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Abstract

Auditory attention describes a listeners focus on an acoustic source while they ignore other competing sources

that might be present. In an environment with multiple talkers and background noise (i.e. the cocktail party

effect), auditory attention can be difficult, requiring the listener to expend measurable cognitive effort. A

listener will naturally interrupt sustained attention on a source when switching towards another source

during conversation. This change in attention is potentially even more taxing than maintaining sustained

attention due to the limits of human working memory, and this additional effort required has not been well

studied. In this work, we evaluated an attention decoder algorithm for detecting the change in attention and

investigated cognitive effort expended during attentional switching and sustained attention. Two variants

of endogenous attention switching were explored: the switches either had in-the-moment decision making or

a pre-defined attentional switch time. A least-squares, EEG-based, attention decoding algorithm achieved

64.1% accuracy with a 5-second correlation window and illustrated smooth transitions in the attended talker

prediction through switches in sustained attention at approximately half of the analysis window size (2.2

seconds). The expended listening effort, as measured by simultaneous electroencephalography (EEG) and

pupillometry, was also a strong indicator of switching. Specifically, centrotemporal alpha power [F(2, 18) =

7.473, P = 0.00434] and mean pupil diameter [F(2, 18) = 9.159, P = 0.0018] were significantly different for

trials that contained a switch in comparison to sustained trials. We also found that relative attended and

ignored talker locations modulate the EEG alpha topographic response. This alpha lateralization was found

to be impacted by the interaction between experimental condition and whether the measure was computed

before or after the switch [F(2,18) = 3.227, P = 0.0634]. These results suggest that expended listening effort

is a promising feature that should be pursued in a decoding context, in addition to speech and location-based

features.

Keywords: alpha lateralization, event related spectral perturbation, pupil diameter, auditory attention

decdoing, attention switch

1. Introduction

Real-world listening situations often contain multiple competing talkers and listeners must engage audi-

tory attention to focus onto one source. In voluntary sustained attention, an endogenous process, the listener
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applies salience towards a source and top-down mechanisms influence how the source is represented in the

cortex (Posner et al., 1984; Golumbic et al., 2013). In most environments, however, listeners do not sustain5

their attention to one talker continuously. Listeners may switch their attention endogenously, shifting their

attention between sources at their discretion. Meanwhile, sources also vie to exogenously capture listener

attention, employing bottom-up processes once successful (Posner et al., 1984).

Exogenous and endogenous attention are distinct yet intertwined in audition. Distinct brain regions

have been shown to be involved in endogenous auditory attention (Hill & Miller, 2010; Lee et al., 2013;10

Larson & Lee, 2014). Their studies have focused on characterizing attention between location and pitch,

two core features that differ between sources in cocktail-party scenarios. The frontal-parietal region was

found to be activated during endogenous auditory attention towards sources that differ in both space and

pitch (Hill & Miller, 2010). Next, the frontal eye field region was found to be activated in preparation for

and during endogenous attention towards sources (Lee et al., 2013). A more temporally resolved modality15

was used to find distinct parietal activations during endogenous switches (Larson & Lee, 2014). The right

temporoparietal junction (RTPJ) and the left inferior parietal supramarginal part (LIPSP) were active

during switches between sources that differed in space and pitch respectively. Exogenous distractor stimuli

have also been found to counter endogenous attention’s enhancement effects in an auditory study of natural

soundscapes (Huang & Elhilali, 2020). The previously mentioned attention results have been determined20

using small speech tokens such as alphabetic characters, unrelated sentences from a corpus, or non-speech

scene stimuli (Hill & Miller, 2010; Lee et al., 2013; Larson & Lee, 2014; Huang & Elhilali, 2020). The regions

involved with switching attention naturally between continuous speech sources have yet to be characterized

and will likely involve brain regions beyond those previously mentioned.

Real-world attention occurs in scenes that are more complex than the stimuli used in conventional clinical25

hearing assessments. These real scenes often involve multiple speech sources and reverberation that recruit

speech-specific auditory processes (Liberman et al., 2016). This complexity may provide a suite of cues

that can be leveraged by the listener during auditory attention. A longer listening task may lead to more

opportunities to latch attention and greater overall comprehension due to the continuous speech context.

Identifying regions engaged in switching can potentially be used to track attention states. These states30

can then be used to control stimuli enhancement which can improve the listener’s experience. Altering

the relative levels of attended and ignored stimuli can reduce listening effort and enhance attended stimuli

entrainment (Seifi Ala et al., 2020; Presacco et al., 2019; Mirkovic et al., 2019). Speech enhancement has the

capacity to improve listener quality of life in individuals of all ages and levels of hearing loss (Griffin et al.,

2019; Liberman et al., 2016; Ciorba et al., 2012; Griffin et al., 2019).35

Auditory attention decoding (AAD) describes the process of using cortical recordings to identify to whom

a listener is attending when multiple talker sources are competing for the listeners attention. AAD in combi-

nation with speaker separation has the potential to be incorporated into cognitively-controlled hearing aids

to provide auditory enhancement in speech-rich scenes that traditional hearing aids struggle with (Popelka
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& Moore, 2016; Borgström et al., 2021). The majority of these studies’ protocols ask listeners to sustain at-40

tention, not invoking endogenous and exogenous switches in attention (Geirnaert et al., 2021). However, it is

critical to study both types of attention switching given the prevalence of switching in real-world conditions.

Various speech features and cortical recording modalities have been used to encode and decode attended

stimuli (Mesgarani & Chang, 2012; O’Sullivan et al., 2015; OSullivan et al., 2017; Ciccarelli et al., 2019; Ding

& Simon, 2012; Akram et al., 2016; Puvvada & Simon, 2017). These decoding algorithms have relied on45

reactive decoding of the already attended stimuli, creating a lag in the enhancement. Endogenous switches

are associated with top-down attentional preparatory activity in contrast to exogenous attention switches

(Lee et al., 2013), and thus tracking endogenous preparatory activity might aid in faster enhancement in

comparison to reactive decoding. Identifying preparatory features that accompany attention switches could

aid in more robust auditory enhancement when combined with attended stimuli decoding.50

Recent work has begun incorporating exogenous and endogenous switches in their attention decoding

protocols to explore alternative attention modeling techniques (Akram et al., 2016; Teoh & Lalor, 2019;

Miran et al., 2018, 2020). In some auditory switching studies, the switch time is determined by the protocol

(Hill & Miller, 2010; Lee et al., 2013; Larson & Lee, 2014; Akram et al., 2016; Teoh & Lalor, 2019). These

studies direct attention switching using acoustic cues - directing the listener to switch sources when a gap55

in the stimulus occurs (Akram et al., 2016) or instructing the listener to switch attended talker location

in order to track a dynamic talker (Teoh & Lalor, 2019). However when naturalistic endogenous attention

switches are studied, the true switch time is known by the listener and must be extracted. For example,

a button press has been used to record endogenous switch time (Miran et al., 2018, 2020). Unfortunately,

a button press may create switch-locked pre-motor planning and muscle artifacts in the data, potentially60

confounding endogenous switching feature interpretation (Johari et al., 2019; Stephen, 2019).

In this study, we investigated endogenous switches of sustained attention between competing multi-talker

sources. Listeners were asked to remember when they endogenously switched using a clock in order to remove

an explicit evoked response, e.g. a motion artifact from a button press. For the first analysis, we performed

regularized least-squares decoding of the attended talker envelope (Crosse et al., 2016). We demonstrate65

decoder prediction behavior on data that contains attention switches and additional higher-order processes

of memorization and decision making that are incorporated into the protocol. Next, we quantified the

effort involved with endogenous switching using measures of EEG alpha power and pupil diameter which

proved successful in characterizing listening effort during sustained attention (Seifi Ala et al., 2020). Lastly,

we analyzed alpha power activity related to the relative locations of the attended and unattended talker70

locations which has been characterized during attention between spatially separated syllable streams (Deng

et al., 2020).
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2. Methods

2.1. Experimental Protocol

Ten native English speakers (5F, 5M), with self-reported normal hearing, participated in this study. They75

provided informed consent to an experimental protocol that was approved by the MIT Committee on the

Use of Humans as Experimental participants and the The U.S. Army Medical Research and Development

Command (USAMRDC), Human Research Protection Office (HRPO). Participants were asked to sit in

a sound treated booth between two loudspeakers positioned 6 feet away at +/-45 degrees. The left and

right loudspeakers presented male talkers reading Twenty Thousand Leagues Under the Sea and Journey80

to the Center of the Earth audiobooks, respectively (O’Sullivan et al., 2019). We simultaneously recorded

participant EEG and pupillometry using a dry electrode EEG system (Wearable Sensing DSI-24) and eye

tracking glasses (SMI ETG2), respectively. The EEG and pupillometry data were sampled at 300Hz and

120 Hz, respectively. A monitor situated in front of the participant displayed various stages of the protocol.

Figure 1 diagrams the instructional stages of a trial on the left of the figure and the time course of the85

three experimental conditions on the right. This protocol consisted of 60 one-minute trials (20 trials of each

experimental condition). At the beginning of a trial, the screen presented the trial task. Each trial task

was defined as a combination of the experimental condition and initial attended talker (left or right). Each

experimental condition had an equal number of trials that began with either left or right talker attention.

The experimental condition presentation order was randomized and determined using MATLAB’s uniformly90

distributed pseudorandom integer generator. During a trial, after approximately 30 seconds of attention

towards the initial attended talker, listeners performed one of three tasks. Depending on the indicated

experimental condition, listeners were to switch attention at their own discretion (at-will), switch attention

at a directed time (directed), or not switch attention at all (sustained).

To record the attention switch without the use of button press, we incorporated a time memorization task95

into all three experimental conditions. From the onset of the trial, the screen presented the elapsed time,

updated once a second. The at-will switch involves an on-demand, listener-initiated switch; the listener used

the clock to mentally note when they switched at their discretion. The directed switch involved the listener

switching at a time specified before the trial began. The participant used the clock to perform the attention

switch at the pre-determined time. Note that the directed switch lacks the added online decision-making100

task of when to switch. The directed condition may not resemble a realistic endogenous switch but serves as

a reference, for comparison with the at-will switch. For the sustained condition, the listener attended to the

same talker for the whole trial but was tasked to remember a time only once they saw it on the clock. This

time task is modeled after online decision-making that would occur in an endogenous switch of attention,

but without the actual switch. The sustained experimental condition controlled for the executive functioning105

tasks used in the at-will experimental condition (decision making and remembering time).

Figure 1 illustrates the listener memory state across the experimental conditions in the thought bubbles.

All three conditions’ timing events were only permitted to occur between [25,35] seconds in order to ensure
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Figure 1: Auditory attention protocol experimental conditions compared During the protocol, listeners were presented

with two competing spatially separated audiobook stimuli. They were asked to begin each trial attending to one talker and

ignoring the other. For two of the experimental conditions, listeners were asked to switch talkers approximately halfway through

the trial. Listeners either switched attention at their discretion (at-will switch) or switched their attention at a time specified

before the trial began (directed switch). In the third experimental condition, listeners were asked to keep their attention on

the initial talker for the whole trial (sustained attention). At the end of the trial, listeners recalled the time event they either

switched or continued to sustain attention.
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ample data before and after the switch. The directed switch time was randomly generated. For the other

experimental conditions, participants were instructed to randomize their timing events between the range of110

[25,35] seconds themselves. For the rest of the analysis, all trial times were normalized relative to the timing

event as time 0 seconds. The clock updated once per second instead of a finer resolution in order to prevent

increased visual processing load and reduce the complexity of the time memorization task. Any physiological

measures seen around the normalized time of 0 seconds can be attributed to executive functioning related to

the listener’s decision making, committing the switch time to memory, and/or switching auditory attention115

between sources. Between each trial, participants recalled the trial’s timing event and answered two 4-choice

comprehension questions using a wireless gaming controller. Each of the 10 participant collections contain

60 minutes worth of EEG and pupillometry data as well as two comprehension responses for each trial. The

protocol contains characteristics that should elicit measurable effort such as a reasonably difficult task that

provides listener engagement and motivation (Winn et al., 2018). Listeners attend to continuous audio book120

speech stimuli which keeps their engagement throughout the experiment more than other simpler stimuli

would. The act of attending to a source while ignoring another is reasonably difficult but not too taxing.

Participants were motivated to value attending to the proper talker at all time since they need to answer

comprehension questions from both halves of the trial. We believe participants were motivated to heed the

three experimental conditions tasks equally.125

2.2. Auditory Attention Decoding

We used a regularized least-squares decoding approach to predict to whom the listener was attending to

before, during, and following shifts in auditory attention induced by our protocol. Least-squares decoding

was used to transform a window of EEG signal into an attended talker envelope speech prediction, ˆenv, using

a linear weight matrix mapping (Crosse et al., 2016). This method operates on the basis of the attended130

talker speech envelope being encoded more robustly in the listener’s EEG than the ignored talker’s speech

envelope (Golumbic et al., 2013; O’Sullivan et al., 2015). Pre-processing was kept at a minimum because

decoding that limits pre-processing is faster and therefore a better fit for real-time processing applications

(Alickovic et al., 2019). Therefore the EEG data used for decoding underwent no blink rejection or visual

evoked potential response pre-processing. The EEG data was bandpassed between [2,32] Hz using EEGLab’s135

Hamming windowed FIR filter (Delorme & Makeig, 2004; Ciccarelli et al., 2019). The ideally separated

talkers’ broadband audio envelopes were extracted using a nonlinear, iterative method (Horwitz-Martin

et al., 2016). The bandpassed data and the audio envelopes were then downsampled to 100Hz.

The decoder was implemented using leave-one-trial-out cross validation. The attention decoders were

trained using attended and unattended talker envelopes. The switch conditions’ attended talker envelopes140

had to be constructed out of concatenated talker envelopes from the two talkers. The sustained condition’s

attended envelope was composed of a single talker per trial. The ignored talker envelope was constructed

using either the switch or sustained condition’s talker envelope method mentioned above. The decoders are

talker-invariant; training used a balanced amount of each talker’s data. The decoder used a sliding EEG
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window of 250 milliseconds (Ciccarelli et al., 2019). Regularization was performed using L2 (ridge regression).145

Maximizing decoding accuracy was not the focus of the work, we chose to use a fixed regularization of 1e6

for all subjects instead of finding the subject-unique performance-maximizing regularization value via a

validation process. The attended talker decision at a given time is determined via Pearson correlation. A

Pearson correlation was performed between the candidate speech envelopes, env, and the speech envelope

prediction, ˆenv. We evaluated the decoder with correlation windows of 10 and 5 seconds. In the results,150

we present a detailed overview of decoder performance using a length of 5 seconds. The remainder of

the analysis uses a 5-second window and using the same window for decoding provides the opportunity to

compare features around the switch.

2.3. EEG Analysis

2.3.1. Alpha Event Related Spectral Perturbation155

EEG alpha was used to quantify measures of listening effort before, during, and after switching between

sustained attention. The EEG data was pre-processed differently for this banded analysis than in least-

squares. In contrast to single trial decoding, EEG power band analysis is sensitive to blinks. Blink artifacts

were removed from the data using independent component analysis (ICA) methods found in the EEGlab

toolbox (Delorme & Makeig, 2004). Instead of absolute alpha band power, we computed a measure of relative160

alpha power in the form of alpha event-related spectral perturbation (ERSP) (Makeig, 1993). Alpha ERSP,

A(t, n), is defined as the difference between the absolute alpha spectral power in a given window and a

baseline window, scaled by the baseline window (Eq. 1). Alpha ERSP is a function of both time, t and EEG

channel, n. The spectral density, P , was computed across each analysis window using MATLAB’s pwelch

method. The absolute alpha power was computed as the sum of squared spectral density values between165

[8,12] Hz. The baseline window, B, indicates that the spectral power was computed across a window between

[-25:20] seconds relative to the trial’s timing event (Eq. 1). As a reminder, the timing event is either a switch

time or a control for the switch time in the sustained condition. The variable, t, indicates that the spectral

power was computed on a sliding 5-second window whose latter edge spans [-20:25] seconds relative to the

timing event. At 5 seconds for example, ERSP captures the activity between [0,5] seconds proceeding the170

switch, not just the activity at 5 seconds. ERSP was computed individually for each channel, n, using that

channel’s baseline alpha power. We segmented the EEG channels into three sections (frontal, centrotemporal,

and parieto-occipital). Then computed the mean ERSP across each of those section’s channels to arrive at

a given region’s ERSP measure.

A(t, n) =
P (t, n)− P (B,n)

P (B,n)
∗ 100 (1)

2.3.2. Lateralized Alpha Event Related Spectral Perturbation175

In addition to listening effort, relative attended and suppressed stimuli locations may also modulate

alpha power during auditory attention (Deng et al., 2020). To assess this phenomenon in our data, we
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extracted an alpha ERSP feature that highlights hemispheric differences in response to attended/ignored

talker locations. We used alpha ERSP magnitude from Eq. 1 instead of the individualized measure of

peak alpha power magnitude that had been used previously (Deng et al., 2020). For each experimental180

condition, we computed two time-varying mean alpha ERSP topographies for each subject. One alpha

ERSP topography was computed across the 10 trials of a given condition type that were initialized with

attention towards the left talker, AL, and the other with the attention towards the right talker, AR. The

net alpha ERSP, Anet, was defined as the difference in left and right initialized ERSP responses (Eq. 2).

Anet was partitioned into two 20-second segments and used to compute the mean pre-switch and post-switch185

responses in Eq. 3 and Eq. 4, respectively. The hemispheric difference for a given channel subset, n, before

the switch, Apre, was computed using Eq. 5. Similarly, Eq. 6 was used to compute the hemispheric difference

for a given channel subset after the switch, Apost. In Eq. 5 and Eq. 6, NL and NR indicate left and right

hemisphere channels for a given channel subset respectively.

Anet(t, n) = AL(t, n)−AR(t, n) (2)

Apre(n) =
1

20

∫ 0

t=−20

Anet(t, n)dt, n ∈ channelsubset (3)

Apost(n) =
1

20

∫ 20

t>0

Anet(t, n)dt, n ∈ channelsubset (4)

HemiDiffpre =
1

NL

NL∑
n=1

Apre(n)− 1

NR

NR∑
n=1

Apre(n), n ∈ channelsubset (5)

HemiDiffpost =
1

NL

NL∑
n=1

Apost(n)− 1

NR

NR∑
n=1

Apost(n), n ∈ channelsubset (6)

2.4. Pupillometry Analysis190

We performed peak-based blink detection on the raw pupil diameter data, interpolated data points

containing blink artifacts, and smoothed the data using a 1-second median filter. The pupil diameter used

for analysis was defined as the average pupil diameter between the left and right pupil channels. We applied

the normalization framework from Eq. 1 to pupil diameter (Eq. 7). Pupil dilation was normalized using

a trial-by-trial baseline at the onset of the trial since dilation may sensitive to factors unrelated to the195

experimental task such as engagement, arousal, anxiety, and lighting conditions (van Rij et al., 2019). In

Eq. 7, D, is the mean pupil diameter in a given 5-second window. Again, B and t indicate whether mean

pupil diameter (MPD) was computed across a baseline window between [-25:20] seconds or a sliding 5-second

window whose latter edge spans [-20:25] seconds relative to the time event. Both alpha ERSP and MPD

were computed every 10 milliseconds with a 4.99 second analysis window overlap. In addition to the baseline200
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window normalization, we z-scored trial-level ERSP and MPD within each participant, in order to highlight

experimental condition differences instead of participant differences.

MPD(t) =
Dt −DB

DB
∗ 100 (7)

2.5. Statistical Analysis

To determine significant differences in decoder, EEG, and pupillometry measures, we ran a two-factor

ANOVA tests with experimental condition as a factor and participant ID modeled as a random factor. For205

each two-factor ANOVA, we performed pairwise t-tests with a Bonferroni correction to illustrate significant

differences in population means between experimental conditions. To quantify differences in alpha lateral-

ization in response to attended talker location, we performed a three-factor ANOVA (experimental condition

and whether the measure was computed before or after the switch time were treated as factors with partic-

ipant ID modeled as a random factor). We subsequently performed post-hoc planned comparisons with a210

Tukey adjustment.

3. Results

3.1. Attended Talker Comprehension

At the end of each trial, participants answered difficult comprehension questions about the talker(s) they

attended to. Listeners answered 120 4-choice comprehension questions with a mean accuracy of 0.56 (SEM =215

0.03) which is above chance (0.25). Participants achieved mean comprehension accuracies of 0.58, 0.51, and

0.58 across at-will, directed, and sustained conditions, respectively. A two-factor ANOVA determined that

there was a main effect of experimental condition on overall comprehension accuracy [F(2, 18) = 4.247, P =

0.0308]. However, the paired t-tests did not determine that the population means for experimental-condition

comprehension accuracy were significantly different. These results suggest that participants performed au-220

ditory attention equally as well across the conditions since the three conditions do not have significant

differences in their comprehension scores.

3.2. Attended Talker Decoding

On a subject-basis, the attention decoders were evaluated using correlation window lengths of 10 and 5

seconds. Decoding accuracy is defined as the fraction of time, the time-varying correlation-based decision225

vector, corrDiffacc, is correct. CorrDiffacc is defined as the difference in the time-varying correlation

between the decoder output and the two candidate talker envelopes. When performing correlations for

accuracy evaluation, the correlation would be computed between the predicted envelope, ˆenv , and the true

candidate envelopes, envAtt and envUna (Eq. 8). The grand mean accuracy dropped from 69.3% (SEM

= 1.8%)) to 64.1% (SEM = 1.5%) when the correlation window length was halved from 10 to 5 seconds.230

Moving forward for visualization, the 5-second window was selected since it shared the same duration as
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Figure 2: Least-squares attended talker decoding accuracy reported for each participant Participant-level least-

squares attended talker decoding accuracy computed using 5-second correlation window. The grand mean accuracy is 64.1%

(SEM = 1.5%). Across experimental conditions; there are no significant differences in accuracy between experimental conditions.

the other analyses performed in this study. A two-factor ANOVA found no effect of experimental condition

on trial-level decoding accuracy evaluated using the 5-second decision window [F(2,18) = 1.83, P = 0.189]

(Figure 2). In addition to corrDiffacc, we computed corrDiffsw, the correlation between ˆenv and the initial

attended and ignored talker envelopes are represented by env1 and env2, respectively (Eq. 9). CorrDiffsw235

was computed across experimental conditions. CorrDiffsw unlike CorrDiffacc changes sign at the time of

the attention switch (Figure 3). CorrDiffsw crossed zero at 2.31 seconds for the at-will condition and 2.15

seconds for the directed condition. This measure was computed off of the grand mean CorrDiffsw curve for

the two switch conditions. When a listener engaged in a switch in attention, it took approximately half the

length of the correlation window for the correlation with the initial talker to weaken below the correlation240

with the secondary talker (Figure 3).

corrDiffacc(t) = corr( ˆenv, envAtt)− corr( ˆenv, envUna) (8)

corrDiffsw(t) = corr( ˆenv, env1)− corr( ˆenv, env2) (9)

3.3. Event Related Spectral Perturbation and Mean Pupil Diameter

Around the normalized time of zero seconds, grand-mean alpha ERSP topographies demonstrate differ-

ences in the trials that contain a switch in contrast to the sustained condition (Figure 4). At 5 seconds, the

at-will and directed alpha ERSP responses were globally weaker in magnitude than the sustained condition.245

There were weak main effects of experimental condition on frontal alpha ERSP [F(2, 18) = 3.201, P =

0.0646] and parieto-occipital alpha ERSP [F(2, 18) = 3.426, P = 0.0549]. There was a strong main effect

of experimental condition on centrotemporal alpha ERSP [F(2, 18) = 7.473, P = 0.00434]. Time-varying

grand-mean centrotemporal alpha ERSP and MPD (with standard error of the mean error bars) illustrate
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Figure 3: Least-squares decoding illustrates smooth switches in attention The decoder output was correlated with the

trial’s initial attended and unattended talker speech envelopes. In the experimental conditions that contain a switch between

talkers (top two panels), the correlation with the attended and unattended talker flip direction. The correlation difference

changes sign at a lag of approximately half the correlation window.
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Figure 4: Grand mean alpha event related spectral perturbation topographies Grand-mean z-scored alpha ERSP

topography sampled at time points before, during, and after the switch time for each experimental condition. Alpha ERSP

was computed using a sliding 5-second window of data, therefore the sampled topographies shown capture activity from the

preceding 5 seconds of time. At 5 seconds, the switch experimental condition topographies have weaker alpha ERSP magnitudes

than the sustained experimental condition.

these trial differences at a finer temporal resolution (Figure 5). Both alpha ERSP and MPD are indistin-250

guishable across experimental conditions before time zero, likely because the attention task is similar across

the trials in that time region. At zero seconds, alpha ERSP and MPD magnitudes are stacked in value in

the order of task difficulty. Paired t-tests found that the centrotemporal alpha ERSP population means

are different between the sustained condition and the two switch conditions at a significance level of 0.042

(at-will) and 0.018 (directed) (Figure 6A). There was a strong main effect of experimental condition on the255

5-second MPD value [F(2, 18) = 9.159, P = 0.0018] as well. Paired t-tests also found that MPD population

means are different between the sustained condition and the two switch conditions at a significance level of

.017 (at-will) and 0.021 (directed) (Figure 6B).

3.4. Alpha Lateralization

The topographic distribution of alpha power relative to the attended and unattended talker locations260

illustrate differences between experimental conditions (Figure 7). The grand-mean net alpha ERSP topogra-

phies before and after the switch (Apre and Apost) show that switch trials reflect a change in the dominant

alpha hemisphere in the centrotemporal region (Figure 7A). For all three experimental conditions, Apre’s

left hemisphere is ipsilateral to attended talker in Eq. 2’s leading term. Apost’s ipsilateral/contralateral

hemisphere demarcation is dependent on the experimental condition. For the sustained condition, the initial265

attended talker remains the leading term in Eq. 2. For the two switch experimental conditions, the initial

attended and ignored talkers switch roles in the latter half of the trial after a switch. If a switch occurred,
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Figure 5: Centrotemporal alpha event related spectral perturbation and mean pupil diameter over time (A)

Grand mean (and standard error of the mean) centrotemporal alpha event related spectral perturbation (ERSP) and mean

pupil diameter (MPD) response over the course of each experimental condition. Centrotemporal alpha ERSP and MPD trend

in opposite directions over the course of the trial. Around the switch time, ERSP and MPD capture experimental condition

differences.
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Figure 6: Centrotemporal alpha event related spectral perturbation and mean pupil diameter at 5 seconds after

switch In the 5 seconds following the switch, both centrotemporal alpha ERSP and mean pupil diameter responses to the

sustained experimental condition are significantly different from the switch experimental conditions.

Eq. 2’s leading term contains the response to right talker attention instead of left talker attention. This

reshuffling of Eq. 2’s leading terms changes which hemisphere is considered Apost’s ipsilateral hemisphere.

These hemispheric differences are further quantified by HemiDiffpre and HemiDiffpost (Eq. 5 and Eq. 6).270

This measure shows an alpha dominant hemisphere shift occurs for the switch trials and not the sustained

trials (Figure 7B). We performed a three-way repeated-measures ANOVA (experimental condition by whether

the measure was computed before or after the switch time) with subject ID modeled as a random factor.

There was no main effect of experimental condition on centrotemporal alpha HemiDiff [F(2, 18) = 0.511, P

= 0.609]. There was a strong effect of pre/post switch time on centrotemporal alpha HemiDiff [F(1, 9) =275

23.01 P = 0.000978]. There was a weak interaction between the experimental condition and pre/post switch

time on centrotemporal alpha HemiDiff [F(2,18) = 3.227, P = 0.0634]. The planned comparison found

that within switch conditions, the centrotemporal alpha HemiDiffpre and HemiDiffpost population means are

different at uncorrected p-values of 0.0335 (at-will) and 0.0885 (directed), respectively. Additionally, for the

sustained experimental condition, the centrotemporal alpha HemiDiffpre and HemiDiffpost population means280

are not significantly different. The planned comparison results support attended/unattended talker location

modulated alpha lateralization.
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Figure 7: Alpha event related spectral perturbation lateralization (A) The net alpha ERSP topography averaged across

20 seconds before and after the switch. In the switch experimental conditions, the hemisphere with the greater centrotemporal

alpha magnitude switches hemispheres in keeping with the hemisphere that is ipsilateral to the attended talker for the given

segment of time. In the sustained experimental condition, centrotemporal alpha magnitude remains on the same side since the

attended talker location did not change at time 0 seconds. (B) Together, these responses support alpha ERSP lateralization

ipsilateral to the attended talker location.

4. Discussion:

We studied endogenous attention switching in the context of developing decoding algorithms that can be

used in natural, every-day multi-talker listening environments. Our experimental protocol allowed listeners to285

endogenously switch attention between continuous speech sources while their effort was characterized through

EEG and pupillometry measurements. In addition to effort, we detected two types of endogenous attention

switches using both talkers’ speech envelopes and spatial locations. While this decoding result is not the first

to demonstrate endogenous attention switch decoding (Miran et al., 2018, 2020), to the best of our knowledge,

it is the first study to decode multi-talker continuous speech without the potential confound of sensorimotor290

planning. We also characterize the effort involved with attention switching between speech sources. This

builds upon effort measures associated with sustained attention between competing speech sources (Seifi Ala

et al., 2020) and attention switching between a pairs of competing alphabetic characters (McCloy et al.,

2017). EEG alpha power and pupil diameter measures indicated that the effort associated with performing

attention switches was greater than our sustained-attention condition. Listener centrotemporal alpha power295

was also found to be modulated by the relative spatial locations of the stimuli. Our decoding results highlight

latencies inherent in speech-feature decoding. Our EEG and pupil diameter findings support leveraging

attention-switch decoding and other non-speech features for improving the accuracy and decreasing the
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decision latency involved with cognitively-controlled hearing aids.

4.1. Switching Latency of Envelope-Based Attention Decoding300

Listeners who struggle with speech understanding in multi-talker scenes would significantly benefit from

enhancement that instantaneously cues on the talker they wish to attend. For practical applications, decoding

algorithms must operate in a causal manner, incrementally producing a decoding decision from a given

window of previous data. When there is a switch in attention, this analysis window length translates into

a decoding latency. Although the 5-second correlation window would produce a faster detection of a switch305

than a 10 second correlation window, it is at a cost. The 5-second correlation decision produced noisier

predictions over time and reduced decoding accuracy by 5.2% when compared to the 10-second window.

This trade-off was systematically studied with a linear model on another data set that contained simulated

attention switches and optimal accuracies of 62% and 68% were achieved using an evaluation window of 2.54

and 11.28 seconds (Geirnaert et al., 2019).310

Our study in contrast, evaluates performance on EEG data that contains real human switches in attention

and confirms that switches can be detected in approximately half the decision window size using a standard

least-squares decoding method. We originally hypothesized that when an attention switch occurs, there is

a measurable latency associated with the time it takes for the listener to go from attending to one source

to another. While the decoding lag defines the fastest the decoder can detect an attended talker change,315

it assumes a negligible human switching delay. In both 10 and 5 second evaluations of our decoder, we

observed the decision vector (Eq. 9) change sign at a lag of half the respective correlation window length,

indicating a switch in the listener’s attended talker. For the 5-second correlation window length, mean switch

time was 2.31 and 2.15 respectively for our at-will and directed experimental conditions. Since the decoded

switch time was less than half the window size, this indicates that listeners were potentially switching slightly320

before the reported switch time, and that there was no additional lag associated with attention switching.

A state-modeling algorithm found algorithmic delays of 1.9, 1.75, and 1.5 seconds for simulated switch data,

real switches in EEG, and real switches in MEG, respectively (Miran et al., 2018). The decoding lag in our

data set and others, demonstrates the need for further inquiry into alternative decoding features such as

expended effort, laterality due to spatial cues, pupillometry, and eye-gaze. Supplementing envelope-decoding325

with other features may further reduce the algorithmic switching time for attention decoding.

4.2. Increased listening effort is associated with auditory attention switching

Around the switch time, both alpha ERSP and MPD demonstrated differences in value for the switch

and sustained conditions. These magnitude differences were superimposed on slow alpha ERSP and MPD

trends in opposite directions over the course of the trial. This slow increase in alpha ERSP and decrease330

in MPD was also present in previous work (Seifi Ala et al., 2020). Its not clear whether these changes in

ERSP and MPD are related to a change in effort and may just be a physiological adaptation. Our results

suggest that the effort required to switch attention was greater than the effort required to sustain attention.
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The raw alpha ERSP and MPD magnitudes observed in Figure 5 reflect both the effort due to switching

and higher-order cognitive tasks (in-the-moment decision making and time memorization), depending on the335

experimental condition instructions. In our experiment, both the at-will and sustained conditions involve

decision making and time memorization and only differ in whether an attention switch occurs. Therefore

the differences in switch and sustained condition ERSP and MPD measures are due to the effort required to

implement the switch in attention.

Our alpha power results are consistent with previous sustained attention effort characterization (Seifi Ala340

et al., 2020). Where a lower magnitude alpha ERSP was associated with greater listening effort, we found

a similar result in our most difficult experimental condition (at-will). As expended effort increases, cortical

networks activate, resulting in decreased cortical synchrony and decreased alpha ERSP (Seifi Ala et al., 2020;

Pfurtscheller, 2001; Jensen & Mazaheri, 2010). On the other hand, our alpha ERSP findings differ from

previous findings in the specific EEG channel subset where the alpha ERSP effect was found. Significance345

was found in the parietal channels (Seifi Ala et al., 2020) while we found significance in the centrotemporal

channels. This discrepancy may be due to a difference in participant age and hearing-aid usage (Seifi Ala

et al., 2020). We believe EEG alpha power should be used in addition to other factors such as attended

stimulus entrainment and pupil diameter measures due to the band’s ability to be modulated by other

factors. Our results show that pupil diameter increases during our complex attention switching tasks in350

manner that is consistent with previous pupil diameter measures performed during an exogenous attention

switch between competing alphabetic character pairs (McCloy et al., 2017).

In addition to understanding the effort associated with attention switching, pupil diameter measured

throughout the entire 60-minute collection can be leveraged to determine the impact a listener’s effort has

on decoding accuracy. In future studies, pupil diameter can be used as a measure of fatigue over the course355

of long stretches of effortful listening and to determine auditory training’s efficacy in reducing such fatigue

(Pichora-Fuller et al., 2016). These attention switching conditions could be implemented in clinic to gauge

listener effort when performing auditory attention between stimuli with low speech intelligibility (Winn et al.,

2018; Zekveld et al., 2018; Pichora-Fuller et al., 2016; Paul et al., 2021). These measures could help gain

insight on an individual’s fatigue associated with everyday difficult listening conditions out side the clinic as360

well.

4.3. EEG alpha power is lateralized by attentional spatial cues

Our results confirm the hypothesis of the at-will and directed switch conditions having significant differ-

ences in the hemispheric difference measure before and after the switch. Several prior studies have suggested

that the spatial location of acoustic stimuli lateralizes alpha power during an attention task (Bonnefond &365

Jensen, 2012; Bednar & Lalor, 2018; Weisz et al., 2011; Deng et al., 2020). Stimulus suppression has been

shown to increase alpha in the hemisphere ipsilateral to the attended talker in an attention task of competing

syllables (Deng et al., 2020). We found greater alpha magnitude in the hemisphere ipsilateral to the attended

talker as well (Figure 7). Recall that this alpha power difference between hemispheres was quantified as a
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measure of hemispheric difference as shown in Eq. 5 and Eq. 6. A strong effect of pre/post switch time370

was found to impact the hemispheric difference measure. This factor is likely capturing that before the

switch, all experimental conditions have a lower mean alpha ERSP than after the switch Figure 5. However,

in addition to that effect, we also found a weak, yet still present, interaction between the experimental

condition and whether the measure was computed before or after the switch on the hemispheric difference

measure [P<0.1]. This interaction captures the fact that the hemispheric difference measure embeds trial375

dependent talker location movements (Eq. 2-Eq. 6). The uncorrected planned comparisons also support

relative stimuli location alpha modulation. The hemispheric difference measure before and after a switch is

expected for the switch conditions because the hemisphere ipsilateral to the leading term in HemiDiffpre

and HemiDiffpost, switches when the listeners switch attention (Eq. 5,Eq. 6). In contrast, our sustained

experimental condition did not have the listener switch attended talker locations and our results show that380

there was no statistical difference between the sustained condition’s alpha hemispheric difference before and

after the switch.

Alpha lateralization was significant in the centrotemporal region. This alpha lateralization result is

consistent with a previous finding, although the cortical region differs slightly from the parieto-occipital

region previously identified (Deng et al., 2020). One explanation for this difference is that our task was385

significantly longer and more complex. Another possibility could be related to the fact that we computed

alpha ERSP instead of individualized peak alpha magnitude for our alpha lateralization measure. Regardless,

our results further support that even with a demanding task of attention between continuous speech stimuli,

alpha lateralization effects are present. Although there is evidence of spatially modulated alpha power, this

cue is limited for single-trial decoding use due to the window length over which the feature was computed for390

significance. Although this effect exists, better features may exist for leveraging spatial cues for decoding. For

example, a decoding method that used common spatial pattern filters to determine directional focus without

the use of speech-features, performed at an accuracy of 80% and window length of 1 second (Geirnaert et al.,

2020).

4.4. Leveraging attention switches for a cognitively-controlled hearing aid395

Cognitively-controlled hearing aids have the capacity to improve the listener experience in cluttered envi-

ronments through listener-steered speech enhancement (Geirnaert et al., 2021). Understanding endogenous

switching may speed attention decoding through intended attention identification throughout switching be-

fore a new talker is fully attended to. Speech-feature based decoding relies on the attended speech being

encoded in the listener’s cortical signals. It remains unknown how these speech-feature based algorithms400

would work on real attention switches in individuals with hearing impairment (Decruy et al., 2020; Van Can-

neyt et al., 2021). On the other hand, sensing effort expended in an attempt to attend to a new source and

ignore another, could be leveraged to help decode intent in this situation. It is probable that the attention

processes involved with an endogenous switch may begin to show themselves in cortical signals earlier than
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an exogenous switch due to the decision-making and planning involved. Therefore, supplementing speech-405

feature based decoding with features that are directly related to switches in auditory attention, may result

in decreased decoding lag and increased accuracy. The neural and pupil diameter markers associated with

switching listening effort, as shown in our results, could potentially be leveraged as one of these features.

We believe this work further supports exploring non-acoustic, multi-modal features for attention decoding.

Our results demonstrated that speech-feature based decoding still functions in the presence of additional410

higher-order cortical tasks, indicating that non-speech features have promise to be fused with speech-features

for robust multi-cue feature decoding. This work did not focus on maximizing decoding accuracy nor

minimizing the switch detection lag but future work could aim to use these additional features as part

of decoding models. Specifically, alpha ERSP and pupil diameter features may be relevant since they both

began to change their slope behavior slightly before or at the time listeners reported their switch. Individuals415

naturally also use both auditory and visual attention in a multi-talker listening task, therefore eye gaze can

also be pursued as a non-covert feature for auditory attention decoding (O’Sullivan et al., 2019; Best et al.,

2017; Favre-Felix et al., 2018).

5. Conclusion

In this study, we characterized the effort associated with endogenous auditory attention switching using420

both cortical and pupil diameter measures. Decoding real endogenous switches in attention illustrated the

problematic lag associated with decoding methods that rely on attended talker speech features. Alpha

ERSP and MPD measures of effort were sensitive to endogenous switching of auditory attention. Our effort-

based features have a potential application in a multi-modal, multi-feature decoding algorithm for use in a

cognitively-controlled hearing aid. Both effort features hold promise in being quick to reflect the onset of425

switching while being stable in their time course, potentially leading to a shorter lag in switch detection. The

study’s effortful attention switching tasks may also apply to the development of objective neural markers

of listening effort that are intended for clinical use (Paul et al., 2021; Pichora-Fuller et al., 2016; Zekveld

et al., 2018). One last application of these switching effort measures is in the field of attention disorders and

development (Hanania & Smith, 2010). Characterizing auditory attention across populations and within430

individuals is important to pursue in combination with developing effort-based features for decoding. In

addition to clinical hearing ability (Vanthornhout et al., 2018; Fuglsang et al., 2020; Decruy et al., 2020),

expended cognitive effort during listening may significantly impact an individuals auditory attention decoding

accuracy. Cognitive-controlled hearing-aid technology can leverage listener effort in many ways. Decoding

algorithm speed and accuracy, listener benefit due to enhancement, and efficacy of auditory training can all435

utilize measures of effort.
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7. Supplemental Materials

We computed ERSP measures across the three lowest cortical power bands (alpha, theta, and delta)

and across the frontal, centrotemporal, and parieto-occipital EEG channel subsets. In addition to the

centrotemporal alpha ERSP and lateralization findings described in the main text, we also wish to report460

the following additional statistically significant ERSP results.

Band Time (s) CH Region ANOVA F(2,18) T-test

Alpha 5 sec Frontal F = 3.201, P = 0.0646 sustained =/= directed@ P = 0.034

Alpha 5 sec Parieto-occipital F = 3.426, P = 0.0549 sustained =/= at-will @ P = 0.056

Alpha 2.5 sec Centrotemporal F = 2.072, P = 0.155 sustained =/= at-will @ P = 0.047

Alpha 2.5 sec Parieto-occipital F = 2.372, P = 0.122 sustained =/= at-will @ P = 0.028
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Band Time (s) CH Region ANOVA F(2,18) T-test

Delta 2.5 sec Centrotemporal F = 4.354, P = 0.0287 sustained =/= directed @ P = 0.084

Delta 2.5 sec Parieto-occipital F = 3.799, P = 0.042 sustained =/= directed @ P = 0.032
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