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Abstract 36 
 37 
Articular chondrocytes undergo functional changes and their regenerative potential declines with 38 
age. Although the molecular mechanisms guiding articular cartilage aging is poorly understood, 39 

DNA methylation is known to play a mechanistic role in aging. However, our understanding of 40 

DNA methylation in chondrocyte development across human ontogeny is limited. To better 41 
understand DNA methylome changes, methylation profiling was performed in human 42 

chondrocytes. This study reveals association between methylation of specific CpG sites and 43 

chondrocyte age. We also determined the putative binding targets of STAT3, a key age-patterned 44 
transcription factor in fetal chondrocytes and genetic ablation of STAT3 induced a global genomic 45 

hypermethylation. Moreover, an epigenetic clock built for adult human chondrocytes revealed that 46 
exposure of aged adult human chondrocytes to STAT3 agonist, decreased epigenetic age. Taken 47 
together, this work will serve as a foundation to understand development and aging of 48 

chondrocytes with a new perspective for development of rejuvenation agents for synovial joints. 49 

 50 
Introduction 51 
 52 
Tissue regeneration occurs widely in the animal kingdom 1. However, regenerative potential varies 53 

greatly across animals. Invertebrates and phylogenetically lower vertebrates, such as 54 
salamanders and zebrafish, often possess a higher regenerative capacity, and are capable of 55 
regenerating substantial parts of their body 2. In contrast, mammals have a very limited 56 
regenerative capacity. Articular chondrocytes have very limited potential for intrinsic healing and 57 

repair 3. Loss and degradation of articular chondrocytes is a significant cause of musculoskeletal 58 
morbidity. With aging, the regenerative potential of chondrocytes decreases with significant 59 

changes in mechanical, structural, matrix composition, and surface fibrillation 4. Although, the 60 

cellular and molecular mechanisms for chondrocyte regeneration are poorly understood, it is 61 

believed to be a cumulative combination of many molecular pathways.  62 

Recent studies in this field have determined the importance of epigenetic regulation in mediating 63 
the process of aging 5. DNA methylation is a crucial player for epigenetic regulation of aging 6,7. It 64 

is a biochemical process characterized by gain of methylation at the fifth carbon of cytosines i.e., 65 

5-methylcytosine and occurs predominantly in cytosines followed by guanine residues (CpG). 66 
DNA methylation has diverse roles in several mammalian developmental stages, including 67 

genomic imprinting and X-chromosome inactivation 8 and is mediated by DNA 68 

methyltransferases. Although CpG methylation across mammals is tissue-specific, nearly 70-80% 69 
of CpGs in the mammalian genome are methylated. Establishment and regulation of DNA 70 
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methylation is dynamic and varies considerably between different developmental stages and ages 71 
9. Although the mechanisms that drive changes in the methylome during aging are not well 72 

understood, but they have been attributed to environmental and spontaneous epigenetic changes 73 
10. Because DNA methylation changes are reversible, they are an attractive therapeutic target for 74 

aging. Previously, molecular markers like telomere length 11 and gene expression 12 were used to 75 

predict age across various tissues and organisms. However, with the advent of genome-wide 76 
methylation profiling, methylation pattern changes in CpG sites have been used to predict the 77 

biological age of individuals 13. The dynamics of methylation in aging have impelled researchers 78 
to develop ‘epigenetic clocks’ as the new standard to accurately predict biological age 14,15. 79 

However, the impact of DNA methylation on chondrocyte development across human ontogeny 80 

has not been studied to date.  81 

STAT3 is a well-known master transcriptional factor that exhibits a repertoire of signaling 82 
pathways in various tissues and contexts 16,17, including self-renewal, proliferation, and 83 

pluripotency 18,19. STAT3 also regulates chromatin accessibility via DNA methyltransferases 20,21 84 
and histone modifiers 22. Our recent studies have shown that STAT3 is highly activated in 85 
developing fetal chondrocytes 23. Moreover, the levels of active phosphorylated STAT3 (pSTAT3) 86 

are higher in fetal as compared to adult chondrocytes 23. However, the binding targets of STAT3 87 
in human chondrocyte ontogeny and their potential role in maintaining the immature phenotype 88 
of fetal chondrocytes via epigenetic regulation has not been explored. 89 
Thus, in this work, we study the dynamic genome-wide methylation profile of human chondrocytes 90 

across ontogeny. We have determined correlation between methylation of specific CpG sites and 91 
chondrocyte age. We also investigate the enrichment of chromatin states in these age-correlated 92 
CpGs. Besides, we also explored the putative binding targets of STAT3, a key age-patterned TF 93 
in fetal chondrocytes along with impact of STAT3’s genetic manipulation on genome-wide DNA 94 

methylation. Moreover, we apply a novel epigenetic clock for adult human chondrocytes that 95 

accurately predicts epigenetic age. We utilized this clock to gain further insight into the effect of a 96 
small molecule STAT3 agonist in decreasing epigenetic age of aged adult chondrocytes. In a 97 

nutshell, these findings will serve as a foundation to understand the global DNA methylation profile 98 

of human chondrocytes and help develop new therapeutic interventions to reverse or slow down 99 

aging. 100 

 101 

 102 
 103 
 104 
 105 
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Results 106 
 107 
Epigenome-wide association study (EWAS) identifies age-correlated CpGs in non-cultured 108 
human fetal and adult chondrocytes 109 

 110 
We performed DNA methylation profiling for non-cultured human fetal (n=8) and adult 111 
chondrocytes (n=22) and identified regulatory genes associated with ontogeny specification. The 112 

DNA methylation ß-values across all samples (Fig 1a) from 865,859 CpG sites follows a bimodal 113 
distribution with peaks around 0 (unmethylated) and 1 (methylated). Evaluation of global 114 

methylation patterns (hypomethylation and hypermethylation) across the ontogeny revealed 115 

correlation with chondrocyte age (Table S1). Further site-specific genome-wide pattern of DNA 116 
methylation (Fig 1b-c) showed a predominant proportion of age-correlated CpG sites to be 117 

statistically significant (p-value<0.05). These CpGs showing either gain or loss of methylation 118 
across ages (i.e., hypermethylated or hypomethylated respectively) were not evenly distributed 119 

across the genome, showing prevalence in open sea regions and mostly confined in the gene 120 
body (Fig 1d). Several chondrocyte-associated genes including UCMA, SOX11, BMPR1B, 121 
CSPG4, COL2A1, ITGA10, COL9A1, and RUNX2 are known to be expressed during 122 
development 24. We thus explored the methylation level for all age-correlated CpG probes 123 

associated with these chondrogenic genes (Fig S1). Our data suggests that with aging, age-124 

correlated CpGs associated with chondrogenic genes gain methylation (Fig 1e) and show 125 

expression downregulation as revealed by the transcriptomic 24 and single cell sequencing data 126 
25 for non-cultured fetal and adult chondrocytes (Fig 1f-g). Besides, age-correlated CpGs losing 127 
methylation with age and the transcriptional profile for the associated genes has been shown in 128 
FigS2-3. We also examined the methylation status of all age-correlated CpG probes associated 129 

with microRNA (miRNA) genes (Fig S4), which are known to play an important role in 130 
chondrocytes during development 26-29. The age-correlated CpGs for these miRNAs also gain 131 

methylation with age and show downregulation in adult chondrocytes as revealed by the miRNA-132 

sequencing data (Fig 1h-i, Table S2). miRNAs associated with age-correlated CpGs losing 133 
methylation with age has been shown in FigS5. Overall, age-correlated CpGs, show a distinct 134 

methylation profile in fetal and adult chondrocytes, which in turn governs the ontogeny-specific 135 

phenomenon of development. 136 

 137 
Age-correlated CpGs are associated with distinct chromatin signatures 138 
 139 
It has been previously reported that DNA methylation patterning is governed by various chromatin 140 

states such as histone modifications, and nucleosome positioning 30. Additionally, various 141 
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chromatin remodeling factors might interact with DNA methyltransferases, guide them to specific 142 

DNA sequences and modulate transcriptional activation/repression. A closer inspection into the 143 

genes associated with the age-correlated CpGs revealed enrichment of Gene Ontology terms 144 
involving binding and activity of several histone modifiers including enhancer-mediated binding 145 

(Fig 2a). Thus, we hypothesized that age-correlated CpGs might be associated with distinct 146 

chromatin states in chondrocytes. Accordingly, we determined the chromatin states associated 147 
with age-correlated CpGs (i.e. both hypermethylated(204549 CpGs) and hypomethylated(132383 148 

CpGs)) in fetal and adult chondrocytes using the ChromHMM chromatin state model previously 149 
generated by our group 24 based on data from four histone modifications (H3K4me3, H3K27me3, 150 

H3K4me1, and H3K27ac)(Fig 2b). We observed that CpGs in fetal chondrocytes, which gain 151 

methylation with age, show stronger enrichment for a poised promoter or bivalent state, 152 

characterized by the co-existence of both activating (H3K4me3) and repressing (H3K27me3) 153 
marks. Interestingly, bivalent chromatin states has been previously known to be enriched in 154 

developmentally important genes 31. Besides CpGs in adult chondrocytes, which lose methylation 155 
with age are most enriched for the active enhancer chromatin state suggestive of transcriptional 156 
regulation from these regions. Of note, gain or loss of methylation in CpGs correlated with age in 157 

both fetal and adult chondrocytes show enrichment for chromatin states associated with 158 
enhancers (marked by H3K27ac) which might indicate the previously known fact that 159 

chondrocytes acquire cell-type-specific enhancers upon differentiation 32. We further investigated 160 

the chromatin state for the chondrogenic genes mentioned previously in Fig 1e and closer 161 
inspection of these loci demonstrate presence of active histone modifications characterized by 162 

presence of H3K27ac while H3K27me3 repressive mark is mostly absent (Fig 2c). Taken 163 
together, these findings affirm that age-correlated CpGs are intrinsically tied to chromatin state 164 
and corroborate with regulation of chondrogenic genes as shown previously using methylation 165 

and transcriptomic data for fetal and adult chondrocytes. 166 

 167 

Genome-wide putative STAT3 targets differ in development and disease 168 
 169 
STAT3 exhibits a plethora of functions with context-specific roles in skeletal development, 170 

inflammation, and neoplastic growth 33. It is also involved in regulating methylation of CpGs sites 171 

by interacting with DNA methyltransferases 20. Also as mentioned previously our lab has observed 172 
STAT3 to be highly expressed in fetal chondrocytes in comparison to healthy adults 23. Besides, 173 

pSTAT3 is also highly expressed in osteoarthritic chondrocytes in comparison to healthy adults 174 

(Fig S6). Hence, it is quite evident that although STAT3 is highly expressed in fetal and 175 
osteoarthritic chondrocytes when compared to healthy adults, the outcomes downstream of 176 
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STAT3 are different in each context. This led us to hypothesize that STAT3 has different context-177 

specific transcriptional targets that differ in development and disease.  178 

To gain further insight into the context-specific putative targets of STAT3, we performed 179 
Cleavage Under Targets and Release Using Nuclease (CUT&RUN) 34 profiling for fetal, adult, and 180 

osteoarthritic chondrocytes (n=2 for each case). The average profile plot for peaks shows binding 181 

around the transcription start site (TSS) and extending to genic regions with confidence intervals 182 
shown by the shadows following each curve. Confidence intervals were estimated by bootstrap 183 

method using 500 iterations (Fig 3a). Heatmaps centered around the peak summits shows 184 
enrichment of reads (Fig 3b). Most of the STAT3-binding sites were located in the distal intergenic 185 

regions, suggesting STAT3 might regulate the expression of its putative targets by binding to 186 

distal regulatory elements (Fig 3c). Interestingly, epigenetic regulation mediated by STAT3 via 187 

binding to intergenic regions has been reported previously 35,36. Further, gene enrichment analysis 188 
for putative STAT3 binding targets revealed distinct pathways and molecular functions regulated 189 

in fetal and adult chondrocytes (Fig 3d). For instance, the Wnt signaling pathway, which is 190 
enriched in fetal chondrocytes, is known to maintain an immature phenotype by regulating self-191 
renewal and pluripotency in human pluripotent stem cells 24,37. In contrast, enrichment of 192 

extracellular matrix (ECM) receptor interaction in adult chondrocytes is suggestive of the gradual 193 
degradation of ECM with age 38. We next identified the enriched DNA motifs present in the putative 194 
STAT3 targets for both fetal and adult chondrocytes (Fig 3e). For fetal chondrocytes, we obtained 195 
motifs from several well-known and important transcription factors known to modulate early 196 

development, including SOXs (SOX4, SOX6) 39 and LEF140. Similar analysis for adult 197 
chondrocytes showed enrichment for GATA1, GATA2, IRF4, GLI3, CTCF binding motifs. 198 
Although the role of these genes in chondrocytes remains unclear, these transcription factors are 199 
known to be essential for differentiation and lineage commitment in different cell types 41-45. To 200 

date, researchers have uncovered several STAT3 binding targets across various other tissues 201 

and cell types. Since STAT3 binding targets have not been studied in human chondrocytes, we 202 
were interested in exploring the exclusive putative binding targets in human chondrocytes. Thus 203 

we overlapped the STAT3 targets reported till date in ChIP-Atlas 46 and CistromeDB 47,48 with our 204 

analysis (Fig 3f). Interestingly, we obtained 1858 exclusive targets in human chondrocytes (Table 205 
S3).  206 

We overlapped the putative binding targets obtained for fetal and adult chondrocytes and 207 

determined targets exclusively present in fetal chondrocytes. To evaluate the concordance 208 
between these fetal chondrocyte exclusive 5268 putative STAT3 targets and gene expression 209 

(Fig 3g), we compared them to transcriptomics data from i) fetal and adult chondrocytes 24 and ii) 210 
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STAT3 knocked down fetal chondrocytes 49. We also performed ATAC-seq on fetal 211 

chondrocytes(n=3) (Fig S7) to check for chromatin accessibility. We obtained 6 well-known genes 212 

(ACAN, COL16A1, COL27A1, COL2A1, DUSP7, KCNS1) which had putative open chromatin 213 
regions. Interestingly, COL2A1 which is a key structural gene and plays a critical role in matrix 214 

anabolism was shown to have gained methylation with age (Fig 1e, Fig S1). Upon a similar 215 

analysis with 1812 exclusive putative STAT3 targets in adult chondrocytes, we finally obtained 21 216 
of them to be overlapping with transcriptomics data from adult chondrocytes (Fig 3h). Of these, 217 

CD14 and TLR1 have been shown to be losing methylation with age (Fig S2-3).  218 
Next, we assessed the role of STAT3 in disease by determining the putative binding partners in 219 

osteoarthritic chondrocytes by CUT&RUN and comparing them to those in development. As 220 

mentioned previously, STAT3 might regulate chondrocyte development and disease by binding 221 

to different partners dependent on context. The profile for osteoarthritic chondrocytes (Fig S8a-222 
c) shows binding mostly in the distal intergenic region. We do observe that different pathways are 223 

regulated by STAT3 in the context of disease and development (Fig S8d). On motif analysis for 224 
the putative STAT3 binding sites we obtained DNA motif for NF-kB, which is a well-known 225 
transcription factor that mediates inflammation (Fig S8e). Recently, Wang et al. have 226 

demonstrated that STAT3 can speed up osteoarthritis through the NFkB signaling pathway 50. 227 
Other transcription factors that might regulate osteoarthritis via co-binding to STAT3 include 228 
TGIF1, JUNB, FOSL2 and FOXO1, mostly known for their role in inflammation 51-54. We next 229 
overlapped the putative targets obtained from fetal chondrocytes and osteoarthritic chondrocytes 230 

and determined the exclusive targets in disease. Of these 84 exclusive binding partners in 231 
disease, 16 targets were highly expressed in osteoarthritis in comparison to fetal chondrocytes 232 
as suggested by single cell sequencing data (Fig S8f). Thus, combinatorial analysis of this data 233 
provides critical insight into the multipotential, and context-specific mode of regulation exhibited 234 

by STAT3 during development and disease. 235 

 236 
Genetic manipulation of STAT3 induces global hypermethylation in fetal chondrocytes 237 
 238 
Our lab has previously shown that STAT3 is essential for normal cartilage development and is 239 
highly expressed in anabolic fetal chondrocytes compared to healthy adult chondrocytes 23.  240 

Recently we have also shown that postnatal STAT3 deletion in 3-months-old mice lead to 241 
degradation of the growth plate 49. Moreover, upon STAT3 inhibition, an increase in apoptosis 242 

and decrease in proliferation was observed 23. In summary, STAT3 plays a predominant role in 243 

chondrogenesis, and its deletion leads to profound changes in early development. Thus, we 244 
hypothesized that genetic manipulation of STAT3 in fetal chondrocytes might have an impact on 245 
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genome-wide DNA methylation. We transduced fetal chondrocytes with STAT3 shRNA (n=4) and 246 

scrambled (n=4) (Fig S9) and performed DNA methylation profiling. To understand the effect of 247 

STAT3 inhibition, we determined the differentially methylated CpGs. Density and volcano plots 248 
for the CpG sites suggested that 55697 CpGs are statistically significant (p-value<0.05) (Fig 4a-249 

b). Interestingly, we found a significant number of CpGs have gained methylation 250 

(hypermethylated) in STAT3 knocked down fetal chondrocytes (Fig 4c). We strengthened our 251 
observation by looking into differentially methylated CpGs, that are correlated with age (Fig 4d). 252 

These CpG sites were unevenly distributed across the genome, and they were prevalent in the 253 
open sea region (Fig 4d). Differentially methylated CpGs which are age-correlated as well 254 

showed a significant increase in hypermethylation across the genome (Fig 4e). Furthermore, we 255 

explored the concordance between genes associated with differentially methylated CpGs that 256 

gain methylation with age and transcriptomic data from i) fetal chondrocytes 24 and ii) STAT3 257 
knocked down fetal chondrocytes 49 as well as STAT3 binding targets determined previously (Fig 258 

4f). In summary, it can be concluded that upon STAT3 inhibition in fetal chondrocytes there is a 259 
global gain in methylation that might attribute to epigenetic aging of these cells. 260 
 261 

A novel epigenetic clock for adult chondrocytes helps to accurately predict STAT3 agonist-262 
induced global hypomethylation 263 
 264 
Since the late 1960s, a vast majority of literature describes DNA methylation levels as having 265 

strong effects on the aging of tissues and cells 55,56. DNA methylation based epigenetic clocks are 266 
the best biological age predictors till date 57. Several epigenetic clocks have been developed for 267 
various tissues across several species 13. To the best of our knowledge, we for the first time, have 268 
developed a novel epigenetic clock that is specific to human adult chondrocytes (Fig 5a). This 269 

clock utilizes DNA methylation data to estimate biological age of human adult chondrocytes with 270 

high accuracy (r=0.97, p-value=2.4E-14). Further, we used this novel clock to accurately predict 271 
epigenetic age of adult chondrocytes upon treatment with a STAT3 agonist.  272 

Our lab previously performed a high throughput screening of 170,000 compounds and identified 273 

a small molecule which acts as a STAT3 agonist in adult chondrocytes, thereby reducing cartilage 274 

degeneration and structural damage 23. This small molecule increased proliferation while reducing 275 

apoptosis and hypertrophic responses in adult chondrocytes in vitro. Besides, this molecule was 276 

shown to promote cartilage repair in a rat osteochondral defect model with spontaneous healing 277 
in 4 weeks 23. Moreover, we have also shown that this compound plays a role in hair follicle stem 278 

cell activation via STAT3 58. Hence, to gain further insight into the mechanism, we treated adult 279 
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chondrocytes with or without STAT3 agonist for 2 weeks (n=6) and performed DNA methylation 280 

profiling. We hypothesized that treatment of adult chondrocytes with STAT3 agonist would make 281 

adult chondrocytes epigenetically younger. Interestingly, based on the novel clock, adult 282 
chondrocytes from 5 out of 6 tested donors showed a clear decrease in epigenetic age upon 283 

treatment for 2 weeks (Fig 5b). Thus, to strengthen our results, we determined the differentially 284 

methylated CpGs between 2 weeks cultured, treated and untreated samples and observed a 285 
global hypomethylation in treated samples (Fig 5c). We also evaluated the differentially 286 

methylated CpGs, which are age-correlated, and obtained global hypomethylation in treated 287 
samples (Fig 5d). Taken together these results suggest that pharmacological activation of STAT3 288 

signaling in aged adult chondrocytes reduces their epigenetic age. These proof-of concept studies 289 

open a new perspective for development of rejuvenation agents for synovial joints. 290 

 291 

Discussion 292 
 293 

Articular chondrocyte development and differentiation is governed by cell-specific gene 294 
expression patterns, which is in turn established and reinforced by DNA methylation 59. Here we 295 
generated a DNA methylation profile for human chondrocytes across ontogeny and determined 296 
the epigenome-wide changes in the methylome of fetal and adult chondrocytes. We showed 297 

association between methylation of CpG sites and chondrocyte age. Moreover, these age-298 
associated CpGs are mainly confined to the open sea and gene body regions showing the distinct 299 
pattern of epigenetic regulation in chondrocytes. A closer inspection into the methylation pattern 300 
revealed gain of methylation with age in CpGs associated with chondrogenic genes. These 301 

observations were in concordance with upregulation of chondrogenic gene expression in fetal 302 

chondrocytes transcriptomics data as well as single cell sequencing data when compared to adult 303 
chondrocytes. We also found CpGs losing methylation with age and genes associated with these 304 

CpGs showed upregulation in adult chondrocytes. miRNAs are known to play a key role in 305 

regulating chondrocyte development and homeostasis with age 60. In mammalian cells, DNA 306 
methylation is known to direct miRNA biogenesis 61. Hence, regulating expression of miRNAs by 307 

modulating DNA methylation may also act as a novel therapeutic strategy for chondrocyte repair 308 

and regeneration. We also observe gain of methylation in age-correlated CpGs for miRNAs known 309 
to be involved in chondrocyte homeostasis. Moreover, interrogation of the chromatin states for 310 

the age-correlated CpGs provided a clue towards enrichment of bivalent promoters during 311 

development. Enhancer chromatin states were also enriched across ontogeny providing a clue 312 
towards the region of transcriptional regulation. 313 
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STAT3, a key transcriptional factor, has been previously known to be involved in regulating 314 

stemness, development, and regeneration of tissues and organs. We have previously reported 315 

that STAT3 is highly expressed in anabolic fetal chondrocytes 23 and its involvement in 316 
chondrocyte development. Here, we observe that putative binding targets of STAT3 in fetal and 317 

adult chondrocytes are different and they are associated with distinct signaling pathways. We 318 

compared our results with transcriptomic data from fetal chondrocytes 24, STAT3 knocked down 319 
fetal chondrocytes 49 and chromatin accessibility data and found well known genes including 320 

ACAN, COL16A1, COL27A1, COL2A1, DUSP7, and KCNS1 to be the putative targets. Of these, 321 
age-correlated CpGs associated with COL2A1 was shown to gain methylation with age. In adult 322 

chondrocytes, of the 21 putative STAT3 targets, TLR1 and CD14 associated age-correlated CpGs 323 

were shown to lose methylation with age. STAT3 being a pleiotropic factor, regulates its targets 324 

in a context-specific manner. Thus, we also determined STAT3 targets in disease i.e., 325 
osteoarthritic chondrocytes and compared them to targets in development. In a nutshell, we 326 

observed the change in milieu of putative STAT3 targets in development and disease. Moreover, 327 
the critical role of STAT3 in development intrigued us to understand its effect in modulating DNA 328 
methylation. Genetic manipulation of STAT3 in fetal chondrocytes, induced a global 329 

hypermethylation, indicative of its role in maintaining an immature phenotype in chondrocytes. 330 
The most challenging task in the field of aging is to determine a valid and reliable age predictor 331 
that will help understand how to slow, halt or even reverse aging 62. ‘Epigenetic clocks’ are 332 
accurate DNA methylation age estimators, which are built by regressing a transformed version of 333 

chronological age on a set of CpGs using a supervised machine learning model 13. In this study, 334 
we applied an epigenetic clock that is tailor-made for adult human chondrocytes and will be 335 
extremely useful in accurately estimating epigenetic age of adult chondrocytes. Our previous work 336 
has shown the importance of a small molecule STAT3 agonist that promotes cartilage repair and 337 

increases proliferation of chondrocytes 23. We used this chondrocyte clock, to explore the impact 338 

this small molecule has on epigenetic age in aged adult articular chondrocytes. Interestingly, we 339 
observed a decrease in epigenetic age in treated cells with a global hypomethylation in the 340 

genome.  341 

In summary, the data presented here will serve as a foundation to understand the complex 342 

regulation of the epigenome across human chondrocyte ontogeny. Besides, it also provides 343 

strong evidence for the crucial role of STAT3 in modulating the epigenome during chondrocyte 344 

development. The novel epigenetic clock presented here will help researchers to capture pivotal 345 
aspects of biological age in adult chondrocytes. We anticipate this work will shed light towards 346 

chondrocyte aging with newer perspectives for development of rejuvenation agents. 347 
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 348 
Methods 349 
 350 
Chondrocyte sample collection 351 
 352 
Fetal tissue samples (14wks-19wks) were obtained from Novogenix Laboratories. All donated 353 

material was anonymous, carried no personal identifiers and was obtained after informed consent. 354 
Sex of the specimens was unknown. Adult human primary (21yrs-87yrs) and osteoarthritic tissue 355 

samples (55-60yrs) were obtained from National Disease Research Interchange (NDRI). Primary 356 

tissues were manually cut into small pieces and digested for 4–16 h at 37 °C with mild agitation 357 
in digestion media consisting of DMEM (Corning) with 10% FBS (Sigma), 1 mg/mL dispase 358 

(Gibco), 1 mg/mL type 2 collagenase (Worthington), 10 –µg/mL gentamycin (Teknova) and 359 

primocin (Invivogen).  360 
 361 
Cell culture and treatments 362 
 363 
Only early passages of fetal and adult chondrocytes (P0) were used for experimentation to avoid 364 
de-differentiation and loss of cartilage phenotype63. Fetal and adult chondrocytes were cultured 365 
in DMEM F12 medium containing 10% (vol/vol) fetal bovine serum and 1% Penicillin-Streptomycin 366 

(vol/vol) at 37 °C in a humidified atmosphere of 95% air and 5% CO2. Media was replenished 367 
with DMEM F12 medium containing 1% (vol/vol) fetal bovine serum and 1% Penicillin-368 
Streptomycin (vol/vol) once treatments were added. 369 
Fetal chondrocytes were transduced with doxycycline inducible STAT3 shRNA or scrambled 370 

lentiviral particles (Dharmacon) and treated with Doxycycline every 48hrs. After 4 weeks of 371 
infection, transduced cells were sorted for RFP fluorescence. 372 

Aged adult chondrocytes (55yrs-87yrs) were treated with or without a modified form of the small 373 
molecule STAT3 agonist, RCGD 423F N-(4-Fluorophenyl)-4-phenyl-2-thiazolamine; synthesized 374 

and provided by J-STAR Research at 10µM for 2weeks. 375 

 376 
FACS 377 

FACS for fetal chondrocytes transduced with STAT3 shRNA or scrambled was performed on a 378 

BD FACSAria IIIu cell sorter. Cells were washed in 1% FBS and stained with DAPI for viability. 379 
Populations of interest based on DAPI negativity expression and RFP expression were directly 380 

sorted into DMEM/F12 containing 10% FBS with 1% P/S/A. 381 
 382 
RNA extraction and quantitative Real-Time PCR 383 
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 384 
Total RNA was extracted from live sorted fetal chondrocytes transduced with STAT3 shRNA or 385 

scrambled using the RNeasy Mini Kit (Qiagen). 500 ng of RNA was reverse transcribed using the 386 

Maxima First Strand cDNA Synthesis Kit (Thermo Fisher). Power SYBR Green (Applied 387 

Biosystems) RT-PCR amplification and detection was performed using an Applied Biosystems 388 
Step One Plus Real-Time PCR machine. The comparative Ct method for relative quantification 389 

(2-ΔΔCt) was used to quantitate gene expression, where results were normalized to Rpl7 390 
(ribosomal protein L7). Primer sequences are available upon request. Results were analyzed 391 

using 2-tailed Student’s t test in GraphPad Prism 9.0. 392 

 393 
Genomic DNA extraction 394 
 395 
Genomic DNA was extracted using QIAGEN DNeasy® Tissue kit or QIAamp® DNA Micro Kit 396 
depending on the starting number of cells. For DNeasy® Blood or Tissue kit samples were first 397 

lysed using Proteinase K. Lysate was loaded into the DNeasy Mini spin column and centrifuged 398 
to selectively bind DNA to the DNeasy membrane as contaminants pass through. Subsequent 399 
washing steps remove remaining contaminants and enzyme inhibitors. For QIAamp® DNA Micro 400 
Kit samples were lysed under high denaturing conditions at elevated temperatures in the 401 

presence of Proteinase K and Buffer ATL. Buffer AL was added to lysates followed by loading 402 

into QIAamp MinElute column and centrifugation. Residual contaminants or inhibitors are washed 403 

off using first Buffer AW1 and then Buffer AW2. Purified genomic DNA from either kit was eluted 404 
in water and quantified by Nanodrop confirming for high 260/280 purity ratio. 405 

 406 
DNA methylation data  407 
 408 
The Illumina Infinium Methylation EPIC BeadChip array was used to perform DNA methylation 409 
profiling. This platform measures bisulfite conversion–based, single-CpG-resolution DNA 410 
methylation levels at 866,836 CpG sites in the human genome. Methylation levels are quantified 411 

by β values which is the ratio of intensities between methylated (signal A) and un-methylated 412 

(signal B) alleles. Specifically, the β value is calculated from the intensity of the methylated (M 413 

corresponding to signal A) and un-methylated (U corresponding to signal B) alleles, as the ratio 414 
of fluorescent signals β = Max(M,0)/[Max(M,0) + Max(U,0) + 100]. Thus, β values range from 0 415 

(completely un-methylated) to 1 (completely methylated) 64.  416 
 417 

Analysis of Infinium EPIC methylation data 418 
 419 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.02.454544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454544


 13 

The R package “minfi” was used for analysis of the data 65,66. Raw IDAT files were read and 420 

preprocessed and probes with high detection p-value (p-value>0.05) and potential SNP 421 

contamination were filtered. Normalization of data was done using the preprocessFunnorm 422 
function to generate Beta values per probe. Beta values provide the percentage of CpG 423 

methylation per probe with 0 being unmethylated and 1 fully methylated. Differentially methylated 424 

probes were identified by dmpFinder in logistic regression mode for appropriate contrasts followed 425 
by statistical analysis using an empirical Bayes method and then filtered by significance threshold 426 

(p-value<0.05, F-test). Annotation of probes was performed with the R 427 
package ‘IlluminaHumanMethylationEPICanno.ilm10b4.hg19’ version 0.6.0 for hg19 genome 428 

build. For EWAS approach 55,56,67, the DNA methylation changes were examined for association 429 

with chondrocyte age using the function "standardScreeningNumericTrait" from the "WGCNA" R 430 

package 68. 431 

 432 
DNA methylation age and Epigenetic clock 433 
 434 
The chondrocyte clock was developed using both novel and existing methylation data from 435 

chondrocytes, cartilage and bone (Horvath 2021, in preparation). The age was regressed on DNA 436 
methylation levels using elastic net regression as implemented in the R function glmnet. The 437 
epigenetic clock for bones is described in separate article (Horvath 2021, in preparation). 438 

 439 
Bulk-RNA sequencing data analysis 440 
 441 
Reads were aligned to human genome (hg19) using STAR aligner 69. Normalization was done 442 
using counts per million (CPM) method. Transcript levels were quantified to the reference using 443 

Partek E/M (build version 10.0.21.0210) with default parameters. Genes were considered to be 444 
differentially expressed based on fold change>1.5 and p-value<0.05. Gene set enrichment 445 

analysis was performed by Enrichr 70-72 using Fisher’s exact test (p-value<0.05). The background 446 

for enrichment was a lookup table of expected ranks and variances for each term in the library. 447 
These expected values were precomputed using Fisher's exact test for many random input gene 448 

sets for each term in the gene set library. 449 

 450 
miRNA-sequencing and analysis 451 
 452 
RNA was isolated using miRNeasy Micro Kit (Qiagen) according to manufacturer’s protocol. 453 
Briefly, samples were lysed by QIAzol lysis reagent followed by addition of chloroform and 454 

centrifugation to separate the solution into phases. The upper aqueous phase was extracted, 455 
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ethanol was added, and samples were loaded into RNeasy MinElute spin column.  Thereafter a 456 

specialized protocol was used to separate the enriched miRNA fraction. miRNA was quantified 457 

using Qubit fluorometer, and run on Agilent Bioanalyzer 2100 for quality control. Libraries were 458 
prepared using NEBNext Multiplex Small RNA Library Prep Set (Illumina) according to the 459 

manufacturer’s protocol. The workflow consists of adapter ligation, cDNA synthesis, PCR 460 

enrichment, clean up and size selection. Different adapters were used for multiplexing samples 461 
in one lane. Sequencing was performed on Illumina HiSeq 2500 with single-end 50 base pair 462 

reads. Reads were aligned to human genome (hg38) using Bowtie 73. Normalization was done 463 
using counts per million (CPM) method and miRNAs levels were quantified (miRBasev22). A 464 

lognormal with shrinkage model was used for differential expression analysis. miRNAs were 465 

considered to be differentially expressed based on fold change>1.5 and p-value<0.05.  466 
 467 
Single-cell sequencing using 10X Genomics 468 
 469 
Single cell samples were prepared using Single Cell 3/ Library & Gel Bead Kit v2 and Chip Kit 470 
(10X Genomics) according to the manufacturer’s protocol. Briefly samples were FACS sorted 471 

using DAPI to select live cells followed by resuspension in 0.04% BSA-PBS. Nearly 1,200 cells/µl 472 
were added to each well of the chip with a target cell recovery estimate of 8,000 cells. Thereafter 473 
Gel bead-in Emulsions (GEMs) were generated using GemCode Single-Cell Instrument. GEMs 474 
were reverse transcribed, droplets were broken and single stranded cDNA was isolated. cDNAs 475 

were cleaned up with DynaBeads and amplified. Finally, cDNAs were ligated with adapters, post-476 
ligation products were amplified, cleaned up with SPRIselect. Purified libraries were submitted to 477 
UCLA Technology Center for Genomics & Bioinformatics for quality check and sequencing. The 478 

quality and concentration of the purified libraries were evaluated by High Sensitivity D5000 DNA 479 
chip (Agilent) and sequencing was performed on NextSeq500. 480 

 481 
10X sequencing data analysis 482 
 483 
Raw sequencing reads were processed using Partek Flow Analysis Software (build version 484 
10.0.21.0210). Briefly, raw reads were checked for their quality and trimmed. Reads with an 485 

average base quality score per position >30 were considered for alignment. Trimmed reads were 486 
aligned to the human genome version hg38-Gencode Genes- release 30 using STAR -2.6.1d with 487 

default parameters. Reads with alignment percentage >75% were de-duplicated based on their 488 

unique molecular identifiers (UMIs). Reads mapping to the same chromosomal location with 489 
duplicate UMIs were removed. Thereafter ‘Knee’ plot was constructed using the cumulative 490 

fraction of reads/UMIs for all barcodes. Barcodes below the cut-off defined by the location of the 491 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.02.454544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454544


 15 

knee were assigned as true cell barcodes and quantified. Further noise filtration was done by 492 

removing cells having >3% mitochondrial counts and total read counts >24,000. Genes not 493 

expressed in any cell were also removed as an additional clean-up step. Cleaned up reads were 494 
normalized using counts per million (CPM) method followed by log transformation generating 495 

count matrices for each sample. Samples were batch corrected on the basis of expressed genes 496 

and mitochondrial reads percent. Dotplot was generated in R (v4.0.3) using ggplot2 (v3.3.3) 497 
package.  498 

 499 
ChromHMM analysis 500 
 501 
We conducted ChromHMM 74 chromatin state enrichment analysis with chromatin state 502 

annotations from Fetal 17 weeks and Adult chondrocytes tissues using a previously defined 12-503 
state model 24. Hypermethylated and hypomethylated age-correlated CpGs were determined by 504 

EWAS as mentioned previously. Using the OverlapEnrichment command of ChromHMM we 505 
computed the enrichment for the coordinates set of hypermethylated and hypomethylated age-506 
correlated CpGs. We did the same for the coordinates of all CpGs on the array, and then divided 507 

the hypermethylated and hypomethylated age-correlated CpG enrichment values by these 508 
enrichment values to obtain the enrichment relative to the array background. 509 

 510 

ATAC-sequencing and data analysis 511 
 512 
Samples were washed, lysed followed by nuclei tagmentation and adapter ligation by Tn5 using 513 
the Nextera DNA Sample Preparation kit (Illumina). Transposed DNA fragments were amplified 514 

using the NEBNext Q5 HotStart HiFi PCR Master Mix with regular forward and reverse barcoded 515 
primers. The final product was purified with MinElute PCR Purification kit (Qiagen), and quality 516 
checked on 2100 Bioanalyzer (Agilent). Sequencing was performed on Illumina HiSeq 2500 with 517 

single-end 50 base pair reads. The initial quality of the raw fastq files were checked using FastQC 518 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed using 519 

Cutadapt v2.10 75 in paired-end mode. Trimmed reads were aligned to human genome build hg19 520 

using bowtie2. PCR duplicates were removed  from the aligned reads followed by sorting and 521 
indexing of the bam files by SAMtools v1.11 76. Bam coverage maps were generated using 522 

bamCoverage from the deepTools suite v3.5.0 77. Significant peaks (p-value<0.05) were called 523 

using MACS2 78 and annotated using R. 524 

 525 
Cleavage Under Targets and Release Using Nuclease (CUT&RUN) 526 
 527 
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In situ chromatin profiling using CUT & RUN was performed according to Skene et al 34. Briefly 528 

samples were FACS sorted using DAPI to select live cells and 10,000 cells were collected in 529 

10%FBS-PBS media. Cell nuclei were immobilized on Concanavalin A beads after washing. 530 
pSTAT3 (Tyr705,D3A7,9145,Cell signaling technology) or normal rabbit IgG antibodies 531 

(3900,Cell signaling technology) were incubated with the nuclei overnight in the presence of 532 

0.02% digitonin at 4°. The next day, 700ng/mL of proteinA-micrococcal nuclease (pA-Mnase 533 
purified in house with vector from Addgene 86973 79) were incubated with the nuclei at 4 degrees 534 

for an hour. After washing, the tubes were placed in heat blocks on ice set to 0 degrees, CaCl2 535 
(1mM) was added and incubated for 30 min before 2X Stop buffer containing EDTA was added. 536 

DNA was extracted using Qiagen DNA isolation kit according to manufacturer’s protocol Purified 537 

DNA was quantified in Qubit and Bioanalyzer (2100) traces using D5000 high sensitivity chip were 538 

run to determine the size of the cleaved products. UMI-coded libraries were generated using Swift 539 
Biosciences-ACCEL-NGS® 2S PLUS DNA LIBRARY KITS according to manufacturer’s protocol. 540 

Pair-end (75bp) Illumina sequencing was performed on the UMI-coded and amplified libraries 541 
using NextSeq platform. 542 
 543 

CUT&RUN data analysis 544 
UMI-tools 80 ‘extract’ function was used to remove UMIs from each read of the raw fastq files and 545 
append them to the read name. The initial quality of the raw fastq files were checked using FastQC 546 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed using 547 

Cutadapt v2.10 75 in paired-end mode. Trimmed reads were aligned to human genome build hg19 548 
using bowtie2. Next, aligned reads were deduplicated and PCR duplicates were removed by UMI-549 
tools ‘dedup’ function followed by sorting and indexing of the deduplicated bam files by SAMtools 550 
v1.11 76. Bam coverage maps were generated using bamCoverage from the deepTools suite 551 

v3.5.0 77. Heatmaps were generated using computeMatrix and plotHeatmap from the deepTools 552 

suite v3.5.0. Significant peaks (p-value<0.05) were called from the deduplicated reads using 553 
MACS2 78 and annotated using the R package ChIPseeker 81. Subsequently, peak files were used 554 

to determine enriched motifs using HOMER v4.11.1 82. Functional enrichment analysis for the 555 

nearest genes annotated to the peaks was determined by the R package clusterProfiler 83. Two-556 
way Venn diagrams were generated using BioVenn 84, while 4-way Venn diagrams were 557 

constructed using InteractiVenn 85.  558 

Western blot analysis 559 
Osteoarthritic chondrocytes were lysed in RIPA Lysis and Extraction Buffer (Pierce) containing 560 

protease inhibitors (Pierce) followed by sonication with a 15-second pulse at a power output of 2 561 
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using the VirSonic 100 (SP Industries Company). Protein concentrations were determined by BCA 562 

protein assay (Pierce) and boiled for 5 minutes with Laemmli Sample Buffer (Bio-Rad, Hercules, 563 

CA). Proteins were separated on acrylamide gels and analyzed by Western blot using primary 564 
antibodies: anti-pSTAT3 (9145) and anti-Histone H3 (9515; all from Cell Signaling). Histone H3 565 

antibody was used as a loading control. Proteins were resolved with SDS-PAGE utilizing 4–15% 566 

Mini-PROTEAN TGX Precast Gels and transferred to Trans-Blot Turbo Transfer Packs with a 0.2-567 
µm pore-size nitrocellulose membrane. The SDS-PAGE running buffer, 4–15% Mini-PROTEAN 568 

TGX Precast Gels, Trans-Blot Turbo Transfer Packs with a 0.2-µm pore-size nitrocellulose 569 
membrane were purchased from Bio-Rad. Nitrocellulose membranes were blocked in 5% nonfat 570 

milk in 0.05% (v/v) Tween 20 (Corning). Membranes were then incubated with primary antibodies 571 

overnight. After washing in PBS containing 0.05% (v/v) Tween 20 (PBST), membranes were 572 

incubated with secondary antibodies (31460 and 31430, Thermo Scientific). After washing, 573 
development was performed with the Clarity Western ECL Blotting Substrate (Bio-Rad). 574 

 575 

Data Availability 576 

All data is deposited in GEO and is available under the accession number GSEXXXX. 577 
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Figure 1. Epigenome-wide association study for non-cultured fetal and adult chondrocytes.  a. 830 
Density plot for all samples. CpGs are shown for 865,859 loci.  b, Manhattan plot showing 831 
chromosomal locations of age-correlated CpGs along with −log10(P values) for association at 832 
each locus. The red dotted line indicates the p-value threshold of 0.05. c. QQ plot showing 833 
observed versus expected −log10(P values) for age-correlated CpGs d. Distribution of CpG 834 
features among age-correlated CpGs. hyper= CpGs gaining methylation with age, hypo= CpGs 835 
losing methylation with age e. Boxplot showing methylation level of representative age-correlated 836 
CpGs (i.e., CpGs with highest hypermethylation change across age) corresponding to 837 
chondrogenic genes. f. Transcriptomic profile for the chondrogenic genes (shown in e) in fetal 838 
and adult chondrocytes. g. Dot plot showing expression for the chondrogenic genes (shown in e) 839 
from single cell sequencing in fetal and adult chondrocytes h. Boxplot showing methylation level 840 
of representative age-correlated CpGs (i.e., CpGs with highest hypermethylation change across 841 
age) corresponding to miRNAs expressed in fetal and adult chondrocytes. i. miRNA expression 842 
profile for the miRNAs shown in h. Hinges of all boxplots extend from the 25th to 75th percentiles. 843 
The line in the middle of the box is plotted at the median. P-values are calculated using 2-tailed 844 
Student’s t test. 845 

 846 
 847 
 848 
 849 
 850 
 851 
 852 
 853 
 854 
 855 
 856 
 857 
 858 
 859 
 860 
 861 
 862 
 863 
 864 
 865 
 866 
 867 
 868 
 869 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.02.454544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454544


 27 

 870 

a

c

H3
K4
m
e1

H3
K4
m
e3

H3
K2
7a
c

H3
K2
7m
e3

b

C
hr
om
H
M
M Fetal

Adult

Fetal

Adult

Fetal

Adult

Fetal

Adult

Fetal

Adult

[0-12]

[0-10]

[0-22]

[0-10]

[0-13]

[0-12]

[0-10]

[0-10]

UCMA SOX11
[0-10]

[0-10]

[0-41]

[0-14]

[0-10]

[0-10]

[0-10]

[0-11]

[0-18]

[0-10]

[0-52]

[0-16]

[0-21]

[0-21]

[0-10]

[0-10]

H3
K4
m
e1

H3
K4
m
e3

H3
K2
7a
c

H3
K2
7m
e3

C
hr
om
H
M
M

Fetal

Adult

Fetal

Adult

Fetal

Adult

Fetal

Adult

Fetal

Adult

[0-16]

[0-10]

[0-49]

[0-19]

[0-21]

[0-27]

[0-10]

[0-10]

COL9A1 RUNX2
[0-11]

[0-10]

[0-31]

[0-17]

[0-18]

[0-25]

[0-10]

[0-10]

[0-11]

[0-10]

[0-31]

[0-17]

[0-18]

[0-25]

[0-10]

[0-10]

ITGA10

BMPR1B
[0-10]

[0-10]

[0-34]

[0-15]

[0-13]

[0-29]

[0-10]

[0-10]

COL2A1

CSPG4
[0-13]

[0-10]

[0-52]

[0-21]

[0-49]

[0-51]

[0-10]

[0-10]

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.02.454544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454544


 28 

Figure 2. Age-correlated CpGs are associated with distinct chromatin states. a. Gene ontology 871 
analysis for genes associated with the age-correlated CpGs show enrichment for terms 872 
associated with chromatin states and histone modifications using Fisher’s exact test (p-873 
value<0.05) b. ChromHMM model shows enrichment of the 12 chromatin states for age-874 
correlated CpGs in fetal and adult chondrocytes. Hypomethylated CpGs refer to CpG sites which 875 
are losing methylation with chondrocyte age. Hypermethylated CpGs refer to CpG sites which are 876 
gaining methylation with chondrocyte age. Emission probabilities (left panel) shows the 877 
occurrence of CpGs in each chromatin state. Rows correspond to chromatin states. The 878 
occurrence of CpGs in each chromatin state is represented by color code: 0(white) to 100(blue). 879 
Chromatin state enrichments (right panel) shows the enrichment score for CpGs in each 880 
chromatin state. A 3-color code was used to represent the range of enrichment score: Lowest 881 
value(blue), 50percentile(white) and Highest value(red). c. Chromatin data for chondrogenic 882 
genes shown in fetal and adult chondrocytes. ChromHMM tracks are colored according to the 883 
chromatin state color code in b (right panel). 884 
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 914 
Figure 3. STAT3 binding targets during chondrocyte development. a. Distribution of peak 915 
count frequency across ±3kb of TSS. Confidence intervals shown by the shadows 916 
following each curve were estimated by bootstrap method using 500 iterations b. 917 
Heatmap showing enrichment of reads in peak summits. c. Bar plot showing the 918 
distribution of genomic features for peaks in fetal and adult chondrocytes. d. Gene 919 
enrichment analysis of putative STAT3 target genes. P-values were adjusted using 920 
Benjamini-Hochberg correction method e. DNA motif enrichment analysis for putative 921 
STAT3 binding targets. Binomial distribution was used to score motifs. f. Chondrocyte 922 
specific putative STAT3 binding targets compared to other tissue types. g. Venn diagram 923 
showing the overlap between putative STAT3 targets in fetal and adult chondrocytes. 924 
5268 exclusive fetal chondrocyte targets were overlapped with Fetal vs adult mRNA-seq, 925 
STAT3 shRNA mRNA-seq and Fetal ATAC-seq data. Heatmaps show the expression 926 
profile (STAT3 knocked-down fetal chondrocytes and fetal vs adult chondrocytes) of the 927 
6 final targets obtained for fetal chondrocytes h. 1812 exclusive adult chondrocyte targets 928 
were overlapped with Fetal vs adult mRNA-seq. Heatmaps show the expression profile 929 
(fetal vs adult chondrocytes) of the 21 final targets obtained for adult chondrocytes. 930 
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 952 
 953 

Figure 4. STAT3 knockdown induces genomic hypermethylation in fetal chondrocytes. 954 
DMPs= differentially methylated CpG probes. a. Density plot for all samples b. Volcano 955 
plot for all DMPs. Dotted red line indicates p-value threshold of 0.05. c. Heatmap showing 956 
the sample clustering based on DMPs. Bar diagram shows the gain in hypermethylation 957 
in DMPs. d. Venn diagram showing the overlap between DMPs and age-correlated CpGs. 958 
20973 DMPs are age-correlated. Distribution of CpG features among these 20973 age-959 
correlated DMPs. e. Bar plot shows gain in hypermethylation in age-correlated DMPs. f. 960 
Genes associated with age-correlated hypermethylated DMPs were overlapped with 961 
STAT3 shRNA mRNA-seq in fetal chondrocytes, putative binding targets in fetal 962 
chondrocytes and fetal vs adult mRNA-seq. Heatmaps show the expression profile 963 
(STAT3 knocked-down fetal chondrocytes and fetal vs adult chondrocytes) of the 8 964 
genes. P-values are calculated using 2-tailed Student’s t test. Mean with standard 965 
deviation is plotted. 966 
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 33 

Figure 5. A novel epigenetic clock for adult chondrocytes. a. Epigenetic clock for adult 974 
chondrocytes shows high correlation between epigenetic age and chronological age. b. 975 
Administration of a small molecule STAT3 agonist to adult chondrocytes for 2 weeks 976 
lowers epigenetic age. c. Differentially methylated CpGs between 2wks cultured treated 977 
and untreated samples show global gain in hypomethylation d. Age-correlated 978 
differentially methylated CpGs between 2wks cultured treated and untreated samples 979 
show global gain in hypomethylation. P-values are calculated using 2-tailed Student’s t 980 
test. Mean with standard deviation is plotted. 981 

 982 
 983 
 984 
 985 
 986 
 987 
 988 
 989 
 990 
 991 
 992 
 993 
 994 
 995 
 996 
 997 
 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
  1011 
 1012 
 1013 
 1014 
 1015 
 1016 
 1017 
 1018 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 2, 2021. ; https://doi.org/10.1101/2021.08.02.454544doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.02.454544


 34 

 1019 
 1020 
Figure S1. Gain of methylation in age-correlated CpGs associated with chondrogenic 1021 
genes. Scatterplot showing the methylation level and genomic coordinates for all age-1022 
correlated CpGs associated with the chondrogenic genes. Mean with standard deviation 1023 
is plotted. 1024 
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 1031 
 1032 
Figure S2. Loss of methylation in age-correlated CpGs. Boxplot showing methylation 1033 
level of representative age-correlated CpGs (i.e., CpGs with highest hypomethylation 1034 
change across age). Transcriptomic profile for the genes in fetal and adult chondrocytes 1035 
is also shown. Hinges of all boxplots extend from the 25th to 75th percentiles. The line in 1036 
the middle of the box is plotted at the median. P-values are calculated using 2-tailed 1037 
Student’s t test. 1038 
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 1059 
 1060 
Figure S3. Scatterplot showing methylation level and genomic coordinates for all age-1061 
correlated CpGs losing methylation with age. Mean with standard deviation is plotted. 1062 
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 1074 
 1075 
Figure S4. Gain of methylation in age-correlated CpGs associated with 1076 
miRNAs. Scatterplot showing the methylation level and genomic coordinates for all age-1077 
correlated CpGs associated with the miRNAs. Mean with standard deviation is plotted. 1078 
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 1106 
Figure S5. Loss of methylation in age-correlated CpGs associated with miRNAs. a. 1107 
Scatterplot showing the methylation level and genomic coordinates for all age-correlated 1108 
CpGs associated with the miRNAs. Mean with standard deviation is plotted. b. Boxplot 1109 
showing methylation level of representative age-correlated CpGs (i.e., CpGs with highest 1110 
hypomethylation change across age). miRNA expression profile in fetal and adult 1111 
chondrocytes is also shown. Hinges of all boxplots extend from the 25th to 75th 1112 
percentiles. The line in the middle of the box is plotted at the median. P-values are 1113 
calculated using 2-tailed Student’s t test. 1114 
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 1124 
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 1128 
 1129 
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 1133 
Figure S6. Active STAT3 is highly expressed in osteoarthritic chondrocytes as compared 1134 
to healthy adult chondrocytes. 1135 
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 1169 
 1170 
Figure S7. ATAC-Seq for fetal chondrocyte a. Heatmap showing enrichment of reads and 1171 
distribution of peaks across ±3kb of TSS. b,c. Pie chart and bar plot showing the 1172 
distribution of genomic features. d. Functional enrichment of target genes. P-values were 1173 
adjusted using Benjamini-Hochberg correction method. 1174 
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Figure S8. STAT3 binding targets in disease. OA=osteoarthritis a. Distribution of peak 1198 
count frequency across ±3kb of TSS. Confidence intervals shown by the shadows 1199 
following each curve were estimated by bootstrap method using 500 iterations b. 1200 
Heatmap showing enrichment of reads in peak summits. c. Bar plot showing the 1201 
distribution of genomic features for peaks in fetal and osteoarthritic chondrocytes. d. 1202 
Gene enrichment analysis of putative STAT3 target genes. P-values were adjusted using 1203 
Benjamini-Hochberg correction method. e. DNA motif enrichment analysis for putative 1204 
STAT3 binding targets. Binomial distribution was used to score motifs. f. Venn diagram 1205 
showing the overlap between putative STAT3 targets in fetal and osteoarthritic 1206 
chondrocytes. 84 exclusive fetal chondrocyte targets were overlapped with OA vs fetal 1207 
single cell sequencing data. Heatmap shows the expression profile of the 16 final targets 1208 
obtained for osteoarthritic chondrocytes. 1209 
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 1255 
Figure S9. qRT-PCR data analysis for STAT3 in scrambled and STAT3 shRNA fetal 1256 
chondrocytes. Statistical analysis was performed using 2-tailed Student’s t test in 1257 
GraphPad Prism 9.0 and p-value <0.05 was considered as statistically significant. Mean 1258 
with standard deviation is plotted. 1259 
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