
Training a spiking neuronal network model of visual-motor cortex to
play a virtual racket-ball game using reinforcement learning

Short title: Learning visual-motor behavior with spiking neuronal network models

Haroon Anwar1, Simon Caby1, Salvador Dura-Bernal1,2, David D’Onofrio1 , Daniel Hasegan1,
Matt Deible3, Sara Grunblatt1, George L Chadderdon2, Cliff C Kerr4,5, Peter Lakatos1,8, William W
Lytton2,6, Hananel Hazan7, Samuel A Neymotin 1,8

1 Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric
Research, Orangeburg, NY
2 Dept. Physiology & Pharmacology, State University of New York Downstate, Brooklyn, NY
3 University of Pittsburgh, Pittsburgh, PA
4 Dept Physics, University of Sydney, Sydney, Australia
5 Institute for Disease Modeling, Global Health Division, Bill & Melinda Gates Foundation,
Seattle, WA, USA
6 Dept Neurology, Kings County Hospital Center, Brooklyn, NY
7 Dept of Biology, Tufts University, Medford, MA
8 Dept. Psychiatry, NYU Grossman School of Medicine, New York, NY

Abstract
Recent models of spiking neuronal networks have been trained to perform behaviors in

static environments using a variety of learning rules, with varying degrees of biological realism.
Most of these models have not been tested in dynamic visual environments where models must
make predictions on future states and adjust their behavior accordingly. The models using these
learning rules are often treated as black boxes, with little analysis on circuit architectures and
learning mechanisms supporting optimal performance.

Here we developed visual/motor spiking neuronal network models and trained them to
play a virtual racket-ball game using several reinforcement learning algorithms inspired by the
dopaminergic reward system. We systematically investigated how different architectures and
circuit-motifs (feed-forward, recurrent, feedback) contributed to learning and performance. We
also developed a new biologically-inspired learning rule that significantly enhanced
performance, while reducing training time.

Our models included visual areas encoding game inputs and relaying the information to
motor areas, which used this information to learn to move the racket to hit the ball. Neurons in
the early visual area relayed information encoding object location and motion direction across
the network. Neuronal association areas encoded spatial relationships between objects in the
visual scene. Motor populations received inputs from visual and association areas representing
the dorsal pathway. Two populations of motor neurons generated commands to move the racket
up or down. Model-generated actions updated the environment and triggered reward or
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punishment signals that adjusted synaptic weights so that the models could learn which actions
led to reward.

Here we demonstrate that our biologically-plausible learning rules were effective in
training spiking neuronal network models to solve problems in dynamic environments. We used
our models to dissect the circuit architectures and learning rules most effective for learning. Our
models offer novel predictions on the biological mechanisms supporting learning behaviors.

Author Summary
A longstanding challenge in neuroscience is to understand how animals produce

intelligent behaviors and how pathology results in behavioral/cognitive deficits. The advent of
modern imaging techniques has enabled recording large populations of neurons in behaving
animals. However, animal experiments still impose limitations in recording widely across multiple
brain areas while manipulating the individual components of the circuit, thus limiting our
understanding of how the behavior emerges from sensory and motor interactions. Multiscale
data-driven models of neural circuits can help dissect mechanisms of sensory-motor behaviors.
However, most biologically detailed models are used to reproduce and understand the origins of
activity patterns observed in vivo. In contrast, Deep Learning models show extraordinary
performance in complex sensory-motor tasks. Despite this, Deep Learning models are not
routinely used to dissect mechanisms of sensory-motor behavior because of their lack of
biological detail. Here, we developed several spiking neuronal network models of the
visual-motor system and trained them using biologically inspired learning mechanisms to play a
racket-ball game. We use the models to dissect circuit architectures and learning rules that
enhance performance. We offer our models and analyses for the neuroscience community to
better understand neuronal circuit mechanisms contributing to learning and behavior.

Introduction
A variety of Deep Learning (DL) artificial neural network (ANN) models have been

developed and trained to effectively learn complex sensory-motor behaviors [1–8]. DL models,
which are primarily designed with engineering goals in mind, often lack biological details, and
therefore do not shed light on the circuit mechanisms of behavior in real animals [9].
Biophysically detailed neuronal network models of the sensory-motor cortex can be used to
dissect the mechanisms of learning behaviors in vivo [10], however in the past the focus has
been on developing models of cortical circuits that reproduce electrophysiological activity
patterns [11] rather than on understanding the origins of sensorimotor behavior [12]. Several
spiking neuronal networks (SNNs) with moderate circuit complexity have been developed to
learn behaviors in static sensory environments [13–17]. In this work, we aim to shed light on the
dynamics, decision-making, and learned behavior of a visual-motor circuit in a dynamic
environment. We develop several SNNs each including multiple visual and motor areas that
learn to interact with the environment using biologically inspired reinforcement learning (RL)
mechanisms.

The success of ANNs can be credited to the backpropagation and gradient descent
methods that successfully tune the connection weights between neurons [18]. From a biological
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perspective, the ideas behind the backpropagation and gradient descent methods are very
appealing but many properties and requirements that it relies on to tune synaptic connections
are not present in the nervous system [19]. Nevertheless, the success of ANNs with
backpropagation and gradient descent has led to achieving superhuman capabilities in learning
goals and learning to operate in an interactive environment [5]. One of the techniques that have
been used to train ANNs interacting with an environment is reinforcement learning (RL), where
the network learns a behavior by maximizing a reward signal from the environment. Our goal is
not to compete with the success of ANNs (although the success of the model is important), but
rather to improve understanding of the intricate networks of the visual and motor systems that
learn using biologically realistic time-dependent and reward modulated learning rules. Using the
biologically inspired RL rule we can not only show that our models perform well but also that
their neuronal activity is directly comparable to recordings of biological networks.

Cortical neural circuits contain very complex connectivity patterns [20–22]. Sensory
areas are connected with one another and to motor and other higher processing areas using
multiple pathways [23–29]. In addition to feedforward connections, feedback and recurrent
connections are hallmarks of biological neural circuits. However, it remains unclear what role
each of those connections serve in neural computations, in multimodal integration of
sensorimotor information, and in generating motor behavior. Using SNN models with
feedforward, recurrent, and feedback connections in this work, we investigate learning capacity
of these models with different architectures and connectivity patterns.

In sensory-motor tasks, rewards and punishments are typically sparsely delivered at the
end of each trial, where each trial consists of multiple actions in a dynamically changing
environment [30,31]. The brain utilizes environmental cues in dynamically changing
environments to make associations with the actions that eventually result in a reward over
repeated trials [32]. Regardless of the temporal delays between the executed actions and
rewards, the brain is capable of assigning credit to intermediate actions during a trial. Several
theoretical solutions have been proposed to solve this distal credit assignment problem in both
ANN and SNN models [33–36]. Reinforcement learning in ANNs has made heavy use of value
functions to assign intermediate credit in sparse reward paradigms, but this methodology
remains impractical in biological SNNs [34,37–39]. In this work, we use a
spike-timing-dependent plasticity (STDP) rule to establish association between pre- and
postsynaptic neurons, and modulate the STDP weight changes by reward/punishment (critic
signal) delivered after an action. Besides these types of temporally sparse, delayed rewards, we
also test another reward paradigm utilizing intermediate rewards, which were previously used
with an SNN model of sensorimotor cortex trained to move simulated and robotic arms towards
targets [14,40]. However, instead of broadcasting critic signals to all premotor and motor neuron
pairs (non-targeted paradigm), we provide intermediate rewards/punishments only to the
neuronal populations associated with the executed actions (targeted paradigm).

In this work, we first construct a feedforward SNN model of visual and motor areas and
train it to play a racket-ball game using STDP based RL (STDP-RL) mechanisms with
intermediate rewards/punishment in both targeted and non-targeted RL paradigms. We then
extend our feedforward model to include feedback and recurrent connections, as well as
allowing RL based learning within premotor and motor areas. Like the feedforward model, we

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454361doi: bioRxiv preprint 

https://paperpile.com/c/tv6wND/bvNy
https://paperpile.com/c/tv6wND/6KUo
https://paperpile.com/c/tv6wND/Tzv8+gnCB+gC9E
https://paperpile.com/c/tv6wND/fIGg+fpmM+HL7h+AyGT+g9WB+OvU8+64OQ
https://paperpile.com/c/tv6wND/fuqY+5QGI
https://paperpile.com/c/tv6wND/Nrlo
https://paperpile.com/c/tv6wND/PpoK+OXOQ+lwId+OOpi
https://paperpile.com/c/tv6wND/OXOQ+0MZd+bYtF+EpQG
https://paperpile.com/c/tv6wND/H0Ur+Oxt9
https://doi.org/10.1101/2021.07.29.454361
http://creativecommons.org/licenses/by-nc-nd/4.0/


also test our recurrent model’s ability to learn under both targeted and non-targeted RL
paradigms using both intermediate and sparse rewards. Comparing performance of our models
using both feedforward and recurrent architectures with different RL paradigms, we show the
capability of SNN models in learning complex visual-motor behaviors, which were previously
demonstrated only using ANNs. Furthermore these models allow us to access the spiking
activity of neurons across different modeled areas that can be directly matched to physiological
data. Once more anatomical and physiological details about neural circuits are included in our
models, these models can be used together with imaging modalities to dissect the mechanisms
of psychiatric disorders associated with deficits in sensory-motor behaviors [41–43].

Results
Constructing a spiking neuronal network model of visual-motor cortex

To test the capabilities of detailed neuronal network circuit models in achieving high
performance, we first designed a feedforward model of the visual-motor cortex with visual, motor
and association areas each represented as a single layer of spiking neurons (Figure 1A). We
connected the neurons across cortical areas only in a feed-forward manner. In the model of
visual cortex, we used two functional types of neurons, EV1 neurons encoding location of the
objects in the visual field and EVD neurons encoding object motion directions. To make
associations between multiple objects in the visual field and their motion trajectories, we
included two layers of association neurons, EA neurons and EA2 neurons, where EA neurons
were activated by both EV1 and EVD neurons and EA2 neurons were activated in turn by EA
neurons.

In this model, we assigned high densities of synaptic connections between visual and
association areas (see details in Materials and Methods and Table 2) so that during learning
weakening and strengthening of synaptic weights would shape sparser connectivity patterns.
These counterbalancing effects of increasing and decreasing synaptic weights also contributed
to network stability. Motor cortex consisted of two neuronal populations, where each population
contributed to a specific motor action. We adjusted synaptic weights and connection
probabilities to make sure that the visual inputs evoked responses in visual cortex neurons and
reliably propagated throughout the neural circuit (see raster plot in Figure 1B), finally generating
motor commands. The motor commands were generated by comparing the firing rates of the
motor cortex EMUP and EMDOWN neuronal populations at each timestep, in a winner-take-all
fashion (e.g. when the EMUP population firing rate was higher than that of EMDOWN, a move
‘Up’ motor command was produced, and vice-versa; when firing rates of both populations were
the same, the racket was held stationary).
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Figure 1. Constructing a feedforward model of visual-motor cortex that learns to play the racket-ball game. A) Schematic of
the closed-loop feedforward visual/motor circuit model interfaced with the racket-ball game. Visual areas receive inputs from the
pixelated image frames of the racket-ball game, downstream activating association and motor areas. An action is generated after
comparing firing rates of EMDOWN and EMUP excitatory motor populations over an interval. Each action delivers a reward to the
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model driving STDP-RL learning rules. B) Raster plot shows the spiking activity  of different populations of neurons during a training
episode (vertical axis is neuron identity and horizontal axis is time; each dot represents a single action potential from an individual
neuron). C) Firing rates of excitatory motor neuron populations EMUP and EMDOWN in the feedforward model increase over the
course of training. The firing rates were binned for ball trajectories (beginning when the ball is at the extreme left side of the court
and ends when the ball hits or misses the racket on the right side of the court). D) The average weight change of synaptic input onto
EMUP and EMDOWN sampled over 20 training episodes tends to increase with learning, indicating the network tends to produce
rewarding behavior.

Tuning learning parameters for reinforcement learning
To learn any visuo-motor behavior, the model must first decode and interpret the visual

scene, developing associations between the objects in the scene to understand the visual
environment. We could have used unsupervised learning mechanisms for learning
spatio-temporal visual associations, but because of the long time scales of unsupervised
learning in biology we decided to keep weights of synaptic connections between visual and
association areas fixed in the hope that a visual scene including only a bouncing ball and
moving racket would not require any plasticity in the early visual areas.

To learn which motor actions must be taken at any instance in a dynamically changing
visual environment, the model should first explore the action space by taking random actions
under the supervision of a critic, which tells the model the value of an action it recently took in
that particular scenario. Such a learning mechanism where the strengthening or weakening of
synapses is associated with a critic’s reward or punishment fits within the framework of
reinforcement learning (RL). To use RL, we had to deal with two important issues associated
with the distal-credit assignment problem, while learning how to play the bouncing ball game 1.
The reward or punishment is given after many executed actions, which requires tracking all
those actions and all the neurons/synapses contributing to the generation of those actions. 2.
We also need to know how recently the neurons/synapses were activated relative to the
reward/punishment in order to assign them the correct credit. These issues are tackled in ANNs
by recording all of the states, actions, and rewards throughout an episode and then retroactively
adjusting the ANN’s action probabilities using discounted episodic returns and backpropagation
[34,37,38,44]. Such a replay and update strategy is quite successful in producing a
reward-maximizing strategy over a large number of iterations. There is, however, no evidence of
such learning mechanisms in the brain, and even if there was, any phenomenological
implementation of such mechanisms would be extremely difficult in SNNs.

Therefore in our SNN we used a STDP-RL rule to tackle the credit assignment problem
[13,14,40,45,46]. When pre- and postsynaptic neurons both fired within a short time interval, we
tagged the synapse between those neurons with an eligibility trace (Figure 2A). We can choose
time constants for the eligibility trace to stay active depending on how far in time we want to
associate the activity of the neuron pair, with the action produced, and the resulting
reward/punishment. For distal credit assignment problems in small networks, activation of
eligibility traces for long durations may decrease accuracy of the credit assignment due to
spatio-temporal cross talk, resulting in the development of nonspecific visual-motor action maps.

Before we tested the standard STDP-RL we proposed another framework based on the
intermediate rewards paradigm (IRP; Figure 2B) that required prediction of projected ball
location for possible hits or misses. Once the model was provided information about the
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projected ball location, each action delivered a reward when the racket moved towards the
target location or a punishment when the racket moved away from the target location. Because
each intermediate reward was associated with the past action, we chose a very short time
constant (50 ms) for the eligibility trace while using IRP with the feedforward model. When the
correct associations between visual space and motor space were established, the model knew
about the correct action for each visual scene.

Figure 2: Spike-timing dependent reinforcement learning framework: A) An exponentially-decaying synaptic eligibility trace
(ET) is triggered after postsynaptic neuron firing within a short time window after presynaptic neuron firing. If a reward or punishment
signal is delivered while ET>0, synaptic weight is potentiated or depressed proportional to ET. B) IRP delivers rewards to the model
for each action it takes based on whether the action moved the racket towards the projected location of the ball for a hit or away. C)
Three different RL versions used in this study (V visual; A Association; M Motor areas): non-targeted RL, all motor neurons receive
ET; targeted RL, motor neurons which contributed to the action receive ET and motor neurons in population for the other directions
receive negative ET; retrograde targeted RL as in targeted RL but middle/hidden layer synaptic connections also receive ET, with
ET amplitude reduction based on number of back-tracked connections.

Following the standard, non-targeted STDP-RL, all motor neurons become eligible for
potentiation or depression based on their spike times relative to the spike times of their
presynaptic neurons (Figure 2C). Here, we limited action associated rewards and punishments
only to the action associated connections and provided opposite and attenuated reward or
punishment to non-action associated areas, similar to asymmetric values used in earlier models
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[47]. For example, if the reward was associated with a “Move-Up” command, the synapses onto
EMUP became eligible for potentiation and the synapses onto EMDOWN were made eligible for
depression (targeted RL; Figure 2C). For the plastic synapses not directly making connections
onto motor areas, an additional rule (retrograde targeted RL; Figure 2C) was devised where the
reward and punishment were scaled down as a function of the number of synapses away from
the motor areas. Non-targeted RL and targeted RL were used for training feedforward models,
whereas Non-targeted RL and retrograde targeted RL were used for training recurrent models
that will be discussed in the later part of the manuscript.

Training the feedforward SNN to play the racket-ball game
Using a custom built racket-ball game environment (see Materials and Methods for

details), we first trained our feedforward models with non-targeted and targeted RL paradigms
using both intermediate and sparse rewards to hit the ball bouncing around the court using the
model-controlled racket. The racket movements were generated by comparing the firing rates of
neurons in motor areas each representing a different motor action (“Move-up” and
“Move-down”). The motor neurons primarily received inputs from the neurons encoding visual
features such as the location and motion direction of the objects in the visual scene, and
associations between those features in the continuously adapting visual environment. When the
model-generated action resulted in a hit or movement towards the ball-projectile, a reward
signal was delivered allowing the model to learn associations between the features of the visual
space and appropriate actions through STDP-RL. Similarly, when the model-generated-action
resulted in a miss or movement away from the ball-projectile, a punishment signal was delivered
to weaken the connection weights mediating the associated visual-motor behavior. We chose a
smaller multiplicative factor for the punishment and larger multiplicative factor for the reward
which caused the weights of the plastic synaptic connections and the firing rates of neuronal
populations to increase with training (Figure 1C) but in general remained stable and we did not
observe depolarization-block anywhere in the circuit during and after training. Only results from
the feedforward model utilizing targeted RL paradigm are shown in the following sections
because our feedforward model utilizing non-targeted RL did not learn to play the game.

Evolution of neuronal circuit properties during training
To investigate how the training affected the dynamics of the modeled neuronal circuit, we

first looked at the firing rates of the neuronal populations whose synaptic inputs were allowed to
evolve during the training. For the feedforward model, we only looked at the firing rates of
EMUP and EMDOWN populations. Since the inputs were discretized over time, analyzing firing
rates could be affected by the choice of temporal window size. To avoid that problem, we
computed the population mean firing rate sampled over spatially segregated ball trajectories
and plotted it against the individual trajectories as experienced by the model during training
(Figure 1C).

This increase in firing rates resulted due to increase in the synaptic weights of the
connections onto EMUP and EMDOWN neurons as the average weight change of these
populations is shown in Figure 1D. In the feedforward model, both EMUP and EMDOWN
neurons showed large variance in the average firing rates throughout the training. During the
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early training period, the average firing rates varied in the range of ~0.1-12 Hz, with the mean
averaged over the first 10 ball trajectories to be 8Hz. With training, the spread of average firing
rates increased to ~2-30Hz, with the mean averaged over the last 10 ball trajectories to be
20Hz. The net increase in average weights of EMUP and EMDOWN neurons was about 30%.

Evaluating the performance during training
We trained the feedforward model to play the racket-ball game in episodes, where each

training episode was simulated for 500 sec (Figure 3). Using feedforward models with different
parameters, each time we simulated at least 20 training episodes. Every subsequent training
episode resumed learning using the weights of synaptic connections from the end of the
previous training episode. This way, the model remembered what it learned during all previous
training episodes. For each training episode, we evaluated the performance of the model by
taking the ratio of the total number of hits to the total number of misses. The model learned how
to play the game, demonstrated through its performance improving strikingly over repeated
training episodes (Figure 3A): the number of hits increased while the number of misses
decreased (Figure 3B). However, when we looked at the temporal evolution of performance for
training episodes 18 and 19 in Figure 3C,D and Supplementary Movie 1,2, we noticed an
evolving cumulative hit to miss ratio. The model performed extremely well at the beginning of
each of these training episodes (1.78 and 3 for training episodes 18 and 19 respectively), and
then the performance decayed before stabilizing at a high level (0.94 and 0.76 for training
episodes 18 and 19 respectively).

This raises the question of why the performance decreased during training for certain
episodes. As the model started playing the game, sometimes the model-controlled racket hit the
ball and other times the model-controlled racket missed the ball. The model-controlled racket
could hit the ball for three reasons: 1) It learned about the ball trajectory and associated racket
behavior, 2) the behavior was intrinsically encoded in the circuit, or 3) completely randomly.

Another important factor to understand the temporal evolution of performance is the
varying ball trajectory during the game. The ball could traverse a different path every time it was
hit or missed by the racket. So in addition to the three factors explained above, an unseen or
unlearned ball trajectory could also explain a decrease in the performance during training.
However, given enough time the model should eventually learn about the new ball trajectories.
This line of reasoning motivated us to further dissect the performance of the game based on the
ball trajectories.
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Figure 3. The performance of the feedforward spiking neuronal network model using spike-timing dependent RL improved
over repeated training episodes.  A) The cumulative Hit/Miss ratio at the end of each 500 sec training episode is plotted as a
function of training episodes. B) The total number of Hits and Miss at the end of each training episode is plotted as a function of
training episodes. C, D) The temporal evolution of performance for the training episodes 18 and 19. E, F) Summary of learning
performance for different ball trajectories. E) Four example ball trajectories are shown together with the performance over repeats.
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The upper panels show the average of all Input Images corresponding to a unique ball trajectory and the performance is shown in
lower panels. These example ball trajectories show visual input specific model learning. For some ball trajectories (e.g. first example),
the model-controlled-racket always hits the ball, whereas for some other ball trajectories (e.g. fourth example), it never hits the ball. In
the second example, the model-controlled-racket missed the ball only after 15 repetitions. In the third example, the performance first
improved, followed by a big drop. F) The left panel: median and maximum performance for unique ball trajectories. The middle panel:
number of repeats at which the model had peak performance. The right panel: relative number of repeats at which the model had
peak performance. This indicates that for some ball trajectories (# 30-32), the model performed at peak without any training and the
training only reduced the performance of the model. For some ball trajectories (# 0-5), the model could not learn to hit the ball. This
also shows that for some ball trajectories (see the trajectories with relative # of repeats for max. Hit/Miss values between 0.2 and 0.8),
the model first learns to hit the ball and then forgets, whereas for a few ball trajectories (see the trajectories with relative # of repeats
for max. Hit/Miss values 0.8 or above), the model did not forget how to hit the ball until the end of all training sessions.

Using data from all 20 training episodes, we first identified all unique ball trajectories (86)
which were repeated at least 5 times. Then for each of those 86 unique ball trajectories, we
extracted the hit to miss ratio for all repeats in order of their occurrence. We noticed diverse
model behaviors for different ball trajectories that could be explained by learning, intrinsic circuit
dynamics, and randomness. We considered each ball trajectory beginning from the time point
when the ball started moving towards the racket until it hit or missed the racket. Some
representative examples of ball trajectories and the associated performances are shown in
Figure 3E. The first example ball trajectory (extreme left plot in Figure 3E) occurred 43 times
and surprisingly the racket never missed the ball. The second example ball trajectory in Figure
3E occurred 27 times. Similar to the previous example, the racket always hit the ball during the
first 15 occurrences, and only after that the racket missed, bringing the hit to miss ratio to ~2.
Both of these examples lack any direct evidence of learning as the model never missed the ball,
at least for quite a few repetitions. Such performance could be attributed to the intrinsic circuit
dynamics emerging from synaptic connectivity patterns and initial synaptic weights.

Unlike the first two presented examples, the model clearly learned about the ball
trajectory with repetitive occurrences in the third example in Figure 3E, where the hit to miss
ratio increased from 0 to 8 over the first 80 repeats, and was sustained around 8 for the
following 25 repeats, and only then decreased to ~2.5 over the next 80 repeats. A few factors
that could explain this decrease in performance are: 1) Overlapped visual-motor association, 2)
Forgetting, or 3) Lack of association between ball trajectory and some racket positions, since in
our analysis we only considered unique ball trajectories and did not control for the racket
positions. The first and second factors are not mutually exclusive and are extensively being
investigated by the modeling community [48].

Surprisingly, the model could never learn to hit the ball for a few ball trajectories despite
many repetitions (e.g. see right most panel in Figure 3E). Overall, we found that for 26 out of 86
ball trajectories, the model could not learn to hit the ball. Most of these ball trajectories were
targeted towards the corners of the court. However, we could not establish any causal link of
this spatial effect to our model’s circuit features or dynamics. For most of the remaining 60 ball
trajectories, moderate learning was observed (Figure 3F). For 22 of the remaining 60 ball
trajectories, the model’s performance primarily remained improving during the first 80% of the
repeats (see red dots above 0.8 in the right panel of Figure 3F), whereas for the other 19 ball
trajectories, the models’ performance primarily remained declining during the last 80% of the
repeats (see red dots below 0.2 in the right panel of Figure 3F). For the 19 ball trajectories, the
model first learned to hit the ball and then unlearned or kept forgetting (see red dots between
0.2 and 0.8 in the right panel of Figure 3F). Although the model showed peak hit to miss ratios
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of 15 and ~11.5 for two different ball trajectories, the hit to miss ratio rapidly dropped to 2 during
the later repeats. We found 10 ball trajectories for which the hit to miss ratio remained above 2
after learning. Some other noticeable performances included a ball trajectory for which the
model encountered the trajectory 42 times and hit 42 times, and for two other trajectories, the
model missed only once after 5 repeats and only twice after 10 repeats.

Comparing performance of the model after learning with before learning
In the previous section, we presented the performance of our feedforward model during

training and noticed some drops in the performance for two cases: 1) when we looked at the
cumulative performance during training episodes 18 and 19; 2) when we looked at performance
for individual ball trajectories. If there was spatiotemporal interference due to dynamically
changing ball trajectories during training, then the cumulative hit to miss ratio might not indicate
real performance. Another issue with cumulative hit to miss ratio during training is that it is
tracking performance of continuously evolving network states. The ideal test would be to take a
snapshot of weight matrices representing a network state and test the model’s performance
using those fixed weights without additional plasticity. Furthermore, the performance must be
tested against the initial network state to judge how much the model has learned. Next, we
addressed some of these issues.

We first simulated our model using initial weights with STDP-RL turned off. To introduce
diversity in the ball trajectories, we ran six simulations each with a different initial position of ball
and racket and analyzed the cumulative hit to miss ratio for each simulation. We expected the
performance of these simulations to differ from one another because as we mentioned earlier
the performance depends on the ball trajectories. The hit to miss ratio of 6 simulations with
initial weights before training varied between 0.3 and 0.42 with an average of 0.35 (Figure 4A).
When the simulations were repeated with weights of synaptic connections at the end of the
training episode 18, the cumulative hit to miss ratio was substantially larger, varying between
0.72 and 0.89 with an average of 0.8 (Figure 4A). Similarly, the weights from training episode
19 yielded improved performance between 0.63 and 0.8 with an average of 0.7 (Figure 4A).
Note that the performances at the end of training episodes 18 and 19 were 0.94 and 0.76
(Figure 3C, D and Supplementary Movie 1,2), which were slightly higher than the respective
average performances after training. However, such small differences could be easily explained
by differences in the ball trajectories experienced by the model as depicted in the temporal
evolution of cumulative performance for simulations before training (Figure 4B and
Supplementary Movie 3) and after training episodes 18 (Figure 4C and Supplementary
Movie 4) and 19 (Figure 4D and Supplementary Movie 5). Overall, the comparison (Figure
4A) clearly showed that the model robustly learned the behavior.
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Figure 4. The feedforward spiking neuronal network model sustained its performance after learning. A) The bar plot shows the
mean (n=6) performance (Hit/Miss) of the model before training (using initial weights), after training episode 18 and after training
episode 19. For each condition, 6 different initial positions of the racket and the ball were used to evaluate and compare the
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performance of the model after learning. Each simulation was run for the duration of 500 sec. B) The temporal evolution of the
cumulative performance (Hit/Miss) for the model before learning (using initial weights for synaptic connections). The traces in different
colors show performance for different initial positions of the ball and the racket. C) Same as in B using fixed weights for synaptic
connections after training episode 18. D) Same as in C using fixed weights for synaptic connections after training episode 19. E, F)
Two example ball trajectories where the model showed robust and sustained learning after training episodes 18 (middle) and 19
(right) as compared to before learning (left) G) The peak (best cumulative Hit/Miss during repeats) and the median (median of
cumulative Hit/Miss during repeats) performance for all different ball trajectories is summarized for the model before training (left) and
after training episodes 18 (middle) and 19 (right).

To further investigate the sustained learning of the model, we next compared hit to miss
ratios based on the ball trajectories and found that the model showed better performance for
most of the ball trajectories after training (Figure 4G). Two such examples are shown in Figure
4E,F, where the model’s performance was well below 1 before training and increased to much
higher value (at least greater than 1) after training. There were still a few ball trajectories for
which the model could never hit the ball before and after training (Figure 4G).

Spatial effects of visual environment on learning behavior
As mentioned above, ball trajectories for which the model was unable to ever hit the ball

ended up near the edges of the court. We wanted to understand if there were any common
spatial features of the ball trajectories, which had an effect on the learning capabilities of the
model. Therefore, we classified the coordinates of the ball at the time of reward or punishment
into two groups, 1) when the racket successfully hit the ball and 2) when the racket failed to hit
(or missed) the ball, and plotted the counts of hit and miss for different y-positions of the ball (at
the time of reward; left panels of Figures 5A,C,E). The skewed distribution of blue and red bars
in Figure 5A,C,E shows that the ball moved more frequently towards the bottom edge of the
court. Accordingly, the propensity of hits was higher towards the bottom edge of the court before
training (Figure 5A), which became more uniform with higher tendency to hit towards the center
of the court during training (Figure 5C). The non-uniformity of hits and misses appeared again
in the histogram after training (Figure 5E), which suggests that the non-uniformity might be
related to the limited sampling of ball trajectories. However, higher red bars compared to blue
bars during and after training (Figure 5C,E) suggest that the model did not effectively learn the
behavior associated with the ball trajectories towards the edges of the court. Longer training that
includes sampling of these missing ball trajectories could potentially alleviate these issues.
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Figure 5: The feedforward spiking neuronal network model learned to perform better for the ball trajectories towards the
center compared to the ball trajectories towards the corners of the court. The bar plots in A,C and E show the number of ‘Hits’
and the number of ‘Misses’ against the ball’s vertical position (ypos) when crossing the racket for the model before, during and after
training respectively. The heatmaps in B, D and F show the probability of a correct move for each ball location in the court for the
model before, during and after training respectively. The color at each pixel in the heatmaps shows the probability of correct action
when the ball was at that location based on the projected Hit coordinates (when the action is the same as the proposed action). The
white pixels represent the locations never parsed by the ball. Similarly the white space on the right side of each heatmap indicates the
region, where no proposed action was available for the model racket (p(correct move) = NaN) as the ball had already passed the
racket on the right side of the court.
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Although the main training goal was to teach the model to hit the ball, we used
intermediate supervisory rewards at all time steps during each ball trajectory moving towards
the racket. We used additional cues in our model like projected location of the ball when it would
potentially cross the racket and used those cues to teach the model which action was favorable
or unfavorable based on whether that action helped the racket reach towards the projected
target location or not. To analyze how well the model learned about those cues so that when the
ball arrived at each location multiple times, the model produced favorable actions, we plotted
the probability of an action generating the correct/favorable move at all traversed pixels of the
court as shown in Figures 5B, D and F. Comparing these probability plots before, during and
after training clearly shows that the model was able to identify correct actions at more ball
locations after training as compared to before training. Sparser yellow pixels (indicating high
probability) in the heatmap during training (Figure 5D) might be because of taking into account
all data during training, in which case higher probabilities at later training episodes might get
masked due to the earlier low probabilities of correct actions.

Action generation and motor neurons activity
To investigate how persistently and selectively motor neurons get activated during action

generation based on the ball trajectories and whether their participation changes after training,
we marked all the neurons which were among the top 70% active neurons during each
encounter of the ball trajectory. For repetitions of the ball trajectories, we computed the
probability of each neuron being among top 70% active neurons and plotted it as a heat map.
The heatmap in Figure 6A upper panel shows the probability of each EMUP neuron being
among the top 70% most active neurons during repeated ball trajectories before training and the
heatmap in Figure 6A lower panel shows the same after training (episode 18). Note that the
neuron indices in Figure 6A are the same but the indices of the unique ball trajectories may
differ. Surprisingly some neurons were persistently among the top 70% EMUP population
regardless of the ball trajectory (see continuous yellow vertical stripes) and retained such
characteristics even after learning (Figure 6A lower panel). Some weakly persistent neurons
became more persistent after training (see diffusing yellow vertical stripes in Figure 6A upper
panel becoming solid yellow vertical stripes in Figure 6A lower panel), whereas the other
weakly persistent neurons consistently knocked out of the top 70% category (see some diffusing
yellow vertical stripes in Figure 6A upper panel becoming solid blue vertical stripes in Figure
6A lower panel). To sum up, the persistently active neurons became more active after training,
whereas less persistent neurons, which might be representing the association between visual
inputs and respective ‘rewarding’ actions showed two distinct types of behaviors. Some of those
weakly persistent neurons became more responsive whereas others became less responsive to
the inputs.

In the above analysis, a threshold of 70% was chosen arbitrarily, therefore to test
whether these observations are independent of the threshold value, we extended our analysis to
40%, 50% and 60% of the most active neurons and plotted the average (across ball trajectories)
probability of each neuron being among the top 40, 50 and 60% most active EMUP neurons as
shown in Figure 6B. High values of average probability could mean either the neuron was
persistently among the top X% of the population (where X is 40, 50, 60 and 70) across all ball
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trajectories, or the neuron was persistently active for the repeated ball trajectories. Similarly, low
values of average probability could mean either the neuron was infrequently among the top X%
of the population (where X is 40, 50, 60 and 70) across all ball trajectories, or the neuron was
sparsely active for the repeated ball trajectories. Note that the neuron identifiers were sorted
using the top 70% data. Changing the threshold for data analysis for the simulations before
training primarily resulted in linear shifts (Figure 6B left panel), suggesting that the relative
contribution of each neuron in action generation was uniform e.g. the neuron with largest
average probability of being among 70% most active neurons remained the neuron with largest
average probability of being among 40% most active neurons. After training, the shifts in the
average probabilities of EMUP neurons being among different ranges of activation were
nonlinear (Figure 6B right panel) indicating non-uniform participation of different neurons.
Furthermore, we found that the neuronal population developed a larger dynamic range after
learning (0.32-1; Figure 6C) as compared to before learning (0.02-1; Figure 6C), indicating
better discriminating power of the motor population after training.

Next, we analyzed for what percentage of actions regardless of the ball trajectory, each
motor neuron was active. The whole population participated sparsely in action generation before
training as the least participating neuron was active only during 4% of actions, whereas the
most participating neuron was active only during 6.2% of actions (Figure 6D). This increased
nonlinearly to 10% participation by the least active neuron and to 20% participation by the most
active neuron. The increment in participation of individual neurons in action generation after
training was mainly independent of their contribution before training. Even with increased
participation of the most active neuron to 20%, many neurons would have to collectively
participate at each time point in action generation.

To investigate how many neurons were active during action generation, we analyzed the
cumulative probability distributions of active EMUP neurons during action generation (Figure
6E). The cumulative probability distribution of active EMUP neurons before training shows that
during 72% of actions, no EMUP neuron was active. For the remaining 28% of actions, one or
more EMUP neurons were active, with a steep increase in population size of active EMUP
neurons during action generation (see blue curve in Figure 6E). After training, the percentage of
action generation without a single EMUP neuron being active reduced to 58%. For the
remaining 42% actions (after training episodes 18 and 19), one or more EMUP neurons were
active, with a slower increase in population size of active EMUP neurons during action
generation. Does this mean that 72% actions before training and 58% actions after training were
generated without motor neuron activity? This is unlikely because these numbers only show
EMUP neuronal population’s participation in action generation. When EMUP neurons were
silent, EMDown neurons might be actively participating in action generation. To check that, we
looked at the cumulative probability distribution of active neurons in both populations of motor
areas during action generation (Figure 6F). The comparison in Figure 6F shows that before
training 47% of actions (i.e. No-Move) were generated without any motor neurons being active,
whereas after training only 17% of actions (i.e. No-Move) were generated without any motor
neurons being active. In this section, we only presented the analysis for the EMUP population,
because all the observations described for the EMUP population were consistently present in
the EMDown population too.
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Figure 6. After training, the dynamics of motor neurons taking part in action generation change. A) The heat maps show how
often each EMUP neuron was among 70% most active neurons during repeated occurance of the same ball trajectory before training
(upper heatmap) and after training episode 18 (lower heatmap). Note that the neuron ids are the same in both heatmaps but input seq
ids may vary. B) The plot shows how often each EMUP neuron was among 70%, 60%, 50% and 40% most active neurons during
repeated occurance of the same ball trajectory before training (left: BT) and after training episode 18 (right: AT18). Note that the
neuron ids are sorted using top 70% neuron indices. C) Comparing the average probability of each motor (EMUP) neuron being
among 70% most active neurons before and after training episodes 18 and 19. D) The plot compares the percentage of times a motor
(EMUP) neuron actively contributed to action generation. After training, the contribution of each motor (EMUP) neuron in action
generation increased proportionally (with some variability) to the contribution before training. E) The plot compares how many times at
least 1 EMUP neuron was involved in action generation before and after training. Before training, at least 1 EMUP neuron was active
for 28% of actions generated. After training, at least 1 EMUP neuron was active for 42% of actions generated. F) The plot compares
how many times at least 1 motor neuron (either EMUP or EMDOWN) was involved in action generation before and after training.
Before training, at least 1 motor neuron was active for 53% of actions generated. After training, at least 1 motor neuron was active for
83% of actions generated.
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Extending the model by incorporating feedback and recurrent connections
The goal of our study was to construct a biologically detailed model of the visual-motor

cortex and to train it to learn complex sensory-motor behaviors. As a first step, we successfully
constructed a simple version of the model which included only feed forward synaptic
connections while ignoring feedback and recurrent connections, which are characteristic of
cortical circuitry and are thought to be involved in enhancing learning capacity and
computational capabilities of the cortex [20,21,49]. We then trained the simple model to perform
while playing a racket-ball game. As a next step in this study, we extended our model by
including feedback and recurrent connections as shown in Figure 7A (see Materials and
Methods for details). Expecting that the feedback and recurrent connections would intrinsically
inform the circuit about the events back in time and would thus be sufficient to encode motion
direction, we therefore excluded direction selective (EVD) neurons from the recurrent model. At
the same time, including recurrent connections in the model with plasticity increased the risk of
hyperexcitability and depolarization blockade [50,51]. Therefore, to counteract hyperexcitability
and depolarization-blockade, we added inhibitory neurons to the circuit (see details in Materials
and Methods) in each modeled area. We also added noise inputs to association (EA, IA, IAL,
EA2, IA2 and IA2L) and motor neurons (EMUP, EMDOWN, IM and IML) both to maintain
minimum firing rates, and also to increase exploration of motor actions and sensory-motor
associations.

Before training the recurrent model to play racket-ball, we tuned the synaptic weights to
allow faithful transmission of spiking activity across the network. Although the addition of
recurrent and feedback connectivity increases learning flexibility, it was more difficult to find the
parameters that allow learning, while ensuring balanced activity during and after training.
Because of the difficulty to find the appropriateness of the chosen parameters apriori, we trained
several versions of the recurrent model with different parameters and evaluated their
performance. Although the performance of those models varied, we found that the network
dynamics remained relatively stable (see Figure 7 B-D and Supplemental Figure 1A-B). The
firing rates and the weight changes for one example model with good performance are shown in
Figure 7B-D. An average increase of 12% in the weights of synaptic connections onto EM
neurons after 40 training episodes (Figure 7E) caused a 30-50% increase in population firing
rates. Despite a relatively large increase in firing rates of the EM neurons, the absolute change
was minimal i.e. ~0.03-0.05 Hz (Figure 7C). We observed similar characteristics of average
synaptic weight (Figure 7F) and population firing rate changes of EA2 neurons (Figure 7D).
Surprisingly, the population firing rate of EA neurons remained constant during training (Figure
7D), despite a 650% increase in the average synaptic weights onto EA neurons (Figure 7F).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454361doi: bioRxiv preprint 

https://paperpile.com/c/tv6wND/Tzv8+gnCB+GwCE
https://paperpile.com/c/tv6wND/zRMC+Cazh
https://doi.org/10.1101/2021.07.29.454361
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454361doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.29.454361
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7. The synaptic weights of the recurrent spiking neuronal network model were adjusted to ensure reliable
transmission of the input information across all network areas. A) The schematic shows  the racket-ball game interfaced with the
recurrent model of visual and motor areas. B) Raster plot showing the spiking activity  of different populations of neurons during a
training episode. C) Firing rates of motor neuron populations ‘EMUP’ and ‘EMDOWN’ in the recurrent model. D) same as in C for ‘EA’
and ‘EA2’. The firing rates in C and D were binned for ball trajectories (each ball trajectory from the extreme left to the right side of the
court where the ball hits or misses the racket). E) Average weight change of synaptic input onto ‘EMUP’ and ‘EMDOWN’ sampled
over 40 training episodes. F) same as in E for ‘EA’ and ‘EA2’ sampled over 40 training episodes.

Training the recurrent model to learn visuo-motor behavior using sparse rewards
In this study, we showed that using intermediate rewards with a reinforcement learning

framework, our SNN models could be trained to perform dynamically adapting visuo-motor
behaviors effectively. However, traditionally, sparse rewards are used with a reinforcement
learning framework [2,5]. We next tested the performance of our more biologically detailed
recurrent SNN model using reinforcement learning with sparse rewards. To allow association of
neuronal activity driving the motor actions with the distal reward, we increased the time constant
of eligibility traces to 10 sec. Just like the recurrent model with intermediate rewards
(Supplementary Figure 2A), the performance increased but kept oscillating between higher
and lower values indicating better and worse performance across training sessions (Figure 8 A,
B). We let the model run for 40 training episodes and found that the model performed
reasonably (Hit/Miss = 0.88) well during the training episode 31 (Figure 8A, B). During training
episode 31, the model-controlled racket hit the ball 22 times and missed the ball 25 times, which
was better than all other training episodes (Figure 8B). Overall, the temporal evolution of
performance during the training showed similar behavior to the other models i.e. the
performance was better during the early training period, dropping to a more sustained value
during the late training period (Figure 8C and Supplementary Movie 6). As we learned from
earlier results that it was difficult to judge learning capabilities of the model during training, we
ran control simulations using initial weights and weights at the end of training episode 31. As
expected, we observed larger variance in the performance of the model for both cases (Figure
8D and Supplementary Movie 7, 8) i.e. before learning (performance range of 9 simulations:
0.24 - 0.36; Supplementary Movie 8) and after learning (performance range of 9 simulations:
0.32 - 0.69; Supplementary Movie 7). However, the average performance after learning (0.52)
was significantly (p<0.001 using t-test) better than the performance of the model before learning
(0.26) as shown in Figure 8D.

Next, we compared the performance of the recurrent model before training and after
training for individual ball trajectories. Similar to the feedforward model, the recurrent model
learned to play the game for many ball trajectories. Two such examples are shown in Figure 8E,
where the model clearly learned after training. Altogether, these results clearly show that the
biologically detailed models with spiking neurons together with reinforcement learning with
sparse rewards can be trained to perform complex sensory-motor behaviors.
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Figure 8. The recurrent model with sparse rewards shows sustained performance after learning. A) cumulative performance at
the end of 40 training episodes. B) Cumulative Hits and Misses at the end of 40 training episodes. C) Temporal evolution of
performance during training episode 31. D) Comparing performance of the model using weights from the end of training episode 31
(right) with the performance of the model before training (using initial weights; left). For both cases, the simulation was repeated 9
times each with different initial positions of the ball and the racket and the performance of each simulation is shown using black dots.
The bar plot shows the average of those 9 simulations. E, F) Learning by the model is shown using two example ball trajectories. The
left panels show the model’s performance for the repeated encounter of the ball trajectory when simulated using the initial synaptic
weights (before learning). The right panels show the same as in the left panels but using the synaptic weights at the end of training
episode 31 (peak performance AT in F is 3).

Motor neurons sparsely participate in action generation
We had observed a dynamic shift in participation of different neurons in action

generation after training the feedforward model (Fig 6). We next examined whether those
characteristics of neuronal populations persist when we used a more biologically-realistic
recurrent model (Fig 9). The comparison of heatmaps in Figure 9A shows that most of the
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sparsely active neurons before training did not change their behavior. Instead, they remained
sparsely active, likely showing selective responses to the ball trajectories (compare heatmaps
for the neuron identifiers greater than 100). Similarly, learning did not have any effect on many
of the persistently active neurons (compare yellow colored areas in heatmaps), which were
active non-selectively for all ball trajectories. Only a small fraction of the EMUP neurons
changed their characteristics after the training as some robustly active neurons before training
became more selective to the ball trajectories (compare EMUP-neurons between 20 and 50 in
Figure 9A). When we changed the threshold for activity participation from 70% to 60%, 50%
and 40%, it revealed that the neurons non-uniformly participated in action generation. The least
active ~120 neurons were persistently active during action generation as lowering the threshold
did not change the average probability of those neurons being among sparsely active neurons.
The other ~180 neurons were relatively more active but as the threshold decreased their
participation probability decreased showing those neurons being selective to the ball
trajectories. Surprisingly, these characteristics did not change much after learning (compare
panels in Figure 9B and C) and no increase in discriminability was observed for motor neuronal
populations (compare Figure 9C with Figure 6C).

Analyzing how actively each motor neuron participated in action generation we found
that all neurons were sparsely active during action generation i.e. during less than 1% of
generated actions. The least active neuron participated only during 0.28% of actions, whereas
the most participating neuron was active only during 0.62% of actions (Figure 9D). This
increased nonlinearly to 0.35% participation by least active neuron and to 0.74% participation by
the most active neuron. The increment in participation of individual neurons in action generation
after training was mainly independent of their contribution before training. Overall the relative
increase in each neuron’s participation in action generation was much smaller than in the
feedforward model. The cumulative probability distribution of active EMUP neurons before
training shows that during 45% of actions, no EMUP neuron was active (Figure 9E). For the
remaining 55% of actions, one or more EMUP neurons were active, with a much less distinctive
increase in population size of active EMUP neurons after training (compare blue and orange
curves in Figure 9E). The percentage of action generation without a single EMUP neuron being
active remained the same after training. Although the neurons were sparsely active, either
motor neurons, EMUP or EMDOWN were active during 92% of action generations, which
slightly changed after training (Figure 9F).
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Figure 9. After training the recurrent model with sparse rewards, the dynamics of motor neurons taking part in action
generation change. A) The heat maps show how often each EMUP neuron was among 70% most active neurons during repeated
occurance of the same ball trajectory before training (upper heatmap) and after training episode 31 (lower heatmap). Note that the
neuron ids are the same in both heatmaps but input seq ids may vary. B) The plot shows how often each EMUP neuron was among
70%, 60%, 50% and 40% most active neurons during repeated occurance of the same ball trajectory before training (left) and after
training episode 31 (right). Note that the neuron ids are sorted using top 70% neuron indices. C) Comparing the average probability of
each motor (EMUP) neuron being among 70% most active neurons before and after training episode31. D) The plot compares the
percentage of times a motor (EMUP) neuron actively contributed to action generation. After training, the contribution of each motor
(EMUP) neuron in action generation increased proportionally (with some variability) to the contribution before training. E) The plot
compares how many times at least 1 EMUP neuron was involved in action generation before and after training. Before and after
training, at least 1 EMUP neuron was active for 55% of actions generated. F) The plot compares how many times at least 1 motor
neuron (either EMUP or EMDOWN) was involved in action generation before and after training. Before training, at least 1 motor
neuron was active for 92% of actions generated. After training, at least 1 motor neuron was active for 93% of actions generated.
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Discussion
In this work, we developed and trained several spiking neuronal network models of the

visual-motor cortex to play a racket-ball game using biologically inspired STDP-RL. To train our
models, we first proposed two types of reward systems based on intermediate and sparse
rewards/punishments and then evaluated the learning performance of our feedforward (Figures
1, 3, 4 and 5) and recurrent models (Figures 7,8 and Supplementary Figure 1,2 and 3) using
both reward systems in targeted and non-targeted fashion (Figure 2). The goal was to explore
the potential of different circuit architectures, connectivity patterns and RL rules in learning
visual-motor behaviors. Both feedforward (Figure 1) and recurrent (Figure 7) architectures
facilitated robust learning of the visual-motor behavior except when the feedforward model was
trained using non-targeted RL and intermediate rewards (results not shown). The recurrent model
showed better performance using sparse rewards and non-targeted RL (Figure 8) compared to
intermediate rewards and targeted RL (Supplemental Figure 2). When we compared the
models’ performance after training with before training, we mostly observed a sustained
performance. A larger variability in the performance of the recurrent model (Figure 8D and
Supplemental Figure 3E) could be attributed to the unattenuated extrinsic noise in the model
which was included to allow exploring broader visual-motor associations. When the learning
performance was further dissected, we found that the model learned extremely well for most of
the ball trajectories (Figures 3E-F, 4E-G , 8E-F and Supplementary Figure 2D-E and 3G-H).
Comparing the spiking activity of motor neurons, we found sparser but more sustained activity in
the recurrent model as compared to the feedforward model (Figure 6D-F and 9D-F). Additionally,
we found that all our models recruited more motor neurons in decision making after training
(Figure 6D-F and 9D-F).

Instead of developing a visual-motor cortex model with detailed anatomical and
physiological characteristics, we started with minimal essential details to capture biological
realism. We modeled visual (EV1 and EV1D), sensory integration (EA, EA2, IA, IAL, IA2, IA2L),
and motor areas (EMUP, EMDOWN, IML, IML2) as a single layer of excitatory  and inhibitory
neurons. Instead of including dedicated functional neural circuits for object recognition [52–54]
and motion direction processing [55,56], we used standard image processing routines to identify
objects and to compute their motion directions. Bypassing the neural processing of
thalamocortical circuits of visual processing, we directly simulated the neurons assigned to
specific visual features. We set up our models in such a flexible manner that makes it possible to
plug-in neural circuits of detailed visual processing later without affecting the functionality of the
developed model. The population size of the visual area (80x80 neurons) encoding location was
chosen specifically for the visual environment of the game (160x160 pixels). We downsampled
the visual field by a factor of 2 to reduce the network size and speed up the simulations. We
chose a factor of 2 for scaling down the image because further downsampling introduced
additional variability in the evoked responses of the input sensory neurons as it introduced
unrealistic changes in the ball and the racket size due to aliasing. For the direction selective
neurons (EV1D) we chose smaller populations (400 neurons each), assuming that the varying
input from the EV1D neurons onto the EA neurons could be filtered out by more robust input from
the location encoding neurons (EV1). For the middle layers EA and EA2, several simulations
were run using different population sizes starting from 400 upwards and the final population sizes
were chosen based on an increased game performance of the model. Since the transmission of
the neural responses across any layer depends on reliability of inputs, the population size of the
layer and synaptic weights of the inputs each of the neurons receive, the increased population

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454361doi: bioRxiv preprint 

https://paperpile.com/c/tv6wND/Il3e+Urtn+kJnG
https://paperpile.com/c/tv6wND/uuQC+MQMu
https://doi.org/10.1101/2021.07.29.454361
http://creativecommons.org/licenses/by-nc-nd/4.0/


size of middle layers of the neural circuit should at least exhibit similar performance if the weights
are re-tuned properly.

In many visual-motor behaviors, the animal gets rewarded or punished only when the task
is completed. However, to learn such behaviors, the animal must first explore different strategies,
sometimes guided by additional cues and internally generated motivation. Possibly, there has to
be a prediction system working in parallel, which associates small actions in a local environment
to the prediction of its effectiveness in reaching the goal. Such a strategy has been used
previously in an arm model, which was trained to reach a fixed target [14]. Here, we extended the
RL paradigm to utilize both the intermediate and distal/sparse rewards/punishments (Figure 2B).
Although we used both the intermediate and the sparse rewards in the feedforward model,
choosing a single small time constant for eligibility traces prevented developing associations
between distally active neuron pairs (in time) to the actual reward. Using both intermediate and
sparsely occurring actual rewards with RL would require separate mechanisms with different
eligibility time constants (shorter time constant for intermediate rewards and longer time
constants for sparsely occurring actual rewards) in parallel. The brain must use multiple types of
rewards for the reinforcement learning [57–61] (e.g. could use different types of dopamine
receptors), but we are not aware of any direct experimental evidence of how associations
between different rewards and respective motor actions take place at multiple time scales. We
expect that including credit assignments at multiple time scales in our model will further improve
its performance.

In addition to using intermediate rewards, we also developed a new targeted RL algorithm
(Figure 2C). Instead of providing reward to all neuronal populations, we provided a reward or a
punishment only to the neuronal population responsible for the associated action. Although there
is no clear evidence of such precisely spatially localized encoding of dopaminergic reward
prediction error in the brain, some anatomical evidence suggests nonuniform delivery of reward
prediction error signals across brain areas in compartmentalized manner [62]. We took a step
further and proposed our targeted RL to evaluate its potential as a proximal credit assignment
mechanism. To speed up learning, we also provided asymmetrical reward/punishment to the
nonassociated population i.e. if the reward was delivered to the EMUP population because
Move-Up was the expected action and the model generated Move-Up command, then some
punishment was delivered to the EMDOWN population. The targeted RL was essential for the
intermediate rewards due to their frequent occurrences, otherwise many nonassociated pre and
post motor neuronal pairs would have encoded nonselective associations. Some evidence of
such selective reward based learning can be found in invertebrates [63], where selectivity is often
implemented by anatomical constraints. Furthemore, we proposed a scaled down reward or
punishment for the neuronal connections not directly synapsing onto motor neurons (if those
neurons are involved in reinforcement learning), where the scaling factor could be based on the
number of connections between the postsynaptic neuron and motor neurons. We found all these
strategies to be equally effective in learning behavior (Figures 4A and 8D) with differences in
temporal evolution of learned behavior (Figures 3A and 8A).

However, it must be noted that the goal of training using sparse rewards was to maximize
the hits, whereas the goal of training using intermediate rewards was to move the racket towards
the projected ball trajectory which would eventually lead to hitting the ball. This is evident in the
heatmaps showing the increased probability of the racket moving towards the projected ball
location for the hit after training (compare Figure 5F with Figure 5B). Based on our results, we
hypothesize that a brief and localized delivery of reward prediction error signal could encode
temporally precise associations between sensory information and motor actions. Such a system

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.29.454361doi: bioRxiv preprint 

https://paperpile.com/c/tv6wND/H0Ur
https://paperpile.com/c/tv6wND/v5yv+znYO+hPQ2+Awvq+sgB5
https://paperpile.com/c/tv6wND/qx7q
https://paperpile.com/c/tv6wND/bd2S
https://doi.org/10.1101/2021.07.29.454361
http://creativecommons.org/licenses/by-nc-nd/4.0/


could work in parallel to the global reward prediction error generating system which is thought to
mediate distal credit assignment of rewards to sensory cues and associated actions.

When we used the non-targeted RL with the feedforward model, the model could not
learn the behavior despite trying different parameters and training for several episodes (results
not shown). One possible reason for the feedforward model’s inability to learn the behavior could
be the use of both intermediate and sparsely occurring rewards with a single eligibility trace (fixed
time constant). The problem might have occurred due to the temporal incompatibility of both
types of rewards with a single eligibility trace i.e. intermediate rewards are appropriate for
associations between neurons at each step whereas sparse rewards require a memory trace of
all steps (mediated via long eligibility traces) leading to the reward generation. The frequently
occurring intermediate rewards might have strengthened the synapses between coactive pre and
post neuron pairs driven by intrinsic noise and might have interfered with neuronal activity
generated in the following steps before the actual reward got delivered, by changing the state of
the network many times before the associations between the actual reward and neuronal network
were established. However, when we used non-targeted RL and sparse rewards with the
recurrent model, the model learned to hit the ball over repeated training episodes (Figure 8). This
time the proper associations between the ball trajectories and actions to improve the chance of a
hit were made because of the long time constant for eligibility traces (10 sec) which acted as a
memory trace for the neuron pairs active during action generation for all steps during the ball
trajectory.

Although our model learned to play the bouncing ball game effectively, the performance
during training plateaued after some episodes suggesting that the model learned to its capacity
despite continued increase in weights. Increase in synaptic weights can encode learning as long
as they can differentially activate the postsynaptic neurons. If an increase in weight does not
change the firing rate of the postsynaptic neuron, the learning remains ineffective. This could
happen for intermediate timesteps when the increase in weights is so small that it does not
translate into increase in firing rate but would count towards learning after multiple increments in
weights eventually increasing the firing rate. In another scenario, any further increase in weights
could push the neuron to depolarization block. An effective strategy to increase the capacity of
the network could be homeostatic synaptic scaling which has been shown to significantly
enhance the performance of neuronal networks [64,65]. Several models of synaptic scaling have
been developed [50,51,66–68], each with their own advantages and biological plausibility.
Inclusion of synaptic scaling in the future model is also necessary to allow learning more
behaviors without pushing the network towards hyperexcitability leading to seizures. Additionally,
increasing the size of the middle and output neuronal populations in the model could also be
helpful in increasing the memory storage capacity of the network.

When we first looked at the temporal evolution of the models’ performance, we could not
understand why the performance is better during some training episodes and worse during other
training episodes. One possible explanation for such variable performance could be the noise
inputs that we included in the models to allow more exploration of the motor actions. Most
probably that is the case with the recurrent model as we see a larger spread of performance
measurement during (Figure 8A) and after training (Figure 8D) and in fact a lot more noise
inputs were used in the recurrent model as compared to the feedforward model. The plasticity for
noise inputs will be included in the future models to address noise induced variability in the
performance, so that as the visual-motor associations develop in the circuit, the noise input
becomes weaker [69]. But this is not the only factor driving variability in the performance. If we
break down the bouncing ball game into individual ball trajectories, we notice that the ball
trajectories vary from one training episode to the other. The variety of ball trajectories arises
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because every time the ball is hit, it moves along a different path depending on the point of
impact between the ball and the racket. Depending on which ball trajectories have already been
learned by the model, the performance may vary from one episode to another. Therefore to make
a fair comparison of performance between different learning states (fixed weight matrix after
learning) and naive states (before learning), we compared the performance of the model based
on ball trajectories. This analysis further revealed that our models learned very well for some ball
trajectories compared to a few others (Figure 3E and F, Figure 4E,F and G). For most of the
learned ball trajectories, the model showed sustained performance (Figure 4F). However, for the
others, we observed that the performance decreased with repeated encounters of the same ball
trajectories (2nd and 3rd ball trajectories in Figure 3E).

The decreases in performance after learning could be due to overlapped representation of
multiple ball trajectories in visual-motor space so that changes in the circuit required to learn
about one ball trajectory may interfere with the visual-motor representation of the other ball
trajectory. These issues have been observed in ANNs and are commonly termed “catastrophic
forgetting” [48,70–75]. We are still exploring several strategies to overcome forgetting in our
SNNs. Another feature we observed was that for some ball trajectories, the model always hit the
ball from the very first encounter and continued to do so until the end of the simulation (e.g first
ball trajectory shown in Figure 3E). Something similar is observed for other ball trajectories,
where the model knew to hit the ball for many encounters and then further training led it to forget.
In both cases, the performance profile suggests that the naive state (initial weights) of the model
was sufficient to capture the visual-motor association for these particular ball trajectories. It would
be interesting to further dissect out the anatomical features of the network that enable such
intrinsic performance.

In conclusion, we developed a framework for using biologically detailed neuronal network
models to train for sensory motor behaviors in dynamic visual environments. Adding more
anatomical and physiological details to our model would allow investigating the biological
mechanisms of sensory-motor behavior and learning. Electrophysiological recordings from
behaving animals and the related hypotheses could be validated using this framework but would
require adopting both behavioral paradigms as well as the modeled circuit elements. We aim to
expand this framework by adding other sensory modalities such as auditory [76] and
somatosensory. We will be sharing the software and the model with the neuroscience community
to expand its functionality and make it useful for the broader scientific community.

Materials and Methods
“Racket-ball” game

We designed a “Racket-ball” game to use for training our visual-motor cortex model to
play. Many features of the game were designed to resemble those of the Atari games
(especially Pong except that there was no opponent; (see Image frames in Figure 1A and 7A)
provided by OpenAI’s gym platform (https://gym.openai.com) [77]. In a court (160 pixels x 160
pixels), the racket (4 pixels wide and 16 pixels high) was controlled by external motor
commands to move vertically up and down at a fixed horizontal position (140th pixel). At every
new serve, the ball’s (4 pixels x 4 pixels) position was reset to the extreme left side of the court
with a randomly selected vertical position (possible vertical starting locations of the ball:
40,60,80,100,120 pixels). However, the vertical position of the ball and the racket at the first
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serve of each episode could be specified externally. The motion direction and speed of the ball
at each serve was randomly initiated by choosing the displacement in horizontal and vertical
direction from (dx,dy) = {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}. When the ball hit the
upper or lower edge of the court, it bounced back in the vertical direction (-dy) without any
change in the speed or the horizontal direction (dx). Every time when the ball was hit by the
racket, it bounced back in a different direction depending on the contact point of the ball with the
racket. When the ball was hit by the racket’s lower or upper edge, the ball bounced back with
double speed in the new randomly selected vertical direction (dy). Similar to the ball bouncing
after hitting the left edge of the court, when the ball was hit by the racket’s center, the ball
bounced back only with the new randomly selected vertical direction. When the ball was hit by
the racket, a point was awarded (+1) and when the ball was missed by the racket, a point was
deducted (-1) from the total score.
Intermediate Reward paradigm

In standard game environments, sparse rewards and punishments are awarded based
on scoring or losing a point. But while learning how to play a game, all the correct
moves/actions during the time available to respond according to the situation contribute towards
the end result i.e. whether a player scores a point or not. In a “Racket-ball” game such moves
could be making a proper serve, estimating the projection of the ball after bouncing back
towards the player, and taking a proper action/move toward the estimated contact position. Also
if the player makes an incorrect move, they could compensate for the mistake and move in the
correct direction in the next step. All these actions or movements during training eventually lead
to the player becoming an expert over repeated episodes or matches. Based on these intuitive
learnable cues, in addition to the standard reward and punishment, we proposed using
intermediate rewards i.e. award a small reward (+0.1) or smaller punishment (-0.01) at each
action the player takes based on whether that action contributed in moving the racket towards
the projected position of the ball to be hit or not. The schematic of the intermediate reward
paradigm is shown in Figure 2B. When the ball moved towards the racket, we used the
direction of the motion of the ball to predict the potential position of the ball where the racket
could hit it. Using this projected position, when the racket moved towards the target position, we
awarded a small reward (+0.1) for making the correct move and when the racket moved away
from the target position, we awarded a smaller punishment (-0.01) for making an incorrect
move.
Reinforcement learning paradigms

We used the existing spike-time-dependent reinforcement learning (STDP-RL)
mechanism in this work, which was developed based on the distal reward learning paradigm
proposed by Izhikevich [33], with variations used in neuronal network models [13,14,45,78]. Our
STDP-RL used a spike-time-dependent plasticity mechanism together with reward or
punishment signal for potentiation or depression of the targeted synapses. An exponentially
decaying eligibility trace was included to assign temporally distal credits to the relevant synaptic
connections. The STDP-RL mechanism is depicted in Figure 2A: when a postsynaptic spike
occurred within a few milliseconds of the presynaptic spike, the synaptic connection between
this pair of neurons became eligible for STDP-RL and was tagged with an exponentially
decaying eligibility trace. Later, when a reward or a punishment was delivered before the
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eligibility trace decayed to zero, the weight of the tagged synaptic connection was increased or
decreased, depending on the ‘critic’ value and sign i.e. increase for reward or decrease for
punishment. The change in synaptic strength was proportional to the eligibility trace value at the
time of the critic’s delivery (see Figure 2A).

Traditionally, when using STDP-RL for learning behavior, all plastic synaptic connections
in the neuronal network model are treated equally considering that the underlying causality
between pre and postsynaptic neurons and the associated action and critic will automatically
choose only relevant synaptic connections for reinforcement. We used this standard STDP-RL
(see non-targeted RL in Figure 2C) approach in this study, but also proposed several variations
to this standard approach, which required the presence of distinct populations of neurons
controlling distinct behaviors. In the first variation (see targeted RL in Figure 2C), we delivered
full reward or punishment to the neuronal population that generated the action and additionally,
we delivered opposite and partial ‘critic’ value to the non-action associated neuronal population.
This ensured that the learning happened only in the part of the circuit which generated the
action. In the second variant (see retrograde targeted RL in Figure 2C), we further extended the
partial ‘critic’ value delivery to the neuronal populations one synapse away from those directly
generating motor action.

The parameters of the STDP-RL were adjusted to incorporate temporally well-separated
motor actions, visual scenes and associated rewards. For intermediate scenarios and
associated rewards, shorter time constants were sufficient to allow learning those intermediate
level performances.
Excitatory and Inhibitory neurons used in the model

Individual neurons were modeled as event-driven, rule-based dynamical units with many
of the key features found in real neurons, including adaptation, bursting, depolarization
blockade, and voltage-sensitive NMDA conductance [79–82]. Event-driven processing provides
a faster alternative to network integration: a presynaptic spike is an event that arrives after a
delay at a postsynaptic neuron; this arrival is then a subsequent event that triggers further
processing in the postsynaptic neurons. Neurons were parameterized as excitatory (E),
fast-spiking inhibitory (I), and low voltage activated inhibitory (IL; Table 1). Each neuron had a
membrane voltage state variable (Vm), with a baseline value determined by a resting membrane
potential parameter (Vrest). After synaptic input events, if Vm crossed spiking threshold (Vthresh),
the cell would fire an action potential and enter an absolute refractory period, lasting 𝜏AR ms.
After an action potential, an after-hyperpolarization voltage state variable (VAHP) was increased
by a fixed amount ΔVAHP and then VAHP was subtracted from Vm. Then VAHP decayed
exponentially (with time constant 𝜏AHP) to 0. To simulate depolarization blockade, a neuron could
not fire if Vm surpassed the blockade voltage (Vblock). Relative refractory period was simulated
after an action potential by increasing the firing threshold Vthresh by WRR(Vblock-Vthresh), where WRR

was a unitless weight parameter. Vthresh then decayed exponentially to its baseline value with a
time constant 𝜏RR.
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Table 1: Parameters of the neuron model for each type.
Cell type Vrest (mV) Vthresh

(mV)
Vblock (mV) 𝜏AR (ms) WRR 𝜏RR (ms) ΔVAHP

(mV)
𝜏AHP (ms)

Excitatory (E) -65 -40 -25 5 0.75 8 1 400

Inhibitory (I) -63 -40 -10 2.5 0.25 1.5 0.5 50

Low-threshold
Inhibitory (IL)

-65 -47 -10 2.5 0.25 1.5 0.5 50

Vrest=resting membrane potential; Vthresh=spiking threshold, Vblock=depolarization blockade voltage, 𝜏AR=absolute refractory time
constant, WRR=relative refractory weight, 𝜏RR=relative refractory time constant, ΔVAHP=after-hyperpolarization increment in voltage,

𝜏AHP=after-hyperpolarization time constant.

Synaptic mechanisms
In addition to the intrinsic membrane voltage state variable, each cell had four additional

voltage state variables Vsyn corresponding to the synaptic inputs. These represent AMPA (AM2),
NMDA (NM2), and somatic and dendritic GABAA (GA and GA2) synapses. At the times of input
events, synaptic weights were updated by step-wise changes in Vsyn, which were then added to
the cell’s overall membrane voltage Vm. To allow for dependence on Vm, synaptic inputs
changed Vsyn by dV=Wsyn(1-Vm/Esyn), where Wsyn is the synaptic weight and Esyn is the reversal
potential relative to Vrest. The following values were used for the reversal potential Esyn: AMPA,
65 mV; NMDA, 90 mV; and GABAA, –15 mV. After synaptic input events, the synapse voltages
Vsyn decayed exponentially toward 0 with time constants 𝜏syn. The following values were used for
𝜏syn: AMPA, 10 ms; NMDA, 300 ms; somatic GABAA, 10 ms; and dendritic GABAA, 20 ms. The
delays between inputs to dendritic synapses (AMPA, NMDA, dendritic GABAA) and their effects
on somatic voltage were selected from a uniform distribution ranging between 3– 5 ms, while
the delays for somatic synapses (somatic GABAA) were selected from a uniform distribution
ranging from 1.8–2.2 ms. Synaptic weights were fixed between a given set of populations
except for those involved in learning (see RL “on” or “off” in Tables 2 and 3).
Constructing spiking visual-motor cortex models for reward based learning

We built several versions of the spiking network models of the visual-motor cortex which
can be mainly grouped into feedforward and recurrent models. Both models used excitatory (E)
and inhibitory (I and IL) neurons with same excitability properties and synaptic dynamics. As
suggested by the name, the main difference between the two types of models is the connectivity
patterns and the synaptic weights in the network. Based on the distinctive features of the model,
we denoted the first model as “feedforward model” and the other model as “recurrent model”.
The feedforward model:

In the feedforward model (Figure 1A), we included several populations of neurons in the
visual cortex model, one for encoding spatial location and the other 8 populations for encoding
motion direction of the objects. Similar to the recurrent model, we also included two layers of
object-associating neurons representing the association cortex and  a single layer with two
distinct populations of motor neurons representing the motor cortex. In the visual cortex model,
we included 6400 location encoding E neurons (EV1) and 8 populations of 400 direction specific
neurons (EV1D) each. We increased the association space as compared to the recurrent model
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by including 1400 E neurons in each layer (EA and EA2) of association cortex model. For the
motor cortex model (M), we used two populations of 300 E neurons each (EMUP and
EMDOWN) representing the motor areas generating “UP” and “DOWN” motor commands. We
included inhibitory neurons (206 IM and 94 IML) only in the motor cortex.

Each EV1 neuron received a single input from a spike-generating Poisson process
driven by individual pixels in the input image at 20Hz, with a delay of 1.8 to 2.2 ms (uniform
distribution). Similarly, each EV1D neuron received a single input from a spike-generating
Poisson process driven by the direction of object motion at individual pixels in the input image.
Each EA neuron received excitatory inputs from 128 randomly selected EV1 and 8 randomly
selected EV1D neurons from each of 8 direction selective populations (responsive to
movements West, Northwest, North, Northeast, East, Southeast, South, Southwest). Each EA2
neuron received excitatory inputs only from 30 EA neurons. Each EM neuron received
excitatory inputs from 300 EA and 300 EA2 neurons, and inhibitory inputs from 22 IM and 8 IML
neurons. Each IM neuron received excitatory input from 20 neurons of each EM subpopulation.
Each IML neuron received excitatory input from 20 neurons of each EM subpopulation. All
neurons received excitation through AMPA (AM2) and NMDA(NM2) synapses. Only motor
neurons received inhibition from IM and IML using GABAA synaptic mechanisms (GA and GA2).
See Table 2 for all the  initial synaptic connection weights.

Table 2: Area interconnection probabilities and initial weights for the feedforward model.
Presynaptic type Postsynaptic type Synapse type Connection

Convergence
Synaptic Weight RL plasticity

EV1 EA AM2 128 6 Off

NM2 0.1 Off

EV1D EA AM2 8 6 Off

NM2 0.1 Off

EA EA2 AM2 30 12.5 Off

NM2 0.15 Off

EM AM2 30 12 On

NM2 0.15 Off

EA2 EM AM2 30 12 On

EM IM AM2 20 10 Off

NM2 0.0195 Off

IML AM2 20 5 Off

NM2 0.098 Off

IM EM GA 22 9 Off

IML EM GA2 8 2.5 Off
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The recurrent model
In the recurrent model (Figure 7A), we included a single layer of neurons encoding

spatial location in the visual cortex, two layers of object-associating neurons representing
association cortex and a single layer with two distinct populations of motor neurons representing
motor cortex. We included 6400 E neurons in the visual cortex model (V1), 600 E neurons in the
first layer of association cortex model (A) and 300 E neurons in the second layer of association
cortex model (A2). For the motor cortex model (M), we used two populations of 300 E neurons
each (EMUP and EMDOWN) representing the motor areas generating “UP” and “DOWN” motor
commands. We used two types of inhibitory neurons in the network, 206 I and 94 IL neurons in
A, 103 I and 47 IL neurons in A2, and 206 I and 94 IL neurons in M. We did not include any
inhibitory neurons in V1.

Each E neuron in V1 received a single input from a spike-generating poisson process
driven by individual pixels in the input image at 35 Hz, with a delay of 1.8 to 2.2 ms. Each EA
neuron received excitatory inputs from 640 randomly selected EV1 neurons (feedforward E), 30
randomly selected EA neurons (recurrent E), 3 randomly selected EA2 neurons (feedback E)
and 3 randomly selected EMUP and EMDOWN neurons each (feedback E), and inhibitory
inputs from 22 IA and 8 IAL neurons. Each IA neuron received excitatory inputs from randomly
selected 93 EA neurons and inhibitory inputs from randomly selected 31 IA (recurrent I) and 12
IAL neurons. Each IAL neuron received excitatory inputs from randomly selected 110 EA
neurons and inhibitory inputs from randomly selected 17 IA and 2 IAL neurons. Each EA2
neuron received excitatory inputs from 30 EV1, 100 EA, 60 EA2, 3 EMUP and 3 EMDOWN
neurons, and inhibitory inputs from 22 IA2 and 8 IA2L neurons. Each IA2 neuron received
excitatory inputs from 93 EA2 neurons and inhibitory inputs from 31 IA2 and 12 IA2L neurons.
Each IA2L neuron received excitatory inputs from 110 EA2 neurons and inhibition from 17 IA2
and 2 IA2L neurons. Each EM neuron received excitatory inputs from 30 EV1, 100 EA, 60 EA2
and 60 EM neurons, and inhibitory inputs from 22 IM and 8 IML neurons. Additionally, each EM
subpopulation receive reciprocal inhibition from the other EM subpopulation with probability of
0.125. Each IM neuron received excitatory input from 93 neurons of each EM subpopulation and
inhibitory inputs from 31 IM and 12 IML neurons. Each IML neuron received excitatory input
from 110 neurons of each EM subpopulation and inhibitory inputs from 17 IM and 2 IML
neurons. Each excitatory synaptic input was implemented using both AMPA and NMDA
synapses. See Table 3 for all initial synaptic connection weights.

Table 3: Area interconnection probabilities and initial weights for the recurrent model.
Presynaptic type Postsynaptic type Synapse type Connection

Convergence
Synaptic Weight RL plasticity

EV1 EA AM2 640 12.5 Off

NM2 1 Off
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EA2 AM2 30 0.25 Off

EM AM2 30 0.25 Off

EA EA AM2 30 0.05 On

NM2 0.005 Off

EA2 AM2 100 0.5 On

NM2 0.01 Off

EM AM2 100 0.5 On

NM2 0.01 Off

IA AM2 93 1.95 Off

NM2 0.98 Off

IAL AM2 110 0.98 Off

NM2 0.098 Off

EA2 EA AM2 3 0.05 On

NM2 0.005 Off

EA2 AM2 60 0.5 On

NM2 0.01 Off

EM AM2 60 0.5 On

NM2 0.01 Off

IA2 AM2 93 1.95 Off

NM2 0.0195 Off

IA2L AM2 110 0.98 Off

NM2 0.098 Off

EM EM AM2 60 0.5 On

NM2 0.01 Off

EA AM2 3 0.05 On

NM2 0.005 Off

EA2 AM2 3 0.05 On

NM2 0.005 Off

IM AM2 93 1.95 Off
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NM2 0.0195 Off

IML AM2 110 0.98 Off

NM2 0.098 Off

IM EM GA 22 9 Off

IM GA 31 4.5 Off

IML GA 2 4.5 Off

IA EA GA 22 9 Off

IA GA 31 4.5 Off

IAL GA 17 4.5 Off

IAL EA GA2 8 2.5 Off

IA GA2 12 2.5 Off

IAL GA2 2 4.5 Off

IA2 EA2 GA 22 9 Off

IA2 GA 31 4.5 Off

IA2L GA 17 4.5 Off

IA2L EA2 GA2 8 2.5 Off

IA2L IA2 GA2 12 2.25 Off

IA2L IA2L GA2 2 4.5 Off

Generating motor commands
We built a modular model of motor areas specific to the “Racket-ball” game, which

required 3 motor commands (Move Up, Move Down, Stay). To encode these commands, we
used 2 motor areas, associated with “Move UP” or “Move Down”. The output motor command
was generated from the motor area based on a winner takes all rule, meaning motor commands
were determined by the maximum population-firing rates across motor areas e.g. if the
population-firing rate of motor area representing motor command “Move Up” was larger than the
population-firing rate of motor area representing motor command “Move Down”, then “Move Up”
command would be generated. If the population-firing rate of motor areas representing both
motor commands is the same, the third motor command “Stay” was generated. Each action in
the feedforward model was produced every 20 ms interval, whereas the recurrent model used
50 ms intervals.
Interfacing visual-motor cortical model with the “Racket-ball” game

We interfaced our visual-motor cortex model with the custom built game environment
“Racket-ball”, allowing the model to sense and act on visual information from the game. At each
game-step (20 ms for the feedforward model and 50 ms for the recurrent model), the model
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read screen pixels from an image frame, processed information and generated a motor
command. In return this produced an intermediate reward (0.1 or -0.01), reward (+1) or
punishment (-1) signal (scores), depending on whether the motor command moved the racket in
a favorable direction, or resulted in scoring (hitting the ball) or losing a point (missing the ball).
Visual stimuli (pixel intensities) from the game environment activated a 2D array of time-varying
Poisson inputs (20Hz for the feedforward and 35 Hz for the recurrent model) representing the
retina in a topographical manner, where the Poisson firing rate was controlled in an all or none
manner. These retinal inputs projected topographically to V1. Before driving retinal inputs with
pixel intensities, we converted the red/green/blue values to binary values and then
down-sampled to a fixed width (80 pixels) and height (80 pixels) to allow all games to provide
the same amount of visual information to the model.

The biological visual-motor cortical circuit contains a large variety of neurons, which
encode different visual features like location, time, direction, speed, and velocity. We included
only location and direction encoding neurons. A population of location encoding neurons
received the inputs from the Poisson processes driven by the pixel intensities in a topographic
manner, whereas, 8 populations of direction encoding neurons/ direction selective neurons:
V1DE, V1DNE, V1DN, V1DNW, V1DW, V1DSW, V1DS, V1DSE (V1 denotes visual area V1, D
denotes direction selective neurons, following 1 or 2 letters denote the direction e.g. E for east,
W for west, NE for north-east) received inputs from 8 two-dimensional arrays of time-varying
Poisson inputs also in a topological manner, where the Poisson firing rates were controlled by
the angle of object motion/trajectory. Direction vectors were computed for each object in the
visual scene by tracking the position of the object between the last 2 consecutive image frames
of the game and only Poisson processes at the location of those positions were driven at
particular firing rates.
Initializing weights of synaptic connections

We adjusted initial synaptic weights to ensure all visual, association (premotor) and
motor areas showed stable firing rates in physiological ranges and that the connection weights
are neither too high nor too low that would prevent the model from learning when the weights
are increased or decreased over the training period. Once the weights were adjusted,
simulations were run for extended time periods (1000s of seconds of simulation time) to see if
any of the neurons entered depolarization block or if the connection weights became too low to
transfer information across the network. We repeatedly simulated our models to determine
reasonable values for synaptic weights to ensure learning and stability in the network model.

Training the models and evaluating learning performance
All models were trained using training episodes, where each episode was simulated for

500 sec while the model was controlling the racket learning to hit the ball. At the end of each
training episode, the plastic weights of synaptic connections were saved so that those weights
could be used to train the model for the next episodes. The ball and racket positions, as well as
the network states, were reset at the beginning of each training episode. To evaluate the
learning performance of the model, we ran simulations with the model playing the “Racket-ball”
game using the fixed synaptic weights which we selected based on the cumulative hit to miss
ratio during training. Each simulation was repeated multiple (6-9) times using fixed synaptic
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weights and only changing the initial position of the ball and the racket in the court. The
performance of the model using fixed weights after training was compared with the model’s
performance using the initial random weights to quantify how much the model had learned. All
the simulation parameters were reinitialized at the beginning of each subsequent
simulation/episode except the weights of synaptic connections.
Simulations

The model was developed using parallel NEURON (neuron.yale.edu)[83] and NetPyNE
(www.netpyne.org) [84], a Python package to facilitate the development of biological neuronal
networks in the NEURON simulator. Upon publication, we will make the full source code
available on github and ModelDB. All simulations were run using MPI on the Linux operating
system using Intel Xeon Platinum 8268 2.9 GHz CPUS. Parallelized across 30 cores, 500
sec of simulation time took between 3-6 hours to run, depending on the particular model,
and whether we were running with the learning turned on or off for performance evaluation.
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Supplementary Material

Supplementary Figure 1: A) Raster plot of different populations of neurons during a training episode (vertical axis is neuron identity
and horizontal axis is time; each dot represents a single action potential from an individual neuron). B) Firing rates of excitatory motor
neuron populations EMUP and EMDOWN in the feedforward model increase over the course of training. The firing rates were binned
for ball trajectories (beginning when the ball is at the extreme left side of the court and ends when the ball hits or misses the racket on
the right side of the court). C) Average weight change of synaptic inputs onto EMUP and EMDOWN sampled over 23 training
episodes tends to increase with learning, D) Same as in C for EA and EA2 populations.

Training the recurrent model to learn visuo-motor behavior using retrograde targeted RL
In contrast to the feedforward model, where STDP-RL mechanism was included only at

the synapses onto the motor neurons, in the recurrent model, STDP-RL mechanism was also
included at the synapses onto the association neurons, EA and EA2. Because these synapses
were not directly involved in action generation, we used a special rule for reinforcement learning
that we termed as retrograde targeted RL in which the synapses away from the motor areas get
partial reward or punishment depending on the ‘critic’ value. Next, similar to the feedforward
model, we tuned the parameters of the recurrent model to ensure reliable transmission of neural
activity across the modeled areas without causing hyperexcitability or depolarization-block (see
raster plot in Supplementary Figure 1A).

We trained the recurrent network model to play a bouncing ball game for 23 episodes.
During training, both EMUP and EMDOWN neurons in the recurrent model were sparsely active
(~0.08-0.15 Hz) at the beginning and later evolved to higher yet still sparse firing rates (~0.2-0.5
Hz) as shown in Supplementary Figure 1B. These firing rates were computed for the duration
of full ball trajectories from the left side of the court to the right side and show that during
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training the model experienced 1600 ball trajectories/ input patterns. The increase in firing rates
of motor neurons resulted from increase in the synaptic weights of the connections onto EMUP
and EMDOWN neurons as well as increase in the synaptic weights of the recurrent and
feedback connections onto EA and EA2 neurons as the average weight change of these
populations is shown in Supplementary Figure 1B. The net increase in average weights of
EMUP and EMDOWN neurons was about 16%, whereas the net increase in average weights of
EA and EA2 neurons was 1800% and 40% respectively.

In Figure 3, we saw that the performance of the feedforward model clearly improved
over repeated training episodes. Although we saw increased performance across the first few
training episodes of the recurrent model with IRP (Supplementary Figure 2A and B), the
performance fluctuated over later training episodes (Supplementary Figure 2A and B). Even
the best performance (0.6) was not as good as the performance of the feedforward model
(0.94), however we clearly observed some learning. We also noticed that the recurrent model
learned more rapidly than the feedforward model as the recurrent model’s performance
improved to 0.5 only after 4 training episodes (and fewer ball trajectories as each action
timestep was 50 ms) as compared to 8 training episodes (and more ball trajectories as each
action timestep was 20 ms) for the feedforward model. Most of the performance features during
training episodes (Supplementary Figure 2C-E and Supplementary Movie 9-12) were similar
to what we observed for the feedforward model (Figure 3C-F) and are described below.

During 23 episodes of training, overall the recurrent model experienced 46 spatially
unique ball trajectories out of which the model could not learn to hit the ball at all for 6 ball
trajectories (see last example ball trajectory in Supplementary Figure 2D). For 6 of the
remaining 40 ball trajectories, the model’s performance (hit to miss ratio) primarily kept
improving during the first 80% of the repeats (see red dots above 0.8 in the right panel of
Supplementary Figure 2E and first and fourth example ball trajectories in Supplementary
Figure 2D), whereas for the other 18 ball trajectories, the models’ performance primarily kept
declining during the last 80% of the repeats (see red dots below 0.2 in the right panel of
Supplementary Figure 2E and second example ball trajectory in Supplementary Figure 2D).
We found that for the 16 ball trajectories, the model first learned to hit the ball and then
unlearned or kept forgetting as is indicated by red dots between 0.2 and 0.8 in the right panel of
Supplementary Figure 2E and the third example ball trajectory shown in Supplementary
Figure 2D. The model displayed an optimal performance for a ball trajectory where the peak hit
to miss ratio was 7 and the minimum value for hit to miss ratio (not shown). The best sustained
performance was observed for the ball trajectory for which the hit to miss ratio remained around
0.8 for about 80 repeats (see fourth ball trajectory in Supplementary Figure 2D). This ball
trajectory was repeated most frequently over 120 times during the training episodes. One of the
reasons for a large variance in performance during training could be the intrinsic noise in the
circuit which was intentionally kept higher to allow the circuit to explore action space to its full
capacity. Ideally, the drive by the noise processes should decrease with learning to enable
motor neurons to take actions based on the sensory inputs and the sensory-motor associations
the model learned during training. However, we have not tested the use of adaptive noise in this
work. The other reason for large variance in performance could simply be the fact that the
performance presented in Supplementary Figure 2 is during learning which is an extremely
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dynamic situation. Since each training episode (or controls) was simulated for 500 sec, using
larger action timesteps of 50 ms (compared to 20 ms for feedforward model) reduced the
repeats of each ball trajectory which would have caused a large variance in performance.

Supplemental Figure 2. Performance of the recurrent model with retrograde targeted RL. A) cumulative performance of 23 training
episodes. B) Cumulative Hits and Misses of 40 training episodes. C) Temporal evolution of performance during training episodes 8,
12, 15, 20 (selected arbitrarily). D) Examples of ball trajectories with model’s learning  performance shown for different modes of
learning. First example shows a ball trajectory for which the model kept learning. Second example shows a ball trajectory for which
the model performed well at the beginning of the training and then kept forgetting as shown by decrease in hit to miss ratio. In the
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third example, the model learned in the beginning and then forgot and then again started learning. Fourth example showed sustained
performance as the model’s ability to hit the ball plateaued and remained constant for 80 repeats. In the fifth example, the model was
unable to learn how to hit the ball for this ball trajectory. E) The model’s performance for different ball trajectories: The left panel
shows the median and maximum Hit/Miss values during repeated occurrences of the unique ball trajectories. The middle panel shows
the number of repeats of the unique ball trajectories at which the model showed peak performance. The right panel shows the relative
number of repeats of the unique ball trajectories at which the model showed the peak performance. This indicates that for some ball
trajectories (# 30-32), the model performed best without any training and the training only reduced the performance of the model. For
some ball trajectories (seq # 0-5), the model could not learn to hit the ball. This also shows that for some ball trajectories (see the
seqs with relative # of repeats for max. Hit/Miss values between 0.2 and 0.8), the model first learns to hit the ball and then forgets,
whereas for a few ball trajectories (see the seqs with relative # of repeats for max. Hit/Miss values 0.8 or above), the model did not
forget how to hit the ball until the end of all training episodes.

Supplementary Figure 3. The recurrent spiking neuronal network model using retrograde targeted RL showed variable
performance after learning. A) Temporal evolution of the performance of two example simulations using different initial positions of
the racket and the ball and initial weights for synaptic connections. B) same as in A  using weights after training episode 20 for
synaptic connections. C) Summary of the peak and the median performance for all different ball trajectories for the model before
training and using weights after training episode 20. D). The histogram of ‘Hits’ and ‘Misses’ against the ball’s vertical position (ypos)
when crossing the racket for the model before and after training E) The bar plot shows the mean (n=14; filled circles) performance
(Hit/Miss) of the model before training (using initial weights), after training episode 20. For the performance comparison, we ran 500
sec simulations using 14 different initial positions of the racket and the ball.
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