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Abstract 41 

Understanding kidney disease relies upon defining the complexity of cell types and states, their 42 
associated molecular profiles, and interactions within tissue neighborhoods. We have applied 43 
multiple single-cell or -nucleus assays (>400,000 nuclei/cells) and spatial imaging technologies 44 
to a broad spectrum of healthy reference (n = 42) and disease (n = 42) kidneys. This has 45 
provided a high resolution cellular atlas of 100 cell types that include rare and novel cell 46 
populations. The multi-omic approach provides detailed transcriptomic profiles, epigenomic 47 
regulatory factors, and spatial localizations for major cell types spanning the entire kidney. We 48 
further identify and define cellular states altered in kidney injury, encompassing cycling,  49 
adaptive or maladaptive repair, transitioning and degenerative states affecting several 50 
segments. Molecular signatures of these states permitted their localization within injury 51 
neighborhoods using spatial transcriptomics, and large-scale 3D imaging analysis of ~1.2 52 
million neighborhoods provided linkages to active immune responses. These analyses further 53 
defined biological pathways relevant to injury niches, including signatures underlying the 54 
transition from reference to predicted maladaptive states that were associated with a decline in 55 
kidney function during chronic kidney disease. This human kidney cell atlas, including injury cell 56 
states and neighborhoods, will be a valuable resource for future studies.   57 

Introduction 58 

The human kidneys play vital systemic roles in the preservation of body fluid homeostasis, 59 
metabolic waste product removal and blood pressure maintenance. This organ system has a 60 
remarkable ability to perform its functions by adapting to a wide range of physiological demands 61 
and pathological insults. After injury, there are dynamic acute and chronic morphological and 62 
cellular changes in renal tubules and surrounding interstitial niche. The balance between 63 
successful or maladaptive repair processes may ultimately determine potential for progressive 64 
decline in kidney function over time1–4. In this regard it is critical to delineate the landscape of 65 
cellular and molecular diversity of gene expression and regulation at a single cell level in the 66 
human kidney. This will be needed to fully understand how acute kidney injury (AKI) events can 67 
increase risk for progression to chronic kidney disease (CKD), kidney failure, heart disease or 68 
death, issues that remain a global concern5,6.  69 

To this end, we report a next-generation multimodal single cell and 3D atlas that leverages 70 
integrated transcriptomic, epigenomic and imaging data over three major consortia: the Human 71 
Biomolecular Atlas Program (HuBMAP)7, the Kidney Precision Medicine Project (KPMP)8, and 72 
the Human Cell Atlas (HCA)9. To ensure robust cell state profiles, reference tissues were 73 
obtained from multiple sources, and biopsies were collected from AKI and CKD patients under 74 
rigorous quality assurance and control procedures7,8,10. We define micro niches for healthy and 75 
altered states across different regions of the human kidney spanning the cortex and medulla, to 76 
the papillary tip, and identify gene expression and regulatory modules in altered states 77 
associated with worsening kidney function. The resultant atlas of molecular cell types and their 78 
spatially resolved healthy and injury niches greatly expands upon existing efforts11–14. This will 79 
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serve as an important resource for a broad user base of investigators and clinicians working 80 
towards a better understanding of kidney processes in health or disease. 81 

Results 82 

Constructing a Cellular Atlas of the Human Kidney 83 

To fully interrogate molecularly defined kidney cell types, we have applied droplet-based 84 
transcriptomic assays (Chromium v3) for single nuclei (snCv3) and single cells (scCv3) and the 85 
dual transcriptomic/epigenomic assay for single-nucleus chromatin accessibility and mRNA 86 
expression sequencing (SNARE-seq2 or SNARE2)15,16 to a broad range of tissues from 87 
reference to AKI and CKD biopsies (Supplementary Tables 1-3). To glean insights into 88 
biologically relevant spatial interactions between these cell types or states in situ, we further 89 
applied 3D label-free imaging, multiplex fluorescence imaging, and the spatial transcriptomic 90 
assays Slide-Seq217,18 and Visium (Fig. 1, Supplementary Tables 1-2; Methods). Our 91 
heterogeneous sampling approach was designed to ensure cell type discovery with minimal 92 
assay dependent biases or artifacts associated with different sources of reference or disease 93 
kidney samples. 94 

Integrative cross-platform transcriptome analyses were performed on >400,000 nuclei/cells 95 
(after quality filtering, Methods) from 58 reference tissues (37 donors) and 52 diseased tissues 96 
(36 patients) that covered the spectrum of kidney health through to acute and chronic kidney 97 
disease (Fig. 1, Extended Data Fig. 1-4, Supplementary Table 1). Unsupervised clustering 98 
was first performed on snCv3, permitting discovery of 100 distinct cell populations, which were 99 
annotated to subclasses of epithelial, endothelial, stromal, immune and neural cell types (Fig. 2, 100 
Extended Data Fig. 1-2, Supplementary Tables 4-5, Methods). To further extend cell type 101 
annotations across omic platforms, snCv3 was used to anchor scCv3 (Extended data Fig. 3) 102 
and SNARE2 (Extended Data Fig. 4) data sets to the same embedding space, and cell type 103 
labels were assigned through integrative clustering (Supplementary Tables 6-7, Methods). 104 
This permitted a single harmonized annotation across technologies for more accurate cross-105 
platform interrogation of the same cell populations (Extended Data Fig. 3-4). This combined 106 
omic atlas permitted deeper and cross-validated molecular profiles for these aligned kidney cell 107 
types, leveraging the distinct advantages of each technology, for instance the addition of 108 
cytosolic transcripts from scCv3 and regulatory elements from SNARE2 accessible chromatin 109 
(AC).   110 

  111 

Reference and Altered States 112 

We now provide a higher level of complexity for all cell types along the depth of a kidney lobe 113 
from the cortex to the papillary tip (Fig. 2a), identifying 53 canonical human kidney cell types 114 
with associated biomarkers (Supplementary Tables 8-9). This includes a higher granularity for 115 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://paperpile.com/c/tICV3r/G9JH+Utyy
https://paperpile.com/c/tICV3r/vaSl+gbId
https://doi.org/10.1101/2021.07.28.454201


the loop of Henle, distal convoluted tubule and collecting duct segments, now resolving: three 116 
descending thin limb cell types (DTL1, 2, 3); different subpopulations of medullary thick 117 
ascending limb cells (M-TAL); two types of distal convoluted tubule cells (DCT1, 2); intercalated 118 
and principal cells of the connecting tubules (CNT-IC and CNT-PC); cortical, outer medullary 119 
and inner medullary collecting duct subpopulations (CCD, OMCD, IMCD); and papillary tip 120 
epithelial cells abutting the calyx (PapE). We further provide molecular profiles for several rare 121 
cell types important in homeostasis, including: juxtaglomerular renin-producing granular cells 122 
(REN); macula densa (MD); and a novel cell population enriched in schwann/neuronal 123 
(SCI/NEU) genes NRXN1, PLP1 and S100B (Supplementary Table 9). We were further able to 124 
stratify: major endothelial cell types, including endothelial cells of the lymphatics (EC-LYM) and 125 
vasa recta (EC-AVR, EC-DVR); major stromal cell types including distinct fibroblast populations 126 
oriented along the cortico-medullary axis; and 12 immune cell types from lymphoid and myeloid 127 
lineages.  128 

Through harmonized SNARE2 dual-omic annotations, we characterized the epigenetic 129 
landscape distinguishing the major kidney cell types found in snCv3 data in the cortex and 130 
medulla (Extended Data Fig. 5). Using paired AC data from the same nuclei annotated using 131 
RNA expression profiles, we identified open chromatin regions and candidate cis-regulatory 132 
elements for cell type marker genes, as well as associated transcription factor (TF) binding motif 133 
enrichments (Extended Data Fig. 5a-b, Supplementary Tables 10-11). We further identified 134 
accessibility of TF binding sites (TFBS), indicative of potential activity of expressed TFs, across 135 
most of the cell types identified by snCv3 (Extended Data Fig. 5c, Supplementary Table 12). 136 
These include HNF4A in proximal tubule (PT), ESRRB in the TAL, GATA3 in the collecting 137 
tubules, FOXI1 in IC cells, SOX17 in ECs and MEF2D in VSMC/P.  138 

To spatially localize cell types within the tissue, snCv3 subclasses were used to predict the 139 
corresponding identities in Slide-seq and Visium transcriptomic data at different resolution 140 
scales (10µm and 55µm beads, respectively) (Fig. 2c-i, Extended Data Fig. 6-7, 141 
Supplementary Table 2, Methods). This allowed for recapitulated renal corpuscle, tubular, 142 
vascular, and interstitial cell types having proportions, marker profiles, and spatial organizations 143 
consistent with expected or observed (Visium) histopathology (Extended Data Fig. 6-7). 144 
Proximity network analysis based on the cell type composition of adjacent Slide-seq beads 145 
across 9 tissue pucks delineated cellular neighborhoods (Fig. 2d), including the renal corpuscle 146 
(RC) composition of podocytes (POD), glomerular capillaries (EC-GC), mesangial cells (MC), 147 
and parietal epithelial cells (PEC). These localized adjacent to the juxtaglomerular apparatus 148 
cells, REN and MD, and endothelial cells of the afferent/efferent arterioles (EC-AEA) leading 149 
into and out of the RC (Fig. 2e-f). This neighborhood analysis further identified a distinct 150 
vascular smooth muscle cell (VSMC) population juxtaposing or flanking the AEA (Fig. 2g). 151 
Consistent with these annotations, we see the appropriate localization of associated cell type 152 
markers REN (REN), NOS1 (MD), NPHS2 (POD) and MYH11 (VSMC), SLC5A12 (PT-S1), 153 
EMCN (EC-GC) (Fig. 2f-h). In addition to the RC, we confirmed spatial resolution of 154 
subpopulations between the cortex and medulla, with the transition of C-TAL to M-TAL, both 155 
expressing SLC12A1, within the medullary rays (Fig. 2i). Therefore, the unique strengths of 156 
each spatial technology has enabled cross validation for our omic-defined cell type annotations. 157 
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This permitted spatial localization of these cell types into functional tissue units, and more 158 
stratified annotations for distinct VSMC cell populations.       159 

In addition to healthy states, a critical and novel element of this reference atlas is the 160 
characterization of cellular states associated with perturbations or injury. We carefully defined 161 
these altered states based on prior studies and gene expression profiles for clusters showing 162 
known features of injury (Supplementary Table 13, Methods). From this we established 163 
multiple putative states from cycling, transitioning, adaptive (or maladaptive) repair, to the 164 
degenerative (degen) states that may ultimately progress to necrosis or apoptosis. Applying 165 
these definitions, we identified altered states within snCv3 data for cell types found along the 166 
nephron, as well as within the stroma and vasculature (Fig. 2, Supplementary Table 4). These 167 
were contributed at different proportions from both reference and disease tissues and found to 168 
exist across technologies (Extended Data Fig. 1, 3, 4).    169 

Clusters associated with the putative adaptive or maladaptive repair states were predominantly 170 
found within the PT and TAL subclasses, which may be due to the higher abundance of these 171 
tubules. Adaptive PT (aPT) clusters showed correlation with maladaptive states in rodents 172 
(Extended Data Fig. 2e), with characteristic expression of VCAM1, DCDC2 and HAVCR1 173 
(Extended Data Fig. 8a, Supplementary Table 14)3,19. Interestingly, we also identified a 174 
similar, as yet uncharacterized, state within the TAL, marked by PROM1 (CD133) and DCDC2 175 
(Extended Data Fig. 8a). These are consistent with CD133+ PAX2+ lineage-restricted 176 
progenitors known to exist in the proximal and distal tubules of the adult kidney20,21. Both of 177 
these adaptive epithelial (aEpi) cell types showed expression profiles associated with epithelial 178 
differentiation, morphogenesis and EMT, while also exhibiting a marked down-regulation of 179 
transporters critical to their normal function (Extended Data Fig. 8b-c). Furthermore, both aEpi 180 
cell types shared common signaling pathways and TF activities associated with injury related 181 
signaling, including mitogen-activated protein kinases (MAPKs) FOS/JUN, TGF-β and 182 
JAK/STAT22 (Extended Data Fig. 8d). This suggests a common aEpi state, sharing molecular 183 
signatures associated with injury and repair, that occurs in higher abundance within the PT and 184 
cortical TAL. Further, we find heterogeneity in aEpi clusters, with different developmental and 185 
differentiation pathways (aPT: SOX4, SOX6 and SOX13; aTAL: PAX2, TCF12 and PKNOX1) 186 
and distinct FOS/JUN and REL enriched clusters that may show distinct contributions to either 187 
successful or failed repair. We also identified separate adaptive states within the stroma (aStr) 188 
that are consistent with cell types contributing to wound healing and fibrosis following tissue 189 
injury (Extended Data Fig. 2g)23. These include myofibroblasts (MyoF), cycling MyoF 190 
(cycMyoF) and a population of adaptive fibroblasts (aFIB) representing potential MyoF 191 
progenitors23. We find increased expression of genes encoding periostin (POSTN), fibroblast 192 
activation protein alpha (FAP), smooth muscle actin (ACTA2) and collagens, characteristic of 193 
these altered states (Extended Data Fig. 9a). 194 

To assess altered state severity at the cellular level, we developed a scoring system using a 195 
strategy previously employed for single-cell ECM expression (Extended Data Fig. 9)23 using 196 
conserved genes upregulated in each of the altered states (degen, aPT, aTAL, aStr and cycling) 197 
across conditions (reference, AKI, CKD) (Supplementary Tables 15-18). Consistently, the 198 
state of cell clusters or subclasses within snCv3 and scCv3 could be predicted by their 199 
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aggregate score values (Extended Data Fig. 9b-e). For example, aStr high scoring cell 200 
populations also showed high matrisome scores that is in line with their predicted role in ECM 201 
deposition. We also found elevated cycling state scores within AKI tissues compared to CKD 202 
(Extended Data Fig. 9g). This, and the potential enrichment of aEpi scores in AKI for a number 203 
of distal tubules, implies a higher level of repair or remodeling may be underway following acute 204 
injury events compared to ongoing chronic injury.  205 

In addition to adaptive state signatures, we find common expression signatures that are shared 206 
across degenerative states coinciding with elevated expression of the known injury markers 207 
SPP1, CST3, CLU and IGFBP724 (Extended Data Fig. 9d-e). Consistent with this, SNARE2 AC 208 
data identified common TFBS activities that may play a role in kidney cell degeneration, and 209 
that were associated with FOS/JUN signalling (Extended Data Fig. 9f). Therefore, common 210 
expression signatures associated with altered states permit single-cell/nucleus scoring, allowing 211 
both cellular level classification and possible insight into pathogenetic mechanisms of disease. 212 
Altered state scoring also provides a means for tagging injury populations in reference tissues 213 
arising from sample acquisition or normal aging, allowing for a cleaner representation of a 214 
healthy tissue reference atlas (Extended Data Fig. 10). 215 

For spatial localization of injury, altered states were predicted along with reference states in 216 
both Slide-seq (aEpi, aStr, cycling) and Visium (aEpi, aStr, cycling, transitioning and 217 
degenerative) data. From Slide-seq, we identified areas of potential fibrosis around the AEAs 218 
that were enriched for aStr (aFIB, MyoF) and immune cell types, and which showed elevated 219 
COL1A1 expression (Fig. 3a-e). We also identified an adjacent aTAL population with 220 
downregulated EGF expression, known to occur upon TAL injury25, and an upregulation of the 221 
aTAL marker ITGB6 (Fig. 3c, Supplementary Table 16). For more detailed coverage of altered 222 
states, we used Visium on diseased tissues (Figure 3f-k), where there was an expected 223 
enrichment for adaptive states in CKD compared to reference tissues (Extended Data Fig. 7b). 224 
Furthermore, this technology permitted direct linkage of molecular profiles to histological areas 225 
of injury. Using this strategy, we interrogated an area of chronic fibrosis within a cortical CKD 226 
specimen (Fig. 3f-g, Extended Data Fig 7e-f). We found significant fibrosis that was associated 227 
with cell-type signatures arising from the stromal (FIB), aStr (aFIB), and immune cell clusters, 228 
especially monocyte derived cells (Fig. 3g, Extended Data Fig. 7e-f). There was also evident 229 
degeneration of FIB with increased expression of B2M and VIM (Fig. 3g). This region was 230 
surrounded by dilated and atrophic tubules that showed an aPT signature, including 231 
upregulation of CDH619 (Fig. 3g, Supplementary Table 16). We also identified an area of PT-232 
S1, showing degenerative and adaptive signatures, with CDH6 expression adjacent to an area 233 
of MyoF accumulation and immune cell infiltration (Fig. 3h-j, Extended Data Fig. 7g-h).  234 

In addition to cortical cell types, we found evidence for medullary injury of the collecting duct 235 
(Fig. 3j-k). Here we identified an arc of injured tubules, most with intraluminal cellular cast 236 
formation, cell sloughing, and loss of nuclei. This region was associated with degenerative CD 237 
cells, including dM-PC and transitioning principal and intercalated cells (tPC-IC) (Fig. 3k). 238 
Consistently, the degenerative marker DEFB1 was locally up-regulated in this region where it 239 
may contribute to fibrosis by recruiting immune cells26.  We also found distinct spatial 240 
localization of medullary vascular (EC-DVR, VSMC/P) and stromal (M-FIB) cell types adjacent 241 
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to the region of injury (Fig. 3j). Therefore these results support co-mapping of reference and 242 
altered cell types identified from omic technologies, with specific states localized to histologic 243 
areas of injury in the appropriate cortical or medullary region of the kidney. 244 

Spatially Mapped Injury Neighborhoods 245 

To uncover in situ cellular niches and injured microenvironments across kidney disease we 246 
probed the growing KPMP cohort of 3D imaging data of kidney biopsies (Extended Data Fig. 247 
11a, Supplementary Tables 2-3). This included 3D fluorescence and second harmonic 248 
(fibrosis) image generation for specimens from both AKI and CKD patients (15 individuals, 249 
several interrogated by multiple technologies) and sampling of cortical and/or medullary renal 250 
tissue27. We used 3D-tissue cytometry to identify the composition of cellular niches associated 251 
with areas of altered or injured morphology. Cellular niches were defined for every cell 252 
(1,540,563 total over 15 individuals) by neighborhood analysis (cells within 25 µm) based on the 253 
14 classes that covered the majority of renal cortical structures (Fig 4a, Extended Data Fig. 254 
11b, Methods). From over 1.2 million total neighborhoods, we identified 14 unique groupings 255 
through community detection that included expected niches of cortical or medullary epithelium 256 
(N7 and N8 vs N14, N9 and  N1 respectively, Fig. 4b-c). The TAL and PT epithelium 257 
neighborhoods (N7 and N8), as compared to other tubular epithelium and renal structures, had 258 
distinct neighborhoods enriched with areas of injury (Fig. 4c and Extended Data Fig. 11c). 259 
Furthermore, areas of injury were associated with infiltrating leukocytes including 260 
neighborhoods of CD68+, MPO+ and CD3+ cells (N6, N11 and N13 respectively). Uniquely, 261 
CD3+ cells were detected in a subset of neighborhoods almost exclusively with areas of tissue 262 
damage including presumptive epithelial degeneration (loss of markers and simplification) and 263 
fibrosis (N13, Fig. 4c, a3 and Extended Data Fig. 11e). In contrast, the myeloid cells were 264 
found in more cellular diverse niches including two neighborhoods with either cortical or 265 
medullary epithelium (N6 and N11, Fig. 4c). The leukocyte diversity was unique in these 266 
neighborhoods, as MPO+ and CD3+ cells were overlapping in neighborhoods (N11), whereas 267 
CD3+ cells were conspicuously low in neighborhoods with CD68+ cells (N6). Pairwise 268 
associations within neighborhoods identified a positive correlation between CD3+ and MPO+ 269 
but not CD68+ cells (Fig. 4d-e). Performing similar pairwise analyses for subsets of 270 
neighborhoods further identified positive correlations between leukocytes and specific renal 271 
structures, including CD68+ cells with PT epithelium and MPO+ cells with glomeruli (Fig. 4e-h). 272 
Overall, we found that altered states associated with renal injury in disease were enriched in PT 273 
and TAL neighborhoods, and showed predominantly CD3+  immune cell activity (Fig. 4c, 274 
Extended Data Fig. 11c,e). Thus, 3D imaging and tissue cytometry analysis of 1.2 million 275 
neighborhoods demonstrated distinct immune-active cellular niches and their association with 276 
discrete regions of healthy and injured tubules. 277 

 278 

Adaptive or Maladaptive Repair States 279 

To obtain a deeper understanding of the genetic networks underlying the progression and 280 
potential pathology of altered PT and TAL, we performed trajectory inference on 281 
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snCv3/SNARE2 and scCv3 subpopulations (Fig. 5a-f). While most degen states appeared too 282 
disconnected, both segment trajectories for the adaptive progression did show a transition from 283 
gene expression modules associated with normal function (black/red - PT; black/pink - TAL) to 284 
those associated with differentiation (magenta/yellow/turquoise - PT; brown/yellow/blue - TAL, 285 
Supplementary Tables 19-20). A majority of the expression gains were conserved across 286 
platforms (snCv3/SNARE2 and scCv3) and were found to occur towards the end of each 287 
trajectory (Extended Data Fig. 12a-g). These were associated with progenitor states that 288 
coincided with both maximal PROM1 (CD133) expression (Fig. 5 c, f) and overlap with genes 289 
associated with failed repair in mouse AKI3 (turquoise module - PT, Extended Data Fig. 12c). 290 
There was also a concomitant increase in HAVCR1 (KIM1) that was higher in PT, yet appeared 291 
elevated in AKI over CKD for TAL samples (Fig. 5 c, f). This suggests that this state, while 292 
potentially arising from acute injury, may persist in chronic disease. 293 
 294 
Expression signatures across the trajectories revealed an enhancement in growth factor 295 
signaling with known roles in promoting tubulogenesis, maladaptive repair, fibrosis and 296 
inflammation. This includes Wnt (DCDC2, PRICKLE), Notch, TGF-β (ITGB6), EGF (PLSCR1) 297 
and Rho/Rac signalling pathways (Fig. 5b,e, Extended Data Fig. 12d, Supplementary Tables 298 
19-21)28–36. Furthermore, we identify progressive activation of the MAPK (FOS/JUN), TGF-β and 299 
JAK/STAT pathways across both nephron segments, as predicted from TF activities associated 300 
with gene modules (Extended Data Fig. 12i,k, Supplementary Table 22) and TF motif 301 
accessibilities across adaptive trajectories (Fig. 5 g-h, Supplementary Table 23). Consistently, 302 
proximal tubule cells that showed expression of PROM1 were also found subjacent to 303 
phosphorylated JUN (p-JUN) likely suggesting close association of maladaptive and reparative 304 
cells (Extended Data Fig. 12l-q). As shown in prior studies, we identified progressively active 305 
REL/NF-KB signaling along the aPT trajectory14, that was also predicted based on expression 306 
modules in the aTAL trajectory (Extended Data Fig. 12k). We also found increased cAMP 307 
signaling (Creb TFs in aPT) capable of promoting dedifferentiatiation37 and increased  ELF3 308 
activities potentially required for MET38, both indicating that adaptive states may be poised for 309 
re-epithelialization. Therefore, we find adaptive epithelial trajectories sharing common molecular 310 
profiles that progressively upregulate cytokine signaling involved in tubule regeneration, while 311 
also providing molecular links to pathways associated with fibrosis, inflammation and end-stage 312 
kidney disease.     313 
 314 
Given the upregulation of fibrotic cytokine signaling along adaptive trajectories, these 315 
regenerating cells may represent maladaptive states if they accumulate or fail to complete 316 
tubulogenesis. Therefore, we investigated the contribution of these states to cell-cell secreted 317 
ligand-receptor interactions within a fibrotic niche (Supplementary Tables 24-26). From 318 
imaging assays, this niche may comprise aEpi cells adjacent to normal and altered arteriole 319 
cells and fibroblasts, and immune cells that include T cells or macrophages depending on the 320 
level of tubular degeneration (Figures 3-4). Using snCv3 and scCv3 data sets associated with 321 
trajectory modules, we identified both late aPT and aTAL states as having a higher number of 322 
interactions with the stroma (Fig. 5i). This was associated with secreted growth factors of the 323 
FGF, BMP, WNT, EGF, IGF and TGF-β families (Extended Data Fig. 13a-b). Furthermore, late 324 
modules and aStr cell types showed a higher number of ligand-receptor interactions with 325 
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immune cells (Fig. 5i, Extended Data Fig. 13c-d). This indicates adaptive tubule states may 326 
recruit immune cells both primarily and secondarily through their recruitment of the activated 327 
fibroblasts and myofibroblasts. This is consistent with the activation of Rel/NF-kB and CEBPD 328 
transcription factors, having known roles in promoting inflammation 39,40, in the aEpi populations 329 
(Fig. 5g-h). We also found expression of the PVR Cell Adhesion Molecule (CD155) gene in late 330 
aTAL modules that may mediate its interactions with natural killer (NK) cells, or provide a 331 
mechanism to escape immune surveillance through PVR association with TIGIT (Extended 332 
Data Fig. 12e)41,42. The upregulation of PVR in aTAL and not aPT might contribute to the fewer 333 
observed T or NKC/T cell associations with C-TAL compared to PT neighborhoods (Fig. 4e-f). 334 
 335 
We also find additional evidence for the activation of EGF pathway signaling within the adaptive 336 
epithelial trajectories, which in itself may lead to activation of TGF-β signalling and create a 337 
niche capable of promoting fibrosis36. Consistently, EGF ligands NRG1 and NRG3 both become 338 
expressed in aEpi states for a possible role in MAC-M2 recruitment (Extended Data Fig. 339 
12c,e). Furthermore, expression of EGF receptors ERBB2, ERBB4 (aPT/aTAL) and ERBB3 340 
(aPT) may poise these cells for contribution to autocrine/paracrine signalling within the adaptive 341 
tubules (Extended Data Fig. 12e). Since MAPK pathways can mediate ErbB receptor signaling, 342 
it remains possible that the increased activity of FOS/JUN could in fact be associated with EGF 343 
pathway functions promoting regeneration (Fig.5g-h). Therefore, we identify expression and 344 
regulatory signatures associated with a common reparative state in proximal and distal tubules. 345 
However, this may represent a maladaptive state that produces and receives a number of 346 
cytokine signals that promotes both fibrosis and inflammation. In support of this, we find PROM1 347 
expression along either trajectory to be elevated within CKD compared to AKI cases (Fig. 5c,f). 348 
We also find distinct expression profiles exist within different tubular segments that may 349 
modulate how these cells interact with their fibrotic niches or contribute to disease progression. 350 
 351 

Adaptive but not degenerative state scores associate with progressive decline in 352 
kidney function 353 

To identify whether aEpi cell states contribute to chronic kidney disease, we identified gene 354 
signatures for altered states that were conserved across technologies (snCv3 and scCv3) 355 
(Supplementary Table 27) and that were associated with disease severity (Extended Data 356 
Fig. 14a-d). These signatures were assessed for their association with disease progression 357 
within the Nephrotic Syndrome Study Network (NEPTUNE) cohort of 199  patients43. Composite 358 
gene expression scores were computed on the tubulointerstitial compartment for degenerative 359 
and adaptive cell states and used for Kaplan-Meir (K-M) analyses. In an unadjusted survival 360 
model, high adaptive, but not degenerative, state scores were significantly associated with 361 
composite endpoint (40% loss of eGFR or ESKD), with aTAL and aStr showing the most 362 
significant associations (p value < 0.0001) (Fig. 6a,Extended Data Fig. 14e). This indicated 363 
that aEpi processes may represent maladaptation and, like fibrosis-promoting aStr states, 364 
associate with disease progression. Alternatively, degenerative states progressing to necrosis 365 
or apoptosis may not accumulate over time. Interestingly, high adaptive state scores from a 366 
common set of aPT-aTAL genes were also found to have a significant association with faster 367 
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end point (p value < 0.0015), indicating a common, adaptive epithelial state that may 368 
accumulate or persist and ultimately contribute to eventual organ failure due to maladaptive 369 
repair.  370 

Additional analysis of transcriptomic data from 111 kidney disease patients in the European 371 
Renal cDNA Bank (ERCB) cohort44, found scores for all adaptive, but not degenerative, states 372 
were significantly higher in the diabetic nephropathy (DN) patients compared to that of living 373 
donors (LD) (Fig. 6b, Extended Data Fig. 14f). The high association with ESKD and DN scores 374 
were found for each adaptive tubule type, demonstrating critical roles for effective repair 375 
mechanisms not only in the PT, but also in the TAL.Therefore, TAL functionality, which may 376 
include its known GFR-regulatory role through tubuloglomerular feedback, may represent a 377 
major contributing factor to progressive kidney failure. Consistent with this, causal variants for 378 
eGFR and chronic kidney failure were found to be enriched within TAL regulatory regions that 379 
also were enriched for Estrogen Related Receptor (ESSR) TF motifs (Fig. 6c, Supplementary 380 
Table 28). ESRR TFs (especially ESRRB), key players in TAL ion transporter expression45, are 381 
central regulators of the TAL expression network (Extended Data Fig. 14g) and become 382 
inactivated in adaptive states (Fig. 4h). Therefore, we demonstrate both a potential maladaptive 383 
role for the aEpi states and a potential central role for the TAL segment in maintaining the health 384 
and homeostasis of the human kidney. This is consistent with the finding that the top renal 385 
genes showing decline in a mouse aging cell atlas were associated with the TAL46.  386 

Our findings implicate an accumulation of maladaptive epithelia during disease progression that 387 
may be consistent with chronically senescent cells4. This is supported by both increased 388 
expression of aging related genes and an apparent senescence-associated secretory 389 
phenotype (SASP) for these cells (Fig. 5, Fig. 6d, Extended Data Fig. 14h). As such, we 390 
detected CDKN1A (p21cip1), CDKN1B (p27kip1), CDKN2A (p16ink4a) and CCL2 expression in late 391 
aPT and aTAL states (Fig. 6d). Furthermore, expression signatures for reparative processes in 392 
aEpi states were downregulated in the CKD (n = 28) over AKI (n = 22) cases used in this study 393 
(snCv3/scCv3), while G1/S checkpoint regulatory factors were upregulated (Supplementary 394 
Table 30). This is consistent with repair processes that may persist after injury19, but that may 395 
subsequently transition to senescent pro-fibrotic states during disease progression. 396 

 397 

Discussion 398 

 399 
We present a comprehensive spatially resolved cell atlas to define genes and pathways across 400 
the corticomedullary axis of the kidney, including signalling between tubules, stroma and 401 
immune cells that underlie normal and pathological cell neighborhoods. Through careful 402 
definition of injury states, we identify putative adaptive or maladaptive repair signatures within 403 
the epithelial segments that may reflect a failure to complete differentiation and tubulogenesis. 404 
This enabled us to resolve and greatly expand upon existing healthy reference and altered state 405 
cell identities. Spatial analyses prioritized relevant cell-cell interaction niches associated with 406 
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altered injury states and permitted reconstruction of the fibrotic niche. From this we find that 407 
expression signatures for the progression of adaptive states within the proximal and distal 408 
tubules are associated with elevated cytokine production, increased interactions with the fibrotic 409 
and inflammatory cell types and ultimately the progression to end stage kidney disease. These 410 
adaptive state signatures were highly associated with tubule regeneration and differentiation, 411 
indicating that the potential failure of these cells to complete tubulogenesis might ultimately lead 412 
to a progressive decline in kidney function. This may arise from an incompatible mileu 413 
associated with the high level of cytokine signalling found within the fibrotic niche. In turn, the 414 
high cytokine producing nature of these cells may further contribute to kidney disease through 415 
promotion of fibrosis. We identified specific modules in aEpi states enriched in senescence 416 
associated genes suggesting likely perturbation of cell cycle progression that will require deeper 417 
evaluation. Since several adaptive markers were overlapped across tubular regions, 418 
physiological or pathological stresses may initiate activation of common signaling events that 419 
could be subject to the same therapeutic strategies.  420 
 421 
In this study, we have leveraged multiple technologies, samples, sites and health conditions, 422 
representing efforts between the HuBMAP, KPMP and HCA consortia, to define cell types and 423 
states underlying health and disease. This atlas will serve as a key resource for studies into: 424 
normal physiology and sex differences; pathways associated with transitions from healthy and 425 
injury states; clinical outcomes; disease pathogenesis; and targeted interventions.    426 
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633 
Figure 1. Overview of technologies used to generate a human kidney cell atlas. a. Human 634 
kidney samples summarized in (b) consisted of healthy reference, AKI or CKD nephrectomies 635 
(Nx), deceased donors (DD) or biopsies. Tissues were processed for one or more assays that 636 
included snCv3, scCv3, SNARE2, 3D imaging or spatial transcriptomics (Slide-seq2, Visium). c. 637 
Omic RNA data was integrated, as shown by joint UMAP embedding, for alignment of cell type 638 
annotations across the three different data modalities.    639 
 640 
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642 
Figure 2. Spatially resolved atlas of molecular cell types. a. Schematic of the human 643 
nephron showing cell types and states resolved from snCv3. b. UMAP embedding showing cell 644 
types (subclass level 3) for snCv3. Insets show overlays for both regional origin and altered 645 
state status. c. Spatial distribution of cell type labeled beads associated with a single Slide-seq2 646 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454201


processed tissue puck. Puck diameter is 3mm. d. Cell proximity network for Slide-seq2 cell 647 
types. e. Schematic of the renal corpuscle showing snCv3 resolved cell types. f. Left panel 648 
shows Slide-seq2 puck area indicated in (c) and predicted cell types for renal corpuscles, 649 
highlighting cellular neighbors predicted in (d). Right panel shows the mapped expression 650 
values for corresponding marker genes. g. Left panel shows Slide-seq2 puck area indicated in 651 
(c) and predicted cell types for the AEAs and surrounding cell types, highlighting cellular 652 
neighbors predicted in (d). Right panel shows the mapped expression values for corresponding 653 
marker genes. h. Dotplot showing average expression values in snCv3 and scCv3 for markers 654 
shown in (f) and (g). i. 10X Visium data on a healthy reference kidney (cortex, top; medulla, 655 
bottom). Left panel shows H&E staining of the tissue, right panels show per bead predicted 656 
transfer scores for cell clusters or transcript expression values. Each spot is 55 μm in diameter.  657 
       658 
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Figure 3. Transcriptomically defined injury neighborhoods. a. Slide-seq2 bead locations for 662 
a single tissue puck, colored by predicted cell subclasses as shown in Figure 2b. Puck 663 
diameter is 3mm. b. Slide-seq2 puck region indicated in (a) showing a subset of predicted cell 664 
types. c. Mapped expression values for aTAL (ITGB6) and TAL (EGF and SLC12A1) marker 665 
genes for cell types shown in (b). d. Prediction weights for cell types mapped to puck region 666 
indicated in (a). e. Mapped expression values for FIB (FBLN5), VSMC and MYOF (MYH11) and 667 
aStr (COL1A1) marker genes for cell types shown in (d). f. Histology and predicted cell types in 668 
a cortical region (CKD) of interstitial fibrosis. Pie charts are proportions of predicted transfer 669 
scores. g. Per bead predicted transfer scores for cell types or transcript expression values for 670 
area shown in (f). h. Histology and predicted cell types for a region with altered PT and immune 671 
cell infiltration. i. Predicted transfer scores and expression transcript expression values for area 672 
shown in (h). j. Histology and predicted cell types for a medullary region of acute tubular 673 
necrosis (cellular cast formation within tubular lumens, loss of brush border, loss of nuclei, and 674 
epithelial simplification). Pie charts are proportions of predicted transfer scores. k. Predicted 675 
transfer scores and expression transcript expression values for area shown in (j). For Visium 676 
panels, each spot is 55 μm in diameter. 677 
 678 
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Figure 4.  Defining cellular niches in renal disease from 3D fluorescence imaging. a. 681 
Maximum intensity projections of representative biopsies (cortex or medulla) showing 682 
classification label examples (insets 1-3). These include: vessels (V, 1 and 3) glomeruli (Glom, 683 
1), proximal tubules (PT, 1), descending thin limb (DTL), medullary thick ascending limb (mTAL, 684 
2), vascular bundle (VB, 2), cortical TAL (c-TAL, 1), distal convoluted tubule, connecting tubules 685 
and collecting ducts (DCT/CNT/CD or cDN, 1), medullary CD (CD, 2) and areas of altered 686 
morphology or injury (altered, 3). Examples of MPO+ and CD68+ are indicated in 1. Scale bars 687 
are 1 mm in biopsy images, 100 um in 1 and 2 and 5 um in insets. b. Community based 688 
clustering on cell composition for ~20,000 randomly chosen neighborhoods (15 biopsies or 689 
individuals). The red outline indicates neighborhoods including the medulla. c. Average cellular 690 
composition of the neighborhoods identified in (b). d. Pairwise analysis of cells within 1.2 million 691 
neighborhoods (15 biopsies or individuals), colors as indicated in (c). e. Pearson’s Coefficients 692 
for select interactions, the color indicates both the value and direction of the correlation. f-g. 693 
Neighborhoods with at least one cell for the labels indicated (MPO, Glomeruli and CD68) were 694 
subsetted and neighborhood graphs generated to indicate the pairwise interaction between cell 695 
labels. At right: maximum Z-projections of 3D confocal fluorescence images with white arrow 696 
indicating MPO+ cells (f and g) or CD68+ cells (h), orange arrows indicating CD3+ cells and 697 
asterisks highlighting fibrosis (white) or areas of altered morphology/injury (yellow). Scale bar = 698 
100 um. 699 
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Figure 5. Expression and regulatory signatures of adaptive epithelial cells. a. Top: 702 
Trajectory of PT cells for snCv3 and scCv3 datasets. Bottom: PT embeddings colored based on 703 
cell density. The right panel shows the cell density difference between AKI and CKD.  b. 704 
Heatmap of smoothed gene expression profiles along the inferred pseudo-time for PT cells. 705 
Color blocks on the left showing different modules identified based on the gene expression 706 
profiles. c. Left panels: changes of smoothed gene expression as a function of inferred pseudo-707 
time colored based on the cells associated with their correspondent modules. Right panels: 708 
changes of smoothed gene expression as a function of inferred pseudo-time colored based on 709 
disease conditions. d. Trajectory of TAL cells for snCv3 and scCv3 datasets. Bottom: TAL 710 
embeddings colored based on cell density. The right panel shows the cell density difference 711 
between AKI and CKD. e. Heatmap of smoothed gene expression profiles along the inferred 712 
pseudo-time for TAL cells. Color blocks on the left showing different modules identified based 713 
on the gene expression profiles. f. Left panels: changes of smoothed gene expression for 714 
representative genes as a function of inferred pseudotime colored based on the cells associated 715 
with their correspondent modules. Right panels: changes of smoothed gene expression as a 716 
function of inferred pseudotime colored based on disease conditions. g. Top panel: dot plot of 717 
SNARE2 average accessibilities (chromVAR) and proportion accessible for TFBSs showing 718 
differential activity in aPT modules. Bottom panel: dot plot of averaged gene expression values 719 
(log scale) and proportion expressed for integrated snCv3/scCv3 modules. h. Dot plots as in (g) 720 
for aTAL modules. i. Circos plots showing number of secreted (non-integrin) ligand-receptor 721 
interactions between different cell populations. Arrows indicate direction of the interaction. 722 
 723 
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726 
Figure 6. Adaptive signatures are associated with poor clinical outcome. a. Unadjusted 727 
Kaplan Meier curves by cell state scores for composite of end stage renal disease (ESRD) or for 728 
40% drop in estimated glomerular filtration rate (eGFR) from time of biopsy in Neptune adult 729 
patient cohort (199 patients). Patients that reached the endpoint between screening and biopsy 730 
were excluded. The P values of log-rank tests for trend are shown. b. Boxplot of aPT, aTAL and 731 
degenerative state scores by kidney disease groups in the ERCB cohort (111 patients). Disease 732 
groups include diabetic nephropathy (DN), focal segmental glomerulosclerosis (FSGS), 733 
hypertensive nephropathy (HT), minimal change disease (MCD) and membranous nephropathy 734 
(MN). Boxes extend from the 25th to the 75th percentile for each group's distribution and 735 
horizontal lines denote median values. Significant P values from unpaired t-tests between 736 
disease groups and living donors (LD) are shown. c. Heatmap of causal variants (z-scores) 737 
peak enrichments. Dots represent Z-scores > 2 (or P value < 0.05). Dotplots show averaged 738 
ESRRB binding site accessibility or gene expression (log values) and percent accessible or 739 
expressed. d. Dot plots of averaged gene expression values (log scale) and proportion 740 
expressed for integrated snCv3/scCv3 modules. Violin plots show gene expression scores for 741 
gene sets associated with aging or SASP (Methods). 742 
 743 
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Methods 746 

Statistics and Reproducibility 747 
For spatial transcriptomics, 3D imaging and immunofluorescence staining experiments, each 748 
staining was repeated on at least 2 separate individuals or separate regions. For SLIDE-seq 749 
where only one individual was available, the assay was performed on 9 adjacent tissue 750 
sections. For immunofluorescence validation studies, commercially available antibodies were 751 
used; the immunostaining included tissue from patients not contributing to omics data. Similarly, 752 
orthogonal validation of omics annotations and spatial localization in Visium studies also 753 
included more than four samples each from reference and disease biopsies that were not used 754 
to generate single cell gene expression data to further increase the reproducibility and rigor.  755 
Further, several technologies were performed on samples from the same patient and in some 756 
cases the same tissue block was used to generate multimodal data. 757 
 758 
Ethical Compliance 759 
We have complied with all ethical regulations related to this study. Human samples 760 
(Supplementary Table 1) collected as part of the Kidney Precision Medicine Project (KPMP) 761 
consortium (KPMP.org) were approved as exempted by the University of Washington  762 
Institutional Review Board. Samples as part of the Human Biomolecular Atlas Program 763 
(HuBMAP) consortium were collected by the Kidney Translational Research Center (KTRC) 764 
under a protocol approved by the Washington University Institutional Review Board (IRB 765 
#201102312). Informed consent was obtained for the use of data and samples for all 766 
participants at Washington University, including living patients undergoing partial or total 767 
nephrectomy or from discarded deceased kidney donors. For Visium Spatial Gene Expression, 768 
reference nephrectomies and diabetic kidney biopsy specimens were obtained from the KPMP 769 
or the Biopsy Biobank Cohort of Indiana (BBCI)47 as approved by the Indiana University 770 
Institutional Review Board (IRB # 1906572234).  Living donor biopsies as part of the Human 771 
Cell Atlas (HCA) were obtained under the Human Kidney Transplant Transcriptomic Atlas 772 
(HKTTA) under IRB HUM00150968. Deidentified leftover frozenCOVID-19 AKI kidney biopsies 773 
were obtained from the Johns Hopkins University under IRB 00090103.  774 
 775 
Human Tissue Specimens 776 
For single nucleus omic assays, tissues were processed according to the following protocol: 777 
dx.doi.org/10.17504/protocols.io.568g9hw. For nuclei preparation, ~7 sections of 40 µm 778 
thickness were collected and stored in RNAlater solution (RNA assays) or kept on dry ice (AC 779 
assays) until processing or used fresh. To confirm tissue composition, 5 µm sections flanking 780 
these thick sections were obtained for histology and the relative amount of cortex or medulla 781 
composition including glomeruli was determined. For single cell omic assays, tissues used (15 782 
CKD,12 AKI and 18 LD biopsy cores) were preserved using CryoStor® (Stemcell 783 
Technologies).  784 
 785 
RNA-Sequencing, QC and Clustering 786 
Isolation of single nuclei. Nuclei were isolated from cryosectioned tissues according to the 787 
following protocol: dx.doi.org/10.17504/protocols.io.ufketkw with the exception that 4',6-788 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://paperpile.com/c/tICV3r/floG
https://doi.org/10.1101/2021.07.28.454201


diamidino-2-phenylindole (DAPI) was excluded from the nuclear extraction buffer and only used 789 
to stain a subset of nuclei used for counting. Nuclei were used directly for omic assays.  790 

 791 
Isolation of single cells. Single cells were isolated from frozen tissues according to the following 792 
protocol: dx.doi.org/10.17504/protocols.io.7dthi6n.  The single cell suspension was immediately 793 
transferred to the University of Michigan Advanced Genomics Core facility for further 794 
processing.  795 
 796 
10X Chromium v3 (Cv3) RNA-sequencing. 10X single nucleus RNA sequencing was performed 797 
according to dx.doi.org/10.17504/protocols.io.86khzcw, and the 10X single cell RNA sequencing 798 
according to dx.doi.org/10.17504/protocols.io.7dthi6n, both using the 10X Chromium Single-Cell 799 
3’ Reagent Kit v3. Sample demultiplexing, barcode processing, and gene expression 800 
quantifications were performed with the 10X Cell Ranger v3 pipeline using the GRCh38 (hg38) 801 
reference genome. For single nucleus data, introns were also included in the expression 802 
estimates.     803 
 804 
SNARE-Seq2 dual RNA and ATAC-sequencing. SNARE-Seq216, as outlined (Nature Protocols, 805 
DOI:10.1038/s41596-021-00507-3), was performed according to the following protocol: 806 
dx.doi.org/10.17504/protocols.io.be5gjg3w. AC and RNA libraries were sequenced separately 807 
on the NovaSeq 6000 (Illumina) system using the 300 cycle and 200 cycle reagent kits, 808 
respectively.  809 
 810 
SNARE-Seq2 Data Processing. Detailed step-by-step processing for SNARE-Seq2 data has 811 
been outlined (Nature Protocols, DOI:10.1038/s41596-021-00507-3). This has now been 812 
implemented as an automated data processing pipeline that is available at 813 
github.com/huqiwen0313/snarePip. The pipeline provides an automated framework for complex 814 
single-cell analysis including quality assessment, doublet removal, cell clustering and 815 
identification, robust peak generation and differential accessible region identification with flexible 816 
analysis modules and generating summary reports for both quality assessment and downstream 817 
analysis. The directed acyclic graph was used to incorporate the entire data processing steps 818 
for better error control and reproducibility. For RNA processing, this involved removal of AC 819 
contaminating reads using cutadapt (version 3.1) 48, dropEst (version 0.8.6) 49 to extract cell 820 
barcodes and STAR (v2.5.2b) 50 to align tagged reads to the genome (GRCh38). For AC data, 821 
this involved snaptools (version v1.2.3) 51 and minimap (version 2-2.20)52 for alignment to the 822 
genome (GRCh38). 823 
 824 
Quality control of sequencing data.  825 
10X snRNA-seq (snCv3): Cell barcodes passing 10X Cell Ranger filters were used for 826 
downstream analyses. Mitochondrial transcripts (MT-*) were removed, doublets were identified 827 
using the DoubletDetection software (v2.4.0)53 and removed. All samples were combined across 828 
experiments and cell barcodes having greater than 200 and less than 7500 genes detected 829 
were kept for downstream analyses. To further remove low quality datasets, a gene UMI ratio 830 
filter (gene.vs.molecule.cell.filter) was applied using Pagoda2 (github.com/hms-dbmi/pagoda2). 831 
 832 
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10X scRNA-seq (scCv3): As a quality control step, a cutoff of < 50% mitochondrial reads per 833 
cell was applied. The ambient mRNA contamination was corrected using SoupX (v1.5.0)54.The 834 
mRNA content and number of genes for doublets are comparatively higher than for single cells. 835 
In order to reduce doublets or multiplets from the analysis, we used a cutoff of > 500 and < 5000 836 
genes per cell.  837 
 838 
SNARE-Seq2 RNA: Cell barcodes for each sample were retained with the following criteria: 839 
having DropEst cell score greater than 0.9; having greater than 200 UMI detected; having 840 
greater than 200 and less than 7500 genes detected. Doublets identified by both 841 
DoubletDetection (v3.0) and Scrublet (github.com/swolock/scrublet, version 0.2.2) were 842 
removed. To further remove low quality datasets, a gene UMI ratio filter 843 
(gene.vs.molecule.cell.filter) was applied using Pagoda2. 844 
 845 
SNARE-Seq2 ATAC: Cell barcodes for each sample that had already passed quality filtering 846 
from RNA data were further retained with the following criteria: having tss enrichment greater 847 
than 0.15; having at least 1000 read fragments and at least 500 UMI; having fragments 848 
overlapping the promoter region ratio of greater than 0.15. Samples were only retained if they 849 
exhibited greater than 500 dual omic cells after quality filtering. 850 
 851 
Clustering snCv3. Clustering analysis was performed using pagoda2, where counts were 852 
normalized to the total number per nucleus, batch variations were corrected by scaling 853 
expression of each gene to the dataset-wide average. After variance normalization, all 5526 854 
significantly variant genes were used for principal component analysis. Clustering was 855 
performed at different k values (50, 100, 200, 500) based on the top 50 principal components, 856 
with cluster identities determined by the infomap community detection algorithm. The primary 857 
cluster resolution (k = 100) was chosen based on the extent of clustering observed. Principal 858 
components and cluster annotations were then imported into Seurat (version 4.0.0) and uniform 859 
manifold approximation and projection (UMAP) dimensional reduction was performed using the 860 
top 50 principal components identified using pagoda2. Subsequent analyses were then 861 
performed in Seurat. A cluster decision tree was implemented to determine whether a cluster 862 
should be merged, split further or labeled as an altered state. For this, differentially expressed 863 
genes between clusters were identified for each resolution using the FindAllMarkers function in 864 
Seurat (only.pos = TRUE, max.cells.per.ident = 1000, logfc.threshold = 0.25, min.pct = 0.25). 865 
Possible altered states were initially defined for clusters having one or more of the following 866 
features: low genes detected, high number of mitochondrial transcripts, high number of ER 867 
associated transcripts, upregulation of injury markers (CST3, IGFBP7, CLU, FABP1, HAVCR1, 868 
TIMP2, LCN2) or enrichment in AKI or CKD samples. Clusters (k = 100) that showed no distinct 869 
markers were assessed for altered state features, if present then these clusters were tagged as 870 
possible altered states, if absent then clusters were merged based on their cluster resolution at 871 
k = 200 or 500. If this merging would occur across major classes (epithelial, endothelial, 872 
immune, stromal) at higher k values, then these clusters were instead labeled as ambiguous or 873 
low quality (including possible multiplets). For k = 100 clusters (non-epithelial only) that did 874 
show distinct markers, their k = 50 subclusters were assessed for distinct marker genes, if 875 
present, then these clusters were split further. The remaining split and unsplit clusters were then 876 
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assessed for altered state features. If present they were tagged as possible altered states, if 877 
absent they were assessed as the final cluster. Annotations of clusters were based on known 878 
positive and negative cell type markers10,11,55–57 (also see Supplementary Table 5), regional 879 
distribution of the clusters across the corticomedullary axis and altered state (including cell 880 
cycle) features. For separation of EC-DVR from EC-AEA, the combined population was 881 
independently clustered using pagoda2 and clusters associated with medullary sampling were 882 
annotated as EC-DVR. For separation of the REN cluster, stromal cells expressing REN were 883 
selected based on normalized expression values greater than 3.   884 
 885 
Annotating snCv3 Clusters. To overcome the challenge of disparate nomenclature for kidney 886 
cell annotations, we leveraged a cross-consortium effort to use the extensive knowledge base 887 
from human and rodent single-cell gene expression data sets, as well as the domain expertise 888 
from pathologists, biologists, nephrologists and ontologists10,11,19,55–58 (also see Supplementary 889 
Table 4, 5 and the HuBMAP ASCT+B Reporter: hubmapconsortium.github.io/ccf-asct-reporter). 890 
This allowed the adoption of a standardized anatomical and cell type nomenclature for major 891 
and minor cell types and their subclasses (Supplementary Table 4), showing distinct and 892 
consistent expression profiles of known markers and absence of specific segment markers for 893 
some of the cell types (Extended Data Fig. 2a, Supplementary Table 5). The knowledge of 894 
the regions dissected and histological composition of snCv3 data further enabled stratification of 895 
distinct cortical and outer and inner medullary cell populations (Fig. 2b, Extended Data Fig. 1). 896 
The cell type identities and regional locations were confirmed through orthogonal validation 897 
using spatial technologies presented here and correlations with existing human or rodent 898 
stromal, immune, endothelial and epithelial data sets3,23,55,56,58,59 (Extended Data Fig. 2b-i).  899 
 900 
Integrating snCv3 and SNARE2 data sets 901 
Integration of snCv3 and SNARE RNA data was performed using Seurat (v4.0.0) using snCv3 902 
as reference. All counts were normalized using sctransform, anchors were identified between 903 
data sets based on the snCv3 pagoda2 principal components. SNARE2 data was then 904 
projected onto the snCv3 UMAP structure and snCv3 cell type labels were transferred to 905 
SNARE2 using the MapQuery function. Both data sets were then merged and umap 906 
embeddings recomputed using the snCv3 projected principal components. Integrated clusters 907 
were identified using pagoda2, with the k-nearest neighbor graph (k = 100) based on the 908 
integrated principal components and using the infomap community detection algorithm. The 909 
SNARE2 component of the integrated clusters was then annotated to the most overlapping, 910 
correlated and/or predicted snCv3 cluster label, with manual inspection of cell type markers 911 
used to confirm identities. Integrated clusters that overlapped different classes of cell types were 912 
labeled as ambiguous or low quality clusters.    913 
 914 
Integrating snCv3 and scCv3 data sets 915 
Integration of snCv3 and scCv3 data was performed using Seurat (v4.0.0) using snCv3 as 916 
reference. All counts were normalized using sctransform, anchors were identified between data 917 
sets based on the snCv3 pagoda2 principal components. scCv3 data was then projected onto 918 
the snCv3 UMAP structure and snCv3 cell type labels were transferred to scCv3 using the 919 
MapQuery function. Both data sets were then merged and umap embeddings recomputed using 920 
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the snCv3 projected principal components. Integrated clusters were identified using pagoda2, 921 
with the k-nearest neighbor graph (k = 100) based on the integrated principal components and 922 
using the infomap community detection algorithm. The scCv3 component of the integrated 923 
clusters was then annotated to the most overlapping or correlated snCv3 subclass, with manual 924 
inspection of cell type markers used to confirm identities. Cell types that could not be accurately 925 
resolved (PT-S1/PT-S2 and EC-AEA/EC-DVR) were kept merged. Integrated clusters that 926 
overlapped different classes of cell types or that were too ambiguous to annotate were 927 
considered low quality and were removed from the analysis.  928 

 929 

NSForest marker genes 930 

To identify a minimal set of markers that can identify snCv3 clusters and subclasses 931 
(subclass.l3), or scCv3 integrated subclasses (subclass.l3), we used the Necessary and 932 
Sufficient Forest60 (NSForest v2, github.com/JCVenterInstitute/NSForest/releases/tag/v2.0) 933 
software using default settings.  934 

 935 

Correlation analyses  936 

For correlation of RNA expression values between snCv3 and scCv3, or SNARE2, average 937 
scaled expression values were generated, pairwise correlations performed using variable genes 938 
identified from Pagoda2 analysis of snCv3 (top 5526 genes). For comparison with mouse single 939 
cell RNA-seq on healthy reference tissue56, raw counts were downloaded from the Gene 940 
Expression Omnibus (GEO, GSE129798). For comparison with mouse single cell RNA-seq from  941 
ischemia–reperfusion injury (IRI) tissue3, raw counts were downloaded from GEO 942 
(GSE139107). For human fibroblast and myofibroblast data23, raw counts were downloaded 943 
from Zenodo (10.5281/zenodo.4059315). For each data set, raw counts were processed using 944 
Seurat: counts for all cell barcodes were scaled by total UMI counts, multiplied by 10,000 and 945 
transformed to log space. For comparison with mouse single cell types of the distal nephron58, 946 
the precomputed Seurat object was downloaded from GEO (GSE150338). For mouse bulk 947 
distal segment data58, normalized counts were downloaded from GEO (GSE150338) and added 948 
to the “data” slot in a Seurat object. Immune cell reference data was obtained using the celldex 949 
package61 using the MonacoImmuneData()59 and ImmGenData()61,62 functions and log counts 950 
imported into the “data” slot of Seurat. For correlation against these reference data sets, 951 
averaged scaled gene expression values for each cluster were calculated (Seurat) using an 952 
intersected set of variable genes identified for each data set (identified using Padoda2 for snCv3 953 
and Seurat for reference data sets). For immune reference correlations, a list of immune-related 954 
genes downloaded from ImmPort (immport.org) was used instead of the variable genes. Only 955 
fine resolution immune labels having correlation greater than 0.2 were combined at the main 956 
label level for final correlation. Correlations were plotted using the corrplot package 957 
(github.com/taiyun/corrplot). Several of the immune annotations were further confirmed by 958 
manual comparison with recently reported data13. 959 
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 960 

Computing single nucleus/cell-level expression scores 961 

To identify markers associated with altered states (degenerative or degen; adaptive - epithelial 962 
or aEpi; adaptive - stromal or aStr; cycling), snCv3 and scCv3 data were independently used to 963 
identify differentially expressed genes between reference and corresponding altered states for 964 
each subclass level 1 (subclass.l1). To ensure general state-level markers, differentially 965 
expressed genes were identified using the “FindConservedMarkers” function (grouping.var = 966 
"condition.l1", min.pct = 0.25, max.cells.per.ident = 300) in Seurat. A minimal set of general 967 
degenerative conserved genes were identified as enriched (p value < 0.05) in the degenerative 968 
state of each condition.l1 (reference, AKI and CKD) and in at least 4 of the 11 (snCv3) or 9 969 
(scCv3) subclass.l1 cell groupings. A minimal set of conserved aEpi genes were identified as 970 
enriched (p value < 0.05) in the adaptive state of each condition.l1 (reference, AKI and CKD) in 971 
both aPT and aTAL cell populations. This aEpi gene set was then further trimmed to include 972 
only those genes that were enriched within the adaptive epithelial population (aPT/aTAL) versus 973 
all others using the “FindMarkers” function and a minimum p value of 0.05 and average log2 fold 974 
change > 0.6. A minimal set of conserved aStr genes were identified as enriched (p value < 975 
0.05) in the adaptive state of each condition.l1 (reference, AKI and CKD for snCv2; reference 976 
and AKI for scCv3) for stromal cells. To increase representation from MYOF in scCv3 showing a 977 
small number of these cells, MYOF-alone enriched genes (average log2 fold change >= 0.6; 978 
adjusted p value < 0.05) were included for the scCv3 gene set. The aStr gene sets were then 979 
further trimmed to include only those genes that were enriched within the adaptive stromal 980 
population (aFIB and MYOF) compared to all others using the “FindMarkers” function and a 981 
minimum p value of 0.05 and average log2 fold change > 0.6. A minimal set of cycling-982 
associated genes were identified as those enriched (adjusted p value < 0.05 and average log2 983 
fold change > 0.6) in the cycling state across all associated subclass.l1 cell groupings.     984 
 985 
Scores for altered state, ECM and for gene sets associated with aging or SASP were computed 986 
for each cell from averaged normalized counts using only the genes showing a minimum 987 
correlation to the averaged whole gene set of 0.123 (github.com/mahmoudibrahim/KidneyMap). 988 
Aging and SASP genes were obtained from the Tabula Muris Consortium (top 20 genes 989 
upregulated in aging kidney)46, Takemon et al. (genes from Table S3, group.age A63), Ruscetti 990 
et al.(SASP genes from Figure 2c)64 or Basisty et al.(from Table S1 sheet IR Epithelial SASP, 991 
having a positive AVE log2 ratio)65. 992 
 993 

Gene Set Enrichment Analyses (GSEA) 994 

To compute gene set enrichments for aPT and aTAL, conserved genes differentially expressed 995 
in the adaptive over reference states were identified as indicated above. Gene set ontologies 996 
from the Molecular Signatures Database (MSigDB) were downloaded from gsea-msigdb.org 997 
and pathway enrichments computed using fgsea66 and gage67, keeping only GO that were 998 
significant (p < 0.05) for both. Redundant pathways were collapsed using the fgsea function 999 
“collapsePathways” and visualized using the ggplot.     1000 
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 1001 
SNARE2 AC analyses 1002 
SNARE2 chromatin data was analysed using Signac68 (v1.1.1). Peak calling was performed 1003 
using the “CallPeaks” function and MACS (v3.0.0a6, github.com/macs3-project/MACS) 1004 
separately for clusters, subclass.l1 and subclass.l3 level annotations. Peak regions were then 1005 
combined and used to generate a peak count matrix using the “FeatureMatrix” function, then 1006 
used to create a new assay within the SNARE2 Seurat object using the 1007 
“CreateChromatinAssay” function. Gene annotation of the peaks was performed using 1008 
“GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v86)”. TSS enrichment, nucleosome signal 1009 
and blacklist fractions were all computed using Signac. Jaspar motifs (JASPAR2020, all 1010 
vertebrate) were used to generate a motif matrix and motif object that was added to the Seurat 1011 
object using the “AddMotifs” function. For motif activity scores, chromVAR69 (v1.12.0, 1012 
greenleaflab.github.io/chromVAR) was performed using the “RunChromVAR” function. The 1013 
chromVAR deviation score matrix was then added to a separate assay slot of the Seurat object. 1014 
For visualization of the chromatin data, UMAP embeddings were computed from cis-regulatory 1015 
topics that were identified through Latent Dirichlet Allocation (LDA) using CisTopic70 (v0.3.0) 1016 
(github.com/aertslab/cisTopic) and the “runCGSModels” function. Only regions accessible in 50 1017 
nuclei and nuclei having 200 of these accessible regions were used for cisTopic and 1018 
downstream analyses. The umap coordinates for the remaining nuclei were added to the Seurat 1019 
object. To ensure high quality AC profiles, only clusters having more than 50 nuclei were 1020 
retained for downstream analyses (Supplementary Table 7).   1021 

 1022 

Differentially Accessible Site (DAR) analyses 1023 

Sites that were differentially accessible for a given cell grouping (subclass) were identified 1024 
against a selection of background cells having best matched total peak counts, in order to best 1025 
account for technical differences in the total accessibility for each cell. For this, the total peaks in 1026 
each cell were used for estimation of the distribution of total peaks (depth distribution) for the 1027 
cells belonging to the test cluster, and 10,000 background cells having a similar depth 1028 
distribution as the test cluster were randomly selected. DARs were then identified as 1029 
significantly enriched in the positive cells over selected background cells using the 1030 
“CalcDiffAccess” function (github.com/yanwu2014/chromfunks), where p-values were calculated 1031 
using a Fisher's Exact Test on a hypergeometric distribution and adjusted p-values (or q-values) 1032 
were calculated using the Benjamini & Hochberg (BH) method. For subclass level 2 DARs, 1033 
VSM/P clusters were merged and the MD was combined with C-TAL prior to DAR calling. 1034 
Subclasses having >100 DARs with q value < 0.01 were used for further analysis. Co-1035 
accessibility between all peak regions was computed using Cicero71 (v1.8.1). Sites were then 1036 
linked to genes based on co-accessibility with promoter regions, occurring within 3000 base 1037 
pairs of a gene’s transcriptional start site (TSS), using the “RegionGeneLinks” function 1038 
(github.com/yanwu2014/chromfunks) and the ChIPSeeker package72. DARs associated with 1039 
markers for each subclass (identified at the subclass.l2 level using snCv3, p value < 0.05) and 1040 
showing q value < 0.01 and log fold change > 1 were selected for visualization. For this, DAR 1041 
accessibility (peak counts) were averaged, scaled (trimming values to a minimum of 0 and a 1042 
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maximum of 5) and visualized using the ggHeat plotting function of the SWNE package73. Motif 1043 
enrichment within cell type DARs were computed using the hypergeometric test (“FindMotifs” 1044 
function) in Signac.  1045 

 1046 

Transcription factor analyses 1047 

To identify active TFs from SNARE2 AC data, differential activities (or deviation scores) of TFBS 1048 
between different populations were assessed using the “Find[All]Markers” function through 1049 
logistic regression and using the number of peak counts as a latent variable. Only TFs with 1050 
expression detected within the corresponding cluster, subclass or state grouping were included. 1051 
For PT and TAL clusters, TFBSs that were differentially active (p value < 0.05, average log2 fold 1052 
change > 0.35) and associated with TFs with expression detected in at least 2.5% of nuclei 1053 
(SNARE2) were identified between clusters. Common aPT/aTAL TFBS activities were identified 1054 
from an intersection of those differentially active and expressed within adaptive PT and TAL 1055 
clusters. For aPT and aTAL trajectory modules, TFBSs showing differential activity between 1056 
modules (adjusted p value < 0.05, average log2 fold change > 0.35) and expression detected 1057 
within at least 2.5% of nuclei/cells (snCv3/scCv3) were identified. For common degenerative 1058 
state TFBS activities, differentially active TFBS were identified between reference and 1059 
degenerative states for each level 1 subclass (Supplementary Table 13). Significant 1060 
degenerative state TFBS activities (p value < 0.05, average log2 fold change > 0.35) in 3 or 1061 
more subclass.l1 were trimmed to those showing expression detected in more than 20 percent 1062 
of the degenerative state nuclei/cells for snCv3/scCv3.  1063 

 1064 

Ligand-receptor interaction analyses 1065 

Ligand-receptor analyses were performed using the CellPhoneDB python package (v2.1.7, 1066 
github.com/Teichlab/cellphonedb) by running the statistical method on select subclasses or 1067 
trajectory (aPT, aTAL) modules. Only interactions for secreted ligands that were not associated 1068 
with integrins were visualized using ggplot. Ordering of the ligand-receptor interactions was 1069 
based on hierarchical clustering (ward.D2 method) using the ggdendro (v0.1.20) package. 1070 
Circos plots to summarize the number of interactions from one subclass subset to another were 1071 
performed using the circlize package (github.com/jokergoo/circlize).   1072 

 1073 

Plots and figures 1074 

All UMAP, feature, dot, and violin plots for snCv3, scCv3 and SNARE2 data were generated 1075 
using Seurat. Correlation plots were generated using the corrplot package. Genome coverage 1076 
plots were performed using Signac.  Plots for 3D cytometry and neighborhood analysis were 1077 
generated in R with circois, ggplot2, and igraph. 1078 
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 1079 

GWAS analyses 1080 
To link SNARE2 cell types to kidney GWAS traits and diseases, we first summed the binary 1081 
peak accessibility profiles for all cells belonging to the same cell type to create a pseudobulk 1082 
peak-by-subclass accessibility matrix. Pseudobulk analyses give more stable results, especially 1083 
since SNARE2 accessibility data can be sparse. To ensure sufficient coverage, we used 1084 
subclass level 2 groupings with the following modifications: VSM/P clusters were merged; MD 1085 
was combined with C-TAL; subclasses having <100 DARs with q value < 0.01 were excluded. 1086 
We used g-chromVAR74 (v0.3.2), an extension of chromVAR for GWAS data, to identify cell 1087 
types with higher than expected accessibility of genomic regions overlapping GWAS-linked 1088 
SNPs. Running g-chromVAR requires first identifying GWAS-linked SNPs that are more likely to 1089 
be causal, a process known as fine-mapping. For the Chronic Kidney Failure GWAS traits, we 1090 
used existing fine-mapped SNPs from the CausalDB database, using the posterior probabilities 1091 
generated by CAVIARBF75,76. The original GWAS summary statistics files were obtained from 1092 
an atlas of genetic associations from the UK Biobank77. We manually fine-mapped the Chronic 1093 
Kidney Disease, eGFR, Blood Urea Nitrogen, and Gout traits using the same code that was 1094 
used to generate the CausalDB database (github.com/mulinlab/CAUSALdb-finemapping-pip). 1095 
The summary statistics for all of these traits are available at the CKDGen Consortium site 1096 
(ckdgen.imbi.uni-freiburg.de/)78,79. We also manually fine-mapped the Hypertension trait and the 1097 
original summary statistics can be found on the EBI GWAS Catalog80. We only looked at causal 1098 
SNPs with a posterior causal probability of at least 0.05 in order to ensure SNPs with low causal 1099 
probabilities did not cause false positive signals. Also, since g-chromVAR selects a semi-1100 
random set of peaks with similar average accessibility and GC content as background peaks, 1101 
the method has an element of randomness. In order to ensure stable results, we ran g-1102 
chromVAR 20 times and averaged the results. Cluster/trait z-scores were plotted using ggheat 1103 
(github.com/yanwu2014/swne). 1104 

To link causal SNPs to genes, we used functions outlined in the chromfunks repository 1105 
(github.com/yanwu2014/chromfunks, /R/link_genes.R). This involved the identification of causal 1106 
peaks for each cell type and trait (minimum peak Z score of 1, minimum peak posterior 1107 
probability score of 0.025). Sites were then linked to genes based on co-accessibility (Cicero) 1108 
with promoter regions, occurring within 3000 base pairs of a gene’s transcriptional start site 1109 
(TSS). Only sites associated with genes detected as expressed in 10% of TAL nuclei/cells 1110 
(snCv3/scCv3) were included. Motif enrichment within the causal SNP and TAL associated 1111 
peaks was performed using the “FindMotifs” function in Seurat and only motifs for TFs 1112 
expressed in 10% of TAL nuclei/cells (snCv3/scCv3) were included (Supplementary Table 28). 1113 
For a TAL-associated ESRRB TF sub-network, peaks were linked to genes using Cicero, then 1114 
subset to those associated with TAL (C-TAL, M-TAL) marker genes that were identified using 1115 
the “Find[All]Markers” function in Seurat for subclass.l3 (p value < 0.05). TFs were then linked to 1116 
gene-associated peaks based on the presence of the motif and correlation of peak and TFBS 1117 
co-accessibility (chromVAR), using a correlation cutoff of 0.3. Only TFs with expression 1118 
detected within 20% of TAL cells or nuclei (snCv3/scCv3) were included. Eigenvector 1119 
centralities were then computed using igraph and the TF-to-gene network visualized using 1120 
“PlotNetwork” in chromfunks.      1121 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://paperpile.com/c/tICV3r/xFdx
https://paperpile.com/c/tICV3r/8nRk+Z8GE
https://paperpile.com/c/tICV3r/Uu6R
https://paperpile.com/c/tICV3r/WJtM
https://paperpile.com/c/tICV3r/D77i
https://paperpile.com/c/tICV3r/sf55
https://doi.org/10.1101/2021.07.28.454201


 1122 

Patient cohorts used for clinical association analyses 1123 

Neptune81 (199 adult patients) and ERCB44 (111 patients) expression data were used as 1124 
validation cohorts to determine the significance between patients with different levels of cell 1125 
state gene expression. NEPTUNE (NCT01209000) is a multi-center (21 sites), prospective 1126 
study of children and adults with proteinuria recruited at the time of first clinically indicated 1127 
kidney biopsy (Supplementary Table 30). The study participants were followed prospectively, 1128 
every 4 months for the first year, and then biannually thereafter for up to 5 years. At each study 1129 
visit, medical history, medication use, and standard local laboratory test results were recorded, 1130 
while blood and urine specimens were collected for central measurement of serum creatinine 1131 
and urine protein/creatinine ratio (UPCR) and eGFR (mL/min/1.73m2). End stage kidney 1132 
disease (ESKD) was defined as initiation of dialysis, receipt of kidney transplant or eGFR <15 1133 
mL/min/1.73m2 measured at two sequential clinical visits; and the composite endpoint of kidney 1134 
functional loss by a combination of ESKD or 40% reduction in eGFR82. Genome wide 1135 
transcriptome analysis was performed on the research core obtained at the time of a clinically-1136 
indicated biopsy using RNA-sequencing (RNA-seq) by the University of Michigan Advanced 1137 
Genomics Core using  Illumina HiSeq2000. Read counts were extracted from the fastq files 1138 
using HTSeq (version 0.11). Neptune mRNA sequencing and clinical data are controlled access 1139 
data and will be available to researchers upon request to NEPTUNE-STUDY@umich.edu.  1140 

ERCB is the european multicenter study that collects biopsy tissue for gene expression profiling 1141 
across 28 sites. Transcriptional profiles of biopsies from patients in the ERCB were obtained 1142 
from GEO (GSE104954). 1143 

 1144 

Clinical association of cell state scores 1145 

The gene expression data from tubulointerstitial compartment of the kidney biopsies from 1146 
Neptune patients was used to calculate the composite scores for the genes enriched in 1147 
degenerative, aPT, aTAL, and aStr states. The expression of the genes that were uniquely 1148 
enriched in the cell state (described above) and that were found in both snCv3 and scCv3 were 1149 
used to calculate the composite cell state score (Supplementary Table 27). Since scCv3 did 1150 
not efficiently identify all stromal cell types, the union of the enriched genes from scCv3 and 1151 
snCv3 data were used to calculate the aStr cell state score. We also generated a cell state 1152 
score for the genes that were commonly enriched in aPT and aTAL cells.  1153 

For outcome analyses (40% loss of eGFR or ESKD), patient profiles were binned according to 1154 
the degree of cell state score by tertile. Kaplan-Meier (K-M) analyses were performed using log 1155 
rank tests to determine significance between patients with different levels of cell state gene 1156 
expression. In the ERCB cohort, differential expression analyses were performed between the 1157 
cell state scores in the disease group and living donors. The cell state scores for both Neptune 1158 
and ERCB bulk mRNA transcriptomics data were generated22. Briefly, the cell state scores were 1159 
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generated by creating Z scores for each of the cell state gene sets and then using the average 1160 
Z score as the cell state composite score. 1161 
  1162 
 1163 
Sample level analysis and clustering on clinical association gene sets 1164 
 1165 
To find association between the expression patterns of patients and clinical genesets (see 1166 
previous method). We performed sample-level clustering using the expression profiles from the 1167 
clinical genesets (Supplementary Table 27). All the cells from the same patient in snCv3 and 1168 
scCv3 were aggregated to get pseudo-bulk count matrices. The matrices were further normalized 1169 
by RPKM followed by tSNE dimension reduction. Groups of patients were then identified based 1170 
on k-means clustering and density based methods in the reduced spaces. Patients identified as 1171 
the same clusters were grouped together. To associate the patient pattern with clinical features, 1172 
we calculated the distribution of eGFR in each identified group (see code repo). 1173 
 1174 
To identify genesets that best differentiate AKI and CKD patients in Adaptive PT and TAL cell 1175 
population, we trained a gene-specific logistic regression model based on the sample-level gene 1176 
expression, the model was used to assess the predictive power that differentiate AKI and CKD 1177 
patients in both snCv3 and scCv3 measured by area under the curve (AUC). The genes with AUC 1178 
> 0.65 on both snCV3 and scCv3 were selected for downstream analysis (Supplementary Table 1179 
29). 1180 
 1181 

Pseudo-time analysis of PT and TAL cells 1182 

To find cells associated with disease progression, we performed trajectory analysis for PT and 1183 
TAL cells. To get accurate pseudo-time and trajectory estimation, we removed degenerative cell 1184 
populations in both PT and TAL and inferred the trajectory for single nuclei and single cell 1185 
separately using the Slingshot package83 (Verson: 2.0.0). We specified normal cell populations 1186 
as the start points for trajectory inference (S1-S3 in PT and M-TAL in TAL) using Slingshot 1187 
parameter start.clus. The correspondent trajectory embedding was visualized using 1188 
plotEmbedding function in the pagoda2 package. 1189 

To identify if the gene expression was statistically significantly associated with the inferred 1190 
trajectory, we modeled the expression of a gene as a function of the estimated pseudo-time by 1191 
fitting a gam model with cubic spline regression using formula expi ~ t, where t is the pseudo-time. 1192 
The model is then compared to a reduced model expi ~ 1 to get p-value estimates using F-test. 1193 
Benjamini-Hochberg method was used to calculate the adjusted p-values. To further identify the 1194 
conditional differences of expression along the trajectory, we extended the base gam model by 1195 
fitting a conditional-smooth interaction using “CKD” as a reference. The significant results for the 1196 
extended model show the genesets whose expression levels are conditionally different along the 1197 
inferred trajectory. We visualized the smoothed curve along with expression values for specific 1198 
genes as a function of pseudo-time, which was implemented in plot_gene_psedotime function 1199 
(see code repo). 1200 
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 1201 

Gene module detection and cell assignment 1202 

To identify expression modules for significant gene sets along estimated trajectory, we applied 1203 
the module detection algorithm implemented in WGCNA package84 (Version: 1.70-3) based on 1204 
the smoothed gene expression matrix with parameters softPower=10 and minModuleSize=20. 1205 
The similar modules detected by the original parameters were further merged. In total, we 1206 
identified 5 different modules in PT and 6 modules in TAL cells. For the genesets in each 1207 
module, we further performed pathway analysis using the Reactome online tool85 1208 
(reactome.org/PathwayBrowser/). In addition, to determine the direction of disease progression, 1209 
we investigated the enrichment of clinical associated gene sets for each module by performing 1210 
log ratio enrichment tests (Extended Data Fig. 12c, g). 1211 

To identify cells that are associated with each module, we developed a systematic approach. 1212 
Briefly, for the cells in the smoothed expression matrix, we performed dimension reduction using 1213 
PCA followed by louvain clustering. This allowed identification of cell clusters along the 1214 
trajectory. For the identified cell clusters, we then did hierarchical clustering to calculate the 1215 
correlation of each module based on mean gene expression values and further linked the 1216 
clusters with associated modules by cutting the hierarchical tree. Finally, module labels for each 1217 
cell were assigned based on its associated clusters. To link scCv3 data sets with snCv3 1218 
modules, we performed k-means clustering based on the joint embedding of PT/TAL cells and 1219 
assigned the cells in scCv3 to modules based on the majority voting from its k’s nearest 1220 
neighbors (see code repo). 1221 

To further investigate cluster-free compositional change between disease conditions, we also 1222 
performed cell density analysis, where we compared the normalized cell density between AKI 1223 
and CKD conditions through 2D kernel estimates using Cacoa Package 1224 
(github.com/kharchenkolab/cacoa). Z-scores were calculated to identify the regions that showed 1225 
significant differences of cell density. 1226 

 1227 
SLIDE-Seq2 1228 
Puck preparation and sequencing. Tissue pucks were prepared and sequenced18,86 according to 1229 
the step-by-step protocol: dx.doi.org/10.17504/protocols.io.bvv6n69e. Libraries were sequenced 1230 
on a NovaSeq S2 flowcell (NovaSeq 6000) with a standard loading concentration of 2nM (read 1231 
structure: Read 1 - 42 bp, Index 1 - 8 bp, Read 2 - 60 bp, Index 2 - 0 bp). Demultiplexing, 1232 
genome alignment and spatial matching was performed using Slide-seq tools 1233 
github.com/MacoskoLab/slideseq-tools/releases/tag/0.1. 1234 
 1235 
 1236 
Deconvolution. We used Giotto87 (version 1.0.3) for handling the slide-seq data and RCTD88 1237 
(version 1.1.0) for the cell type deconvolution. Since only reference tissue was used for slide-1238 
seq and it only contained the kidney cortex, all degenerative states and medullary subtypes 1239 
were removed from the snCv3 cell subclasses prior to deconvolution. The counts from all beads 1240 
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across all pucks were pooled and deconvolved hierarchically: first, the broad subclass level 1 1241 
annotations in the Seurat object were used to deconvolve all beads (gene_cutoff = 0.0001, 1242 
gene_cutoff_reg = 0.00015, fc_cutoff = 0.4, fc_cutoff_reg = 0.5). The prediction weights were 1243 
normalized to sum to 100 per bead. Beads for which one cell type had a relative weight of 50% 1244 
or higher were classified as that cell type. Then, for each level 1 subclass, all classified beads 1245 
were further deconvolved using the level 2 annotation of that subclass, as well as the remaining 1246 
subclass level 1 annotations (same parameters as level 1). Classification at subclass level 2 1247 
was done similar to level 1. Note that the bulk parameters in RCTD were fitted using all beads 1248 
before subsetting the RCTD object to contain only beads confidently classified to a specific 1249 
subclass. For all further analyses, we used only those pucks for which the median UMI per bead 1250 
was higher than 100 (puck IDs with the format Puck_20090X_XX). 1251 
 1252 
Cell type interaction. For each puck we first consolidated all the subclass level 2 immune 1253 
subtypes, then subsetted to those beads that had a level 2 classification (relative weights 1254 
greater than 50%). Delauney network was constructed for the remaining beads and Giotto’s 1255 
“cellProximityEnrichment” was used to find the proximity enrichment of cell types at annotation 1256 
level 2. To generate the interaction plot in Figure 2d, the enrichment values for each cell type 1257 
pair were averaged across all pucks. The heterotypic interactions with enrichment higher than 1258 
0.6 were plotted with “cellProximityNetwork” in Giotto. 1259 
 1260 
 1261 
10X Visium 1262 
Human kidney tissue was prepared and imaged according to Visium Spatial Gene Expression 1263 
protocols (10x Genomics) according to the manufacturer protocol (CG000240 protocol, Visium 1264 
Tissue Preparation Guide) and as previously described 89. Tissue was sectioned at 10 µm 1265 
thickness from Optimal Cutting Temperature (OCT) compound embedded blocks. A Keyence 1266 
BZ-X810 microscope equipped with a Nikon 10X CFI Plan Fluor objective was used to acquire 1267 
hematoxylin and eosin (H&E) stained brightfield mosaics which were subsequently stitched. 1268 
mRNA was isolated, libraries prepared, and sequencing was performed on an Illumina NovaSeq 1269 
600090. mRNA was isolated from stained tissue sections after permeabilization for 12 minutes. 1270 
Released mRNA was bound to oligonucleotides in the fiducial capture areas. mRNA was then 1271 
reverse transcribed and underwent second strand synthesis, denaturation, cDNA amplification, 1272 
and SPRIselect cDNA cleanup (Visium CG000239 protocol). Space Ranger (v1.0.0) with the 1273 
reference genome GRCh38 3.0.0 was used to perform expression analysis, mapping, counting, 1274 
and clustering. Normalization was performed with SCTransform. Final data processing was 1275 
done in Seurat (v3.2.3). A transfer score system was used to assess and map the proportion of 1276 
signatures arising from each 55 µm spot. The transfer score reflects a probability between each 1277 
spot’s signature and its association with a given snCv3 subclass (level 3). Seurat transfers the 1278 
snCv3 subclass labels according to the transfer score. The highest probability transfer scores 1279 
have the highest proportion mapped within each spatial transcriptomics spot pie graph. In cell 1280 
state analyses, instead of mapping the subclasses, the six cell states annotated in snCv3 were 1281 
mapped across all spots in the samples. To determine whether the 75 snCv3 subclasses (level 1282 
3) were appropriately mapped to histologic structures, the proportion of signature in each spot 1283 
was compared to a histologically validated set of six unsupervised clusters defined by Space 1284 
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Ranger (in Extended Data Fig. 7D)89. These six unsupervised clusters (glomerulus, proximal 1285 
tubule, loop of Henle, distal convoluted tubule, connecting tubule and collecting duct, and the 1286 
interstitium) had an overall alignment of 97.6% with the underlying histopathologic structures in 1287 
the H&E image.  1288 
 1289 
Label-free and multi-fluorescence large-scale 3D imaging  1290 
Kidney biopsy cores frozen in OCT from patients with acute kidney injury or chronic kidney 1291 
disease enrolled in KPMP were used for label-free imaging followed by multiplexed-1292 
fluorescence large scale 3D imaging as outlined in the following protocol: 1293 
dx.doi.org/10.17504/protocols.io.9avh2e6, and described in a recent publication by Ferkowicz et 1294 
al.27. Frozen biopsies were sectioned to a thickness of 50 µm using a cryostat and then 1295 
immediately fixed in 4% fresh paraformaldehyde (PFA) for 24 hrs, and subsequently stored at 1296 
4°C in 0.25% PFA.  1297 
 1298 
The first step in imaging consists of label-free imaging with multiphoton microscopy to collect 1299 
autofluorescence and second harmonic images of the unlabeled tissue mounted in non-1300 
hardening mounting medium. Imaging was conducted using a Leica SP8 confocal scan-head 1301 
mounted to an upright DM6000 microscope.  For large-scale imaging of tissues at submicron 1302 
resolution, the Leica Tile Scan function was used to collect a mosaic of smaller image volumes 1303 
using a high-power, high-numerical aperture objective. Leica LASX software (v. 3.5) was then 1304 
used to stitch these component volumes into a single image volume of the entire sample. The 1305 
scanner zoom and focus motor control were set to provide voxel dimensions of 0.5 x 0.5 um 1306 
laterally and 1 um axially.  1307 
 1308 
Labeling of tissue for fluorescence microscopy was preceded by washing in phosphate-buffered 1309 
saline (PBS) and blocking with PBS with 0.1% Triton X-100 (MP Biomedical) and 10% Normal 1310 
Donkey Serum (Jackson Immuno Research). Antibodies for indirect immunofluorescence were 1311 
applied first for 8-16 hours at room temperature, followed by washing cycles of PBS with 0.1% 1312 
Triton X-100. Incubation cycle with secondary antibodies occurred next, followed by washing 1313 
and finally application of directly labeled antibodies. Antibodies targeting markers for tubular 1314 
cells and structures (Aquaporin-1, Uromodulin, F-actin) and immune cells (Myeloperoxidase, 1315 
CD68, CD3, Siglec 8) were used, in addition to nuclei labeling using DAPI (Supplementary 1316 
Table 31). After final washing cycles, the tissue was mounted in Prolong Glass (Thermo Fisher).  1317 
 1318 
Confocal microscopy was conducted using a Leica 20x 0.75 NA multi-immersion objective 1319 
(adjusted for oil immersion), with excitation sequentially provided by a solid state laser launch 1320 
with laser lines at 405 nm, 488 nm, 552 nm and 635 nm. Images in 16 channels (emission 1321 
spectra collected by PMT detectors adjusted for the following ranges: 410-430nm, 430-450nm, 1322 
450-470nm, 470-490 nm, 500-509nm, 510-519nm, 520-530nm,  530-540nm, 570-590nm, 590-1323 
610nm, 610-630nm, 631-651nm, 643-664nm, 664-685nm, 685-706nm and 706-726nm)   were 1324 
collected for each focal plane of each panel of the 3D mosaic. The resulting 16-channel image 1325 
is then spectrally deconvolved (via linear unmixing using the Leica LASX linear unmixing 1326 
software) to discriminate the 8 fluorescent probes in the sample. Validation of the linear 1327 
unmixing has been described in a previous publication27. 1328 
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 1329 
Confocal immunofluorescence microscopy 1330 
Human kidney tissue samples from cortex or medulla were fixed in 4% PFA, cryopreserved in 1331 
30% sucrose and frozen in O.C.T cryomolds, and were cut into 5 μm sections. Sections were 1332 
post fixed with 4% PFA for 15 min at room temperature, blocked in blocking buffer (1% BSA, 1333 
0.2% skim milk, 0.3% Triton x-100 in 1X PBS) for 30 minutes at room temperature and then 1334 
immunofluorescence microscopy was performed by first using overnight incubation at 4 0C with 1335 
primary antibodies and then followed by labeling with secondary antibodies. The primary 1336 
antibodies included NRXN-1beta, Tuj1, collagen I & III, Synapsin-1, NPSH-1, SLC14A2, UMOD, 1337 
CD31, CD34, CD11b, PROM1, KIM1, VCAM1, AQP1, AQP2, CD45 and S100 (Supplementary 1338 
Table 32). After washing, labeling with the secondary antibodies was performed using Alexa-1339 
488 conjugated goat anti-mouse IgG, or Cy3- conjugated goat anti-rabbit IgG, or Cy5- 1340 
conjugated donkey anti-goat IgG at room temperature for one hour. After washing, sections 1341 
were counterstained with DAPI for nuclear staining. Images were acquired with a Nikon 80i C1 1342 
confocal microscope.  1343 

Tissue cytometry and in situ cell classification 1344 
Tissue cytometry and analysis were conducted using the Volumetric Tissue Exploration and 1345 
Analysis (VTEA) software (v1.0a-r9). VTEA is a 3D image processing workspace that was 1346 
developed as a plug-in for ImageJ/FIJI91.  The version of VTEA which includes the supervised 1347 
and unsuerives labeling of cells and combining spatial and features based gating strategies 1348 
used here is available at: github.com/icbm-iupui/volumetric-tissue-exploration-analysis. In this 1349 
analytical pipeline, each individual nucleus was segmented using an intensity thresholding and 1350 
connected components segmentation built into VTEA and ImageJ. Each surveyed nucleus 1351 
became a surrogate for its cell, to which the location and marker staining around or within the 1352 
nucleus could be registered. This captured information could be used to classify cells based on 1353 
marker intensity or spatial features using scatterplot displays that allow various gating strategies 1354 
and statistical analysis, including export as .csv files of all segmented cells and the associated 1355 
features92. Cells classified based on marker intensity are summarized in Supplementary Table 1356 
33. Gated cells were mapped back directly into the image volumes, which allowed immediate 1357 
validation of the gates. In addition, direct gating on the image could be performed, which could 1358 
trace all the cells within the chosen region-of-interest back to the data display on the scatter 1359 
plot. Therefore, cell classification could also be performed based on direct annotation of 1360 
regions-of-interest (ROIs) within the image volumes.   1361 
 1362 
Using tissue cytometry, 14 cell classes were defined based on the following features: 1363 

● Proximal tubules (PT) cells:  AQP1+ cells in cortex +/- brush border staining; 1364 
● Cortical thick ascending limbs cells, C-TAL: UMOD+ cells in cortex 1365 
● Glomerular cells (which encompass podocytes, glomerular endothelium and mesangial 1366 

cells) annotated ROIs based on morphology and F-actin staining 1367 
● Cortical large and medium vessel cells: annotated ROIs based on morphology and F-1368 

actin staining. 1369 
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● Cortical distal nephron cells (distal tubules (CD), connecting tubules (CNT) and 1370 
collecting ducts (C-CD): AQP1-, UMOD- and annotated ROIs based on unique 1371 
morphology in cortex. 1372 

● Medullary thick ascending limbs cells, M-TAL: UMOD+ cells in medulla 1373 
● Descending thin limbs cells (DTL): AQP1+ cells in medulla 1374 
● Medullary collecting ducts (M-CD): AQP1-, UMOD- and annotated ROIs based on 1375 

unique morphology in medulla. 1376 
● Vascular bundles in the medulla (VB):  annotated ROIs based on unique morphology in 1377 

medulla and F-actin staining 1378 
● Neutrophils: MPO+ cells 1379 
● Activated macrophages: MPO-, CD68+ cells 1380 
● T cells: CD3+ cells 1381 
● Cells in altered regions: annotated ROIs based on loss of (unrecognizable) tubular 1382 

morphology, expanded interstitium,  increased fibrosis (by second harmonic generation 1383 
imaging) and cell infiltrates. 1384 

● Not determined: unable to be classified based on the criteria above 1385 
 1386 
Using such an approach,1,540,563 cells were classified from all the biopsies used in this 1387 
analysis. Annotated ROIs were curated and vetted by the pixel wise agreement between 3 of 4 1388 
experts who performed the individual annotation on each biopsy specimen separately.  1389 
 1390 
3D Neighborhood building and representation 1391 
 1392 
3D neighborhoods were calculated for every cell in each biopsy using VTEA and a radius of 25 1393 
um (50 voxels in x and y and 25 voxels in z).  For each 3D neighborhood, VTEA was used to 1394 
calculate the features: fraction-of-total and sum of each labeled cell was calculated by VTEA.  A 1395 
list of neighborhoods, positions in 3D and their features was exported by biopsy specimen 1396 
image as .csv files. 1397 
 1398 
Neighborhood visualization and statistical analysis 1399 
 1400 
CSV files generated in VTEA for neighborhoods by biopsy specimen were imported into R (v 1401 
4.0.4), parsed for the features sum of each label and monotypic neighborhood removed. These 1402 
features were scaled by Z-standardization and used for louvain community detection (R 1403 
packages: FNN and igraph) and t-SNE manifold projection (R package: Rtsne).  To understand 1404 
the interactions within neighborhoods, pairwise interactions by neighborhood were tallied and 1405 
plotted on a chord plot (R package: circlize) and Pearson’s correlation coefficients were 1406 
calculated and plotted (R package: Hmisc and corrplot).  Subclasses of neighborhoods, those 1407 
with at least one cell with a specific label were selected and plotted as network plots (R 1408 
package: igraph) with edges in CD3 and Altered neighborhoods scaled at 40% of all other 1409 
subclasses to facilitate visualization.  All scripts are provided as an annotated RStudio notebook 1410 
file(.Rmd).  1411 
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Data Availability 1412 

 1413 
Raw sequencing and imaging data (snCv3, scCv3, 3D imaging) generated as part of the Kidney 1414 
Precision Medicine Project (KPMP) has been deposited at atlas.kpmp.org. Raw sequencing 1415 
data (snCv3, SNARE2, Slide-seq) generated as part of the Human Biomolecular Atlas Project 1416 
(HuBMAP) has been deposited at portal.hubmapconsortium.org/. Raw sequencing data (scCv3) 1417 
on living donor biopsies as part of the Chan Zuckerberg Initiative (CZI) and Human Cell Atlas 1418 
(HCA) will be available in the Gene Expression Omnibus (GEO) as GSE169285. Visium spatial 1419 
transcriptomic data is available in GEO as GSE171406. Neptune sequencing and clinical data is 1420 
available upon request to NEPTUNE-STUDY@umich.edu. ERCB data was obtained from GEO 1421 
as GSE104954. KPMP snCv3 and scCv3 cell types and expression profiles can be interrogated 1422 
using the KPMP Data Atlas Explorer: https://atlas.kpmp.org/explorer. snCv3 healthy reference 1423 
data is available for reference-based single cell mapping by the Azimuth tool: 1424 
azimuth.hubmapconsortium.org/. 1425 
 1426 

Code Availability 1427 

Code to reproduce figures will be available to download from github.com/KPMP/Cell-State-1428 
Atlas-2021.  1429 
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Extended Data Figure 1. snCv3 cell types and quality metrics. a. UMAP plots for snCv3 1505 
clusters, with insets showing the corresponding tissue regions, sex, patient identities and 1506 
conditions. b. Bar and violin plots for snCv3 patients shown in (a). Barplots showing the total 1507 
number of post-QC nuclei used in the snCv3 clustering analysis, and the proportions that were 1508 
associated with level 1 subclasses, regions sampled or the health or disease conditions. Violin 1509 
plots show the percentage of transcripts associated with the mitochondria (Mt) or endoplasmic 1510 
reticulum (ER), as well as mean genes and mean transcripts detected per patient sample. c. 1511 
Bar and violin plots as in (b) for snCv3 clusters shown in (a), including proportion of nuclei 1512 
contributed by each patient. 1513 
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Extended Data Figure 2. snCv3 marker genes and comparison with reference data. a. Dot 1517 
plot showing averaged marker gene expression values (log scale) and proportion expressed for 1518 
snCv3 clusters. b. Cell type labels predicted from Lake et. al. 201911 mapped on the snCv3 1519 
UMAP embedding. Inset shows the corresponding prediction score values. c. Heatmap showing 1520 
correlation of averaged scaled gene expression values for snCv3 epithelial (reference state) 1521 
clusters and mouse bulk segmental RNA-seq data from Chen et al., 202158. d. Heatmap 1522 
showing correlation of averaged scaled gene expression values for snCv3 distal tubule clusters 1523 
(reference states) and mouse scRNA-seq data from Chen et al., 202158. e. Heatmap showing 1524 
correlation of averaged scaled gene expression values for snCv3 clusters (reference and 1525 
altered/adaptive states) and mouse snRNA-seq clusters from Kirita et al., 20203. f. Heatmap 1526 
showing correlation of averaged scaled gene expression values (reference states) for snCv3 1527 
clusters and mouse scRNA-seq clusters from Ransick et al., 201956. g. Heatmap showing 1528 
correlation of averaged scaled gene expression values for snCv3 stromal clusters (reference 1529 
and altered/adaptive states) against human scRNA-seq clusters from Kuppe et al., 202023. h. 1530 
Heatmap showing correlation of averaged scaled gene expression values for snCv3 immune 1531 
cell clusters and mouse immune cell types from Immgen.org. i. Heatmap showing correlation of 1532 
averaged scaled gene expression values for snCv3 immune cell clusters and human immune 1533 
cell types from Monaco et al. 201959.  1534 
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Extended Data Figure 3. scCv3 integration and quality metrics. a. UMAP plot showing 1538 
independent clustering and annotation of scCv3 data. b. UMAP showing integrated snCv3 and 1539 
scCv3 clustering and harmonized subclass level 3 annotations. Inset shows location of scCv3 1540 
cells. c. Heatmap showing correlation of averaged scaled gene expression values for snCv3 1541 
and scCv3 using harmonized subclass level 3 annotations. d. UMAP plot showing scCv3 data 1542 
projected into the snCv3 embedding shown in Fig. 2b. Insets show mapping of the 1543 
corresponding sex, patient identities and conditions. e. Barplots showing the total number of 1544 
post-QC nuclei per scCv3 subclass level 3, and the proportions that were associated with 1545 
patients sampled or health/disease conditions. Violin plots show the percentage of transcripts 1546 
associated with the mitochondria (Mt) or endoplasmic reticulum (ER), as well as mean genes 1547 
and mean transcripts detected per subclass. 1548 
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Extended Data Figure 4. SNARE2 integration and quality metrics. a. UMAP plot showing 1552 
SNARE2 RNA data projected onto the snCv3 embedding (Fig. 2b) and the corresponding 1553 
harmonized cluster annotations. Insets show mapping of the tissue region, sex and patient 1554 
identities. b. Heatmap showing correlation of averaged scaled gene expression values for 1555 
SNARE2 and snCv3 using harmonized cluster annotations. c. UMAP embedding for SNARE2 1556 
AC based on Cistopic70 derived embeddings and showing harmonized clusters annotations as 1557 
in (a). d. Barplots showing the total number of post-QC nuclei per SNARE2 cluster, and the 1558 
proportions that were associated with patient or region sampled. Violin plots show the mean 1559 
genes, transcripts (SNARE2 RNA) and mean peaks, TSS enrichments and blacklist fractions 1560 
(SNARE2 AC) detected per cluster. 1561 
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Extended Data Figure 5. SNARE2 cell type regulatory profiles. a. Coverage plots showing 1567 
SNARE2 AC read pile-ups for genomic regions associated with cell type marker genes. Violin 1568 
plots show corresponding SNARE2 RNA gene expression values. b. Heatmaps showing 1569 
averaged scaled chromatin accessibility values for differentially accessible regions (DARs) 1570 
identified for cell type specific differentially expressed genes (DEGs, Methods). Select TF motifs 1571 
enriched within the cell type specific DARs are shown. c. Dot plots showing average TFBS 1572 
accessibilities (chromVAR) and proportion accessible for SNARE2 AC cell types.   1573 
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Extended Data Figure 6. Slide-seq predicted cell types. a. Top: normalized RCTD weights 1578 
for the beads classified at subclass level 2 (Methods). Middle: UMI counts per bead for 1579 
classified beads. Bottom: relative frequency of cell types predicted across pucks. b. Expression 1580 
of cell type markers identified by snCv3 in the classified Slide-seq beads. c. Two representative 1581 
pucks showing subclass level 2 classifications. Cell types are grouped into 3 categories and 1582 
plotted separately for clarity. For panels a and b, all pucks from a single individual with median 1583 
UMI of 100 or more were pooled together. Puck diameter is 3mm.  1584 
 1585 
  1586 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454201


1587 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.28.454201doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.28.454201


Extended Data Figure 7. 10X Visium predicted cell types. a. Analysis of subclass prediction 1588 
on Visium spots for 4 reference nephrectomies and 4 biopsy specimens with chronic kidney 1589 
disease (CKD). The top panel presents the distribution of transfer scores for the subclass (level 1590 
3) with the highest score in each spot. The middle panel presents the UMI counts associated 1591 
with these spots. The bottom panel depicts the proportion of transcriptomic signatures for each 1592 
subclass. In every spot subclass which had a non-zero transfer score, a fraction of the spot was 1593 
assigned to the subclass, proportional to its transfer score relative to all non-zero transfer 1594 
scores in that spot. b. Proportion of transcriptomic signatures in 4 CKD biopsies and 4 1595 
Reference nephrectomies. Left panel presents cell type classes and the right panel presents cell 1596 
states. Where significance is indicated, p values are lower than 10-4 as calculated by a Fisher’s 1597 
Exact test. c. Gene expression of select cell markers by predicted subclass (level 3) for all 8 1598 
samples. d. Alignment between the predicted cell type subclass and unsupervised clusters that 1599 
were histologically validated (Methods). e. Detailed region of a CKD biopsy with fibrosis (left 1600 
outline) and surrounding altered PT (right outline). The first panel presents the histological 1601 
image, the middle panel shows the proportion of each cell state mapped to the spots, and the 1602 
right panel shows the proportion of cell type subclasses. Each spot is 55 μm in diameter. f. 1603 
Predicted transfer scores of fibroblasts and immune cell types in the region shown in (e). g. 1604 
Detail of a region of immune cell infiltration (circle outline) and surrounding altered PT (outer 1605 
crescent outline) on a CKD. From left to right: the histological image, the proportion of cell states 1606 
predicted to each spot, and the proportion of subclasses. h. Predicted transfer scores for 1607 
proximal tubules and MyoF and monocytes in the regions shown in (g). 1608 
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Extended Data Figure 8. Adaptive epithelial state signatures. a. Immunofluorescent staining 1613 
of VCAM1, AQP1, KIM1 (HAVCR1) in the aPT and UMOD, PROM1 and KIM1 in the TAL. Scale 1614 
bars represent 20 µm. b. Gene Set Enrichment Analysis (GSEA) for genes upregulated or 1615 
downregulated in adaptive epithelial states compared to reference states. c. Dot plot showing 1616 
averaged marker gene expression values (log scale) and proportion expressed for snCv3 1617 
clusters. d. Dot plots showing SNARE2 average accessibilities (chromVAR) and proportion 1618 
accessible for TFBSs showing differential activity in both aPT and aTAL. 1619 
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Extended Data Figure 9. Single cell or nucleus altered state scoring. a. Dot plot showing 1624 
averaged marker gene expression values (log scale) and proportion expressed for integrated 1625 
snCv3/scCv3 reference, degenerative and adaptive stromal clusters. b. Violin plots showing 1626 
adaptive state scores and ECM (matrisome) scores for snCv3 clusters. c. Violin plots as in (b) 1627 
for scCv3 subclasses. d. Violin plots showing degenerative state scores and degenerative 1628 
features (percent mitochondrial transcripts; percent ER or ribosomal transcripts; CST3, CLU and 1629 
IGFBP7 expression) for reference or degenerative states of snCv3 level 1 subclasses. e. Violin 1630 
plots as in (d) for scCv3 level 1 subclasses. f. Dot plots showing SNARE2 average 1631 
accessibilities (chromVAR) and proportion accessible for common degenerative TFBSs showing 1632 
differential activity in 3 or more subclass level 1 cell types. g. Violin plots showing adaptive 1633 
epithelial (aEpi) and cycling state scores for integrated snCv3/scCv3 level 3 subclasses split by 1634 
condition (reference, AKI, CKD). 1635 
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Extended Data Figure 10. A healthy kidney reference atlas. a. UMAP plot of reference state 1640 
level 3 subclasses for both snCv3 and SNARE2 (RNA) data. Insets show mapping of the tissue 1641 
region, sex and assay identities. b. Dot plot showing averaged marker gene expression values 1642 
(log scale) and proportion expressed for integrated snCv3/SNARE2 level 3 subclasses. 1643 
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 1646 
 1647 
Extended Data Figure 11. 3D imaging identifies injury neighborhoods. a. Maximum 1648 
intensity projections of immunofluorescence and second harmonic images for 13 example 1649 
biopsies, scale bars 500 um. b. distribution of neighborhoods by specimen in neighborhood 1650 
clusters plotted in tSNE space from Fig. 4. c. Feature plots of the number of cells per 1651 
neighborhood for cortical TAL (C-TAL), altered morphology and proximal tubule (PT).  C-TALs 1652 
and PTs are found in neighborhoods with altered morphology, cyan and orange vs. red and 1653 
magenta arrowheads. d and e, pairwise subset analysis of CD3+, PT and TAL (orange, 1654 
magenta and cyan arrows respectively). CD3+ cells cluster in regions of fibrosis (orange 1655 
arrowhead and white asterisks). UMOD positive casts associate with regions of injury and CD3+ 1656 
cells (orange asterisk), the tubular epithelium is intact with brush borders (white #), has 1657 
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evidence of epithelial simplification (orange #) and shows a loss of marker and epithelial 1658 
simplification (red #). Scale bar 100 um. 1659 
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Extended Data Figure 12. Expression signatures of adaptive epithelia. a. Umap embedding 1663 
of PT cells colored by assigned modules (Fig. 5). b. Top: overlap of module associated genes in 1664 
snCv3 and scCv3. Bottom: The number of genes in each PT module. c. Enrichment of failed to 1665 
repair genes identified in Kirita et al.3 and genesets used for clinical outcome association 1666 
(Supplementary Table 27) in each module (PT cells) identified by log-ratio test. d. The mean 1667 
gene expression profile as a function of pseudo-time in PT modules and the top metabolic 1668 
pathways in each identified module. e. Umap embedding of TAL cells colored by assigned 1669 
modules (Fig. 5). f. The number of genes in TAL modules. g. Enrichment of genesets used for 1670 
clinical outcome association (Supplementary Table 27) in each module (TAL cells) identified 1671 
by log-ratio test. h. The mean gene expression profile as a function of pseudo-time in TAL 1672 
modules and the corresponding top metabolic pathways in each identified module. i, k. 1673 
Predicted TF transcription activities for cells in PT and TAL modules. j. Transcription binding site 1674 
activities identified by SNARE2 for selected genes. l-n. 3D confocal imaging of a reference 1675 
kidney tissue section stained for PROM-1 (red), Phopho-c-Jun (p-c-JUN, yellow), F-actin (with 1676 
FITC phalloidin, green) and DNA with DAPI (cyan) (scale bar 100um). Regions of PROM-1 1677 
within a glomerulus (G) and a proximal tubule (PT) are marked with the magenta and white box, 1678 
respectively and enlarged in (o) (scale bar 10um). p. and q. are snapshots of rendered 3D 1679 
volumes V from the areas shown in (o). These areas show the association of PROM-1 1680 
expression with p-c-Jun+ cells in the tubules but not in glomerular cells. 3D rendering was 1681 
performed using the Voxx software from the Indiana Center for Biological Microscopy 1682 
(voxx.sitehost.iu.edu/).  1683 
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1686 
Extended Data Figure 13. Ligand receptor signaling in the fibrotic niche. a. Significant (p 1687 
value < 0.05) secreted ligand and receptor interactions (excluding integrins) identified for 1688 
signaling from the stroma to vascular and adaptive epithelial cells. b. Significant (p value < 0.05) 1689 
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secreted ligand and receptor interactions (excluding integrins) identified for signaling from 1690 
vascular and adaptive epithelial cells to the stroma. c. Significant (p value < 0.05) secreted 1691 
ligand and receptor interactions (excluding integrins) identified for signaling from adaptive 1692 
epithelial trajectory modules to immune cells. Only interactions that were also not significant (p 1693 
value > 0.05) in reference modules were plotted. d. Significant (p value < 0.05) secreted ligand 1694 
and receptor interactions (excluding integrins) identified for signaling from macrophage-type 1695 
immune cells to the adaptive epithelial modules. e. Dot plot showing averaged gene expression 1696 
values (log scale) and proportion expressed for select ligands and receptors. All ligand-receptor 1697 
analyses and expression plots were for integrated snCv3/scCv3 level 3 subclasses or modules. 1698 
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Extended Data Figure 14. Association of cell state scores with clinical phenotypes. a. Left 1702 
panels: grouping of patient-level expression profiles for the aTAL geneset used for clinical 1703 
outcome association (Supplementary Table 27) for snCv3 (Top) and scCv3 (Bottom). Right 1704 
panels: the distribution of eGFR among the identified groups. b. Plots as in (a) for the 1705 
degenerative geneset used for clinical outcome association. c. Plots as in (a) for the aStr 1706 
geneset used for clinical outcome association. d. Plots as in (a) for the aPT geneset used for 1707 
clinical outcome association. e. Unadjusted Kaplan Meier curves by aStr and common aPT and 1708 
aTAL state scores for composite of ESRD or 40% drop in eGFR from time of biopsy in Neptune 1709 
adult patient cohort. P values from log-rank tests for trend are shown. A score generated using 1710 
100 randomly selected genes failed to show any correlation with disease survival. f. Boxplot of 1711 
aStr and common aPT and aTAL cell state scores by kidney disease groups in the ERCB 1712 
cohort. Significant P values from unpaired t-tests between disease groups and LD are shown. 1713 
The DN patient group had significantly higher aStr and common aPT and aTAL cell state scores 1714 
compared to LD. g. ESRRB subnetwork of TF connections to target genes generated using 1715 
SNARE2 RNA and AC data, demonstrating a central role for ESRRB in regulating TAL marker 1716 
genes. Inset shows the ESRRB motif. Boxes represent ESRRB target genes showing causal 1717 
variant enrichment within linked regulatory regions (AC peaks). h. Violin plots show gene 1718 
expression scores for gene sets associated with aging (Tabula Muris Consortium46 and 1719 
Takemon et al.63) or SASP (Ruscetti et al.64 or Basisty et al.65). 1720 
 1721 
 1722 
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