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Abstract: 

Cell size is tightly controlled in healthy tissues, but it is poorly understood how cell size affects cell 

physiology. To address this, we measured how the proteome changes with cell size. Protein 

concentration changes are widespread, depend on the DNA-to-cell size ratio, and are predicted by 

subcellular localization, size-dependent mRNA concentrations, and protein turnover. As 

proliferating cells grow larger, concentration changes associated with cellular senescence are 

increasingly pronounced, suggesting that large size may be a cause rather than just a consequence 

of cell senescence. Consistent with this hypothesis, larger cells are prone to replicative-, DNA 

damage-, and CDK4/6i-induced senescence. More broadly, our findings show how cell size could 

impact many aspects of cell physiology through remodeling the proteome, thereby providing a 

rationale for cell size control to optimize cell function. 
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Main Text: 

Cells have dedicated mechanisms to control their size, which is one of the most prominent characteristics 

of distinct cell types (1-3). The link between the characteristic cell size and cell function is more obvious 

at the extremes of the cell size range. Red blood cells and lymphocytes need to be small to squeeze 

through tight spaces, while macrophages must be larger to engulf a wide range of targets. However, in the 

middle of the cell size range, including epithelial cells and fibroblasts, the link between cell size and 

function is unclear. One possibility is that these cells control their size to enhance proliferation, as their 

rapid turnover is a key part of their physiological function (4, 5). Yet, even if these cells are optimized for 

growth and proliferation, as has been indicated (4, 6), it is unclear why there would be an optimal cell 

size. As cells get larger, it has long been assumed that most proteins and RNA remain at constant 

concentrations (7-14), and organelle volumes, such as the nucleus, increase in direct proportion to cell 

size (15-17). Should protein and RNA concentrations remain constant, larger cells should be capable of 

proportionally more biosynthesis. However, this is not the case. There is a limit to the size range of 

efficient biosynthesis (18), and excessively large cells exhibit loss of mitochondrial potential (5), dilution 

of the cytoplasm (6), and reduced proliferation (19). Moreover, recent work has demonstrated the 

remarkable effect even small variations in cell size can have on hematopoietic stem cell proliferation (4). 

One possible explanation for why there is an optimal cell size for biosynthesis would be if many key 

cellular proteins did not remain at constant concentration as cells grew. Then, the further cells got from 

their target size, the more concentrations of these proteins would change, and the more growth and 

metabolism would deviate from the optimum. Intriguingly, investigations of the mechanisms cells use to 

control their size have identified a class of proteins whose concentrations do change with cell size. In 

budding yeast, human, and plant cells, key cell cycle inhibitors are not synthesized in proportion to cell 

size so that they are diluted by cell growth, a behavior defined as sub-scaling (20-22) (Fig. 1A). Larger 

cells therefore have lower concentrations of cell cycle inhibitors, which promotes their division.  In 
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fission yeast, division is in part promoted by a size-dependent increase in the concentration of a cell cycle 

activator (23), a behavior defined as super-scaling (24) (Fig. 1A). If this phenomenon of size-dependent 

protein concentration changes were widespread across the proteome it would provide an explanation for 

why there is an optimal cell size. This is because the further a cell would be from its target size, the 

further its intracellular protein concentrations would be from their optimum. To explore this possibility, 

we measured how the proteome changes as a function of the natural cell size variation in asynchronously 

proliferating cells. 

To measure the scaling behavior of the human proteome (Fig. 1A), we developed a method based on 

triple-SILAC (Stable Isotope Labeling by Amino acids In Cell Culture) proteomics (described in fig. S1), 

which enables the simultaneous measurement of thousands of individual proteins that collectively 

associate will all major cellular components. Asynchronously proliferating SILAC-labeled primary 

human lung fibroblasts (HLFs) were gated for G1 DNA content and sorted into three size bins (small, 

medium, and large) using fluorescence-activated cell sorting (FACS) (Fig. 1B). SILAC labeling 

orientation was swapped for replicate experiments, and the attainment of differentially sized G1 cells was 

confirmed using a Coulter counter (Fig. 1C, fig. S2A). The SILAC channel intensities within a peptide 

“triplet” represent relative peptide concentrations (fig. S1A), so we used the behavior of multiple 

independent peptide triplets to determine the size scaling relationship for individual proteins (Fig. 1D). 

Rather than measure SILAC ratios, as is typically done, we calculated a slope value to describe the size 

scaling behavior of each peptide triplet (Fig. 1E, fig. S1D-G). Peptides triplets with positive and negative 

slopes represent peptides (Fig. 1F), and therefore proteins (Fig. 1G), whose concentrations are super- and 

sub-scaling, respectively, whereas triplets with a slope value near 0 maintain an approximately constant 

concentration as function of G1 cell size. 

We observed a continuum of size scaling behaviors across the proteome, which spanned slope values 

from -1 to 1 indicating that a 2-fold increase in cell size can lead to a 2-fold increase or decrease in 

concentration for a given protein (Fig. 1H, Data S1). Several chromatin-associated High Mobility Group 
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proteins (HMGs), including HMGB1, are diluted in larger cells and so exhibit sub-scaling behavior like 

what has been previously described for RB/Whi5 and histones (21, 26, 27) (Fig. 1D). We also identified a 

diverse set of super-scaling proteins, such as VAT1, whose concentration increases as a function of cell 

size (Fig. 1D). Setting a requirement for multiple independent measurements per protein significantly 

improved the correspondence between replicate experiments and yielded a high-confidence set of ~1,500 

proteins, each having at least 4 distinct peptide measurements (Fig. 1H, Data S1). The size-scaling 

relationship was consistent across all size bins, indicating that similar concentration changes take place 

when cell size increases from small to medium as when it increases from medium to large (fig. S3). Next, 

we validated candidate super- and sub-scaling behaviors for a subset of proteins using 

immunofluorescence combined with flow cytometry (Fig. 1I, fig. S4). We also confirmed that the process 

of cell sorting did not affect our proteome measurements (fig. S5A) and confirmed that isolation of 

different sized cells using SSC (Side Scatter) or the total protein dye CFSE (Carboxyfluorescein 

succinimidyl ester) as proxies for cell size (14, 28) yielded similar results (fig. S5B-D, Data S1). Since 

larger G1 cells have, on average, spent more time in G1, it is possible that the protein concentration 

changes we observe reflect time in G1 rather than cell size. To control for this possibility, we selected 

different sized G1 cells that were synchronously released from a Thymidine-Nocodazole cell cycle arrest. 

We found a highly similar size-scaling relationship in our synchronous and asynchronous experiments 

(fig. S6A, Data S1), indicating that cell size, not time in the cell cycle, is driving changes to the 

proteome. Finally, to ensure that the size-dependent proteome changes we measured in asynchronously 

dividing cells were not the direct result of replication-related stresses accumulated over many division 

cycles (29), we confirmed that long-term treatment with the CDK4/6 inhibitor Palbociclib, which 

synchronously enlarges cells over time via G1 arrest (6, 30), recapitulated the proteome changes we 

observed in sorted cells (fig. S6B, Data S2). 

To examine how cell size may influence different aspects of cellular biology, we asked if different groups 

of related or interacting proteins exhibited similar size scaling behavior. Indeed, this was the case. For 
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example, all 17 histone variants sub-scaled and had slope values near -1 (Fig. 2A), indicating that 

histones are proportionally diluted by cell growth in G1 just like the genome (26, 27). Moreover, 5 of the 

6 detected cathepsin proteases were strongly super-scaling and nearly doubled in concentration from the 

smallest to the largest cell size bin. Interestingly, we found that all individual protein subunits of the 

ribosome and proteasome showed small but highly consistent sub- and super-scaling behaviors 

respectively (Fig. 2A). We also re-confirmed the sub-scaling behavior of RB (21) (fig. S5E, S7E). 

We next assessed how size-scaling behavior relates to subcellular location. To do this, we first annotated 

the proteome based on a strict association with a single, major cellular compartment. Subcellular 

localization was a strong predictor of size scaling behavior, with ER- and lysosome-resident proteins 

becoming increasingly concentrated with size, and nucleoplasmic/nucleolar proteins becoming more 

dilute (Fig. 2B, fig. S7A). We observed no clear difference in scaling behavior between luminal- and 

membrane-associated organelle proteins (fig. S8). We confirmed lysosome super-scaling by measuring 

the lysosome-labelling dye Lysotracker and the lysosomal protein LAMP1 (fig. S7C). A less stringent 2D 

annotation enrichment revealed a range of intermediate scaling behaviors across multiple different 

cellular compartments (Fig 2C, Data S1). Taken together, these analyses refute the commonly held 

assumption that the protein content of cellular components scales in uniform proportion to cell volume. 

While total protein concentration may be largely constant within a cell’s natural size range, this is not 

necessarily true for individual proteins. 

Next, having identified size-dependent changes in concentrations of individual proteins, we sought to 

investigate the underlying mechanisms. We first tested whether changes in a protein’s concentration are 

explained by changes in the concentration of the corresponding mRNA. To do this, we performed RNA-

seq on size-sorted G1 cells (Data S3) and calculated mRNA slope values analogous to the protein slopes 

described in Figure 1. We found that although there was significant correlation between the protein and 

RNA slopes, there was large variability in protein scaling slopes for any given RNA slope (Fig. 2D-E). 

Overall, changes in mRNA concentrations explained only a minority of the variation in protein 
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concentration size-dependency (31). We therefore explored additional variables using a series of linear 

models. In addition to mRNA concentration, we included protein turnover (32), mRNA codon affinity, 

and subcellular localization as variables to predict the protein concentration size-dependence. Iterative 

incorporation of each parameter significantly improved the model (Fig. 2F, fig. S9). Using the correlation 

between biological replicates as a benchmark, we conclude that our composite model predicts ~60% of 

the size-dependent variance in protein concentration and strongly supports the conclusion that the size-

dependency of protein concentration is regulated both pre- and post-transcriptionally. Importantly, the 

size-dependency of the proteome is not specific to a single human cell type, as we found a striking degree 

of similarity in the proteome scaling of primary lung fibroblasts (HLF) and immortalized epithelial cells 

(hTERT RPE-1) (Fig. 2G, fig. S6). 

Curiously, increasing cell size in proliferating cells is accompanied by proteomic changes normally 

associated with cell senescence, including the upregulation of beta-galactosidase, lysosomal proteins, and 

metalloproteases, and the downregulation of Ki67, HMGB proteins, and LaminB (33) (Fig. 3A, fig. S7D). 

Senescence-associated secretory phenotype (SASP) proteins (34) were also super scaling (Fig. 3B). While 

large cell size is associated with senescence (33), it has generally been thought that large size results from 

a senescent cell’s inability to divide while at the same time maintaining cell growth. However, our 

experiments indicate that increasing cell size itself results in proteome changes that gradually approach 

those found in senescent cells and support the hypothesis that cell size per se promotes senescence (4, 6) 

(Fig. 3C). This is consistent with earlier reports that continued cell growth and hypertrophy are required 

to induce senescence in cell cycle arrested cells (19).  

To test if large cell size contributes to senescence, we used primary human lung fibroblasts (HLF) that 

naturally senesce after 10-15 passages. We sorted HLFs into 4 cell size bins at passage #8, re-plated the 

cells, and then cultured them for an additional 5 passages (Fig. S10B). Cells that were larger at the time of 

sorting started exhibiting high levels of senescence-associated beta-galactosidase (SA-beta-Gal) staining, 

which is a commonly used marker of senescence, sooner that the cells that were smaller at the time of 
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sorting (Fig. 3D,E). Next, we sought to examine how cell size contributes to senescence in telomerase-

immortalized human retinal pigment epithelium (hTERT RPE-1) cells exposed to a low dose of a DNA 

damaging agent (10 ng/ml Doxorubicin), which causes a stress similar to telomere shortening in primary 

fibroblasts. We note the proteome’s size-dependency in untreated G1 hTERT RPE-1 cells is very similar 

to that of HLFs (Fig. 2G, fig. S7). Consistent with the previous result, larger cells increasingly induced 

the senescence marker SA-beta-Gal upon Doxorubicin treatment (Fig. 3F, fig. S10C). Moreover, co-

treatment with the mTOR inhibitor Rapamycin, which reduces cell size, significantly attenuates the SA-

beta-Gal staining induced by prolonged treatment with Doxorubicin or the Cdk4/6 inhibitor Palbociclib 

(Fig. 3G, fig. S10D,E), a finding consistent with previous work (35). 

So far, we have only assayed senescence using indirect markers rather than the durable cell cycle arrest 

that defines senescence (36). We therefore sought to more directly test whether large cell size inhibits cell 

cycle re-entry following the withdrawal of two treatments previously shown to induce senescence (6). We 

treated hTERT RPE-1 cells with Palbociclib or a low-dose of Doxorubicin for 4 days to induce senescence 

in a fraction of the cell population. We then washed out the drugs and imaged these enlarged cells for 4 

additional days to determine which cells re-entered the cell cycle and which cells remained durably 

arrested for the duration of the experiment (Fig. 3H). Importantly, Palbociclib or Doxorubicin treatment 

arrests cells without stopping cell growth, and thus generates a population of cells with a range of large 

cell sizes that exhibit senescent features (6). Since all these cells are exposed to drug for the same 

duration, we can isolate cell size as a determining factor for durable cell cycle arrest. We found that the 

cells that were smaller at the time of drug washout are more likely to re-enter the cell cycle (Fig. 3H). 

This supports the hypothesis that larger size makes cells more prone to senescence and shows that the 

normal relationship between cell size and division is inverted above a critical cell size, which has also 

been shown for excessively large budding yeast (6). Large cell size may help explain the durable cell 

cycle arrest in response to transient exposure to a DNA damaging agent. This is because the excessive cell 

growth that occurs while cells delay cell cycle progression to repair DNA can inhibit cell cycle re-entry. 
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In addition, it is possible that large cells have difficulty in replicating and repairing DNA since most DNA 

repair and replication factors subscale with cell size (fig. S11A). Crucially, we are not stating that large 

cell size is the only driver of senescence, but rather that the large size characteristic of senescent cells may 

itself further promote this state. Thus, while increasing cell size typically drives cell division in small, and 

intermediate-sized cells, excessively large cell size may inhibit cell division and thereby promotes 

senescence. Consistent with this hypothesis, mutations to the Rb-family proteins that reduce cell size 

prevent senescence of mouse embryonic fibroblasts and hematopoietic stem cells (4, 37, 38). 

Our data so far are consistent with the hypothesis that large cell size inhibits cell division, and this may be 

due to widespread changes in the concentrations of individual proteins as cells grow. Thus, the further 

cells are from their target size, the more protein concentrations deviate from their optimum. However, in 

apparent contradiction to this model, there are many examples of large animal cells that proceed through 

the cell cycle and maintain highly efficient cell growth (39, 40).  In many cases, such large cells are 

polyploid and thus do not have an aberrant cell size-to-ploidy ratio. We therefore sought to test whether 

protein scaling is determined by cell size per se or by the cell size-to-ploidy ratio. To do this, we 

compared the proteomes of diploid, tetraploid, and octoploid (2N, 4N, 8N) G1-phase hTERT RPE-1 cells 

(Fig. 4). To obtain cells with different ploidies, we induced endoreduplication using a moderate dose of 

the Aurora kinase B inhibitor barasertib (75nM, 48 hours) (39) and sorted 2N, 4N, and 8N G1 cells from 

a mixed population using FACS (Fig.4A). While ploidy increases are accompanied by a corresponding 

increase in cell size (Fig.4A), proteomic analysis showed that the ploidy-sorted cells do not exhibit the 

same proteome changes as size-sorted cells with 2N ploidy (Fig.4B). Taken together, these results 

indicate that the proteome’s size-dependency is largely due to changes in the cell size-to-ploidy ratio. 

Thus, despite being different sizes, cells of different ploidy maintain similar protein concentrations, which 

may be why the excessively large size of polyploid cells does not inhibit their cell cycle progression. 

Our results here shed some light on the phenomenon of cellular senescence (33, 36, 41). While the 

senescent cell state has been associated with large cell size, this was mostly thought to be a passive 
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consequence of continuing biosynthesis after cell cycle arrest. However, that such large cell sizes inhibit 

cell division implies the relationship between cell size and senescence can also be inverted (4, 6). Taken 

together, our work suggests a model where large cell size can drive widespread changes in protein 

concentrations away from their optimum, which, through a yet unknown mechanism, inhibits cell division 

to reinforce senescence. 

While it has long been thought that most protein concentrations remain constant as cells grow, this 

paradigm had not previously been tested using a high-throughput quantitative proteomics approach. In 

contradiction to the previous paradigm, many protein concentrations changed with cell size.  Some 

proteins sub-scaled with cell size, and were diluted in larger cells, while others super-scaled with cell size 

so that their concentrations increased as cells grew larger. This finding is reflected in the super- and sub-

scaling of the mRNA transcripts for various G1/S regulators in budding yeast (24). To a large extent, 

these diverse protein size-scaling behaviors we observed could be predicted from a linear model based on 

mRNA concentration, protein half-life, and subcellular localization, which indicates the importance of 

both transcriptional and post-transcriptional size-scaling mechanisms.  

Our observation here that most protein concentrations change as cells grow provides a rationale for why 

many cells control their size. If the proteome content that supports optimal cell growth is only found near 

the target cell size, then the further a cell deviates from its target size, the further protein concentrations 

will be from their growth-supporting optimum. While a small change in the concentration of a single 

protein may not significantly affect cell physiology, the cumulative effect of thousands of small protein 

concentration changes could account for the drastic drop in the efficiency of biosynthesis in large cells (4, 

6, 19). Moreover, since proteome concentrations mostly follow the cell size-to-ploidy ratio rather than 

cell size per se, polyploidization is an elegant mechanism for organisms to generate large cells capable of 

efficient protein synthesis as is commonly found in nature. 
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Figure 1. Cell size shapes the human proteome. (A) Schematic illustration of the potential scaling 

relationships between protein amount, concentration, and cell size. (B) Metabolically labeled HLFs cells 

were gated by G1 DNA content and sorted into three size bins based on the side scatter parameter (SSC) 

as a proxy for cell size using FACS. (C) The attainment of differentially sized G1 cells was confirmed 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

using a Coulter counter. Central dots represent the mean volume for each size bin and error bars represent 

the standard deviation. SILAC labeling orientation was swapped for replicate experiments. (D) SILAC 

channel intensities were used to infer changes in relative peptide concentration, which are plotted for 

three example proteins. Each dotted line represents an independent peptide measurement. (E) Derivation 

of a slope value that describes the scaling behavior of each peptide triplet. A slope value of 1 corresponds 

to an increase in protein concentration that is proportional to the increase in volume and a slope of -1 

corresponds to dilution (1/volume). (F) Peptide and (G) protein slope values from two replicate 

experiments. Only proteins with at least 4 independent peptide measurements in both experiments are 

shown. (H) Correlation of protein slope values from two replicate experiments. A threshold for the 

minimum number of peptide measurements per protein is indicated in each panel. (I) 

Immunofluorescence intensity measured as a function of SSC (cell size) using flow cytometry. The 

relative change in the total protein amount is inferred from the measurement of carboxyfluorescein 

succinimidyl ester (CFSE) dye. The data were binned by cell size and plotted as mean protein amounts 

per cell for each size bin (solid lines). Dark shaded area shows standard error of the mean for each bin, 

and light shaded area shows the standard deviation. A representative is shown of n=3 biological replicates 

for each experiment. 100,000 cells were analyzed for each sample. 
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Figure 2. Diverse mechanisms control proteome size-dependency. (A) Scaling behavior of protein 

groups based on function and (B) subcellular localization. Significance is determined by t-test between 

adjacent protein groups. Ribosomal proteins are plotted in dark blue as a reference and the number of 

highlighted proteins and their average slope are indicated for each panel. (C) 2D annotation enrichment 
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analysis for replicate experiments depicted in Figures 1 and 2. Data S1 contains a complete list of 

significantly super- or sub-scaling GO terms. (D) Size-dependent concentration changes for a 

representative set of proteins and their corresponding mRNA transcripts. For proteins, each connected 

line represents a unique peptide measurement from two biological replicate experiments (Light and dark 

blue). For RNA, technical replicates are denoted in the same color, while biological replicates are denoted 

in different colors. (E) Correlation between size-dependent proteome and transcriptome changes. 

Highlighted examples are shown in (D). X-axis bins are shown in dark blue. Error bars represent the 95% 

confidence interval and r denotes the Pearson correlation coefficient. (F) Ordinary least squares 

regression model predicts the size scaling behavior of 1,700 individual proteins based on their subcellular 

localization and additional features. The benchmark for predictive accuracy (Prediction %) is set by the 

correlation between biological replicate experiments. See Figure S9 for a full description of the model. 

(E) Similarity of the cell size-dependent concentration changes between primary HLF and immortalized 

hTERT RPE-1 cells. Protein Slope values for each cell type are mean of two biological replicate 

experiments. Only proteins with at least 3 independent peptide measurements in each biological replicate 

are depicted. X-axis bins are shown in dark blue. Error bars represent the 95% confidence interval and r 

denotes the Pearson correlation coefficient. 
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Figure 3. Large cell size promotes cell senescence. (A-B) Examples from our proteomics data set of cell 

size-dependent intracellular (A) and SASP (senescence-associated secretory phenotype, (B)) protein 

concentration changes in proliferating cells that are normally associated with senescence. (C) Model 

indicating possible relationships between DNA-related stress, large cell size, and cell senescence. (D-E) 
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Replicative senescence of different-sized primary cells. Asynchronous HLFs were gated for G1 DNA 

content and sorted into four bins by size using FACS, then replated and stained for the senescence marker 

SA-beta-Gal at the indicated time points. Percentage of blue-stained SA-beta-Gal positive cells (E) was 

calculated for each time point and plotted for each sorted size bin as mean ± standard error (D). Cell sizes 

for each bin are shown as mean ± SD in (E). P denotes the cell passage number. (F) Asynchronous 

hTERT RPE-1 cells were gated for G1 DNA content and sorted into four bins by size using FACS, 

replated and cultured in the presence of the DNA damaging agent Doxorubicin (10 ng/ml), and then 

stained for SA-beta-Gal at the indicated time points. (G) Effect of Rapamycin, which reduces cell growth, 

on the percentage (±standard error) of SA-beta-Gal positive cells in hTERT RPE-1 cultures treated with 

Doxorubicin or Palbociclib for 8 days. Values shown next to each condition indicate the mean cell sizes 

after 8 days of treatment. (H) Large cell size inhibits cell cycle entry to promote senescence. hTERT RPE-

1 cells were treated with Palbociclib or a low dose of Doxorubicin for 4 days. Then, the drugs were 

washed out, and the cells were imaged for 4 days to identify cells that re-enter the cell cycle, and cells that 

remain arrested in a senescent state. Nuclear area was used as a proxy for cell size and cell cycle re-entry 

was determined using the fluorescent cell cycle phase reporters Cdt1-mKO2 (G1 reporter) and Geminin-

mAG (S/G2/M reporter) (42). N = 33 cells for each data point in (H). SA-beta-Gal quantification for 

every data point in (D), (F), and (G) included 700-1200 cells quantified from 9 different fields of view. 

All the experiments were performed in biological duplicates. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

 

Figure 4. Cell volume-to-ploidy ratio drives size-dependent proteome changes. (A) hTERT RPE-1 

cells expressing fluorescent cell cycle reporters (Cdt1-mKO2, Geminin-mAG) were treated with an 

aurora kinase inhibitor barasertib (75nM, 48 hours) to partially inhibit cytokinesis. Cells were then sorted 

based on ploidy and G1 cell cycle phase. The attainment of differentially sized G1 cells was confirmed 

using a Coulter counter. The histogram shows a representative example of size distributions for sorted 

cells, and the numbers next to it represent mean cell size ± standard error for n=3 biological replicates. 

(B) Ploidy-sorted Protein Slope values were calculated in manner analogous to the Size-sorted Protein 

Slope values in Figure 1. For each protein, relative concentration was plotted as against the mean cell size 

in the 2N, 4N, and 8N bins to calculate a slope value. Despite large increases in cell size from 2N to 8N, 

concentration changes were minimal. 
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Materials and Methods 

 

Cell Culture 

Recently isolated primary fetal human lung fibroblasts (HLF) were purchased from Cell Applications, 

telomerase-immortalized retinal pigment epithelium (hTERT RPE-1, here also referred to as RPE-1 for 

brevity) cells were obtained from the Stearns laboratory at Stanford. All cells were cultured at 37ºC with 

5% CO2 in Dulbecco's modification of Eagle's medium (DMEM) with L-glutamine, 4.5 g/l glucose and 

sodium pyruvate (Corning), supplemented with 10% heat-inactivated fetal bovine serum (FBS, Corning) 

and 1% penicillin/streptomycin.  

 

Fluorescence-activated cell sorting (FACS) 

Fluorescence-activated cell sorting was used to sort live cells by their size and cell cycle phase. To do 

this, the cells were harvested from dishes by trypsinization, stained with 20 µM Hoechst 33342 DNA dye 

in PBS for 15 minutes at 37ºC, and then sorted on a BD FACSAria Fusion flow cytometer. Consecutive 

SSC-A over FSC-A, and FSC-H over FSC-A gates were used to isolate single cells. Then, G1 cells were 

gated by DNA content (Hoechst staining). Finally, we collected the 10% smallest and 10% largest cells, 

as well as another 10% of the cells near the average size using the gating based on SSC-A signal. During 

sorting, all cell samples and collection tubes were kept at 4ºC. To determine the cell size distributions of 

the collected samples, aliquots were taken from each sorted size bin and measured on a Z2 Coulter 

counter (Beckman). Sorted cells were used for mRNA or protein isolation, or re-plated for assessing 

senescence dynamics. 

 

Stable Isotope Labeling In Cell culture (SILAC) 

Cells for SILAC were cultured in special Lysine/Arginine-free DMEM for SILAC (Thermo Scientific) 

with 10% dialyzed heat-inactivated FBS (HyClone) and penicillin/streptomycin. These cultures were 
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supplemented with “light”, “intermediate”, or “heavy” versions of Lysine (0.8mM) and Arginine 

(0.4mM) (Cambridge Isotope Laboratories) (43). The “light” (Agr0 Lys0) version of the media contained 

L-Arginine and L-Lysine built with normal 12C and 14N isotopes; the “intermediate" (Arg6 Lys4) version 

had L-Arginine containing six 13C atoms and L-Lysine containing four deuterium atoms; the "heavy" 

(Arg10 Lys8) version had L-Arginine containing six 13C and four 15N atoms and L-Lysine containing six 

13C and two 15N atoms. Proline (200 mg/l) was added to the media to prevent conversion of isotope-coded 

Arginine into Proline in cells. We confirmed that cell proliferation is not impaired in our SILAC medium 

(Fig. S2B). To ensure complete labelling, the cells were cultured in SILAC media for 5 passages 

(approximately 10 doublings) prior to the experiments. 

   

LC-MS/MS sample preparation - SILAC 

See Table S3 for a complete list of proteomic experiments. Small, medium and large cells sorted by 

FACS were pelleted by centrifugation at 500xg for 10 minutes and lysed for 40 minutes on ice in RIPA 

lysis buffer (Abcam) containing a protease and phosphatase inhibitor cocktail. SILAC-labeled different 

sized cells were mixed prior to lysis in order to minimize handling error in protein extraction, proteolytic 

digestion, and peptide desalting. Cell lysates were cleared by centrifugation at 15000xg for 30 minutes at 

4℃. The mixed lysates were then denatured in 1% SDS, reduced with 10mM DTT, alkylated with 5mM 

iodoacetamide, and then precipitated with three volumes of a solution containing 50% acetone and 50% 

ethanol. Proteins were re-solubilized in 2 M urea, 50 mM Tris-HCl, pH 8.0, and 150 mM NaCl, and then 

digested with TPCK-treated trypsin (50:1) overnight at 37°C. Trifluoroacetic acid and formic acid were 

added to the digested peptides for a final concentration of 0.2%. Peptides were desalted with a Sep-Pak 

50mg C18 column (Waters). The C18 column was conditioned with 5 column volumes of 80% 

acetonitrile and 0.1% acetic acid and washed with 5 column volumes of 0.1% trifluoroacetic acid. After 

samples were loaded, the column was washed with 5 column volumes of 0.1% acetic acid followed by 

elution with 4 column volumes of 80% acetonitrile and 0.1% acetic acid. The elution was dried in a 

Concentrator at 45°C. 
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LC-MS/MS sample preparation - TMT 

Lysis, denaturation, reduction, and precipitation for SILAC analysis was the same for TMT analysis 

(working solution of Iodoacetamide was dissolved in HEPES rather than Tris buffer). Our method for 

TMT labeling was adapted from Zecha et al. (44) and the Thermo TMT10plex™ Isobaric Label Reagent 

Set Protocol. In brief, acetone precipitated samples were resuspended in 100µm TEAB and digested O/N 

with TPCK trypsin (50:1) in the absence of Tris or Urea. After digestion, peptide concentration was 

~1µg/ul in 100µM TEAB for all samples. 20µg of peptide was labeled using 100µg of Thermo 

TMT10plex™ in a reaction volume of 25µl for 1 hour. The labeling reaction was quenched with 8µL of 

5% hydroxylamine for 15 minutes. Labeled peptides were pooled, acidified to a pH of ~2 using drops of 

10% formic acid, and desalted with a Sep-Pak 50mg C18 column as described above.  

 

HILIC fractionation - SILAC 

Desalted peptide samples were reconstituted in 80% acetonitrile and 1% formic acid and fractionated by 

hydrophilic interaction liquid chromatography (HILIC) with a TSK gel Amide-80 column (2 mm x 150 

mm, 5 µm; Tosoh Bioscience). 90 second fractions were collected between 10 and 25 minutes of the 

gradient. Three solvents were used for the gradient: buffer A (90% acetonitrile), buffer B (80% 

acetonitrile and 0.005% trifluoroacetic acid), and buffer C (0.025% trifluoroacetic acid). The gradient 

used consists of a 100% buffer A at time = 0 min; 88% of buffer B and 12% of buffer C at time = 5 min; 

60% of buffer B and 40% of buffer C at time = 30 min; and 5% of buffer B and 95 % of buffer C from 

time = 35 to 45 min in a flow of 150 µl/min. HILIC fractions were dried in a SpeedVac and reconstituted 

in 0.1% trifluoroacetic acid. A total of 10 fractions were collected and pooled back into 5 fractions (1-6, 

2-7, 3-8, 4-9, 5-10). 

 

High-pH reverse phase fractionation - TMT 
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TMT-labeled peptides (Experiment from Figure S5D) were fractionated using a Pierce™ High pH 

Reversed-Phase Peptide Fractionation Kit. The eight default fractions were pooled back to 4 fractions (1-

5, 2-6, 3-7, 4-8). Dried peptides were reconstituted in 0.1% formic acid. 

 

LC-MS/MS data acquisition - SILAC 

Peptide samples were analyzed using a Fusion Lumos mass spectrometer (Thermo Fisher Scientific, San 

Jose, CA) equipped with Dionex Ultimate 3000 LC systems (Thermo Fisher Scientific, San Jose, CA). 

Peptides were separated by capillary reverse phase chromatography on a 25 cm reversed phase column 

(100 µm inner diameter, packed in-house with ReproSil-Pur C18-AQ 3.0 m resin (Dr. Maisch GmbH)). 

Liquid chromatography was performed using a two-step linear gradient with 4–25 % buffer B (0.1% (v/v) 

formic acid in acetonitrile) for 90 min followed by 25-40 % buffer B for 10 min. Data was acquired in top 

20 data dependent mode. Full MS scans were acquired in the Orbitrap mass analyzer with a resolution of 

120,000 (FWHM) and m/z scan range of 340-1500.  Selected precursor ions were subjected to 

fragmentation using higher-energy collisional dissociation (HCD) with quadrupole isolation, isolation 

window of 1.6 m/z, and normalized collision energy of 30%. HCD fragments were analyzed in the 

Orbitrap mass analyzer with a resolution of 15,000 (FWHM). Fragmented ions were dynamically 

excluded from further selection for a period of 15 seconds. The AGC target was set to 400,000 and 

50,000 for full FTMS scans and FTMS2 scans, respectively. The maximum injection time was set to 50 

ms for full FTMS scans and dynamic for FTMS2 scans. 

 

LC-MS/MS data acquisition - TMT 

Desalted TMT-labeled peptides were analyzed on a Fusion Lumos mass spectrometer (Thermo Fisher 

Scientific, San Jose, CA) equipped with a Thermo EASY-nLC 1200 LC system (Thermo Fisher 

Scientific, San Jose, CA). Peptides were separated by capillary reverse phase chromatography on a 25 cm 

column (75 µm inner diameter, packed with 1.6 µm C18 resin, AUR2-25075C18A, Ionopticks, Victoria 
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Australia). Electrospray Ionization voltage was set to 1550 volts. Peptides resulting from on-bead 

digestion were resuspended in 10 µL of 0.1% formic acid. 2 µL was introduced into the Fusion Lumos 

mass spectrometer using a two-step linear gradient with 6–33% buffer B (0.1% (v/v) formic acid in 80% 

acetonitrile) for 145 min followed by 33-45% buffer B for 15 min at a flow rate of 300 nL/min. Column 

temperature was maintained at 40°C throughout the procedure. Xcalibur software (Thermo Fisher 

Scientific) was used for the data acquisition and the instrument was operated in data-dependent mode. 

Survey scans were acquired in the Orbitrap mass analyzer over the range of 380 to 1800 m/z with a mass 

resolution of 70,000 (at m/z 200). Ions were selected for fragmentation from the 10 most abundant ions 

with a charge state of either 2, 3 or 4 and within an isolation window of 2.0 m/z. Selected ions were 

fragmented by Higher-energy Collisional Dissociation (HCD) with normalized collision energies of 27 

and the tandem mass spectra was acquired in the Orbitrap mass analyzer with a mass resolution of 17,500 

(at m/z 200). Repeated sequencing of peptides was kept to a minimum by dynamic exclusion of the 

sequenced peptides for 30 seconds. For MS/MS, the AGC target was set to 1e5 and max injection time 

was set to 120ms. 

 

Spectral searches - TMT and SILAC 

All raw files were searched using the Andromeda engine (45) embedded in MaxQuant (v1.6.7.0) (46). 

See Table S4 for a complete summary of the search parameters used for the SILAC- and TMT-labeled 

peptide fragments. In brief, 3 label SILAC search was conducted using Maxquant’s default Arg6/10 and 

Lys4/8. For TMT searches, a Reporter ion MS3 search was conducted using 10plex TMT isobaric labels. 

For both TMT and SILAC searches, variable modifications included oxidation (M) and protein N-

terminal acetylation. Carbamidomthyl (C) was a fixed modification. The number of modifications per 

peptide was capped at five. Digestion was set to tryptic (proline-blocked). Peptides were “Re-quantified”, 

and maxquant’s match-between-runs feature was not enabled. Database search was conducted using the 

Uniprot proteome - Human_UP000005640_9606. Minimum peptide length was 7 amino acids. FDR was 

determined using a reverse decoy proteome (47). 
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Peptide quantitation - SILAC 

Our SILAC analysis pipeline uses the peptide feature information in MaxQuant’s “evidence.txt” output 

file. Each row of the “evidence.txt” file represents an independent peptide triplet measurement. 

Contaminant and decoy peptide identifications were discarded. Peptides without signal in any of the three 

SILAC channels were also excluded. Peptide triplets (each row in the “evidence.txt” table) are assigned to 

a protein based on MaxQuant’s “Leading razor protein” designation. For each peptide triplet, the fraction 

of ion intensity in each SILAC channel was calculated by dividing the “Intensity L/M/H” column by the 

“Intensity” column. SILAC channels were normalized by adjusting the fraction of ion intensity in each 

channel by the median for all measured peptides (see Fig. S1B,C). After normalization, the relative signal 

difference between the SILAC channels for each peptide triplet was plotted against the normalized cell 

size for each of the bins of isolated G1 cells. 

For each peptide, we calculated its slope as follows (mean squared error filtering): 

Y1,2,3 = Relative signal in each SILAC channel (order based on labeling orientation) 

Avg. size = (mean volume of small bin + mean volume of medium bin + mean volume of large bin) / 3 

x1 = (Mean volume of small size bin) / Avg. size  

x2 = (Mean volume of medium size bin) / Avg. size  

x3 = (Mean volume of large size bin) / Avg. size  

 

Based on the expectation that our experimental conditions would not result in large, non-linear changes in 

protein expression, we exclude peptide triplets whose three data points did not loosely fit a linear 

regression line. Linear regressions on the ~50,000 triplets/experiment were performed using np.polyfit in 

Python. Regressions with a mean squared error > 0.075 were excluded. Because this step significantly 

improved the overall data quality (Fig. S1F,G), we concluded that our filtering method mostly excludes 

peptide triplets contaminated by analytical interference or that are near the noise floor. 
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Individual peptide measurements were consolidated into a protein level measurement using python’s 

groupby.median. Peptides with the same amino acid sequence that were identified as different charge 

states or in different fractions were considered independent measurements. We summarize the size scaling 

behavior of individual proteins as a slope value derived from a regression (similar to what is described 

above for individual peptides), and each protein slope value is based on the behavior of all detected 

peptides. 

For a given protein, we calculate its cell size-dependent slope as follows: 

yi = Relative signal in the ith SILAC channel (median of all corresponding peptides in this channel) 

xi = same normalized cell size xi as for the peptide slope calculations above 

The protein slope value was determined from a linear fit to the log-transformed data using the equation: 

         Log2 (y) = Slope*log2 (x) 

Variables were log-transformed so that a slope of 1 corresponds to an increase in protein concentration 

that is proportional to the increase in volume and a slope of -1 corresponds to 1/volume dilution. Pearson 

r and p values for correlation analyses were calculated using scipy’s pearsonr module in python. 

 

Protein annotations 

Protein annotations in Figure 2 were sourced from Uniprot columns named “Subcellular location [CC]” or 

“Protein names” (48). For Figure 2B, protein localization was strictly parsed so that each annotated 

protein belongs to only one of the designated groups. Proteins with 2 or more of the indicated annotations 

were ignored (with the exception of the “Cytoplasm / Nucleus” category, which required a nuclear and 

cytoplasmic annotation). 2D annotation enrichment in Figure 2C was performed using Perseus (49). 
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Peptide quantitation - TMT 

Our TMT analysis pipeline uses the peptide feature information in MaxQuant’s “evidence.txt” output file. 

Each row of the “evidence.txt” file represents an independent MS3 TMT measurement. Contaminant and 

decoy peptide identifications were discarded. Peptides without signal in any of the TMT channels were 

also excluded. TMT peptide measurements were assigned to protein based on MaxQuant’s “Leading razor 

protein” designation. For each peptide triplet, the fraction of ion intensity in each TMT channel was 

calculated by dividing the “Reporter ion intensity” column by the sum of all reporter ion intensities. TMT 

channels were normalized by adjusting the fraction of ion intensity in each channel by the median for all 

measured peptides (similar to the SILAC normalization in Fig. S1B,C). After normalization, the relative 

signal difference between the TMT channels for each peptide triplet was plotted against the normalized 

cell size for each of the bins of isolated G1 cells. Slope values in Figure S5 were derived in a manner 

analogous to the Slope values calculated in the SILAC experiments. Pearson r and p values for correlation 

analyses were calculated using SciPy’s pearsonr module in python. 

 

OLS linear regression model 

Multiple linear regression analysis was performed using the statsmodels module in python. The prediction 

of size scaling behavior was based on the 1,700 proteins shared between the protein turnover (HeLa cells) 

(32), RNA Slope, and Protein Slope datasets (at least 2 peptides / protein). Independent variables for 

codon affinity, RNA Slope, and Protein turnover (T50%) were each independently standardized by 

subtracting all values by the dataset’s mean and then dividing by the dataset’s standard deviation. The 

codon affinity refers to the binding affinity at the 3rd codon position. The affinity is classified as 

“low” or “high” based on a prior study (50). The affinity score of a gene is the average of the low 

affinity codon percentage within each amino acid, weighted by the percentage of the amino acid in 

that gene. The subcellular localization variable was based on Uniprot’s “Subcellular location [CC]” 

annotations and entered as a binary value for each compartment (1 if a protein possessed an annotation 
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and 0 if it did not). Only subcellular compartments that provided nonredundant predictive power were 

ultimately included in the model. A constant value was added to the regression equation using the 

add_constant function in statsmodels. We set the benchmark for predictive accuracy (Prediction %) as the 

correlation between biological replicate experiments (Protein Slope from Exp #1 vs Exp #2). See Figure 

S9 for more details on the model and its coefficients. 

 

RNA extraction and sequencing 

To compare the transcriptomes of different-sized G1 cells, primary HLFs were arrested in the G1 phase of 

the cell cycle by a 24-hour treatment with 1μM of the Cdk4/6 inhibitor Palbociclib and then sorted into 

size bins using FACS. To extract RNA, each sample of sorted HLF cells was split into two technical 

replicates each of which contained 200,000 HLF cells, which were then mixed with 100,000 D. 

melanogaster S2 cells as a spike-in. Each sample was then pelleted and RNA was extracted using Direct-

zol™ RNA Microprep Kit (Zymo Research). mRNA was enriched using the NEBNext Poly(A) mRNA 

Magnetic Isolation Module (NEB, #E7490). The NEBNext Ultra II RNA Library Prep Kit for Illumina® 

(NEB, #E7775) was then used to prepare libraries for paired-end (2x150 bp) Illumina sequencing 

(Novogene). Two independent biological replicates of each sample were collected and for each biological 

replicate, two technical replicates (i.e., separate lysis, library prep, and sequencing) were processed. 

Approximately 40 million reads were sequenced per replicate. 

  

RNAseq data processing 

RNA samples contained a mixture of H. sapiens and D. melanogaster spike-in. A combined H. sapiens 

and D. melanogaster genome file was created using the hg38 and dm6 versions of the respective genomes 

and a combined transcriptome annotation was created using the H. sapiens gene models from the v29 

version of the GENCODE annotation (51) and the BDGP6 D. melanogaster gene models from 

ENSEMBL release 90 (52). For the purposes of RNA-seq data quality evaluation, genome browser track 

generation, and calculating the hg38-to-dm6 ratio, reads were aligned against the combined genomes and 
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combined annotated set of splice junctions using the STAR aligner (version 2.5.3a; settings: --

limitSjdbInsertNsj 10000000 --outFilterMultimapNmax 50 --outFilterMismatchNmax 999 --

outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 10 --alignIntronMax 1000000 --

alignMatesGapMax 1000000 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --sjdbScore 1 --

twopassMode Basic --twopass1readsN -1) (53). Read mapping statistics and genome browser tracks were 

generated using custom Python scripts. For quantification purposes, reads were aligned as 2x50mers in 

transcriptome space against an index generated from the combined annotations described above using 

Bowtie (version 1.0.1; settings: -e 200 -a -X 1000) (54). Alignments were then quantified using eXpress 

(version 1.5.1) (55) before effective read count values and TPM (Transcripts Per Million transcripts) were 

then separated for each genome and renormalized TPMs were calculated with respect to only the H. 

sapiens transcripts. 

 

Flow cytometry 

For flow cytometry analysis, cells were grown on dishes to ~50% confluence and harvested by 

trypsinization. The cells were then fixed with 3% formaldehyde for 10 minutes at 37ºC, and then 

permeabilized with 90% methanol for 30 minutes on ice. Fixed and permeabilized cells were washed once 

with PBS, blocked with 3% BSA in PBS for 30 minutes at 37ºC, and then stained with primary antibodies 

for 2 hours at 37ºC. We used the following primary antibodies: HMGB1 (Abcam, ab79823), HMGN2 

(CST, 9437S), RPLP0 (Sigma, SAB1402899), Actin (Sigma-Aldrich, A2103), UCHL1 (CST, 13179S), 

VAT1 (Santa Cruz, sc-515705), LAMP1 (CST, 9091), alpha-Tubulin (Abcam, ab6160). After the primary 

antibodies, the cells were washed twice with a wash buffer (1% BSA in PBS + 0.05% Tween® 20), 

stained with the fluorophore-conjugated secondary antibodies Alexa Fluor 488 goat anti-mouse (Life 

Technologies A11029), Alexa Fluor 594 goat anti-rabbit (Life Technologies A11037), and Alexa Fluor 

405 goat anti-rat (Abcam ab175673) at 1:1000 dilution for 1 hour at 37ºC, and then washed twice again. 

After this treatment, the cells were resuspended in PBS containing 3 µM DAPI for DNA staining, 

incubated for 10 minutes at room temperature, and then analysed on a Attune NxT flow cytometer 
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(Thermo Fisher). To compensate for the nonspecific background staining with antibodies, we measured 

the fluorescence of cells stained with nonspecific Isotype Control antibodies. We then performed a linear 

regression of this nonspecific background signal with the cell size, and subtracted the background 

fluorescence corresponding to the cell’s size from the actual fluorescence signal measured for each cell. 

For total protein staining, live cells were resuspended in PBS, then the CellTrace CFSE dye 

(CarboxyFluorescein Succinimidyl Ester, Thermo Fisher) was added at 5 μM concentration, incubated for 

30 minutes at 37ºC. The dye was then washed out with FBS-containing DMEM, and the cells were 

pelleted and resuspended in PBS for the flow cytometry or for the fixation and antibody staining. For the 

Lysotracker staining, the cells were harvested and re-suspended in growth media at a concentration of 106 

cells/mL. Then, Lysotracker Red DND-99 (Thermo Fisher) was added at a concentration of 75nM and 

incubated at 37ºC for 30 min. Cells were spun down and re-suspended for analysis or additional staining. 

For plotting the flow cytometry data, all protein amounts and cell size values were normalized to their 

means. To characterize the degree of size-dependency of protein amounts, we fit a line to the flow 

cytometry data after normalizing these data to mean values. We performed at least three biological 

replicates for each experiment that measured 100,000 cells. 

 

Senescence-associated beta-galactosidase (SA-beta-Gal) staining 

To detect senescent cells, the RPE-1 or HLF cells on a dish were stained using the Senescence β-

Galactosidase Staining Kit (Cell Signaling Technology) following the manufacturer’s protocol. Briefly, 

live cells on a dish were washed once with PBS and fixed with 1x Fixation solution for 10 minutes at 

room temperature, then rinsed twice with PBS, and stained with β-Galactosidase Staining Solution for 48 

hours at 37ºC in a dry incubator (no CO2). The cells were then imaged on an EVOS M5000 imaging 

system to obtain a colored brightfield image. The obtained images were quantified manually, by a blinded 

investigator, to determine the percentage of senescent cells, i.e., the cells that have a pronounced blue 

staining. 
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Live cell fluorescence microscopy 

In preparation for imaging, cells were seeded on 35-mm glass-bottom dishes (MatTek) at low density and 

incubated overnight at 37°C and 5% CO2. Then, the cells were moved to a Zeiss Axio Observer Z1 

microscope equipped with an incubation chamber and imaged for 96 hours (56). Brightfield and 

fluorescence images were collected from three dishes at multiple positions every 20 minutes using an 

automated stage controlled by the Micro-Manager software. We used a Zyla 5.5 sCMOS camera, which 

has a large field of view allowing us to track motile cells within a field of view for long durations, and an 

A-plan 10x/0.25NA Ph1 objective. To distinguish G0/G1 and S/G2/M cells in time lapse imaging 

experiments, we used RPE-1 cells expressing the fluorescent cell cycle reporters mKO2-hCdt1 (G1), and 

mAG-hGeminin (S/G2) (42). These reporters were introduced into RPE-1 cells using a lentivirus vector, 

and the positive, fluorescent population of cells was isolated using fluorescence-activated cell sorting. 
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Figure S1. A SILAC proteomics method to measure the proteome as a function of G1 cell size.  
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(A) Human cells were metabolically labeled in cell culture, sorted by G1 cell size using FACS, and 

subjected to proteomic analysis. (B) Differences in the amount of total protein contributed from the small-

, medium-, or large-cell size populations were normalized using the signal proportionality from the light, 

intermediate, and heavy channel of each peptide triplet. Small, medium, and large cells were mixed prior 

to lysis, so the amount of protein in each SILAC channel is uneven. Rather than normalize L/H and L/M 

SILAC ratios separately, we normalize all three channels together so that the values in our dataset 

represent relative changes to each peptide. (C) For each individual peptide triplet, we determined the 

fraction of the triplet’s total ion intensity present in each SILAC channel. The distributions of these 

fractions were then adjusted by the median (see methods for a complete description of the normalization 

process). (D) Peptide slope values are calculated from a linear regression of the relative ion intensity in 

each SILAC channel and mean cell size. Mean cell size was determined by Coulter counter prior to 

mixing and lysis. (E) Distribution of mean squared error values for peptide triplet regressions (~50,000 

per experiment). The mean squared error was used to track the linear fit of each peptide regression. (F) 

Correlation of peptide slopes calculated from biological replicate experiments before and after applying a 

filter for mean squared error (MSE). 27,176 unique peptide measurements were identified in both 

replicate experiments. A unique peptide measurement is defined by the peptide sequence, modification 

state, charge state, and the fraction number (the fraction number is only considered if the experiment was 

prefractioned and multiple fractions were analyzed). (G) Filtering peptides by mean squared error from a 

linear fit improves data quality. MSE filtering improves the correlation of protein slope values derived 

from biological replicates, and the improvement is consistent across different thresholds of measurement 

confidence (i.e., peptide measurements per protein). 
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Figure S2. Supporting information for SILAC proteomics data shown in Figure 1: (A) Coulter 

counter measurement of HLF cells isolated by FACS. Small, medium, and large cell populations are 

colored based on the SILAC labeling orientation for the two replicate experiments in Figure 1. See Table 

S3 for cell size measurements for all proteomic experiments. (B) HFL primary cell proliferation rates in 

SILAC vs standard medium. 
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Figure S3. Cell size-dependent changes to concentrations in the proteome are mostly linear: 

Correlation for the mean squared error (MSE) of the Protein Slope regression from two biological 

replicates. A threshold for the minimum number of peptide measurements per protein is increased from 

left to right. Because very few proteins have reproducible large MSE values, we conclude that most 

proteins scale linearly with G1 cell size. Peptide-level measurements for the few proteins with non-linear 

scaling are plotted below. 
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Figure S4. Validation of protein size-scaling behaviors using flow cytometry: Cycling HLF and RPE-

1 cells were fixed and stained with antibodies against subscaling (HMGB1, HMGN2), scaling (RPLP0, 

beta-Actin), and superscaling proteins (VAT1, UCHL1). Alpha-tubulin is used as an internal control for 

each sample. Using flow cytometry, G1 and non-G1 cells were gated by DNA content (DAPI dye) and 
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analyzed separately in panels (A) and (B), respectively. The data were binned by cell size (SSC, the side 

scatter parameter) and plotted as mean protein amounts per cell for each size bin (solid lines). Dark 

shaded area shows standard error of the mean for each bin, and light shaded area shows the standard 

deviation. A representative is shown of n=3 biological replicates for each experiment. 100,000 cells were 

analyzed for each sample. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 29, 2021. ; https://doi.org/10.1101/2021.07.29.454227doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454227
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

 

Figure S5. Controls indicating that cell sorting does not affect proteomics measurements: (A) A dish 

of HLF cells were split into two equal parts, and one half was run through the FACS machine while the 

other half sat on ice. MaxQuant LFQ was used to determine whether cells subjected to FACS exhibited 

altered proteomes. The strong correlation between the proteomes of sorted and unsorted cells suggests 

that FACS did not appreciably bias our measurements. (B) MaxQuant LFQ was used to compare 

proteome samples from CFSE-stained and unlabeled cells. The strong correlation between the proteomes 
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of CFSE-treated and untreated cells suggests that using a total protein dye does not appreciably bias our 

measurement. (C) Peptide discovery is not impacted by FACS or CFSE staining. (D) RPE-1 cells with G1 

DNA content were sorted using total protein / cell (CFSE stain) or side scatter to achieve 3 bins of 

different sized cells. Protein Slope values derived from cells sorted by total protein and side scatter are 

compared. A select set of proteins from the comparison in (D) are highlighted in (E). 
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Figure S6. Controls experiments indicating that cell size, and not cell age, drives changes to the 

proteome changes: (A) Metabolically labeled hTERT RPE-1 cells were synchronously released into the 

cell cycle following a Thymidine-Nocodazole cell cycle arrest. Protein slopes were calculated as in Figure 

1. Only proteins with at least 4 peptide measurements in both replicate experiments are considered for the 

violin plots and the correlation to the slope values generated from HLF cells in Figure 1. (B) 

Asynchronous hTERT RPE-1 cells were treated long-term with Palbociclib. The attainment of 

differentially sized cells was confirmed by coulter counter analysis. Protein ratios were determined by 

TMT quantitation. 
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Figure S7. Differential scaling in the proteome content of distinct sub-cellular compartments: (A) 

Distribution of slopes derived from HLF cells for proteins associated with the indicated compartments. 

Violin plots depict the average slopes for the proteins highlighted in Figure 2B. P-values above the violin 

plots are derived from a t-test between the indicated protein group and the rest of the dataset. t-tests 
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comparing the slopes for each group of proteins are visualized in a grid format. (B) Replicate experiment 

using the immortalized hTERT RPE-1 cell line was performed as in (A). (C) Validation of lysosome 

super-scaling with cell size using flow cytometry. Both the lysosomal protein LAMP1 and the 

Lysotracker dye amount increase with cell size faster than Actin, which is a proxy for total protein. The 

data for G1 hTERT RPE-1 cells were binned by cell size (SSC, the side scatter parameter) and plotted as 

mean protein amounts per cell for each size bin (solid lines). Dark shaded area shows standard error of the 

mean for each bin, and light shaded area shows the standard deviation. A representative is shown of n=5 

biological replicates for each experiment. About 100,000 cells were analyzed for each sample. (D) 

Examples from our proteomics data set of cell-size-dependent protein concentration changes in 

proliferating cells that are normally associated with senescence. (E) RB is diluted with G1 cell size. 
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Figure S8. Scaling behavior of lumenal and membrane-associated proteins: (A) Scaling behavior of 

proteins predicted to contain a transmembrane domain.  (B) Scaling behavior of ER proteins that are 

annotated to be either membrane-associated or not (i.e., lumenal). 
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Figure S9. Linear regression analysis predicts size scaling behavior of individual proteins: The 

prediction of size scaling behavior was based on the 1,700 proteins that are in the published protein 

turnover dataset (HeLa cells) (32), as well as our RNA Slope, and Protein Slope datasets (at least 2 

peptides / protein) that we report here. Independent variables for codon affinity, RNA Slope, and Protein 

turnover (time to replace 50% of a given protein species) were each independently standardized by 

subtracting all values by the dataset’s mean and then dividing by the dataset’s standard deviation. The 

subcellular localization variable was based on Uniprot’s “Subcellular location [CC]” annotations and 

entered as a binary value for each compartment (1 if a protein possessed an annotation and 0 if it did not). 

Only subcellular compartments that provided nonredundant predictive power were ultimately included in 

the model. A constant value was added to the regression equation using the add_constant function in 

statsmodels. We set the benchmark for predictive accuracy (Prediction %) as the correlation between 

biological replicate experiments, i.e., Protein Slope from Exp #1 vs Exp #2. 
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Figure S10. Analysis of senescence markers in different-sized cells: (A) Transcript levels of key 

senescence reporter genes in size-sorted HLF cells. G1 HLF cells were sorted into four size bins using 

FACS. The concentrations of TP53, CDKN2A, CDKN2B, and GLB1 mRNAs were then determined by 

RNAseq and plotted against the mean cell size for each bin. Each colored line represents one of four 
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replicates. (B) Cell size distributions for the four bins of FACS-sorted HLF cells that were then re-plated 

and passaged to determine replicative senescence dynamics (see Fig. 3C-D), as measured with a Coulter 

counter. (C) Cell size distributions for the four bins of FACS-sorted RPE-1 cells that were then re-plated 

and passaged in the presence of Doxorubicin to determine the DNA-damage-induced senescence 

dynamics (see Fig. 3F), as measured with a Coulter counter. (D-E) Cell size distributions (D) and SA-

beta-Gal staining images (E) of the RPE-1 cells treated for 8 days with DMSO, Palbociclib or 

Doxorubicin, in the presence or absence of Rapamycin to determine the effect of cell size reduction on 

senescence dynamics (see Fig. 3G). Each of the experiments in (B)-(E) was performed in two biological 

replicates. 
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Figure S11. Classes of sub- and super-scaling proteins in HLF and hTERT RPE-1 cells: (A) Slopes 

for proteins grouped by Uniprot GO annotations for DNA repair (GO:0006281) and DNA replication 

(GO:0006260). (B) Size-dependent proteome changes from this study correlate with the senescence-

associated SASP and cell cycle gene expression changes defined by Ruscetti, et al. (34). 
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Data S1. Protein and Peptide Slope values for size-sorted G1 cells 

Data S2. Long-term Palbociclib time course 

Data S3. mRNA concentrations in G1 HLF cells sorted into three size bins  

Data S4. Ploidy-sorted Protein Slopes 

Data S5. MaxQuant spectral search parameter file 
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