite population there is no role for chance and natural
selection thus deterministically fixes the fittest genotype.

The procedure is then repeated a few thousand times,
so that there are a few thousand entries in the (x̂j , ŷj) ar-
ray of “winners”, or “products of selection”. The covari-
ance of the (x̂j , ŷj) array is then computed. Remarkably,
this covariance is always less than the covariance of the
initial bivariate distribution used to generate the (xi, yi).
If the covariance of the initial bivariate distribution is
zero (i.e., if X and Y are independent), the covariance
between X and Y among the “products of selection” will
always be negative (i.e., the mean value of recombinants
across different products of selection will always be pos-
itive). The interested reader may want to explore this
case first, because: 1) she/he will see that any bivariate
distribution from uniform to Cauchy gives this result,
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and 2) this is the case that is the primary focus of the
following mathematical developments. An example set
of such simulations where X and Y are skew-normal is
plotted in Fig 1.
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Figure 1. Correlation between genic fitness x̂i and ŷi among
products of selection in simple simulations. A set of 20 x-
values was drawn from a skew-normal distribution with mean
−0.1, standard deviation 0.1 and skewness indicated by the x-
axis. A set of 20 y-values was drawn from a skew-normal dis-
tribution with mean −0.1, standard deviation 0.1 and skew-
ness indicated by the y-axis. These x and y values were paired
up to form an array of 20 (x, y) pairs. The pair whose sum
x+ y was the largest was selected and its values appended to
a new array (x̂, ŷ) of products of selection. This was repeated
5000 times. The correlation between x̂ and ŷ was computed
and plotted for each pair of skewness values.

IV. NATURAL SELECTION: ANALYSIS

We now turn to mathematical analyses of the proce-
dure described above for simulations. We begin with
a generalization of what we describe above: here, in-
stead of two loci with genic fitnesses xi and yi for the ith

genotype, we have m loci and a vector of genic fitnesses
(xi1, xi2, ..., xim). Next, we zero in on analyses of the
simplest scenario of two loci and two genotypes. Extrap-
olation of our qualitative results from this simplest-case
scenario to more loci and more genotypes is corroborated
by simulation (SM). As will become apparent, the math-
ematical analyses eventually require some restrictions on
the bivariate distribution governing genic fitnesses in the
initial population. Simulations, however, show that our
findings hold qualitatively for essentially any distribution
chosen.

General setting: m loci, n alleles

Let n and m be two positive integers. Let
(Xi,j)16i6n;16j6m be a rectangular array of independent
random variables. For our purposes, each X quantifies
a fitness-related phenotype encoded at one locus. Each
row represents an individual’s haploid genome and each
column represents a locus on that genome. See Fig. 2.

Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

Z9

Z[9]

Z[8]

Z[7]

Z[6]

Z[5]

Z[4]

Z[3]

Z[2]

Z[1]

SO
RT

IN
G

Xi,1 Xi,2 Xi,3 Xi,4 Xi,5 Xi,6 Xi,7 Xi,8 Xi,9 Xi,10 Xi,1 Xi,2 Xi,3 Xi,4 Xi,5 Xi,6 Xi,7 Xi,8 Xi,9 Xi,10

Low fitness High fitness

Figure 2. General setting. The population here consists of
n = 9 genotypes represented by the 9 rows, each of which car-
ries a genome with m = 10 loci represented by the 10 columns.
Each dot represents a locus on an individual genome and its
color indicates its genic fitness. The total fitness of the ith

individual is Zi = φ(Xi1, Xi2, ..., Xim), where Xij is the genic
fitness of jth locus in the ith genotype. Strictly speaking,
φ can be any increasing function of the genic fitnesses, Xij .
To give a simple and useful example, φ may be defined sim-
ply as the sum of its arguments. We employ this definition
of φ extensively in the main text and in our analyses, both
because of its simplicity and because of its connection to clas-
sical population genetics and notions of additive fitness. On
the left-hand side, the genomes are not sorted in any order;
on the right-hand side, the same genomes are sorted (ranked)

by their total fitness, Z, such that Z [1] is the genome of lowest
fitness and Z [n] is the genome of highest fitness. In an infinite
population (deterministic selection), the fittest genome (Z [n],
highlighted by a frame) always eventually displace all other
genomes. The statistical properties of the genic fitnesses of
this fittest genome are thus of special interest from an evo-
lutionary perspective. In particular, we are interested in any
statistical associations among these genic fitnesses: if that
association tends to be negative, then recombination will be
favored.

We shall denote by Xi = (Xi,j)16j6m the i-th row of the
array (the i-th individual in a population). Let φ be a
measurable function from Rm into R. For i = 1, . . . , n,
denote by Zi the image by φ of the i-th row of the array.

Zi = φ(Xi) .

Zi represents the total fitness of genotype i. Denote by
σ ∈ Sn the random permutation such that

n
min
i=1

Zi = Sσ(1) 6 · · · 6 Sσ(n) =
n

max
i=1

Zi .

The permutation σ is uniquely defined up to the usual
convention of increasing order for indices corresponding
to ties. Deterministically, natural selection will cause the
genome of highest fitness (Sσ(n) = maxni=1 Zi) to fix. We
are interested in the statistical properties of the Xσ(n),j

; in particular, we are interested in any associations that
might arise across loci (across different values of j) in
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this winning genotype. If these associations are nega-
tive, recombination – which alleviates negative associa-
tions across loci – should be favored.

For 1 6 i 6 n and 1 6 j 6 m, define:

Ai,j = Xσ(i),j .

For 1 6 i 6 n, Ai = (Ai,j)16j6m is that row in the array
(Xi,j) which ranks i-th in the order of images by φ.

Density

Proposition 0. Assume that for j = 1, . . . ,m, Xi,j has
pdf fj, for all i = 1, . . . , n. Denote by H the common
cdf of the Zi’s and assume that H is continuous over its
support. The joint pdf of Ai is:

n f1(x1) · · · fm(xm)

(
n− 1

i− 1

)
Hi−1(φ(x1, . . . , xm))(1−H(φ(x1, . . . , xm)))n−i .

Proof: For any continous bounded function Ψ of m vari-
ables:

E(Ψ(Ai)) =

n∑
`=1

1

n
E(Ψ(X`) |σ(i) = `)

= E(Ψ(X1) |σ(i) = 1) .

Thus the distribution of Ai and the conditional dis-
tribution of X1 given that Φ(X1) ranks i-th, are the
same. The pdf of X1 is f1(x1) · · · fm(xm). The prob-
ability of the event σ(i) = 1 is 1/n. Conditioning on
X1 = (x1, . . . , xm), the probability that X1 ranks i-th is
the probability that among Z2, . . . , Zn, i − 1 are below
φ(x1, . . . , xm) and n − i are above. The probability for
S` to be below φ(x1, . . . , xm) is H(φ(x1, . . . , xm)). Hence
the result. �

Observe that the average of the densities of Ai is the
common density of all the Xi, i.e. f1(x1), . . . , fm(xm).
This was to be expected, since choosing at random one of
the Ai is equivalent to choosing at random one of the Xi.
The question is whether the Ai are negatively associated
in the sense of Joag-Dev and Proschan [37]; this seems a
reasonable conjecture in light of Theorems 2.8 and also
examples (b) and (c) of section 3.2 in that reference.

Two loci, two alleles

No hypothesis on the ranking function φ is made at
this point, apart from being measurable. Notations
will be simplified as follows: (X1, Y1, X2, Y2) are i.i.d.;
(X(1), Y(1)) (the infimum) denotes that couple (X1, Y1)
or (X2, Y2) whose value by φ is minimal; (X(2), Y(2))
(the supremum) denotes that couple (X1, Y1) or (X2, Y2)
whose value by φ is maximal.

Proposition 1. Let ψ be any measurable function from
R2 into R. Then: 1

2E(ψ(X(1), Y(1)))+ 1
2E(ψ(X(2), Y(2))) =

E(ψ(X1, Y1)) . In particular, the arithmetic mean of
E(X(1)) and E(X(2)) is E(X1).

SELECTION

X Y X Y

A B

+ +>

<
>

X:

Y:

Z:

High fitness

Low fitness

Figure 3. Two loci, two alleles. Here, a large (infinite) popu-
lation consists of individuals whose genome has only two loci
x and y, each of which carries one of two alleles: genotype
1 carries allele X1 at the x locus and Y1 at the y locus, and
genotype 2 carries allele X2 at the x locus and Y2 at the y
locus. An individual’s fitness is simply the sum of its genic
fitnesses, Z = X+Y , so that the fitnesses of genotypes 1 and
2 are Z1 = X1 + Y1 and Z2 = X2 + Y2, respectively. The fit-
ter of these two genotypes has total fitness denoted Z [2] (i.e.,

Z [2] = Max{Z1, Z2}) and genic fitnesses X(2) and Y(2) (i.e.,

Z [2] = X(2) + Y(2)). Similarly, the less-fit of these two geno-

types has total fitness Z [1] = X(1)+Y(1). We note: Z [2] > Z [1]

by definition, but this does not guarantee that X(2) > X(1) or
that Y(2) > Y(1), as illustrated in the lower box. The popula-
tion labeled A consists of two distinct genotypes but selection
acts to remove the inferior genotype leaving a homogeneous
population in which individuals are all genetically identical
(with fitness Z [2]) as illustrated in the population labeled B.

Proof: Consider a random index I, equal to “(1)”
or “(2)” each with probability 1/2, independent from
(X1, Y1, X2, Y2). By an argument used in the previous
section, the couple (XI , YI) is distributed as (X1, Y1).
Hence, E(ψ(XI , YI)) = E(ψ(X1, Y1)) , however,

E(ψ(XI , YI)) = E(E(ψ(XI , YI) | I))

=
1

2
E(ψ(X(1), Y(1))) +

1

2
E(ψ(X(2), Y(2))) .

�
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Proposition 2. We have: Cov(X(1), Y(1)) +
Cov(X(2), Y(2)) = −(Cov(X(1), Y(2)) + Cov(X(2), Y(1))) =

− 1
2E(X(2) −X(1))E(Y(2) − Y(1)) .

Proof: Consider again the same random index I, equal
to “(1)” or “(2)” each with probability 1/2, indepen-
dent from (X1, Y1, X2, Y2). The couples (XI , YI) and
(XI , Y3−I) are both distributed as (X1, Y1). There-
fore their covariances are null. These covariances can
also be computed by conditioning on I (see e.g. for-
mula (1.1) in [37]). For (XI , YI): Cov(XI , YI) =
E(Cov(XI , YI |I))+Cov(E(XI |I),E(YI |I)) . On the right-
hand side, the first term is: E(Cov(XI , YI |I)) =
1
2Cov(X(1), Y(1)) + 1

2Cov(X(2), Y(2)) . The second term

is: Cov(E(XI |I),E(YI |I)) = 1
4E(X(2) − X(1))E(Y(2) −

Y(1)) . Similarly, we have: Cov(XI , Y3−I) =
E(Cov(XI , Y3−I |I))+Cov(E(XI |I),E(Y3−I |I)) . The first
term in the right-hand side is: E(Cov(XI , Y3−I |I)) =
1
2Cov(X(1), Y(2)) + 1

2Cov(X(2), Y(1)) . The second term
in the right-hand side is: Cov(E(XI |I),E(Y3−I |I)) =
− 1

4E(X(2) −X(1))E(Y(2) − Y(1)) . Hence the result. �

Proposition 3. Assume that the ranking function φ
is symmetric: φ(x, y) = φ(y, x). Then the cou-
ple (X(1), Y(2)) has the same distribution as the couple
(Y(1), X(2)).

As a consequence, X(1) and Y(1) have the same distribu-
tion, so doX(2) and Y(2). Thus: E(X(2)−X(1)) = E(Y(2)−
Y(1)) = 1

2E(Z [2] − Z [1]) . Another consequence is that:
Cov(X(1), Y(2)) = Cov(X(2), Y(1)) . Thus by Proposition

2: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) = 1
16E2(Z [2]−Z [1]) .

Proof: Since φ is symmetric, the change of variable
(X1, Y1, X2, Y2) 7→ (Y1, X1, Y2, X2) leaves unchanged the
couple (S1, S2). �

Proposition 4. Assume that the ranking function φ
is the sum: φ(x, y) = x + y. Then: E(X(1)) =
E(Y(1)) , E(X(2)) = E(Y(2)) , and E(X(1)) < E(X(2)) .

Proof: The first two equalities come from Proposition 3.
By definition, E(X(1) +Y(1)) < E(X(2) +Y(2)). Hence the
inequality. �

Proposition 5. Assume that the ranking function
φ is the sum, and that the common distribution of
X1, Y1, X2, Y2 is symmetric: there exists a such that
f(x − a) = f(a − x). Then (a − X(1), a − Y(1)) has the
same distribution as (X(2) − a, Y(2) − a).

As a consequence, Cov(X(1), Y(1)) = Cov(X(2),Y(2)).

Proof: The change of variable (X1, Y1, X2, Y2) 7→ (2a −
X1, 2a− Y1, 2a−X2, 2a− Y2) leaves the distribution un-
changed. It only swaps the indices (1) and (2) of minimal
and maximal sum. �

If we summarize Propositions 1, 2, 3, 4, 5 for the case
where the ranking function is the sum, and the distribu-
tion is symmetric, one gets:

Cov(X(1), Y(1)) = Cov(X(2), Y(2)) < 0

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) > 0

|Cov(X(1), Y(1))| = Cov(X(1), Y(2)) =
1

16
E2(Z [2] − Z [1]) .

Two loci, n alleles

As in the n = 2 case developed above, we are again in-
terested in the statistical properties of the genotypes of
maximum fitness. If populations consist of n genotypes,
the maximal fitness genotypes will have total fitness de-
noted by random variable Z [n], the top order statistic
of total fitness Z. We are more interested, however, in
the concomitants of Z [n], namely, random variables X(n)

and Y(n), defined by the relation Z [n] = φ(X(n), Y(n)). In
particular, we are interested in the covariance between
the concomitants, cov(X(n), Y(n)), because changing the
sign of this value gives the selective advantage of recom-
binants (see pre2 [2] ).

Before analyzing concomitants of the top order statis-
tic, however, the first step is to derive a general relation
between a random variable Z and its concomitants X and
Y when these concomitants are defined as X + Y = Z.

General relation between Z and its
summand concomitants X and Y

Let n be an integer larger than 1. For i = 1, . . . , n,
let (Xi, Yi) be i.i.d. couples of random variables. For
i = 1, . . . , n, let Zi = Xi + Yi.

Let U be a random variable, independent from
(Xi, Yi), i = 1, . . . , n, uniformly distributed over (0, 1).
Define the random index I in {1, . . . , n} as:

I =



1 if U 6 P1 ,
...

i if P1 + · · ·+ Pi−1 < U 6 P1 + · · ·+ Pi ,
...

n if P1 + · · ·+ Pn−1 < U .

The Pi thus define the discrete fitness distribution gov-
erning Z. Finally, let (X,Y ) = (XI , YI). The goal is to
derive statistical properties of concomitants X and Y of
random variable Z = X + Y .
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For this, conditioning over two embedded σ-algebras, de-
noted by F2n and Fn, will be used.

F2nis generated by(Xi, Yi) , i = 1, . . . , n ,

Fnis generated byZi , i = 1, . . . , n .

If A is any random variable:

E (A) = E (E (A | Fn)) = E (E (E (A | F2n) | Fn)) . (1)

Conditioning functions of (X,Y ) over F2n and Fn works
as follows.

Lemma 1. Let φ be any real valued function of two vari-
ables. Provided the following expectations exist, one has:

E(φ(X,Y ) | F2n) =
n∑
i=1

Piφ(Xi, Yi) ,

E(φ(X,Y ) | Fn) =
n∑
i=1

PiE(φ(Xi, Yi) |Zi) .

For second order moments, the following well known
lemma on conditional covariances will be used.

Lemma 2. Let (A,B) be a pair of real-valued random
variables on (Ω,F ,P), and let F1 ⊆ F2 be two σ-fields
on Ω. Then:

cov (A,B | F1) =

E (cov (A,B | F2) | F1) + cov (E(A | F2) , E(B | F2) | F1) .

In particular, when F1 = {∅,Ω}:

cov (A,B) = E (cov (A,B | F2))+cov (E(A | F2) , E(B | F2)) .

Lemma 3 relates the moments of X + Y to the Zi’s
and Pi’s.

Lemma 3. Denote by Z and V the mean and variance of
Z with respect to P :

Z =
n∑
i=1

PiZi and V =

(
n∑
i=1

PiZ
2
i

)
− Z2

.

Then:

E(X + Y ) = E
(
Z
)
, (2)

var(X + Y ) = var
(
Z
)

+ E(V ) . (3)

Proof: It turns out that Z is the conditional expectation
of X + Y with respect to Fn, because:

E(X + Y | Fn) = E(E(X + Y | F2n) |Fn)

= E

(
n∑
i=1

PiZi | Fn

)

=

n∑
i=1

PiZi = Z

Hence: E(X+Y ) = E
(
Z
)
. Similarly, V is the conditional

variance of X + Y , given Fn. By Lemma 2:

var(X + Y ) = var
(
Z
)

+ E(V ) .

�

From now on, it will be assumed that the common dis-
tribution of (Xi, Yi), for i = 1, . . . , n, is bivariate normal.

Lemma 4. Let (X1, Y1) be a couple of random variables,
having bivariate normal distribution N2(µ,K), with ex-
pectation µ = (µx, µy), covariance matrix:

K =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
,

where σx > 0, σy > 0, |ρ| < 1.
Denote:

ηx =
σ2
x + ρσxσy

σ2
x + σ2

y + 2ρσxσy
; ηy =

σ2
y + ρσxσy

σ2
x + σ2

y + 2ρσxσy
,

and also:

δ = µxηy − µyηx , γ =
σ2
xσ

2
y(1− ρ2)

σ2
x + σ2

y + 2ρσxσy
.

Let Z1 = X1 + Y1. The conditional distribution of
(X1, Y1) given Z1 = z is bivariate normal, with expec-
tation:

(δ + ηxz , −δ + ηyz) ,

covariance matrix:

γ

(
1 −1
−1 1

)
.

Proof: The vector (X1, Y1, Z1) has normal distribution
with expectation (µx, µy, µx+µy), and covariance matrix: σ2

x ρσxσy σ2
x + ρσxσy

ρσxσy σ2
y σ2

y + ρσxσy
σ2
x + ρσxσy σ2

y + ρσxσy σ2
x + σ2

y + 2ρσxσy

 .

The conditional distribution of (X1, Y1) given Z1 = z is
again normal. The conditional expectation of X1 is:

E(X1 |Z1 = z) = µx +
z − (µx + µy)

σ2
x + σ2

y + 2ρσxσy

(
σ2
x + ρσxσy

)
= δ + ηxz .

The conditional expectation of Y1 is symmetric:

E(Y1 |Z1 = z) = −δ + ηyz .

The covariance matrix does not depend on z:
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(
σ2
x ρσxσy

ρσxσy σ2
y

)
− 1

σ2
x + σ2

y + 2ρσxσy

(
(σ2
x + ρσxσy)2 (σ2

x + ρσxσy)(σ2
y + ρσxσy)

(σ2
x + ρσxσy)(σ2

y + ρσxσy) (σ2
y + ρσxσy)2

)
.

After simplification one gets:

σ2
xσ

2
y(1− ρ2)

σ2
x + σ2

y + 2ρσxσy

(
1 −1
−1 1

)
.

�

Theorem 1 below gives the first and second order mo-
ments of the random couple (X,Y ), when the common
distribution of the (Xi, Yi) is that of Lemma 4.

Theorem 1. Assume that for i = 1, . . . , n, the distribu-
tion of (Xi, Yi) is bivariate normal N2(µ,K). With the
notations of Lemma 4:

E (X) = δ + ηxE (Z) , (4)

E (Y ) = −δ + ηyE (Z) , (5)

var (X) = γ + η2xvar (Z) , (6)

var (Y ) = γ + η2yvar (Z) , (7)

cov (X,Y ) = −γ + ηxηyvar (Z) . (8)

Observe that, since ηx+ηy = 1, the first two equations
add to identity, and so do the last three, the last one being
doubled.

Proof: By Lemma 1,

E(X | Fn) =
n∑
i=1

PiE(Xi |Zi) .

By Lemma 4,

E(Xi |Zi) = δ + ηxZi .

Hence:

E(X | Fn) = δ + ηxZ .

Similarly:

E(Y | Fn) = −δ + ηyZ .

Let us now compute var(X). By Lemma 2:

var(X) = E(var(X | Fn)) + var(E(X | Fn)) .

By Lemma 1,

var(X | Fn) =
n∑
i=1

Pivar(Xi |Zi) .

But by Lemma 4, var(Xi |Zi) is the constant γ, indepen-
dently on Zi. Thus:

var(X | Fn) =
n∑
i=1

Piγ = γ .

Now by Lemma 1:

var(E(X | Fn)) =
n∑
i=1

Pivar(E(Xi |Zi)) .

By Lemma 4, E(Xi |Zi) = δ + ηxZi, hence:

var(E(X | Fn)) =
n∑
i=1

Piη
2
xvar(Zi) = η2xvar(X + Y | Fn) .

Joining both results through Lemma 2:

var (X) = γ + η2xvar (X + Y ) .

Similarly:

var (Y ) = γ + η2yvar (X + Y ) .

Let us now turn to cov(X,Y ): By Lemma 2:

cov(X,Y ) = E(cov(X,Y | Fn)+cov(E(X | Fn),E(X | Fn)) .

By Lemma 1,

cov(X,Y | Fn) =
n∑
i=1

Picov(Xi, Yi |Zi) .

But by Lemma 4, cov(Xi, Yi |Zi) is the constant −γ, in-
dependently on Zi. Thus:

cov(X,Y | Fn) =

n∑
i=1

Pi(−γ) = −γ .

Now by Lemma 1:

cov(E(X | Fn),E(Y | Fn)) =
n∑
i=1

Picov(E(Xi |Zi),E(Yi |Zi)) .

By Lemma 4, E(Xi |Zi) = δ + ηxZi, and E(Yi |Zi) =
−δ + ηyZi. Hence:

cov(E(X | Fn),E(Y | Fn)) = ηxηyvar(X + Y | Fn) .

Joining both results through Lemma 2:

cov (X,Y ) = −γ + ηxηyvar (X + Y ) .

�
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Summand concomitants X(k) and Y(k)

We define new random variable

S =
X + Y√

σ2
X + σ2

Y + 2σXY
,

which is N (0, 1). The kth order statistic of S is denoted
S[k] and is related to its concomitant summands as:

S[k] =
(X(k) − µX) + (Y(k) − µY )√

σ2
X + σ2

Y + 2σXY

[38]. Rearranging gives:

X(k) + Y(k) = µX + µY +
√
σ2
X + σ2

Y + 2σXY S
[k]

from which we have:

var(X(k) + Y(k)) = (σ2
X + σ2

Y + 2σXY )var(S[k])

Plugging this expression into Eqs (6), (7) and (8) leads
to the following corollary.

Corollary 1. Define random variable S ∼ N (0, 1)
whose kth order statistic from a sample of size n is de-
noted S[k]. If we blindly (and wrongly) assume that order
statistic distributions are normal, the first- and second-
order moments of the concomitants are nevertheless ex-
act:

E[X(k)] = δ + ηxΓE[S[k]] (9)

E[Y(k)] = −δ + ηyΓE[S[k]] (10)

var(X(k)) = γ + η2x∆var(S[k]) (11)

var(X(k)) = γ + η2y∆var(S[k]) (12)

cov(X(k), Y(k)) = −γ + ηxηy∆var(S[k]) (13)

where Γ = µx + µy +
√

∆, ∆ = σ2
X + σ2

Y + 2σXY , and

X(k) +Y(k) = Z [k], the kth order statistic in total fitness.

Comparison with simulations show the foregoing ex-
pressions to be extremely accurate. And comparison
with previous studies that take a more circuitous route
in different contexts [39–41] show these expressions to be
exact. While our analysis is more compact than those
previous studies, we suspect our approach would not be
exact for higher moments.

In general, we are most interested in the top order
statistic, k = n, because natural selection will tend to
“select” the fittest genotype. In an infinite population,
selection is completely deterministic and the fittest will
always be fixed. We note that our findings are only
weakly dependent on this assumption of deterministic
selection, because the variance of top order statistics are
often quite similar; hence, our findings remain relatively
unchanged if suboptimal genotypes k = n−1 or k = n−2
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-0.010

-0.005

0.000

0.005

Pre-selection covariance

P
os
t-
se
le
ct
io
n
co
va
ria
nc
e

Figure 4. Covariance before and after selection. Blue dots
plot covariance across simulations of 5000 subpopulations,
each containing n = 20 distinct genotypes and a bivariate
normal distribution with means equal to −0.1, variances equal
to 0.01, and covariance indicated on the horizontal axis. Or-
ange line plots theoretical prediction given by Eq (14). Gray
dashed line plots y = x as a visual guide. Post-selection co-
variance is suppressed more when pre-selection covariance is
strongly positive.

are selected due to finite-population effects (drift). We
show in [2] that the mean selective advantage of recom-
binants will be:

s̄R = −cov(X(n), Y(n)) = −σ′XY
where the final step is simply a change of notation. We
define σ′XY to be the covariance of the concomitants of
the top order statistic, i.e., the covariance between X
and Y after natural selection has acted locally in each of
the subpopulations; σXY retains its meaning as general
covariance (not covariance of concomitants) between X
and Y in the initial population. More simply, σXY is pre-
selection covariance and σ′XY is post-selection covariance.

We further define the variance of the top order statistic
of a standard normal random variable: σ2

n = var(S[n]),
which has the property 0 < σ2

n ≤ 1 [38, 42]. Full general
expressions are given in the SM. Two simplified cases are
illuminating and are discussed here:

The first illuminating case is when X and Y are inde-
pendent. In this case, Eq (13) becomes:

σ′XY =
σ2
Xσ

2
Y

σ2
X + σ2

Y

(σ2
n − 1) < 0

because two or more genotypes (n ≥ 2) are required for
recombination to make a difference, and σ2

n < 1 for n ≥
2. In words, after natural selection has run its course
in local subpopulations, recombination across those local
subpopulations will be advantageous.

The second illuminating case is when σX = σY = σ.
In this case, we have the following equivalent expressions:

σ′XY =
1

2
(σXY (1 + σ2

n)− σ2(1− σ2
n)) (14)

σ′XY =
1

2
σ2(ρ(1 + σ2

n)− (1− σ2
n)) (15)

where ρ = σXY (σXσY )−1, the pre-selection correlation
coefficient.
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Figure 5. Covariance dynamics over several bouts of selection.
Initially, we assign covariance its maximal possible value of
σXσY = 0.01 in order to illustrate the fact that, at least
in theory (under an extreme condition), it may take more
than one bout of selection for covariance to become negative.
Covariance does become negative rather quickly, however, and
converges to the predicted value of −σXσY = −0.01, which
is the minimal value for covariance.

The first thing to notice is that the effect of natural
selection is always to reduce covariance by an amount
whose lower bound depends only on the number of com-
peting genotypes:

σ′XY =
1

2
(σXY (1 + σ2

n)− σ2(1− σ2
n))

≤ 1

2
(σXY (1 + σ2

n)− σXY (1− σ2
n))

= σXY σ
2
n

In the above expressions, it is apparent that post-
selection covariance can in theory be positive if pre-
selection covariance is strongly positive. (In other
words, post-selection recombinant advantage can in the-
ory be negative if pre-selection recombinant advantage is
strongly negative.) The condition for covariance to be
negative after a single bout of selection is best expressed
as a condition on pre-selection correlation; post-selection
covariance will be negative when:

ρ <
1− σ2

n

1 + σ2
n

> 0 .

In theory, at least, one bout of selection may not re-
sult in negative covariance. Several bouts of selection,
however, are guaranteed to result in negative covariance.
The equilibrium covariance achieved after many bouts of
selection can be determined by setting σ′XY = σXY in
Eq (14), giving:

σXY
t−→ −σ2 < 0

For the general case where the variances are not equal,

σXY
t−→ −σ2

X and σXY
t−→ −σ2

Y are both stable equilibria.

V. HETEROSIS

Our findings can be viewed as providing a theoretical
basis for a kind of haploid heterosis. We will now show

A

A

b

b

C

C

a

a

B

B

C

C

Parent 1:

Parent 2:

Offspring:
A

a

b

B

C

C

Linkage
region

X Y

!XY < 0

Figure 6. A novel theoretical basis for pseudo-overdominance
and heterosis. Upper case (lower case) letters denote higher-
(lower-) fitness alleles. Generally speaking, lower-fitness alle-
les tend to be recessive. Heterozygotes will therefore tend to
express the higher-fitness of the two alleles at a locus. Here,
parents 1 and 2 come from two different inbred populations.
Inbreeding populations tend toward homozygosity and our
findings show that natural selection will tend to fix alleles
that are poorly matched across loci, i.e., that have negative
covariance in genic fitnesses. In the simple example illus-
trated here, the parents expressing phenotypes (A,b,C) and
(a,B,C) exhibit negative covariance in genic fitness across loci.
Both parents are less fit that the offspring which expresses
phenotype (A,B,C), thereby generating heterosis through an
appearance of overdominance (called pseudo-overdominance)
[43–47]. Our theory shows how the required negative covari-
ance in genic fitnesses across linked loci is an unavoidable
consequence of natural selection, and thus provides a novel
theoretical basis for heterosis.

that our findings also provide a theoretical basis for clas-
sical diploid heterosis as well. After the rediscovery of
Mendel’s work, two competing mechanistic explanations
for heterosis emerged:

The first explanation – the dominance hypothesis – re-
lied on two observations: 1) inbreeding tends to produce
homozygotes, and 2) deleterious alleles tend to be reces-
sive. If a locus is homozygous dominant (wildtype) in
one population and homozygous recessive (deleterious)
in the other, an across-population recombination event
has probability 1/4 of producing a deleterious offspring,
whereas it would have probability 3/4 in the absence of
dominance.

The second explanation – the overdominance hypoth-
esis relied on empirical observations of a curious phe-
nomenon (overdominance) [14, 16, 44, 48, 49], where het-
erozygotes at a given locus are fitter than either homozy-
gote. While overdominance has been observed, and there
are famous examples, the genetic/mechanistic basis of
overdominance is varied and nebulous.

Increasingly detailed studies of heterosis reveal that
observations of overdominance are not really overdomi-
nance at all but are in fact an artefact of linkage that can
give the appearance of overdominance [50–52]. In these
cases, what appears to be a single locus is in fact two or
more loci in linkage with each other. If the alleles at the
linked loci are selectively mismatched giving rise to neg-
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ative associations in genic fitnesses across populations,
out-crossing between populations can give the appear-
ance of overdominance as fitter dominants mask less-fit
recessives – a phenomenon that has been dubbed pseudo-
overdominance [45, 50–53]. (What we are here calling
“selective mismatch” has elsewhere been called “linkage
repulsion” [52–54], “linkage bias” [51], or “linkage dise-
quilibrium” (LD) [47].) If the out-crossed parents come
from different inbred populations – a common practice
in agriculture – they will have high homozygosity and
the heterosis effect in the offspring will be accentuated;
a schematic of this scenario is presented in Fig 6.

The weak link in the pseudo-overdominance theory
is the requirement that linkage repulsion (selective mis-
match) somehow develop within blocks of linked loci –
dubbed pseudo-overdominance blocks (or PODs) [51, 52].
Some authors have made verbal arguments invoking a
combination of mutation, weak mutational effect and
small effective population size to meet this requirement
[43]. In a very recent paper, Waller [52] makes an el-
egant argument showing how slightly-deleterious muta-
tions can mask strongly-deleterious mutations, thereby
maintaining inbreeding depression over long periods of
time – an observation that confounded Darwin. The the-
ory we have developed in the present study speaks di-
rectly to the requirement of linkage repulsion and pro-
vides a general theoretical foundation for the pseudo-
overdominance theory of heterosis. Mutation, weak mu-
tational effects and small population sizes are not re-
quired. The required linkage repulsion is produced across
populations of any size simply by natural selection act-
ing on heritable variation. Conceptually, heterosis due
to pseudo-overdominance can ultimately be a product of
the counter-intuitive phenomenon outlined in Figs 2 and
3 of our companion paper [1].

VI. CONCLUDING REMARKS

To summarize what has been modeled in this paper, we
revisit our definition of “products of selection”. These are
genotypes that are locally prevalent, due to natural selec-
tion. Products of selection can include locally-prevalent
genotypes in populations, subpopulations, demes, niches,
or competing clones. A spatially-structured population,
for example, can have many spatially separated subpop-
ulations. After selection has been operating in these sub-
populations for some time, if an individual from one sub-
population recombines with an individal from another
subpopulation, our findings show that the offspring will
be fitter, on average, than both parents.

In simulations (SM), we placed such recombi-
nant offspring in head-to-head competition with non-
recombinant offspring, with no further recombination oc-
curring during the competition. We found that the re-

combinant offspring displaced the non-recombinant off-
spring > 95% of the time under a wide range of condi-
tions.

The mathematical analyses in this study is a bit more
restrictive than our analyses in companion paper [2],
most of which has zero dependence on the initial par-
ent distribution of genic fitnesses. Here, our mathemat-
ical analyses eventually require: 1) an assumption that
the initial distribution is symmetric, for the 2-locus, 2-
genotype case, and 2) an assumption that the initial dis-
tribution is normal, for the 2-locus, n-genotype case. Our
finding that the lower central moments of concomitants
X(k) and Y(k) are exact despite a bold assumption of nor-
mality is at least suggestive that our findings might be
robust more generally, i.e., to non-normal parent distri-
butions. Furthermore, our qualitative results are corrob-
orated by simulations with a wide variety of divergent
parent distributions (SM).

Finally, our findings correct the straw-man argument,
outlined in the first paragraph of this paper, commonly
used to demonstrate why sex and recombination are enig-
matic. The premise of this argument is that natural se-
lection will tend to amplify genotypes that carry “good”
(selectively well-matched) combinations of genes. We
find that, when natural selection is operating in isola-
tion, the opposite is true quite generally. We find that
natural selection has an encompassing tendency to am-
plify genotypes carrying “bad” (selectively mis-matched)
combinations of genes. Recombination on average breaks
up bad combinations and assembles good combinations,
and its evolution is thus promoted.
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