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Abstract:   

Macrophages   populate   every   organ   during   homeostasis   and   disease,   displaying   features   of   

tissue   imprinting   and   heterogeneous   activation.   The   disjointed   picture   of   macrophage   biology   

that   emerged   from   these   observations   are   a   barrier   for   integration   across   models   or   with    in   vitro   

macrophage   activation   paradigms.   We   set   out   to   contextualize   macrophage   heterogeneity   

across   mouse   tissues   and   inflammatory   conditions,   specifically   aiming   to   define   a   common   

framework   of   macrophage   activation.   We   built   a   predictive   model   with   which   we   mapped   the   

activation   of   macrophages   across   12   tissues   and   25   biological   conditions,   finding   a   striking   

commonality   and   finite   number   of   transcriptional   profiles,   which   we   modelled   as   defined   stages   

along   four   conserved   activation   paths.   We   verified   this   model   with   adoptive   cell   transfer   

experiments   and   identified   transient   RELMɑ   expression   as   a   feature   of   macrophage   tissue   

engraftment.   We   propose   that   this   integrative   approach   of   macrophage   classification   allows   the   

establishment   of   a   common   predictive   framework   of   macrophage   activation   in   inflammation   and   

homeostasis.     
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Main   Text:   

Introduction   

Macrophages   can   be   found   in   every   organ   and   displaying   a   unique   transcriptional   profile   in   each  

setting    ( 1 ,    2 ) .   This   profound   specialization   to   match   their   tissue   of   residence   is   a   necessary   

aspect   of   the   function   of   these   cells   during   homeostasis    ( 3 ) .   The   engraftment   of   macrophages   in   

most   tissues   occurs   early   during   embryonic   development    ( 4 ,    5 ) .   In   adults,   circulating   monocytes   

contribute   to   the   replenishment   of   these   tissue-resident   macrophage   pools   at   different   rates,   or   

not   at   all,   depending   on   the   organ   in   question    ( 5 – 9 ) .   The   extent   of   the   contribution   of   monocytes   

to   tissue   macrophage   populations   during   adulthood   is   an   area   of   debate   and   findings   from   newly   

developed   fate-mapping   tools   require   ongoing   revision   of   macrophage   ontogeny   models    ( 4 ,    6 ,   

10 ) .   These   observations   have   only   recently   been   expanded   to   humans    ( 11 ) .   However,   the   

relatively   simplistic   view   held   for   decades   after   the   introduction   of   the   mononuclear   phagocyte   

system    ( 12 ) ,   in   which   all   macrophages   differentiate   from   bone-marrow   derived   monocytes,   has  

been   abandoned.   

As   focus   has   shifted   to   the   origin   of   macrophages   and   the   impact   of   tissue   imprinting    ( 1 ) ,   the   

engagement   of   recruited   versus   resident   macrophages   during   the   immune   response   has   

received   greater   scrutiny.   However,   these   efforts   have   been   hampered   by   the   limitations   inherent   

to   phenotyping   techniques   that   rely   on   bulk   population   averaging   (e.g.   RNA   sequencing),   few   

simultaneous   measurements   (e.g.   flow   cytometry)   and   poorly   characterised   macrophage   subset   

markers.   This   is   especially   challenging   as   incoming   monocytes   are   able,   with   time,   to   adopt   

nearly   indistinguishable   transcriptional   profiles   to    resident   macrophages   in   the   tissue   that   they   

are   entering    ( 13 ) .   Despite   these   limitations,   some   have   taken   the   sum   of   these   studies   to  

suggest   that   macrophages   in   different   tissues   should   be   regarded   as   entirely   different   cells    ( 3 ) ,   

or   that   paradigms   of   macrophage   M1   (classical)/M2   (alternative)   activation   should   be   abandoned   

( 14 – 16 ) .   This   later   view   in   particular   is   supported   by   the   extensive   plasticity   that   macrophages   

display   when   stimulated   with   cocktails   of   cytokines,   pattern   recognition   receptor   ligands   and   

other   immunomodulatory   molecules    ( 17 ,    18 ) .   Thus,   the   emerging   picture   of   macrophage   

activation   suggests   a   flexible   spectrum   of   different   activation   states,   with   tissue   and   

context-specific   parameters   viewed   as   dominant   predictors   of   macrophage   function.   

This   complex   landscape   of   macrophage   phenotype   has   been   further   thrown   into   relief   by   the   

emergence   of   single   cell   RNA   sequencing   (scRNA-seq).   This   technology   overcomes   the   

limitations   of   bulk   population   averaging   and   does   not   rely   on   previously   defined   surface   markers   
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for   macrophage   subset   sorting.   As   more   studies   employing   this   technique   are   published,   the   

observed   heterogeneity   in   macrophage   activation   states   has   further   increased,   with   new   subsets   

or   phenotypes   frequently   identified    ( 19 – 28 ) .   Consequently,   the   field   of   macrophage   biology   

currently   lacks   a   common   reference   framework   to   describe   the   state   of   activation   of   

macrophages   in   tissues.   

In   light   of   this   rapidly   evolving   situation,   we   wondered   whether   the   construction   of   such   a   

common   framework   would   be   possible.   We   reasoned   that   a   unifying   model   could   be   built   by   

comparing   macrophage   activation   profiles   across   tissues   under   multiple   inflammatory   conditions.   

We   expected   that   either   we   would   succeed   in   finding   common   activation   features   or   that   

tissue-specific   transcriptional   programs   would   dominate   the   data.   With   this   in   mind,   we   built   a   

predictive   model   with   which   we   mapped   the   activation   of   macrophages   across   12   mouse   tissues   

and   25   biological   conditions,   finding   a   strikingly   common   and   finite   number   of   transcriptional   

profiles   which   we   modelled   as   stages   along   4   conserved   activation   paths.   These   activation   

stages   placed   cells   with   varying   frequencies   along   a   “phagocytic”   regulatory   path,   an   

“inflammatory”   cytokine   producing   path,   an   “oxidative   stress”   apoptotic   path   or   a   “remodelling”   

extracellular-matrix   (ECM)   deposition   path.   We   verified   our   model   with   adoptive   cell   transfer   

experiments,   noting   that   incoming   monocytes   displayed   a   remarkable   plasticity   to   rapidly   adopt   

all   the   transcriptional   signatures   we   detected.   Moreover,   we   identified   transient   RELMɑ  

expression   as   a   feature   of   macrophage   tissue   engraftment   and   propose   that   historical   RELMɑ   

expression   may   serve   to   identify   monocyte   contribution   to   tissue   resident   macrophage   

populations.   Lastly,   we   posit   that   this   integrative   approach   of   macrophage   classification   allows   

the   establishment   of   a   common   predictive   framework   of   macrophage   activation   that   may   serve   

to   contextualize   these   cells   in   future   studies   and   for   this   reason   we   provide   a   list   of   surface   

markers   that   may   be   used   to   identify   these   cells.   For   this   purpose,   we   built   a   web   interface   

where   interested   researchers   may   explore   our   findings   interactively   

(https://www.macrophage-framework.jhmi.edu).   

  

    

4   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://paperpile.com/c/4NhtzS/iY8L+gFrp+Bf6G+1QT2+aJNt+guWD+lxmR+LA1s+o0kb+4EvU
https://paperpile.com/c/4NhtzS/iY8L+gFrp+Bf6G+1QT2+aJNt+guWD+lxmR+LA1s+o0kb+4EvU
https://paperpile.com/c/4NhtzS/iY8L+gFrp+Bf6G+1QT2+aJNt+guWD+lxmR+LA1s+o0kb+4EvU
https://paperpile.com/c/4NhtzS/iY8L+gFrp+Bf6G+1QT2+aJNt+guWD+lxmR+LA1s+o0kb+4EvU
https://paperpile.com/c/4NhtzS/iY8L+gFrp+Bf6G+1QT2+aJNt+guWD+lxmR+LA1s+o0kb+4EvU
https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

Results   

Macrophages   in   inflammatory   conditions   co-exist   in   diverse   functional   states   

scRNA-seq   has   highlighted   extensive   heterogeneity   in   macrophage   populations   across   tissues   

and   conditions    ( 5 ,    11 ,    22 ,    24 ,    27 ,    29 ) ,   and   the   picture   of   macrophage   biology   that   has   emerged   

from   these   studies   can   be   difficult   to   integrate   with   the   paradigms   of   macrophage   activation   that   

have   developed   from    in   vitro    studies.   For   this   reason,   we   set   out   to   contextualize   macrophage   

heterogeneity   across   tissues   in   diverse   inflammatory   conditions,   specifically   aiming   to   define   

common   aspects   of   macrophage   activation   during   infection   and   inflammation   (Figure   1A).   For   

this   purpose   we   built   a   reference   dataset   (Figure   1A-B)   based   on   2   inflammatory   conditions   

historically   seen   as   representing   either   a   classical   inflammatory   response   during   bacterial   

infection   using    Listeria   monocytogenes    ( L.   mono ),   or   a   type-2   immune   response   to   

Heligmosomoides   polygyrus    ( H.   poly )   larvae.   Given   our   goal   of   encapsulating   most   macrophage   

activation   states,   the   completeness   of   our   reference   dataset   was   critical.   We   reasoned   that   the   

two   settings   we   chose,   which   both   induce   multi-cellular   and   systemic   responses,   would   provide   

a   sufficiently   broad   spectrum   of   macrophage   activation   to   begin   our   study.   

Initially,   we   sequenced   all   stromal   vascular   fraction   cells   from   mesenteric   fat   (Figure   S1A),   

adjacent   to   the   site   of    H.   poly    infection,   and   popliteal   fat   (Figure   S1B),   which   is   directly   invaded   

by    L.   mono    following   footpad   injection.   We   then   evaluated   the   distribution   of   macrophage   gene   

expression   markers   in   these   datasets   (Figure   S1A-B)   and   extracted,   integrated   and   re-clustered   

identified   macrophages.   To   ensure   a   balanced   representation   of   each   condition,   only   500   

macrophages   were   taken   from   each   dataset,   plus   500   macrophages   from   matched   naive   

controls.   Gene   expression   was   distinct   within   each   identified   cluster   (Figure   S1C   &   

Supplemental   Table   1)   and   could   be   associated   with   specific   biological   processes   via   pathway   

enrichment   analysis   (Figure   1C).   To   better   visualize   gene   expression   programs   we   calculated   

gene   set   scores   within   each   cell   for   groups   of   genes   mapping   to   diverse   functions   (Supplemental   

Table   2).   These   gene   set   scores   were   specific   to   different   identified   clusters,   thus   underscoring   

the   functional   diversity   of   sequenced   macrophages   in   the   conditions   studied.     

We   observed   that   clusters   0   and   3   were   enriched   for   genes   associated   with   macrophage   

alternative   activation   (e.g.    Cd36,   Clec10a,   Mrc1 ),   antigen   presentation   (e.g.    H2-Aa,   H2-Eb1,   

H2-Ab1 )   and   the   complement   cascade   (e.g.    C1qc,   C1qb )   (Figure   1C,   S1C   &   Supplemental   Table   

1).   Cluster   2   was   enriched   for   genes   involved   in   extracellular   matrix   (ECM)   receptor-interactions   

(e.g.    Cd44,   Sdc1,   Fn1 )   and   cytoskeleton   regulation   (e.g.    Pfn1,   Actg1,   Tmsb4x ).   Cluster   4   
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displayed   high   expression   of   genes   participating   in   antigen   presentation   (e.g.    H2-Oa,   H2-DMb2,   

Cd74 ).   Clusters   6   and   7,   and   to   a   lesser   extent   5,   were   enriched   for   genes   associated   with   the   

phagosome   (e.g.    Fcgr1,   Ncf4,   Fcgr3 )   and   oxidative   stress   (e.g.    Prdx5,   Txn1,   Gsr ),   with   cluster   6   

in   particular   enriched   for   innate   immune   response   genes   (e.g.    Ifitm3,   Fcgr1,   Isg20 ).   ECM   

organization   genes   (e.g.    Col1a1,   Col3a1,   Ddr2 )   were   highest   in   Cluster   8,   while   Cluster   9   

displayed   high   expression   of   cell   cycle   associated   genes   (e.g.    Cks1b,   H2afx,   Cks2 ).   

Interestingly,   all   but   one   cluster   could   be   assigned   a   functional   specialization   in   the   manner   

described   above.   Cluster   1,   which   also   occupied   the   center   of   the   UMAP,   had   no   distinctly   

regulated   genes   (Figure   S1C   &   Supplemental   Table   1)   and   therefore   no   pathway   assignment   

(Figure   1C).   Thus,   our   analysis   shows   that   macrophages   within   a   tissue   simultaneously   

specialize   into   multiple   functional   stages,   echoing   findings   in   other   studies   where   this   diversity   

has   been   reported    ( 22 ,    24 ,    27 ) .     

Macrophages   in   inflammatory   conditions   are   arranged   along   activation   paths   

In   our   data,   cluster   1   could   not   be   associated   with   a   distinct   function   as   it   displayed   no   

up-regulated   genes   using   the   thresholds   we   established   (average   log   fold   change   >   1,   percent   

cells   expressing   gene   >   0.4   and   an   adjusted   p   value   <   0.01).   Despite   these   high   stringency   

filters,   we   reasoned   that   cluster   1   could   in   fact   represent   an   intermediate   state   of   activation,   

suggesting   that   rather   than   different   populations   of   macrophages,   our   transcriptional   analysis   

captured   activation   paths   being   followed   by   infiltrating   macrophages.   To   address   this   hypothesis   

we   analysed   our   data   with   Slingshot    ( 30 )    to   calculate   first   lineage   breaking   points   (Figure   1D)   

and   later   lineage   curves   associated   with   pseudotime   (Figure   1E),   generating   a   model   of   

macrophage   activation   in   the   tissue.   This   analysis   required   the   selection   of   a   starting   point   for   

the   curves.   To   establish   this   starting   point,   we   calculated   a   gene   set   score   associated   with   

monocytes   (Figure   1D   &   Supplemental   Table   2)   based   on   their   transcriptional   profile    ( 1 ) .   Given   

the   reported   increase   in   Major   histocompatibility   complex   class   II   (MHC-II)   in   infiltrating   

monocytes   transitioning   to   macrophages    ( 31 )    and   the   increased   monocyte   signature   we   

observed,   we   reasoned   that   cluster   4   (Figure   1B-D,   black   arrow)   was   a   suitable   starting   point   for   

our   activation   model.     

Our   analysis   identified   4   activation   paths   that   we   labelled   as   “Phagocytic”,   “Oxidative   stress”,   

“Inflammatory”   and   “Remodelling”   according   to   the   enriched   pathway   at   the   end   point   clusters   of   

each   lineage   (Figure   1E).   Our   analysis   also   revealed   that   at   least   three   clusters   (4,   2,   1)   

represented   common   early   stages   of   macrophage   activation.   For   clarity,   we   named   these   early   

6   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/guWD+o0kb+1QT2
https://paperpile.com/c/4NhtzS/GyvW
https://paperpile.com/c/4NhtzS/GyvW
https://paperpile.com/c/4NhtzS/GyvW
https://paperpile.com/c/4NhtzS/uAgD
https://paperpile.com/c/4NhtzS/uAgD
https://paperpile.com/c/4NhtzS/uAgD
https://paperpile.com/c/4NhtzS/c19W
https://paperpile.com/c/4NhtzS/c19W
https://paperpile.com/c/4NhtzS/c19W
https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

stages   of   macrophage   activation   according   to   their   relative   position   in   the   pseudotime   

progression   as   “Initial”   (cluster   4),   “Early”   (cluster   2)   and   “Intermediate”   (cluster   1)   stages.   The   

remaining   clusters   were   renamed   as   either   “Late”   or   “Final”,   with   the   activation   path   appended   at   

the   end   of   the   stage   (Figure   1F),   so   that   for   instance   “Late.P1”   corresponded   to   the   cluster   in   

activation   path   1   (P1)   that   is   between   the   “Intermediate”   and   “Final”   stage.     

Next   we   investigated   how   these   activation   stages   were   distributed   across   the   biological   

conditions   in   the   data   (Figure   1G).   We   observed   that   the   distribution   of   naive   cells   into   different   

functional   stages   in   different   fat   deposits   was   comparable,   and   diverse,   perhaps   indicating   an   

active   process   of   macrophage   activation   as   monocytes   replenish   these   sites   in   steady   state   

(Figure   1G).   We   also   noted   that   both   helminth   and   bacterial   infections   altered   the   proportions   of   

several   of   these   stages,   such   that    L.   mono    infection   favored   the   “oxidative   stress”   path,   while    H.   

poly    infection   favored   the   “phagocytic”   path   when   compared   to   each   other   (Figure   1G).   Notably,   

all   stages   were   present   in   each   condition,   underscoring   the   difficulty   of   relying   on   bulk   

phenotyping   techniques   to   capture   the   overall   picture   of   macrophage   activation    ex   vivo .   

Moreover,   the   changes   in   diversity   induced   by   infection   were   notably   different   between   the   

inflammatory   conditions   studied.   While    H.   poly    infection   resulted   in   increases   in   numbers   of   cells   

within   less-well   represented   stages,    L.   mono    infection   resulted   in   2   stages   becoming   dominant.   

These   differences   could   be   explained   both   by   the   specific   immune   responses   tailored   to   the   

pathogens   involved,   but   also   by   the   time   at   which   samples   were   collected   (Supplementary   Table   

3;   day   1   p.i,   for   the    L.   mono    dataset,   day   14   p.i.   for   the    H.   poly    dataset).   

In   summary,   our   model   predicts   that   macrophages   in   an   inflamed   tissue   are   progressing   through   

several   distinct   activation   stages   with   unique   transcriptional   profiles.   Moreover,   the   balance   of   

this   progression   is   influenced   by   the   type   of   immune   response   that   dominates   the   

microenvironment   but   perhaps   also   the   timing   of   this   response.   Finally,   our   model   suggests   that   

although   a   tissue   can   become   dominated   by   relatively   few   activation   stages,   there   are   still   

macrophages   present   that   have   committed   to   other   paths.   

Macrophage   gene   expression   is   regulated   along   activation   paths   

Our   initial   analysis   of   macrophage   activation   relied   on   comparing   gene   expression   in   each   

cluster   to   all   remaining   cells   in   the   dataset   (Figure   S1C).   We   complemented   this   analysis   with   a   

different   approach,   where   gene   expression   was   modelled   as   a   function   of   pseudotime   (Figure   

2A).   We   reasoned   that   as   macrophages   progress   along   each   of   the   activation   paths   we   defined   

(Figure   1E-F),   gene   expression   would   be   regulated   to   allow   these   cells   to   become   fully   
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functional.   As   we   thought   it   would   be   unlikely   that   the   relationship   between   gene   expression   and   

pseudotime   would   be   linear,   we   instead   fitted   a   general   additive   model   (GAM),   using   

non-parametric   locally   estimated   scatterplot   smoothing   (loess),   explaining   the   expression   of   a   

gene   as   a   function   of   the   relative   position   of   a   cell   along   an   activation   path   (Figure   2A).   We   

included   in   this   analysis   only   the   top   2000   most   variable   genes   in   the   cells   of   each   path,   and   

ranked   the   resulting   models   based   on   the   p   value   of   the   association   of   pseudotime   and   gene   

expression   (Figure   S2A).   We   found   that   collectively   the   expression   of   828   genes   (p   value   <   

1x10 9 )   could   be   modelled   in   this   way   and   we   show   the   top   most   significant   association   for   each   

pathway   (Figure   2B).   Moreover,   we   observed   that   the   regulation   of   typical   macrophage  

activation   markers   followed   expected   behaviours   in   our   modelling   approach   and   corresponded   

to   defined   activation   paths   (Figure   2C   &   S2B).   For   instance,   only   cells   in   the   “phagocytic”   path   

exhibited   a   steep   and   continuous   increase   in   alternative   activation   markers   ( Il4ra ,    Mrc1 ,   

Clec10a )   and   the   mitochondrial   metabolism   gene    mt-Co1    as   a   function   of   pseudotime   (Figure   

2C).   Conversely,   expression   of   inflammatory   genes   ( Il6 ,    Il1b )   was   only   retained   at   high   levels   in   

the   “inflammatory”   and   “remodelling”   paths   (Figure   2C).   

We   next   reasoned   that   not   only   individual   genes   but   also   gene   set   scores   could   be   modelled   in   

this   manner.   Consequently,   we   calculated   the   aggregate   expression   of   genes   associated   with   

apoptosis   (Supplemental   Table   2)   and   visualized   the   regulation   of   this   gene   expression   program   

across   activation   paths   (Figure   2D).   Interestingly,   cells   at   the   end   of   the   “oxidative   stress”   path   

displayed   the   highest   levels   for   the   apoptosis   score   (Figure   2D,   red   lines),   while   cells   at   the   end   

of   the   “phagocytic”   path   had   the   lowest   (Figure   2D,   orange   line).   In   addition   to   aligning   with   

reports   demonstrating   that   macrophage   activation   can   result   in   cell   death    ( 32 – 34 ) ,   these   results  

could   indicate   that   commitment   to   an   activation   path   might   be   unidirectional:   in   other   words,   

macrophages   would   not   transition   from   one   path   to   another,   although   this   would   need   to   be   

demonstrated   experimentally.   Finally,   these   results   indicate   that   cells   committed   to   the   

“phagocytic”   path,   might   be   long-lived   and   go   on   to   replace   tissue   resident   cells.   Collectively,   our   

results   show   that   the   proposed   activation   model   broadly   agrees   with   published   expectations   of   

macrophage   gene   expression   regulation   and   offers   the   possibility   to   uncover   new   aspects   of   

macrophage   biology.     

Macrophages   transition   through   a   RELMɑ   expressing   activation   stage   

Defining   trajectories   based   on   scRNA-seq   data   greatly   depends   on   the   dimensional   projection   

upon   which   the   analysis   is   based.   Consequently,   we   sought   to   validate   the   activation   model   by   

8   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://paperpile.com/c/4NhtzS/Z6ff+pz9E+Buxv
https://paperpile.com/c/4NhtzS/Z6ff+pz9E+Buxv
https://paperpile.com/c/4NhtzS/Z6ff+pz9E+Buxv
https://paperpile.com/c/4NhtzS/Z6ff+pz9E+Buxv
https://paperpile.com/c/4NhtzS/Z6ff+pz9E+Buxv
https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

exploiting   our   gene   expression   analysis   approach   to   extract   markers   of   an   intermediate   stage   

defined   in   our   results.   Our   initial   exploration   of   the   data   revealed   that   the   RELMɑ   encoding   gene   

Retnla    was   found   both   in   cells   committed   to   the   “phagocytic”   path   (P1)   (Figure   2E   -   left),   which   

expressed   several   other   markers   of   alternative   macrophage   activation   (Figure   2C   and   

Supplemental   Table   1),   and   also   in   the   “Early”   activation   stage   shared   by   all   paths   (Figure   2E   -   

left).   Exploring   the   relationship   between    Retnla    expression   and   pseudotime,   we   observed   that   

our   model   predicted   a   wave   of   expression   early   during   activation   (Figure   2E   -   right).   We   

observed   also   that   this   was   not   the   case   for   all   genes   expressed   in   this   stage   and   show   that   

Ear2    expression,   like    Retnla ,   peaks   at   this   early   stage,   but   then   steadily   drops   (Figure   2E).   

We   reasoned   that   if   our   model   was   correct,   then   monocytes   would   start   expressing    Retnla   

shortly   after   entering   a   tissue;   this   would   occur   regardless   of   the   inflammatory   state   of   that   

tissue.   To   test   this,   we   isolated   bone   marrow   monocytes   from   CD45.1 +    mice   (Figure   S2C),   and   

adoptively   transferred   them   into   the   peritoneal   cavity   of   CD45.2 +    naive   hosts   (Figure   2F).   We   

then   evaluated   the   abundance   of    Retnla    mRNA   and   RELMɑ   protein   in   CD45.1 +    macrophages   

recovered   on   days   2,   4   and   8   days   after   adoptive   transfer   (Figure   2G   and   S2D).   Confirming   the   

model’s   predictions,   we   observed   that    macrophages   that   had   differentiated   from   transferred   

monocytes   began   to   express   RELMɑ   4   days   post-adoptive   transfer   and   that   expression   

continued   to   increase   until   ~80%   of   the   cells   were   positive   for   this   molecule   (Figure   2G).   RELMɑ   

induction   occurred   in   the   absence   of   IL-4Rɑ   stimulation,   as   we   did   not   detect   changes   in   RELMɑ   

expression   in   the   resident   cells   in   the   peritoneal   cavity   and   moreover   IL-4Rɑ -/-    monocytes   

displayed   similar   RELMɑ   expression   compared   to   IL-4Rɑ +/+    cells   (Figure   2H).   Finally,   mature   

CD45.1 +    peritoneal   macrophages   did   not   express   RELMɑ   after   transfer   into   CD45.2 +    naive   

recipients   (Figure   2H).   Thus,   our   experimental   data   support   the   view   that   monocytes   

differentiating   into   macrophages   early   after   entry   into   a   tissue   begin   to   express   RELMɑ   

independently   of   IL-4   signalling.   These   findings   add   weight   to   our   predicted   model   of   

macrophage   activation.   

Macrophage   activation   stages   are   conserved   across   tissues   and   inflammatory   conditions   

Our   findings   in   the   adipose   tissue   datasets   indicate   that   observed   heterogeneity   in   macrophage   

activation   occurs   as   these   cells   enter   a   tissue   and   begin   transiting   through   defined   activation   

paths.   Our   results   further   indicate   that   an   early   stage   of   activation   is   characterized   by   a   transient   

wave   of   RELMɑ   expression,   which   we   confirmed   at   a   distinct   site,   the   peritoneal   cavity.   Based   

on   this   observation,   there   should   be   evidence   of   historical    Retnla    expression   in   tissue   resident   
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macrophages.   Consistent   with   this,   historical   RELMɑ   expression   has   been   reported   before   in   

many   resident   macrophage   populations    ( 35 )    and   some   studies   have   used   RELMɑ   expression   to   

identify   cells   of   a   distinct   tissue-restricted   phenotype    ( 22 )    or   in   an   immature   state   of   

differentiation    ( 8 ) .   Our   data,   which   is   broadly   in   agreement   with   these   past   reports,   indicates   that   

historical   RELMɑ   expression   should   be   evident   in   tissues   where   circulating   monocytes   replace   

tissue   resident   macrophages.   Moreover,   our   data   suggest   that   transit   via   a   RELMɑ +    stage   is   a   

common   feature   of   all   macrophages   and   not   restricted   to   a   single   tissue   or   macrophage   subset.   

To   evaluate   these   ideas   further   and   test   to   what   extent   our   defined   activation   paths   were   

conserved   across   inflammatory   conditions   and   tissues,   we   set   out   to   use   our   adipose   tissue   

dataset   as   a   reference   to   interrogate   multiple   other   situations   of   tissue   inflammation   

(Supplemental   Table   3).     

First,   we   took   advantage   of   a   recent   data   transfer   implementation    ( 36 ) .   This   approach   identifies   

pairs   of   cells   across   datasets   with   similar   transcriptional   profiles,   and   then   uses   these   “anchors”   

to   transfer   data   from   a   reference   to   a   query   dataset,   assigning   a   probability   of   accuracy   to   the   

assigned   labels.   In   addition   to   labels,   this   approach   allows   for   the   imputation   of   expression   data,   

that   is   inferring   and   assigning   missing   gene   expression   values,   thus   enabling   the   construction   of   

cell   atlases   despite   large   technical   variations   between   component   data    ( 36 ) .   Moreover,   this   

strategy   was   found   to   be   the   most   accurate   tool   available    ( 37 ) .   As   anchor   selection   is   critical   in   

this   process,   we   performed   extensive   benchmarking   of   the   parameters   used   to   find,   filter   and   

then   apply   these   transformations,   selecting   values   that   would   retain   only   high   quality   anchors.   

Moreover,   we   tested   this   approach   on   datasets   which   contained   a   mixture   of   macrophages   and   

other   CD45 +    cells,   using   the   adipose   tissue   as   a   reference,   reasoning   that   only   macrophages   

should   have   high   probability   scores   as   a   consequence   of   the   activation   stage   label   transfer   

process   (Figure   S3A-H).   In   the   first   control   dataset,   where   the   relative   abundance   of   

macrophages   to   other   immune   cells   was   balanced,   we   observed   a   bimodal   label   probability   

distribution   (Figure   S3A).   Upon   closer   inspection,   we   determined   that   the   population   of   cells   with   

a   high   label   probability   could   be   identified   as   macrophages,   either   based   on   a   macrophage   gene   

set   score   (Figure   S3B-C   &   Supplemental   Table   2)   or   by   examining   individual   macrophage   genes   

(Figure   S3D).   Using   a   label   probability   threshold   of   80%   (or   0.8)   almost   exclusively   

macrophages   were   assigned   a   label   (Figure   S3B-C,   colored   cells),   while   most   other   immune   

cells   were   not   (Figure   S3B-C,   gray   cells).   In   a   second   control   dataset,   where   macrophages   

made   up   only   a   small   portion   of   all   CD45 +    cells   (Figure   S3E-H),   we   observed   that   the   label   

probability   distribution   was   skewed   towards   0%   (Figure   S3E).   Nevertheless,   applying   a   similar   
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threshold   as   before   we   found   that   almost   exclusively   cells   with   a   high   macrophage   score   (Figure   

S3F-G)   and   expressing   macrophage   specific   genes   (Figure   S3H)   were   labeled.   Thus,   we   felt   

confident   that   using   the   benchmarked   parameters   in   this   data   transfer   approach,   as   well   as   the   

defined   threshold,   we   would   be   able   to   interrogate   multiple   tissues   and   inflammatory   conditions   

using   the   adipose   tissue   dataset   as   a   reference.   

We   retrieved   several   publicly   available   scRNA-seq   datasets   containing   macrophages,   

representing   9   different   tissues   and   13   inflammatory   conditions   with   their   respective   healthy   

controls,   including   infections,   injuries,   cancer   and   dietary   interventions   (Figure   3   &   Supplemental   

Table   3).   In   all   cases,   we   extracted   macrophage   transcriptomes   by   calculating   a   macrophage   

score   as   described   before,   harmonized   the   data   within   each   tissue   to   remove   batch   effects   and   

finally   applied   the   transfer   process,   assigning   cells   to   the   distinct   activation   stages   defined   in   

Figure   1,   with   a   label   probability   (Figure   3)   and   imputed   gene   expression   data   (Figure   S3I-Q).   

Imputed   data   was   used   to   cluster   and   to   calculate   a   UMAP   for   each   dataset.   As   expected,   

imputation   altered   the   gene   expression   values   in   the   original   data,   however   the   overall   

expression   patterns   were   maintained   (Figure   S3I-Q).   We   also   examined   the   label   probability   

distribution   across   identified   clusters   within   each   dataset   (Figure   S4).   For   any   given   tissue,   we   

could   see   that   identified   clusters   would   frequently   be   dominated   by   a   single   activation   stage   

label   (e.g.   Figure   S4B,   clusters   3,   4,   6   &   7;   Figure   S4D,   clusters   0,   1,   3,   4,   6,   7,   10,   11,   12   &   13),   

even   if   not   all   the   cells   in   that   cluster   passed   the   80%   probability   threshold   previously   

established.   We   decided   that   as   all   the   cells   in   any   given   cluster   are   transcriptionally   similar,   it   

was   reasonable   to   assign   a   dominant   label   to   these   cells,   even   if   label   probability   levels   for   some   

of   them   were   below   the   established   threshold   (Figure   S4).   We   did   this   exclusively   where   a   single   

label   was   dominant   and   a   sizable   portion   of   the   labelled   cells   passed   the   confidence   threshold.   

Macrophages   that   did   not   meet   this   criteria   were   marked   as   “not   classified”,   that   is   cells   in   

clusters   where   no   dominant   label   was   observed   or   where   the   label   probability   was   low.   Strikingly,   

our   analysis   revealed   that   in   all   interrogated   datasets,   we   could   identify   most   of   the   activation   

stages   defined   in   our   reference   (Figure   3   -   colored   cells)   with   a   reasonable   proportion   of   cells   

with   a   high   label   transfer   probability   (Figure   3).   

The   distribution   of   activation   stage   labels   was   different   in   each   studied   tissue   and   then   modified  

by   the   corresponding   inflammatory   conditions   (Figure   3).   This   could   reflect   the   influence   of   the   

tissue   micro-environment   in   shaping   the   immune   response,   as   well   as   the   way   in   which   the   

immune   response   is   tailored   to   a   specific   insult.   For   example,   in   the   large   intestine   lamina   

propria   (Figure   3A),   infiltrating   monocytes   in   the   “Initial”   activation   stage   were   abundant   in   steady   
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state   (Figure   3A,   bottom   right)   in   line   with   the   reported   turn-over   of   macrophages   in   this   tissue   

( 9 ) .   However,   after   12   weeks   of   high   fat   diet   (HFD)   the   proportion   of   “Initial”   stage   macrophages   

diminished,   being   replaced   by   cells   in   the   “Final”   stage   of   the   “inflammatory”   path   (Figure   3A,   

Final.P3   -   light   purple   cells),   in   accordance   with   increased   inflammation   as   a   result   of   this   

intervention    ( 21 ) .   This   correspondence   between   our   labelling   strategy   and   established   biology   

could   be   seen   in   all   datasets.   For   instance,   in   sciatic   nerve   injury    ( 22 )    a   wave   of   inflammatory   

cells   (Final.P3)   could   be   seen   1   day   post   wounding   (dpw)   which   receded   by   day   5,   when   cells   in   

the   “Final”   stage   of   the   “phagocytic”   path   took   over   (Figure   3B,   Final.P1   -   dark   orange   cells).   In   

breast   tumors    ( 23 ) ,   the   macrophage   landscape   appeared   dominated   by   cells   in   the   “phagocytic”   

path   (Figure   3C,   Late.P1   &   Final.P1   -   orange   cells),   which   as   we   mentioned   above   displayed   

markers   of   alternatively   activated   cells.   The   same   appeared   true   in   regressing   atherosclerotic   

plaque   lesions    ( 24 )    (Figure   3D)   and   in   liver   fibrosis    ( 25 )    (Figure   3E),   while   fungal   infection   in   the   

lung    ( 26 )    resulted   in   an   increase   in   cells   in   the   “inflammatory”   path   (Figure   3F,    Final.P3   -   light   

purple   cells).   In   infarcted   heart    ( 27 )    and   retinal   damage    ( 28 ) ,   an   expansion   of   cells   in   the   

“phagocytic”   path   was   also   evident   (Figure   3G-H,   Late.P1   &   Final.P1   -   orange   cells),   although   

the   diversity   of   activation   stages   in   each   tissue   was   strikingly   different,   with   few   identified   stages   

in   the   Retina   both   in   steady   state   and   after   light   induced   neurodegeneration   (Figure   3H).   In   

contrast,   skeletal   muscle   macrophages    ( 19 )    displayed   diverse   activation   stages,   with   chronic   

parasitic   infection   having   a   modest   effect   on   the   stage   distribution   in   this   tissue   (Figure   3I),   

although   increased   “inflammatory”   path   macrophages   were   apparent   (Final.P3   -   light   purple   

cells).   Finally,   we   observed   “Early”   stage   cells,   co-expressing    Retnla    and    Ear2 ,   in   nearly   all   

analyzed   datasets   (Figure   3A-D,   G   &   I),   underscoring   how   this   activation   step   is   common   to   

macrophages   in   most   tissues.   

Despite   demonstrable   utility   of   our   labelling   approach,   in   terms   of   the   immediate   parallels   that   

could   be   drawn   between   the   data   and   published   observations,   there   remained   a   number   of   cells   

with   no   label   assignment   (i.e.   “not   classified”).   At   least   2   explanations   for   the   abundance   of   these   

cells   in   the   studied   datasets   come   to   mind.   First,   our   approach   hinges   on   stringently   identifying   

anchor   pairs   between   the   data,   obtaining   a   high   score   and/or   having   dominant   labels   in   the   

clusters.   Consequently,   we   are   less   efficient   at   identifying   transcriptional   profiles   of   cells   in   

between   defined   activation   stages.   For   this   reason,   many   of   the   “not   classified”   cells   in   our   

analysis   could   be   seen   in   between   labelled   clusters   in   the   UMAP,   and   would   often   share   low  

probability   labels   for   flanking   clusters   with   a   more   defined   signature   (e.g.   Figure   S4D,   cluster   2   

flanked   by   1,   4,   7   &   9).   Likely   for   this   reason,   “Intermediate”   stage   cells   were   relatively   rare   in   our   
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analysis   of   the   query   datasets,   as   these   were   the   least   defined   transitional   state   that   we   

identified   in   our   reference   data.   Second,   embryonically   seeded   tissue   resident   macrophages   

display   a   transcriptional   profile   that   is   unique    ( 4 ,    5 ) ,   and   thus   might   not   easily   relate   to   activated   

macrophages   originating   from   circulating   monocytes   in   inflammatory   settings.   Indeed,   we   

observed   the   most   unclassified   cells   in   tissues   where   monocyte   infiltration   is   rare   (Retina   -   

Figure   3H)   or   where   specialized   macrophage   subsets   are   common   (alveolar   macrophages   in   the   

Lung   -   Figure   3F).   In   fact,   the   distinct   cluster   of   “not   classified”   cells   present   on   the   left   of   the   

Lung   UMAP   (Figure   3F)   was   enriched   for   alveolar   macrophage   markers,   thus   explaining   the   

striking   bimodal   label   distribution   in   this   dataset   (Figure   3F).   By   contrast,   the   label   assignment   in   

the   atherosclerotic   plaque   dataset   was   nearly   global   (Figure   3D)   likely   as   only   circulating   

monocytes-derived   macrophages   were   studied    ( 24 ) .   

We   explored   the   issue   of   macrophage   embryonic   origin   and   tissue   immune   privilege   in   more   

detail   by   studying   a   dataset   where   microglia   were   recovered   and   sequenced   at   different   

developmental   stages   from   naive   mice   (Figure   4A   and   Supplemental   Table   3)    ( 29 ) .   In   line   with   

our   expectations,   we   observed   very   poor   label   probability   distributions   for   all   investigated   ages   

(Figure   4A).   Interestingly,   the   probability   threshold   was   never   surpassed   and   indeed   these   

distributions   were   skewed   progressively   towards   0   as   the   age   of   the   investigated   animals   

increased.   

Taken   together,   our   label   transfer   analysis   shows   that   macrophages   across   tissues   and   

inflammatory   conditions   share   common   transcriptional   profiles   that   correspond   to   definable   

activation   paths.   Our   analysis   also   suggests   that   embryonically   seeded   and   highly   specialized   

tissue   resident   macrophages   do   not   respond   to   inflammatory   conditions   in   a   way   analogous   to   

that   of   infiltrating   monocytes,   with   the   latter   encapsulating   most   of   the   functional   diversity   found   

in   all   the   studied   datasets.   Finally,   well-established   paradigms   of   macrophage   biology   are   

reinforced   by   the   functional   stages   we   defined,   making   these   labels   a   potential   tool   to   probe   

deeper   into   the   functional   specialization   of   macrophages   during   inflammation.   

Exploiting   the   predictive   nature   of   the   proposed   macrophage   activation   model   

In   light   of   the   predictive   nature   of   our   activation   model,   and   its   ability   to   assign   activation   stage   

labels   to   macrophages   engaged   in   inflammatory   conditions,   we   decided   to   explore   in   greater   

detail   potential   biological   insights   that   might   be   gleaned   from   the   analysis.   For   this   purpose   we   

turned   to   the   atherosclerotic   plaque   and   breast   tumor   datasets   (Figure   4).   In   both   cases,   

investigators   introduced   interventions   that   ameliorated   disease   progression   (Supplemental   Table   
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3)    ( 23 ,    24 ) .   Additionally,   we   observed   in   both   datasets   an   alteration   in   the   proportion   of   

macrophages   in   the   “Late”   stage   of   the   “phagocytic”   path   (Figure   3C-D,   Late.P1   -   light   orange).   

Thus,   we   reasoned   that   these   data   provided   an   attractive   opportunity   to   explore   the   activation   

model   more   closely.   

Dietary   and   pharmacological   intervention   (Supplemental   Table   3)   were   reported   to   induce   

regression   of   atherosclerotic   plaque   lesions    ( 24 ) ,   which   are   dominated   by   macrophages   in   the   

“phagocytic”   path   (Figure   4B,   dark   and   light   orange   cells).   Strikingly,   there   was   a   shift   between   

“Late”   and   “Final”   activation   stages   in   regressing   lesions,   with   a   sizable   decrease   in   the   

proportion   of   “Late.P1”   cells   (Figure   4C).   We   investigated   which   genes   were   altered   in   

expression   within   cells   in   this   activation   stage   between   progressing   and   regressing   lesions.   

Critically,   we   performed   this   analysis   on   the   original,   not   on   the   imputed   expression   data,   

guaranteeing   that   our   label   predictions   served   to   orient   the   analysis   without   affecting   the   

underlying   measurements.   We   then   compared   these   regulated   genes   with   those   associated   with   

the   “phagocytic”   path   based   on   our   pseudotime   analysis   (Figure   2).   Interestingly,   all   but   one   of   

the   genes   in   this   stage   had   increased   expression   in   regressing   lesions   (Figure   4D).   Moreover,   all   

but   one   of   these   genes   tended   to   be   expressed   more   strongly   as   cells   progressed   from   

“Late.P1”   (Figure   4E   -   dashed   lines)   to   “Final.P1”.   Collectively   this   data   suggest   that   the   

intervention   causing   lesions   to   regress,   induced   the   accelerated   transit   of   macrophages   along   

the   “phagocytic”   path,   as   indicated   by   the   increased   expression   of   genes   associated   with   this   

trajectory   in   “Late.P1”   cells,   which   concomitantly   decrease   in   abundance.   

Next   we   turned   to   the   breast   cancer   dataset,   where   macrophage   specific    Dab2    depletion   was   

reported   to   dampen   tumor   progression   (Figure   4F-J   &   Supplemental   Table   3)    ( 23 ) .   We   observed   

that    Dab2    was   most   highly   expressed   in   “Late”   and   “Final”   stage   macrophages   in   the   

“phagocytic”   path   (Figure   4F-G),   with   the   former   being   more   abundant.   In   fact,   we   observed   an   

increase   in   “Late”   stage    Dab2    deficient   macrophages   (Figure   4H),   leading   us   to   examine   

differentially   expressed   genes   between   these   cells   and   their   WT   counterparts.   As   above,   we   

performed   this   analysis   on   the   original   data,   using   the   label   assignment   only   as   guidance.   Our   

results   show   that   from   15   regulated   genes   also   included   in   the   pseudotime   analysis,   11   were   

differentially   down-regulated   between   these   two   groups   (Figure   4I).   Of   these   15   genes,   13   were   

highly   expressed   at   this   stage   of   activation   in   our   reference   data   (Figure   4J   -   dashed   lines).   The   

downregulation   of   these   path-associated   genes   and   the   accumulation   of   “Late.P1”   cells   could   

indicate   that   the   absence   of    Dab2    stalls   the   progression   of   macrophages   in   the   “phagocytic”   

path.     
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Monocytes   enter   wounds   populating   the   functional   diversity   predicted   by   the   proposed   
macrophage   activation   model   

Our   data   indicate   that   macrophages   can   be   found   in   similar   activation   stages   in   different   tissues   

and   conditions,   and   that   the   flux   of   macrophages   through   these   activation   stages   might   be   

influenced   by   the   immunological   processes   occurring   therein.   Moreover,   our   model   predicts   that   

incoming   monocytes   are   able   to   assume   the   phenotype   of   existing   macrophages   in   the   tissue   

and   populate   all   functional   stages   described.   Indeed,   in   the   atherosclerotic   plaque   dataset,   all   

sequenced   cells   were   derived   from   circulating   precursors    ( 24 ) .   In   order   to   formally   evaluate   this,   

and   to   validate   our   predictions,   we   performed   a   fate   mapping   experiment   where   we   traced   the   

influx   of   monocytes   into   wounded   skin   (Figure   5A-B   &   S5).   Red   fluorescent   monocytes   (tdRFP + )   

were   administered   i.v.   2   or   12   dpw,   and   all   wound   macrophages   were   harvested   4   and   14   dpw   

(Figure   5B),   using   index   sorting   to   retain   fluorescence   values   from   barcoded   cells   for   further   

analysis.   We   mapped,   clustered   (Figure   S5A)   and   labelled   the   sequenced   cells   (Figure   5A)   as  

described   above,   applying   similar   thresholds   and   evaluating   label   probability   distributions   for   the   

entire   dataset   (Figure   5C)   and   across   clusters   (Figure   S5A-B).   Like   in   other   analyzed   tissues,   

wounded   skin   also   exhibited   most   previously   defined   activation   stages,   again   demonstrating   the   

robustness   of   our   activation   model.   

We   observed   a   global   label   probability   distribution   skewed   towards   1   (Figure   5C),   indicating   a   

good   agreement   with   our   reference   data.   Moreover,   label   distribution   across   conditions   was   

consistent   with   expectations   based   on   established   literature    ( 38 ) ,   with   an   early   wave   of   

inflammatory   cells   at   4   dpw   (Figure   5D,   light   purple)   and   a   later   increase   in   regulatory  

“phagocytic”   path   cells   at   14   dpw   (Figure   5D,   orange).   Transferred   fluorescent   cells   were   

detected   at   both   4   and   14   dpw   (Figure   S5C),   although   only   when   given   on   day   2   (Figure   S5D).   

Infiltrating   monocytes   were   distributed   across   all   detected   clusters   and   assigned   stage   labels   

(Figure   5E-G),   with   the   distribution   in   particular   mirroring   closely   the   distribution   for   all   

macrophages   sequenced   (Figure   5D   &   G).   As   predicted   by   our   model,   fluorescent   cells   were   

only   assigned   to   the   “Initial”   stage   at   4   dpw   (Figure   5G),   which   is   to   say   2   days   post   adoptive   

transfer.   Similarly,   only   at   4   dpw   were   fluorescent   cells   in   the   “Final”   stage   of   the   “inflammatory”   

path   (Figure   5G   –   light   purple)   further   emphasizing   the   transitory   nature   of   the   early  

inflammatory   wave   which   occurs   during   tissue   repair.   By   contrast,   transferred   monocytes   

mapped   preferentially   to   the   “phagocytic”   path   at   14   dpw   (Figure   5G   -   orange)   and   to   a   lesser   

extent   to   the   “Early”   activation   stage   (Figure   5G   -   blue).   Collectively,   these   data   support   our   

model,   showing   that   monocytes   enter   a   tissue   and   flux   through   distinct   activation   stages   in   a   
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dynamic   manner,   assuming   all   defined   functional   stages.   The   fact   that   transferred   cells   only   

mapped   to   the   “Initial”   stage   on   day   4,   and   that   by   day   14   they   had   assumed   other   identities,   

reflects   the   number   of   days   since   these   cells   accessed   the   wound.   

Our   data   showed   an   increase   in   “Early”   stage   macrophages   at   14   dpw   (Figure   5G   –   blue)   

compared   to   day   4,   which   co-expressed    Retnla    and    Ear2    (Figure   5H   -   showing   transferred   cells   

only).   Although   we   expected   to   find   cells   labelled   in   this   manner,   as   in   several   other   studied   

tissues,   the   timing   of   their   appearance   is   somewhat   difficult   to   explain.   Our   model   would   predict   

that   cells   in   the   “Late”   and   “Final”   stages   of   the   “phagocytic”   and   “inflammatory”   paths   should   

have   gone   through   this   “Early”   phase,   yet   few   cells   were   labelled   as   such   at   4   dpw   (Figure   5G).   

It   is   possible   that   in   the   2   days   since   the   adoptive   transfer,   fluorescent   monocytes   have   indeed   

gone   through   this   “Early”   stage   and   progressed   further   in   their   activation.   It   is   also   possible   that   

cells   bypass   this   stage   to   adapt   rapidly   during   inflammation.   Our   adoptive   transfer   data   into   the   

peritoneum   demonstrated   that   under   steady   state   conditions   2   days   were   insufficient   to   observe   

Retnla    expression   in   infiltrating   cells   (Figure   2G).   In   fact,   the   increased   proportion   of   “Early”   

stage   cells   at   14   dpw   (Figure   5G),   is   in   line   with   our   earlier   findings   that   after   8   days   a   higher   

percentage   of   infiltrating   cells   would   fall   in   this   stage.   Thus,   we   propose   that   the   relative   speed   at   

which   macrophages   traverse   defined   activation   paths   is   influenced   by   the   inflammatory   

conditions   at   the   site   of   immunological   insult,   so   that   cells   may   accelerate   their   passage   through   

identified   stages   to   better   adapt   to   the   required   immune   response.   

Next,   we   took   advantage   of   the   indexed   nature   of   the   skin   wound   dataset   to   validate   our   

labelling   strategy   with   common   macrophage   phenotypic   markers.   For   this   purpose,   we   scaled   

the   fluorescent   signal   of   CD301b,   CD45,   F4/80,   CD11b,   MHCII   and   Ly6C,   as   well   as   the   side   

and   forward   scatter   parameters,   across   all   cells   and   calculated   a   UMAP   for   this   flow   cytometry   

data,   retaining   the   stage   labelling   based   on   the   transcriptional   profile   of   the   cells   (Figure   5I).   We   

then   identified   clusters   using   k-means   (Figure   5J   &   S5E).   Strikingly,   we   observed   that   cells   in   the   

“Late.P1”,   “Final.P1   and   “Final.P3”   stages   each   dominated   a   cluster   (Figure   5L   -   clusters   4,   5   

and   6   respectively),   while   “Early”   stage   cells   localized   predominantly   to   cluster   2   (Figure   5J&L).   

As   expected,   transferred   monocytes   were   evenly   distributed   across   these   clusters   (Figure   5K   &   

S5F),   further   emphasizing   the   ability   of   these   cells   to   differentiate   into   all   identified   functional   

stages.   Finally,   we   show   that   these   flow   cytometry   based   clusters   are   associated   with   

significantly   different   protein   expression   levels   (Figure   5M   -   p   value   <   0.001).   
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Collectively,   these   data   show   that   monocytes   entering   a   wound   respond   to   this   environment   by   

becoming   activated   in   accordance   to   the   model   proposed   in   this   study.   These   cells   gained   

access   to   the   inflamed   tissue   and   followed   distinct   activation   paths   towards   different   functional   

outcomes.   The   relative   proportion   of   stage   labels   our   model   assigns   to   these   cells,   mirrors   the   

expectations   of   established   wound   repair   paradigms,   while   also   validating   the   observations   we   

have   made   in   other   studied   tissues.   Overall,   our   results   show   that   proposed   activation   stages   

are   not   only   distinct   in   their   transcriptional   profile,   but   that   they   can   be   observed   based   on   

protein   expression.   

Macrophage   activation   stages   in   tissues   have   distinct   transcriptional   markers   

Our   approach   to   define   activation   stages   and   paths   has   relied   so   far   on   the   use   of   a   reference   to  

interrogate   each   queried   dataset.   This   approach   revealed   a   striking   conservation   of   macrophage   

activation   dynamics,   despite   differences   in   tissue   of   origin   and   inflammatory   condition.   We   

detected   all   reference   activation   stages   in   one   or   more   tissues   (Figure   6A),   and   we   discussed   

how   the   relative   abundance   of   each   activation   stage   and   the   presence   of   “not   classified”   cells   

may   be   explained.   However,   our   approach   relied   on   the   quality   of   anchor   pairs   identified   across   

datasets   to   transfer   labels   and   impute   gene   expression   data.   As   these   processes   by   necessity   

transform   the   original   expression   data,   we   sought   to   determine   the   robustness   of   our   approach   

by   interrogating   labelled   cells   directly   (Figure   6B).   For   this   purpose   we   took   all   high   label   

probability   cells   (>80%)   from   10   query   datasets,   and   combined   these   with   a   randomly   sampled   

portion   (n=   500)   of   macrophages   from   our   reference,   retaining   only   the   label   assignment   and   

original   uncorrected   gene   expression   data   (Figure   6B).   Once   extracted,   these   macrophages   (n   =   

2843)   were   integrated   across   tissues,   without   giving   priority   to   any   dataset,   then   clustered   and   

visualized   as   a   UMAP   (Figure   6C).   

Our   expectation   for   this   analysis   was   that   the   transcriptional   tissue   signature   would   not   obscure   

the   activation   stage   label.   That   is,   our   model   would   predict   that   tissues   would   not   define   the   

resulting   cell   clustering,   but   rather   that   the   activation   stage   of   these   cells   would   be   sufficient   to   

group   them   in   this   unsupervised   analysis.   Critically,   this   was   the   outcome   we   observed   (Figure   

6D).   Cells   with   identical   activation   labels   clustered   together,   regardless   of   the   tissue   of   origin   or   

the   inflammatory   condition.   This   demonstrated   that   our   initial   anchor,   label   transfer   and   data   

imputation   approach   was   valid.   Importantly,   having   all   macrophages   clustered   in   this   manner,   

allowed   for   the   extraction   of   tissue-independent   transcriptional   markers   for   all   activation   stages.   

Indeed,   we   found   genes   associated   with   cell   surface   expression   (Figure   6E   &   Supplemental   
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Table   5)   and   other   upregulated   genes   (Figure   6F   &   Supplemental   Table   4)   corresponding   to   

each   identified   activation   stage,   which   largely   aligned   with   the   genes   we   originally   associated   

with   each   label   (Figure   S1C   &   Supplemental   Table   1).   

Finally,   we   observed   that   integrated   macrophages   were   organized   similarly   to   our   reference   

data.   The   “Initial”,   “Early”   and   “Cycling”   stages   clustered   near   each   other,   while   the   

“Intermediate”   stage   separated   the   “phagocytic”   and   “remodelling”   paths   at   the   bottom   from   the   

“oxidative   stress”   and   “inflammatory”   paths   at   the   top   of   the   UMAP   (Figure   6D).   This   distribution   

of   clusters   adds   weight   to   our   proposed   activation   trajectories   and   emphasizes   the   relative   

relationship   between   the   activation   stages   defined.   

Transcriptional   network   analysis   reveals   macrophage   gene   expression   hubs   and   
upstream   regulators   

Our   analysis   has   shown   that   macrophages   in   inflamed   tissues   flux   through   conserved   activation   

paths   in   order   to   respond   to   inflammatory   insults.   Similarly,   we   have   established   that   these   

activation   paths   and   stages   are   robust   and   associated   with   distinct   transcriptional   profiles   that   

provide   functional   insights   about   these   cells.   Lastly,   we   hypothesized   that   changes   in   the  

regulation   of   genes   associated   with   defined   activation   paths   was   likely   to   stall   or   promote   

macrophage   activation.   To   explore   this   final   aspect   of   the   data   more   closely,   we   returned   to   the   

genes   that   we   associated   with   pseudotime   (Figure   2)   and   built   a   network   based   on   known   

protein-protein   interactions   (Figure   S6A),   calculating   the   edge   weight   as   a   combination   of   the   

confidence   of   the   interaction   and   the   goodness   of   the   model   fit   across   all   paths   for   the   pair   of   

connected   nodes.   We   then   filtered   the   network,   to   retain   only   high   weight   edges   (Figure   S6B,   

edge   weight   threshold   blue   dashed   line)   and   removed   disconnected   nodes.   Finally,   we   clustered   

the   resulting   network,   performed   GO   term   enrichment   analysis   in   each   cluster   (Figure   S6C)   and   

labelled   the   network   according   to   the   most   enriched   term   in   the   gene   set.   The   resulting   network   

(Figure   7A,   242   genes)   shows   10   clusters   associated   with   “Superoxide   metabolic   process”,   

“Leukotriene   synthesis”,   “Response   to   external   stimulus”,   “Lipid   synthesis”,   “Myeloid   

differentiation”,   “Antigen   processing   and   presentation”,   “Protein   complex   oligomerization”,   

“Chemotaxis”,   “Lipid   transport”   and   “Cytoskeleton   organization”.   These   gene   sets   are   not   

engaged   similarly   by   all   activation   paths,   as   revealed   by   subsetting   the   network   to   include   only   

genes   significantly   associated   with   pseudotime   in   each   path   (Figure   7B).     

We   next   extracted   three   types   of   information   from   this   transcriptional   network.   First,   we   

examined   which   genes   had   the   potential   to   act   as   central   nodes   of   information   transfer,   as   these   
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could   be   targets   for   therapeutic   intervention.   We   reasoned   that   these   information   hubs   could   be   

represented   by   highly   connected   nodes,   which   articulated   the   network   by   connecting   2   or   more  

clusters,   and   that   were   overrepresented   in   the   paths   connecting   pairs   of   nodes   in   the   network   

(i.e.   high   betweenness).   Examining   genes   meeting   these   criteria   (Figure   6C)   highlighted   both   

some   well-known   macrophage   regulators   (e.g.    Lyz2 ,    Csf1r ),   but   also   genes   whose   function   has   

not   been   widely   studied   in   the   context   of   macrophage   activation   (e.g.    Gngt2 ,    Srgn ),   thus   

warranting   further   exploration.   Second,   we   identified   transcription   factors   (TF)   upstream   of   the   

transcriptional   network   clusters,   which   were   themselves   regulated   dynamically   along   the   

activation   paths.   We   ranked   these   based   on   the   number   of   times   they   were   associated   with   a   

gene   set   in   our   clusters   (Figure   7D,   word   cloud)   and   show   the   dynamic   regulation   of   6   TF   in   

each   activation   path   (Figure   7D,   bottom).   Interestingly,   some   TF   had   opposing   behaviours   ( Rel   

vs.    Maf ),   while   others   behaved   similarly   in   all   paths   except   one,   where   they   suddenly   veered   in   

opposing   directions   ( Spi1    vs.    Fos / Jun ).   As   these   sudden   direction   changes,   as   well   as   the   

relative   levels   of   one   TF   to   another   could   represent   important   decision   points   in   activation   paths,   

these   TFs   too   warrant   further   examination.   Finally,   we   wished   to   provide   a   more   detailed   

process   enrichment   profile   for   each   activation   path.   Consequently,   we   took   the   top   3   GO   

enriched   terms   in   each   cluster   (Figure   7E   &   S6C)   and   all   enriched   KEGG   pathways   detected   

(Figure   7F)   and   calculated   gene   set   scores   for   each   of   these   (Supplemental   Table   2).   We   then   

estimated   the   variance   of   every   gene   set   score   within   cells   of   each   activation   path   and   

represented   these   data   as   a   heatmap   (Figure   7E-F),   finding   a   distinct   profile   for   each   path   for   

these   functions.   In   this   manner   we   highlight   the   relative   regulation   of   several   processes   of   

interest   in   the   activation   paths   we   defined,   as   a   guide   to   researchers   wishing   to   explore   these   

aspects   of   macrophage   function   in   more   detail.   

In   summary,   we   employed   a   predictive   model   of   label   transfer   to   encompass   all   forms   of   

macrophage   activation   irrespective   of   tissue   or   inflammatory   condition.   We   demonstrate   that   this   

model   is   robust,   aligning   with   well-established   paradigms   of   macrophage   function,   while   

providing   novel   avenues   for   investigation.   We   provide   surface   and   global   gene   expression   

profiles   for   these   activation   stages   to   aid   in   their   identification   in   future   studies.   Lastly,   we   have   

prepared   an   online   tool   (https://www.macrophage-framework.jhmi.edu)   to   aid   in   exploring   the   

data   contained   in   this   study.   Our   results   emphasize   the   conservation   and   relative   homogeneity   

of   macrophage   activation   across   tissues,   transcending   macrophage   tissue   residence,   while   still   

allowing   for   activation   diversity.     
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Discussion   

Advances   in   the   understanding   of   macrophage   ontogeny   and   of   differential   gene   expression   

signatures   linked   to   macrophage   tissue   residence   has   revealed   inherent   complexity   within   this   

cell   type.   Moreover,   the   transcriptional   profile   of   macrophages   following   exposure   to   a   broad   

range   of   stimuli   for   which   they   are   known   to   express   receptors   revealed   a   spectrum   of   potential   

activation   states   not   captured   by    in   vitro    models.   In   light   of   these   findings,   it   has   become   difficult   

to   relate   macrophage   activation   across   investigations.   Our   study   offers   an   alternative   view   of   

macrophage   activation   in   tissues   during   inflammation.   By   comparing   the   transcriptional   profiles   

of   macrophages   recovered   from   different   tissues   from   mice   experiencing   distinct   

diseases/conditions,   we   identified   a   limited   and   consistent   number   of   transcriptional   profiles   that   

were   unobscured   by   the   tissue   or   stimulus   studied.   We   modelled   these   conserved   and   yet   

diverse   signatures   as   stages   across   four   activation   paths,   finding   that   “phagocytic”   and   

“inflammatory”   paths   were   most   common.   These   paths   have   features   in   common   with   M2   and   

M1   respectively,   encompassing   those   references   while   offering   a   broader   and   dynamic   

alternative.   Finally,   our   analysis   offers   insights   into   the   information   hubs,   transcription   factors   

and   gene   expression   programs   that   are   responsible   for   shaping   macrophage   function.   

The   macrophage   activation   model   we   propose,   where   cells   transit   through   “initial”   and   “early”   

stages   of   commitment   to   a   particular   path,   is   evident   in   other   independent   analyses.   For   

instance,   in   a   murine   model   of   non-alcoholic   steatohepatitis   (NASH)   a   monocyte   derived   

population   of   Ly6C lo    macrophages   expressed   high   levels   of    Ccr2 ,    Klrd1    and   MHC-II    ( 39 ) ,   

comparable   to   genes   expressed   in   “initial”   stage   cells   in   our   analysis   (Supplemental   Table   1   and   

https://www.macrophage-framework.jhmi.edu).    Ccr2    expression   in   particular   gives   credence   to   

our   choice   of   starting   point   for   the   model   as   this   encodes   a   critical   tissue-homing   receptor   in   

circulating   monocytes    ( 40 ) .   Notably,   a   closely   associated   cell   population   in   the   NASH   dataset   

expressed   both    Ear2    and    Fn1 ,   mirroring   “early”   stage   macrophages   (Supplemental   Table   1).  

Moreover,   in   the   context   of   this   disease,   this   population   gave   rise   to   Kupffer   cells    ( 39 ) ,   which   

expressed   high   levels   of    Mrc1 ,    Apoe    and   complement   associated   genes,   similarly   to   

“phagocytic”   path   macrophages.   Another   instance   where   this   progression   is   evident   is   in   joint   

synovial   macrophages    ( 41 ) .   In   this   setting,   two   populations   of   interstitial   macrophages,   one   

MHC-II high    and   one   RELMɑ +    reminiscent   of   the   “initial”   and   “early”   stages   described   herein,   

respectively,   replenished   long-lived   synovial   tissue-resident   cells    ( 41 ) .   The   possibility   to   

reconstruct   our   model   in   these   independent   analyses   demonstrates   the   robustness   and   

universality   of   our   findings.    
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Our   model   highlights   the   role   of   incoming   monocytes   into   tissues,   both   under   homeostasis   and   

inflammatory   conditions.   The   input   of   monocyte-derived   macrophages   to   the   overall   tissue   

macrophage   pool   during   homeostasis   varies   from   organ   to   organ    ( 4 ) ,   and   under   these   conditions   

we   found   that   the   contribution   of   the   four   identified   activation   paths   was   intriguingly   diverse   

between   tissues,   likely   as   a   result   of   microenvironmental   signals   that   are   themselves   

heterogenous.   Thus,   our   data   indicate   that   the   commitment   of   monocytes   to   these   activation   

paths   is   regulated   not   just   by   the   inflammatory   settings,   which   invariably   altered   the   proportion   of   

cells   in   each   stage,   but   also   the   specific   nature   of   the   tissue.   We   further   demonstrated   that   the   

emphasis   of   our   model   on   monocyte-derived   macrophages   was   likely   due   to   the   unique   

transcriptional   profile   of   embryonically   derived   macrophages    ( 2 ) ,   which   were   labeled   as   “not   

classified”   in   our   analysis.   One   implication   of   this   finding   is   that   incoming   monocytes   give   rise   to  

most   of   the   functional   diversity   in   any   given   tissue,   while   the   resident   cells   remain   more   

transcriptionally   stable   regardless   of   the   insult.   Similar   conclusions   were   drawn   recently    ( 10 )   

from   observations   on   alveolar   macrophages,   which   have   been   shown   to   be   less   plastic,   less   

phagocytic,   more   permissive   to   infection,   less   responsive   to   IL-4   stimulation,   and   generally   less   

engaged   in   ongoing   local   immune   responses   than   are   monocyte-derived   cells    ( 42 – 44 ) .   Tissue   

resident   macrophages   in   other   tissues,   specifically   the   peritoneal   cavity,   have   also   been   shown   

to   be   less   immunologically   active    ( 45 ) ,   even   if   they   are   highly   proliferative    ( 46 ) .   Likewise,   

monocyte-derived   macrophages   have   been   shown   to   play   a   dominant   role   in   tumors    ( 47 ) .   The   

mechanisms   restricting   tissue-resident   macrophage   activation   have   not   been   elucidated,   

although   epigenetic   imprinting    ( 1 ,    10 )    and   autophagy-enforced   quiescence    ( 48 )    are   likely  

candidates.   Overall,   the   emerging   picture   is   one   where   macrophage   functional   plasticity   in   

response   to   a   loss   of   homeostasis   within   tissues,   is   a   feature   of   cells   derived   from   recruited   

monocytes,   which   participate   in   the   induction   and   resolution   of   inflammation   by   moving   along   

defined   activation   paths.   This   view   does   not   exclude   the   possibility   that   tissue   resident   

macrophages   are   contributing   to   the   response   to   tissue   damage,   but   it   does   predict   that   

monocyte-derived   cells   are   the   major   contributors   in   this   regard.     

In   our   model,   we   postulate   that   macrophages   become   activated   through   4   possible   paths   and   

that   these   paths   are   unidirectional   such   that   cells   become   committed   exclusively   to   one   route.   

We   infer   that   only   cells   in   the   “phagocytic”   path   go   on   to   replace   tissue-resident   macrophages.   

Several   independent   lines   of   investigation   support   this   hypothesis:   Increased   expression   of   

complement   genes   has   been   reported   in   Kupffer   cells    ( 39 )    and   alveolar   macrophages    ( 49 )   

derived   from   monocytes;    Phagocytosis   appears   to   be   a   key   feature   of   tissue   resident   
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macrophages    ( 50 ) ;   Phagocytic   receptors   like    Mrc1 ,    Cd163 ,    Timd4    and    Mertk ,   all   highly   

expressed   in   “phagocytic”   path   cells,   are   associated   with   tissue   resident   macrophages    ( 50 ) .   It   is   

possible   that   through   phagocytosis,   macrophages   become   tissue   imprinted.   Thus,   by   engulfing   

apoptotic   cells,   macrophages   might   indirectly   absorb   factors   that   convey   tissue   identity.   

By   far   the   most   abundant   gene   signature   we   observed   in   our   analysis   was   that   of   the   later   

stages   of   the   “phagocytic”   path.   As   mentioned   above,   this   transcriptional   profile   is   evident   

elsewhere    ( 39 ,    49 ) .   Indeed,   during   lung   fibrosis    Apoe    and   complement   gene   expression   became   

dominant   features   of   disease   progression    ( 20 ) .   Interestingly,   this   gene   signature   can   be   

extended   to   human   macrophages   involved   in   injury   resolution    ( 51 ) .   Our   proposal   that   these   cells   

give   rise   to   tissue-resident   macrophages   explains   in   part   this   relative   abundance.   However,   their   

transcriptional   profile   also   overlaps   with   genes   associated   with   alternative   activation    ( 17 ) .   

Moreover,   the   complement   product    C1q    has   been   linked   to   macrophage   proliferation    ( 52 ) ,   a   

characteristic   of   alternatively   activated   macrophages.   It   is   intriguing   that   these   macrophages   are   

critical   to   restoring   homeostasis   by   removing   dead   cells,   which   boosts   their   IL-4   driven   

phenotype    ( 53 ) ,   yet   they   also   have   a   clear   role   in   the   pathology   of   several   of   the   conditions   

explored   herein.   Indeed,   our   findings   suggest   that   stalling   macrophages   along   the   “phagocytic”   

path   can   be   both   beneficial,   as   seen   in   the   case   of   breast   tumors,   or   detrimental,   as   observed   in   

atherosclerotic   plaques   (Figure   4).   In   fact,   even   tissue-imprinted   pathogenic   microglia   associated   

with   Alzheimer's   disease   converged   into   an    Apoe -expressing   phenotype    ( 54 ) .   Based   on   this,   we   

postulate   that   determining   how   to   manipulate   progression   along   the   “phagocytic”   path   may   offer   

therapeutic   opportunities.   

While   in   depth   identification   of   the   drivers   of   macrophage   transit   through   the   proposed   activation   

paths   is   beyond   the   scope   of   this   study,   our   initial   exploration   of   the   data   revealed   242   highly   

interconnected   genes   with   some   common   upstream   regulators   and   mapping   to   diverse  

functions.   How   this   transcriptional   network   is   shaped   within   each   tissue   will   be   of   great   interest   

moving   forward.   However,   the   fact   that   the   number   of   macrophage   activation   stages   we   defined   

was   conserved   and   limited,   despite   the   diversity   of   insults   and   tissues   studied,   suggests   that   

common   undercurrents   guiding   macrophage   activation   might   be   built   into   tissues.   One   potential   

set   of   candidates   for   orchestrating   these   processes   would   be   signals   associated   with   tissue   

damage,   which   is   ubiquitous   during   inflammation.   Indeed,   the   production   of   alarmins   by   stromal   

cells   leading   to   the   activation   of   resident   innate   immune   cells   (e.g.   innate   lymphoid   cells,   mast   

cells)   might   be   an   important   driver   of   macrophage   tissue   engraftment,   particularly   as   the   signals   

they   produce   are   capable   of   guiding   both   pro-   and   anti-inflammatory   phenotypes.   Thus,   
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seemingly   opposing   signals   (i.e.   IL-4,   TNF,   IL-1β,   IL-10,   IL-13,   PGE2)   produced   concomitantly   

by   tissue-embedded   mast   cells    ( 55 ,    56 )    and   ILC2s    ( 57 )    might   be   partly   responsible   for   the   

diversity   of   observed   macrophage   activation   paths   in   all   conditions.   It   is   feasible   that   additional   

signals   provided   by   metabolites    ( 58 )     might   contribute   to   these   outcomes.     

Especially   as   we   move   into   the   era   of   single   cell   genomics,   establishing   a   lingua   franca   that   

allows   us   to   describe   macrophage   biology   in   humans   and   other   animals,   and   across   tissues   and   

diseases,   is   critical.   Not   only   is   this   a   matter   of   transferring   insights   from   one   study   to   another,   

but   also   in   shaping   our   understanding   of   the   function   of   macrophages    in   vivo ,   especially   in   

inflammatory   diseases.   Moreover,   moving   the   focus   away   from   individual   genes   and   towards   

gene   signatures,   might   allow   for   better   transferability   of   findings   between   mouse   and   human   

models.   Indeed,   our   data   readily   finds   parallels   in   human   conditions    ( 51 ) .   Finally,   understanding   

how   the   local   microenvironment   shapes   the   immune   response   is   possible   only   if   we   are   able   to   

define   the   common   threads   of   that   response   in   the   first   place.   In   this   context,   our   approach   

highlights   the   overarching   similarity   that   can   be   found   in   the   way   in   which   macrophages   diversify   

their   function,   without   dismissing   the   influence   that   inflammatory   conditions   and   tissue   niches   

impose   on   that   functionality.   We   consider   our   approach   is   a   step   towards   building   a   common   

framework   to   describe   macrophage   activation   that   can   be   applied   broadly   to   explore   the   biology   

of   these   important   cells.   
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Materials   and   Methods   

Data   and   Code   Availability   

Publicly   available   R   packages   were   used   to   analyse   all   data   contained   within   this   manuscript.   

Relevant   packages   are   referenced   through-out   the   methods   section.   Annotated   code   to   

reproduce   key   analysis   modules   and   recreate   figures   was   deposited   on   github   and   may   be   

accessed   at    https://github.com/davidsanin/Macrophage_framework .     

An   interactive   shiny   application   to   visualize   critical   aspects   of   the   data   in   this   publication   can   be   

accessed   at   https://www.macrophage-framework.jhmi.edu.   scRNAseq   datasets   generated   

specifically   for   this   publication   may   be   retrieved   from   publicly   available   repositories   with   no   

restrictions   on   their   use,   under   the   following   accession   numbers:   helminth   infection   of   adipose   

tissue   (GSE157313),   bacterial   infection   of   adipose   tissue   (GSE171328),   High   fat   diet   lamina   

propria   (GSE171330)   and   skin   wound   (GSE   ).   Accession   numbers,   associated   publications   and   

experimental   details   of   these   and   all   other   datasets   included   in   this   study   are   listed   in   

Supplemental   Table   3.   

Mouse   Models   

C57BL/6J   (RRID:   IMSR_JAX:000664),   B6.129P2-Lyz2 tm1(cre)lfo/J    (RRID:   MGI:5014089)   and   

CD45.1   congenic   (RRID:   IMSR_JAX:002014)   mouse   strains   were   purchased   from   The   Jackson   

Laboratory.   Mice   were   macrophages   were   deficient   for   the   expression   of   IL-4Rɑ   (IL-4Rɑ -/- )   were   

generated   by   crossing   B6.129P2-Lyz2 tm1(cre)lfo/J    with   B6-Il4ra tm(loxp)     ( 59 ) .   These   strains   were   

maintained   at   the   Max   Planck   Institute   for   Immunobiology   and   Epigenetics.   Experimental   

procedures   including   helminth   or   bacterial   infection,   adoptive   cell   transfer   into   the   peritoneum   

and   experimental   diets   were   performed   at   the   Max   Planck   Institute   for   Immunobiology   and  

Epigenetics.   Animal   care   was   undertaken   in   accordance   with   Institutional   Animal   Use   and   Care   

Guidelines   with   approval   by   the   animal   care   committee   of   the   Regierungspraesidium   Freiburg,   

Germany.   All   animals   used   for   tissue   harvest   or   experimental   procedures   were   female   and   aged  

between   6-8   weeks   at   the   start   of   the   experiment.   Animals   were   humanely   sacrificed   by   carbon   

dioxide   asphyxiation   followed   by   cervical   dislocation   and   tissue   dissection.   Mice   were   bred   under   

specific   pathogen   free   standards.   

For   skin   wound   model,   B6.RFP   mice   with   ubiquitous   tdRFP   expression   were   generated   by   

germline   excision   of   the   loxP   flanked   STOP   cassette   (LSL)   in   R26 LSL-tdRFP    animals    ( 60 )    employing   

the   pgk-Cre   transgene    ( 61 ) .   This   strain,   alongside   recipient   C57BL/6JRj   (RRID:   MGI:2670020)   
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mice   were   housed   in   individually   ventilated   cages   under   specific-pathogen   free   environment   at   

the   Experimental   Center   of   the   Medical   Faculty,   TU   Dresden.   Wound   and   adoptive   cell   transfer   

experiments   were   conducted   according   to   institutional   guidelines   and   in   accordance   with   the   

German   Law   for   Protection   of   Animals   approved   by   Landesdirektion   Dresden   (TVV   62/2015).     

Adipose   tissue   infection   and   cell   isolation   

Experimental   infections   

L3   infectious   stage    Heligmosomoides   polygyrus    ( H.   poly )   larvae   were   kindly   provided   by   Dr.   

Joseph   Urban   Jr,   USDA,   ARS,   Beltsville   Human   Nutrition   Research   Center,   Diet   Genomics   and   

Immunology   Laboratory,   Beltsville,   USA    and   maintained   at   4°C   until   required.   To   induce    H.   poly   

infection   mice   were   gavaged   with   200   L3   infectious   stage   larvae   in   PBS.   Mice   were   left   for   13   

days   before   being   sacrificed.   

A   wild   type   strain   of    Listeria   monocytogenes    ( L.   mono )   was   used   for   infections.   Mice   were   

infected   subcutaneously   on   the   footpad   with   a   sublethal   dose   of   1   ×   10 6    colony-forming   units   

(CFU).   Mice   were   left   for   1   day   before   being   sacrificed.   

Stromal   vascular   fraction   isolation   

For   isolation   of   cells   from   mesenteric   adipose   tissue,   mice   were   euthanized   and   transcardially   

perfused   with   ice-cold   PBS.   Adipose   tissue   was   separated   from   lymph   nodes   and   surrounding   

organs   (i.e.   intestine,   omentum),   minced   and   digested   in   low   glucose   DMEM   (Gibco)   containing   

25   mM   HEPES,   1%   low   fatty   acid   bovine   serum   albumin,   2   mM   L-glutamine,   100   U/mL   

Penicillin/Streptomycin,   0.2   mg/mL   Liberase   TL   (Roche)   and   0.25   mg/mL   DNase   I   (Roche)   for   

30-40   min   at   37°C   with   gentle   rotation.   After   digestion   DMEM   containing   2   mM   EDTA   was   added   

and   suspension   filtered   through   a   70   µm   strainer.   Cells   in   stromal   vascular   fraction   (SVF)   were   

separated   from   the   adipocyte   layer   by   centrifugation.   

For   isolation   of   cells   from   popliteal   adipose   tissue,   mice   were   euthanized   and   adipose   tissue   was   

separated   from   lymph   nodes   and   surrounding   muscle.   Isolated   tissue   was   then   minced   and   

digested   in   DMEM   (Gibco)   containing   2.5%   bovine   serum   albumin,   2   mM   L-glutamine,   100   U/mL   

Penicillin/Streptomycin,   2   mg/mL   Collagenase   I   (Thermo)   and   2   mg/mL   Collagenase   II   (Thermo)   

for   45   min   at   37°C   with   gentle   rotation.   During   the   last   15   minutes   of   incubation   2   mM   EDTA   was   

added   to   the   media.   Finally,   the   cell   suspension   was   filtered   through   a   100   µm   strainer.   Cells   in   

stromal   vascular   fraction   (SVF)   were   separated   from   the   adipocyte   layer   by   centrifugation.     
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Single   live   cells   were   further   purified   via   fluorescent   activated   cell   sorting,   excluding   dead   cells   

labelled   with   LIVE/DEAD   Fixable   Aqua   Dead   Cell   Stain   Kit   and   doublets   based   on   side   and   

forward   light   scatter.     

Single   cell   barcoding   and   library   preparation   

scRNA-seq   of   SVF   cells   was   performed   using   a   10X   Genomics   Chromium   Controller.   Single   

cells   were   processed   with   GemCode   Single   Cell   Platform   using   GemCode   Gel   Beads,   Chip   and   

Library   Kits   (v2)   following   the   manufacturer’s   protocol   loading   sufficient   cells   to   obtain   5000   cells   

per   lane   following   manufacturer’s   guidelines.   Libraries   were   sequenced   on   HiSeq   3000   

(Illumina)   to   achieve   50000   reads   per   cell.   

Macrophage   isolation   and   adoptive   cell   transfer  

Monocyte   isolation   and   transfer   

A   single   cell   suspension   from   bone   marrow   isolated   from   freshly   sacrificed   CD45.1 +    or   IL-4Rɑ -/-   

mice   was   prepared   by   flushing   the   the   tibia   and   femurs   of   dissected   animals   with   PBS,   then   

passing   resulting   suspension   through   a   70   µm   strainer.   Red   blood   cells   were   removed   by   brief   

incubation   in   ACK   Lysing   Buffer   (ThermoFisher   scientific).   Cell   suspension   was   incubated   in   1%   

fetal   bovine   serum   in   PBS   for   30   min   on   ice   with   fluorochrome-conjugate   monoclonal   antibodies   

plus   anti-CD16/CD32   (Biozol)   and   finally   dead   cells   were   labelled   with   LIVE/DEAD   Fixable   Aqua   

Dead   Cell   Stain   Kit   (Thermo   scientific)   following   the   manufacturer’s   instructions.   After   staining,   

bone   marrow   cells   were   maintained   in   1%   fetal   bovine   serum   in   PBS   at   4°C,   then   target   

population   isolated   using   a   BD   FACSaria TM    Fusion   cell   sorter   into   50%   fetal   bovine   serum   in   

PBS.   Used   fluorochrome-conjugate   monoclonal   antibodies   included:   CD11b   (Biolegend,   clone:   

M1/70),   F4/80   (Biozol,   clone:   BM8),   SiglecF   (BD   Horizon,   clone:   E50-2440),   Ly6G   (BioLegend,   

clone:   1A8),   CD11c   (BioLegend,   clone:   N418),   MHC-II   (BioLegend,   clone:   M5/114.15.2),   Ly6C  

(BioLegend,   clone:   HK1.4).   

Sorted   bone   marrow   monocytes   were   stained   with   Cell   Trace   Violet   (Life   Technologies),   

following   the   manufacturer’s   instructions,   counted   and   then   5x10 5    cells/mouse   were   transferred   

via   intraperitoneal   injection   to   littermates   randomly   assigned   to   experimental   groups.   

Peritoneal   macrophage   isolation   and   transfer   

Peritoneal   lavage   was   harvested   from   CD45.1 +    by   injecting   10   mL   of   ice-cold   2%   fetal   bovine   

serum   in   PBS   into   the   peritoneal   cavity   of   freshly   sacrificed   animals,   then   gently   tapping   the   
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sides   of   the   mouse   to   dislodge   peritoneal   cells,   followed   by   slow   retrieval   of   lavage   solution.   

Cells   were   recovered   via   centrifugation   and   stained   as   described   above   using   a   biotinylated   

monoclonal   antibody   against   TIM4   (Miltenyi   Biotec,   clone:   REA999),   the   isolated   with   anti-biotin   

Microbeads   (Miltenyi   Biotec,   Cat#   130-090-485)   following   the   manufacturer’s   instructions.   

Purified   TIM4 +    tissue   resident   macrophages   were   then   stained   with   Cell   Trace   Violet   (Life   

Technologies),   following   the   manufacturer’s   instructions,   counted   and   then   5x10 5    cells/mouse   

were   transferred   via   intraperitoneal   injection   to   littermates   randomly   assigned   to   experimental   

groups.   

Monocyte   recovery   and   RELMα   staining   

Peritoneal   lavage   was   harvested   from   mice   2,   4   and   8   days   post   adoptive   cell   transfer,   by   

injecting   10   mL   of   ice-cold   2%   fetal   bovine   serum   in   PBS   into   the   peritoneal   cavity   of   freshly   

sacrificed   animals,   then   gently   tapping   the   sides   of   the   mouse   to   dislodge   peritoneal   cells,   

followed   by   slow   retrieval   of   lavage   solution.   Cells   were   recovered   via   centrifugation   and   stained   

for   flow   cytometric   analysis   as   described   above   using   the   following   fluorochrome-conjugate   

monoclonal   antibodies:   TIM4   (BioLegend,   clone:   F31-5G3),   CD45.1   (BioLegend,   clone:   A20)   

and   CD115   (BioLegend,   clone:   AFS98).   Detection   of   intracellular    Retnla    mRNA   and   RELMα   

protein   was   performed   using   PrimeFlow   RNA   Assays   (Thermo   scientific)   following   the   

manufacturer’s   instructions.   Briefly,   surface-stained   peritoneal   lavage   cells   were   fixed   and   

permeabilized   using   the   kit’s   reagents,   then   incubated   with   anti-RELMα   primary   antibody   

(Peprotech,   Cat#   500-P214),   and   subsequently   an   anti-rabbit   secondary   antibody   (Life   

technologies).   Probe   hybridization,   signal   amplification   and   fluorochrome   conjugation   with   

PrimeFlow   target-specific   probes   for    Retnla    and    Actb    (as   a   positive   control)   were   carried   out   

over   the   course   of   2   days   following   the   manufacturer’s   guidelines.   Data   from   stained   cells   were   

collected   using   LSR   Fortessa   flow   cytometers   (BDBiosciences)   with   FACSDiva   v.   9.0   and   data   

were   processed   using   FlowJo   v.   10.6.   

Dietary   intervention   and   large   intestine   lamina   propria   cell   isolation   

High   fat   diet   treatment   

Obesity   was   induced   by   ad   libitum   feeding   of   C57/BL6   mice   for   12   week   with   irradiated   high   fat   

diet   (Rodent   Diet   60%   kcal   from   fat,   Research   Diets,   Inc.,   Cat   #D12492).   Control   diet   (chow)   

containing   24%   protein,   47.5%   carbohydrate,   and   4.9%   fat,   was   given   to   age   and   sex   matched   

animals   as   a   control   group.     
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Cell   isolation   

At   the   end   of   treatment,   animals   were   sacrificed,   and   cells   from   large   intestine   lamina   propria   

recovered.   Briefly,   the   large   intestine   was   separated   at   the   junction   with   the   cecum,   and   all   

remaining   connective   and   fat   tissue   removed.   Isolated   intestine   was   then   opened   longitudinally,   

cleaned,   cut   into   0.4-1   cm   pieces   and   washed   with   ice-cold   25   mM   HEPES   in   PBS.   Tissue   

fragments   were   then   placed   in   RPMI   (Gibco)   medium   containing   3%   fetal   bovine   serum,   25   mM  

HEPES,   5   mM   EDTA   plus   3.5   mM   Dithiothreitol   and   incubated   for   15   min   in   37°C   with   gentle   

agitation.   Tissue   fragments   were   recovered   via   filtering   and   vigorously   washed   thrice   with   2   mM   

EDTA   in   RPMI,   discarding   supernatants.   Washed   fragments   were   minced   then   incubated   in   

RPMI   supplemented   with   0.5%   fetal   bovine   serum,   2   mg/mL   Collagenase   VIII   (Roche)   and    0.5   

mg/mL   DNAse   I   (Roche)   for   30-40   min   at   37ºC   with   gentle   agitation.   Cell   suspension   and   tissue   

fragments   were   filtered   through   a   70   μm   strainer,   and   dissociated   with   the   rubber   end   of   a   

syringe   plunger.   Resulting   cell   suspension   was   centrifuged   and   further   filtered   through   a   40   μm   

cell   strainer.   Finally,   live   cells   were   passed   through   a   Percoll   gradient   (35%/70%),   recovered   

from   the   interface,   washed   and   counted.   

Single   cell   barcoding   and   library   preparation   

Lamina   propria   cells   were   prepared   for   cell   sorting   as   described   above,   using   only   LIVE/DEAD   

dye   and   an   anti-CD45   (BioLegend,   clone:   30-F11)   fluorochrome-conjugated   antibody.   

Recovered   CD45   positive   cells   were   prepared   for   scRNAseq   analysis   using   a   10X   Genomics   

Chromium   Controller.   Single   cells   were   processed   with   GemCode   Single   Cell   Platform   using   

GemCode   Gel   Beads,   Chip   and   Library   Kits   (v2)   following   the   manufacturer’s   protocol.   Libraries   

were   sequenced   on   HiSeq   3000   (Illumina).   

Skin   wounding   and   cell   isolation   

Skin   wounding   and   tdRFP   monocyte   adoptive   transfer     

Monocytes   were   isolated   from   B6.RFP   mice   via   Immuno-magnetic   depletion   of   whole   bone   

marrow   by   incubating   samples   with   biotinylated   antibodies   against:   CD3   (eBioscience,   clone:   

145-2C11),   CD4   (eBioscience,   clone:   GK1.5),   CD8   (eBioscience,   clone:   53-6.7),   CD45R   

(Biolegend,   clone:   RA3-6B2),   CD19   (eBioscience,   clone:   eBio1D3),   NK1.1   (eBioscience,   clone:   

PK136),   Ter119   (Biolegend),   CD49b   (Biolegend,   clone:   DX5),   Ly6G   (Biolegend,   clone:   1A8)   and   

CD117   (Biolgend,   clone:   2B8).   Anti-Biotin   microbeads   (Miltenyi)   were   then   used   according   to   the   
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manufacturer's   protocol.   Enrichment   was   validated   by   staining   purified   bone   marrow   monocytes   

with   antibodies   against   CD115   (Biolegend,   clone:   AFS98),   Ly6C   (BD   Bioscience,   clone:   AL-21).   

Wounding   and   preparation   of   wound   tissue   was   performed   as   previously   described    ( 62 ) .   Briefly,   

mice   were   anesthetized   by   i.p.   injection   of   Ketanest/Rompun   (Park   Davis,   Bayer).   Back   skin   was   

shaved   and   full-thickness   excisional   wounds   were   created   using   a   standard   biopsy   puncher  

(Stiefel).   Mice   were   housed   individually   during   the   entire   time   course   of   healing.   Monocytes   from   

female   B6.RFP   mice   were   isolated   as   described   above,   counted   and   then   3x10 6    cells   were   

adoptively   transferred   into   each   previously   wounded   C57/BL6   recipient   via   intravenous   injection,   

either   2   or   12   days   after   injury.   Wounds   were   excised   4   or   14   days   after   injury.   

Cell   isolation   

Excised   wound   tissue   was   sectioned   with   a   scalpel,   placed   in   DMEM   with   30   µg/mL   Liberase   

TM   Research   Grade   (Roche   Applied   Science)   and   incubated   at   37°C   for   90   min   (shaking).   

Digested   wound   tissue   was   mechanically   disrupted   for   5   min   using   the   Medimachine   System   

(BD   Biosciences).   Cells   were   passed   through   70   µm   and   40   µm   cell   strainer   and   washed   with   

1%   bovine   serum   albumin   and   2   mM   EDTA   in   PBS.   Isolated   cells   were   stained   for   flow   

cytometry   and   cell   sorting   as   described   above,   using   the   following   fluorochrome-conjugated   

antibodies:   CD11b   (eBioscience,   clone:   M1/70),   F4/80   (eBioscience,   clone:   BM8   or   AbD   

Serotec,   clone:   CI:A3-1),   MHC-II   (eBioscience,   clone:   M5/114.15.2),   Ly6C   (BD,   clone:   AL-21),   

CD45   (eBioscience,   clone:   30-F11)   and   CD301b   (Biolegend,   clone:   URA-1).   Dead   cells   were   

excluded   by   labelling   them   with   50   ng/mL   DAPI   (ThermoFisher   scientific).     

Single   cell   barcoding   and   library   preparation   

Single   macrophages   from   wounded   skin   were   index-sorted    (BD   FACS   Aria   II   SORP)    into   384   well   

plates   containing   0.5   µl   of   nuclease   free   water   with   0.2%   Triton-X   100   and   4   U   murine   RNase   

Inhibitor   (NEB),   spun   down   and   frozen   at   −80°C.   Libraries   were   prepared   following   the   

Smart-seq2   workflow    ( 63 ) .   Briefly,   after   thawing,   0.5   µl   of   a   primer   mix   were   added   (5   mM   dNTP   

(Invitrogen),   0.5   µM   dT-primer   

(C6-aminolinker-AAGCAGTGGTATCAACGCAGAGTCGACTTTTTTTTTTTTTTTTTTTTTTTTTTT 

TTTVN),   1   U   RNase   Inhibitor   (NEB)).   RNA   was   denatured   for   3   minutes   at   72°C   and   the   reverse   

transcription   (RT)   was   performed   at   42°C   for   90   min   after   filling   up   to   10   µl   with   RT   buffer   mix   for   

a   final   concentration   of   1x   superscript   II   buffer   (Invitrogen),   1   M   betaine,   5   mM   DTT,   6   mM   

MgCl2,   1   µM   TSO-primer   (AAGCAGTGGTATCAACGCAGAGTACATrGrGrG),   9   U   RNase   
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Inhibitor   and   90   U   Superscript   II.   After   synthesis,   the   reverse   transcriptase   was   inactivated   at   

70°C   for   15   min.   The   cDNA   was   amplified   using   Kapa   HiFi   HotStart   Readymix   (Peqlab)   at   a   final   

1x   concentration   and   0.1   µM   UP-primer   (AAGCAGTGGTATCAACGCAGAGT)   under   following   

cycling   conditions:   initial   denaturation   at   98°C   for   3   min,   23   cycles   [98°C   20   sec,   67°C   15   sec,   

72°C   6   min]   and   final   elongation   at   72°C   for   5   min.   The   amplified   cDNA   was   purified   using   1x   

volume   of   hydrophobic   Sera-Mag   SpeedBeads   (GE   Healthcare)   resuspended   in   a   buffer   

consisting   of   10   mM   Tris,   20   mM   EDTA,   18.5   %   (w/v)   PEG   8000   and   2   M   sodium   chloride   

solution.   The   cDNA   was   eluted   in   12   µl   nuclease   free   water   and   the   concentration   of   the   

samples   was   measured   with   a   Tecan   plate   reader   Infinite   200   pro   in   384   well   black   flat   bottom   

low   volume   plates   (Corning)   using   AccuBlue   Broad   range   chemistry   (Biotium).   

For   library   preparation   up   to   700   pg   cDNA   was   desiccated   and   rehydrated   in   1   µl   Tagmentation   

mix   (1x   TruePrep   Tagment   Buffer   L,   0.1   µl   TruePrep   Tagment   Enzyme   V50;   from   TruePrep   DNA   

Library   Prep   Kit   V2   for   Illumina;   Vazyme)   and   tagmented   at   55°C   for   5   min.   Subsequently,   

Illumina   indices   were   added   during   PCR   (72°C   3   min,   98°C   30   sec,   13   cycles   [98°C   10   sec,   

63°C   20   sec,   72°C   1   min],   72°C   5   min)   with   1x   concentrated   KAPA   Hifi   HotStart   Ready   Mix   and   

300   nM   dual   indexing   primers.   After   PCR,   libraries   were   quantified   with   AccuBlue   Broad   range   

chemistry,   equimolarly   pooled   and   purified   twice   with   1x   volume   Sera-Mag   SpeedBeads.   This   

was   followed   by   Illumina   50   bp   paired-end   sequencing   on   a   Novaseq6000   aiming   at   an   average   

sequencing   depth   of   0.5   mio   reads   per   cell.   

Single   cell   RNA   sequencing   analysis:   

Adipose   tissue   pre-processing   

Samples   were   demultiplexed   and   aligned   using   Cell   Ranger   2.2   (10X   genomics)   to   genome  

build   GRCm38   to   obtain   a   raw   read   count   matrix   of   barcodes   corresponding   to   cells   and   features   

corresponding   to   detected   genes.   Read   count   matrices   were   processed,   analyzed   and   

visualized   in   R   v.   4.0.0    ( 64 )    using   Seurat   v.   3    ( 36 )    with   default   parameters   in   all   functions,   unless   

specified.   Poor   quality   cells,   with   low   total   unique   molecular   identifier   (UMI)   counts   and   high   

percent   mitochondrial   gene   expression,   were   excluded.   Filtered   samples   were   normalized   using   

a   regularized   negative   binomial   regression   (SCTransform)    ( 65 )    and   integrated   with   the   reciprocal   

principal   component   analysis   (rpca)   approach   followed   by   mutual   nearest   neighbors,   using   50   

principal   components.   Integrated   gene   expression   matrices   were   visualized   with   a   Uniform   

Manifold   Approximation   and   Projection   (UMAP)    ( 66 )    as   a   dimensionality   reduction   approach.   

Resolution   for   cell   clustering   was   determined   by   evaluating   hierarchical   clustering   trees   at   a   
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range   of   resolutions   (0   -   1.2)   with   Clustree    ( 67 ) ,   selecting   a   value   inducing   minimal   cluster   

instability.   Datasets   were   subsetted   to   include   only   macrophages,   based   on   the   expression   of   

key   macrophage   markers   ( Adgre1 ,    Csf1r ,    H2-Ab1 ,    Cd68 ,    Lyz2 ,    Itgam ,    Mertk ),   retaining   only   500   

randomly   selected   cells   per   biological   condition.   Macrophage   only   datasets   were   then   split   along   

conditions,   and   processed   anew   as   described   above,   to   obtain   a   reference   macrophage   dataset.   

Differential   gene   expression,   pathway   enrichment   analysis   and   gene   set   score   calculation   

Differentially   expressed   genes   between   clusters   were   identified   as   those   expressed   in   at   least   

40%   of   cells   with   a   greater   than   +1   log   fold   change   and   an   adjusted   p   value   of   less   than   0.01,   

using   the   FindMarkers   function   in   Seurat   v.3   with   all   other   parameters   set   to   default.   Ribosomal   

protein   genes   were   excluded   from   results.   

Cluster   specific   genes   were   explored   for   pathway   enrichment   using   StringDB    ( 68 ) ,   where   

characteristic   gene   sets   were   mapped   to   specific   functions   (Supplemental   Table   2).   Gene   set   

scores   were   calculated   using   the   AddModuleScore   function   in   Seurat   v.3   with   default   

parameters.   Briefly,   the   average   expression   levels   of   each   identified   gene   set   was   calculated   on   

a   single   cell   level   and   subtracted   by   the   aggregated   expression   of   randomly   selected   control   

gene   sets.   For   this   purpose,   target   genes   are   binned   based   on   averaged   expression,   and   

corresponding   control   genes   are   randomly   selected   from   each   bin.   

Trajectory   inference,   pseudotime   calculation   and   trajectory   dependent   gene   regulation   

Macrophage   activation   trajectories   and   pseudotime   estimations   were   calculated   with   slingshot   v.   

1.6.1    ( 30 ) ,   using   UMAP   projection   and   pre-calculated   clustering   as   input   for   getLineages   and   

getCurves   functions   with   default   parameters,   setting   origin   to   cluster   4.   Cells   in   the   reference   

dataset   were   then   assigned   an   activation   trajectory   and   corresponding   pseudotime   value.     

Trajectory   dependent   gene   regulation   was   calculated   first   by   extracting   the   2000   genes   with   the   

most   variance   in   expression   in   cells   participating   in   each   detected   pathway,   then   fitting   general   

additive   models   (GAM)   to   these   genes   and   extracting   the   coefficient’s   p   value   using   gam   v.   1.20   

( 69 ) .   Fitted   models   had   the   expression   of   each   gene   as   a   response   variable   (G)   and   pseudotime   

(t)   as   an   independent   variable   using   locally   estimated   scatterplot   smoothing   (loess)   smooth   

terms   (lo):   

Equation 1.    oG ~ l (t)  
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Extracted   coefficient   p   values   were   adjusted   for   multiple   comparisons   using   a   false   discovery   

rate   correction   with   the   p.adjust   function   from   stats   v.   4.0.0    ( 64 ) .   Adjusted   p   values   were   used   to   

rank   genes,   and   an   arbitrary   threshold   was   used   to   select   most   significant   model   fits.   

Query   dataset   retrieval   and   preprocessing   

Lamina   propria   samples   containing   CD45 +    cells   were   demultiplexed,   mapped,   filtered,   clustered   

and   projected   as   described   above,   maintaining   individual   biological   conditions   separate.   A   

“Macrophage   score”   (Supplemental   Table   2)   was   calculated   for   this   dataset   as   described   above,   

and   clusters   containing   macrophages   extracted.   

Remaining   query   datasets   available   from   public   repositories   were   retrieved   (Supplemental   Table   

3),   obtaining   matrices   with   raw   unfiltered   read   counts   for   detected   genes   in   barcoded   cells.   Low   

quality   cells   were   removed   and   then   datasets   were   subsequently   clustered   and   projected   as   

specified   above.   Where   non-macrophage   cells   were   included   in   the   sequencing   experiment,   a   

“Macrophage   score”   (Supplemental   Table   2)   was   calculated,   and   these   cells   extracted,   keeping   

at   most   500   randomly   selected   cells   per   biological   condition.   

Data   imputation   and   label   transfer   

Query   datasets   were   individually   normalized   with   SCTransform,   then   integrated   within   tissues   

using   the   rpca   approach   as   described   above.   Each   resulting   integrated   dataset   was   then   

compared   to   the   reference   dataset   to   transfer   identified   labels   and   harmonize   data   via   

imputation   using   the   FindTransferAnchors   (dims   =   50,   npcs   =   50,   k.filter   =   5,   max.features   =   

100,   k.anchor   =   5)   and   TransferData   (dims   =   30,   k.weight   =   25,   sd.weight   =   1)   functions   from   

Seurat   v.3   with   the   specified   parameters.   These   were   benchmarked   using   two   negative   control   

datasets   containing   multiple   types   of   immune   cells,   selecting   values   reducing   the   number   of   low   

quality   anchors   and   increasing   the   label   probability   score.   A   threshold   of   80%   (0.8)   was   set   for   

the   label   probability   based   on   negative   controls   to   consider   label   allocation   as   successful.   

Additionally,   label   probability   distributions   across   clusters   in   query   datasets   were   investigated   to   

evaluate   goodness   of   transfer.   Where   a   cluster   was   found   to   be   dominated   by   a   single   label,   and   

a   portion   of   the   cells   within   the   cluster   had   a   high   label   probability   score,   the   corresponding   label   

was   assigned   to   the   entire   cluster.   
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Differential   gene   expression   analysis   within   biological   conditions   

Differentially   expressed   genes   between   biological   conditions   within   a   particular   macrophage   

activation   stage   were   identified   as   those   expressed   in   at   least   25%   of   cells   with   a   greater   than   

+0.25   log   fold   change   and   an   adjusted   p   value   of   less   than   0.01,   using   the   FindMarkers   function   

in   Seurat   v.3   with   all   other   parameters   set   to   default.   Gene   expression   differences   were   based   

on   normalized   data,   not   on   imputed   data.   Ribosomal   protein   genes   were   excluded   from   results.   

Wounded   skin   pre-processing,   label   transfer   and   analysis   

Raw   reads   were   mapped   to   the   mouse   genome   (GRCm38)   and   splice-site   information   from   

Ensembl   release   87   with   gsnap   v.2018-07-04    ( 70 ) .   Uniquely   mapped   reads   and   gene   

annotations   from   Ensembl   release   87   were   used   as   input   for   featureCounts   v.   1.6.2    ( 71 )    to   

create   counts   per   gene   and   cell.   Filtering,   clustering   and   projection   was   performed   as   described   

above,   with   the   addition   of   filtering   based   on   reads   mapping   to   ERCC   spike-in   controls.   Label   

and   data   transferred   was   performed   as   described   above.   

Flow   cytometry   data   associated   with   individually   barcoded   cells   was   used   to   calculate   a   UMAP   

projection   using   uwot    ( 72 ) ,   which   was   then   clustered   with   kmeans   v.   4.0.0    ( 64 ) ,   setting   k   based   

on   the   total   within   cluster   sum   of   squares.   

Cross-condition   data   integration   and   marker   selection   

Cells   in   each   dataset   with   a   high   label   probability   score   were   extracted,   split   by   tissue   retaining   

only   the   depth   corrected   RNA   counts   and   label   assignment,   then   normalized   using   

SCTransform.   These   datasets   were   then   integrated,   clustered   and   projected   as   described   

above,   without   giving   priority   to   the   reference   data,   which   was   further   subsampled   (500   

randomly   selected   cells)   prior   to   integration.   Differentially   expressed   genes   between   

macrophage   activation   stages   were   identified   as   those   expressed   in   at   least   25%   of   cells   with   a   

greater   than   +0.25   log   fold   change   and   an   adjusted   p   value   of   less   than   0.01,   using   the   

FindMarkers   function   in   Seurat   v.3   with   all   other   parameters   set   to   default.   Surface   expression   of   

genes   was   determined   based   on   GO   annotation   (Cell   surface   –   GO:0009986).   

Transcriptional   network,   transcription   factor   and   pathway   enrichment   analysis   

Genes,   for   which   a   significant   association   between   pseudotime   and   gene   expression   was   found,   

were   analysed   using   StringDB    ( 68 )    to   build   a   network   of   protein-protein   interactions   based   on   
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experimental   evidence,   reported   co-expression   and   database   mining.   Resulting   undirected   

network   was   retrieved   and   analysed   using   igraph   v.   1.2.5    ( 73 )    and   ggraph   v.   2.0.2    ( 74 ) .   Weight   

of   edges   connecting   nodes   was   calculated   as   follows:   

Equation 2. ,  S  w =   c × ( ∑
4

i = 1
log10 p.val( ′

A, i × p.val′B, j))  

where    w    is   the   edge   weight,    S c    is   the   confidence   score,    p.val ’    is   the   scaled   adjusted   p   value   for   

the   pair   of   connected   genes   A   and   B   in   activation   path    i ,   with    i    ranging   through   the   four   defined   

activation   paths.   Adjusted   p   values   were   scaled   within   each   activation   path   to   center   the   values   

around   0   making   them   more   comparable   across   paths.   Low   weight   edges   and   disconnected   

nodes   were   filtered,   and   resulting   network   nodes   were   annotated   for   betweenes,   degree,   

eigen-centrality   and   strength   using   native   function   provided   in   igraph.   The   Fruchterman-Reingold   

algorithm   was   used   to   calculate   the   network’s   layout.   Network   clustering   was   performed   using   

the   cluster_louvain   function    ( 75 ) .   

Network   clusters   were   interrogated   for   pathway   enrichment   using   either   Biological   process   Gene   

Ontology   annotation   or   KEGG   pathways   with   goseq   v.   1.40.0    ( 76 ) .   Gene   set   scores   

(Supplemental   Table   2)   for   top   enriched   pathways   were   calculated   as   specified   above   and   the   

pathway   score   variance   calculated   across   cells   within   each   activation   trajectory.   Resulting   

variances   were   used   for   heatmaps   as   a   proxy   for   enriched   pathway   regulation   within   each   

activation   trajectory.   

Transcription   factor   enrichment   analysis   was   performed   with   RcisTarget   v.   1.8.0    ( 77 ,    78 ) .   The   

number   of   incidences   of   each   identified   transcription   factor   across   all   clusters   was   counted,   and   

visualized   as   a   word   cloud   using   wordcloud2   v   0.2.1    ( 79 ) .   

Quantification   and   statistical   analysis   

Statistical   analysis   was   performed   in   R   v.   4.0.0    (64) ,   using   functions   from   the   base   stats   package   

to   calculate   a   single   factor   anova   with   aov   followed   by   Tukey   Honest   Significant   Differences   to   

determine   statistically   significant   differences   between   means   (Figure   2G-H)   or   only   a   single   

factor   anova   to   establish   significant   clustering   effects   (Figure   5M).   Ex   vivo   results   are   

represented   as   dots   for   individual   mice.   Selection   of   sample   size   was   based   on   extensive   

experience   with   similar   assays.   

     

35   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.02.454825doi: bioRxiv preprint 

https://paperpile.com/c/4NhtzS/URzz
https://paperpile.com/c/4NhtzS/URzz
https://paperpile.com/c/4NhtzS/URzz
https://paperpile.com/c/4NhtzS/lG99
https://paperpile.com/c/4NhtzS/lG99
https://paperpile.com/c/4NhtzS/lG99
https://paperpile.com/c/4NhtzS/DpDT
https://paperpile.com/c/4NhtzS/DpDT
https://paperpile.com/c/4NhtzS/DpDT
https://paperpile.com/c/4NhtzS/xOqH
https://paperpile.com/c/4NhtzS/xOqH
https://paperpile.com/c/4NhtzS/xOqH
https://paperpile.com/c/4NhtzS/8F7n+oIkQ
https://paperpile.com/c/4NhtzS/8F7n+oIkQ
https://paperpile.com/c/4NhtzS/8F7n+oIkQ
https://paperpile.com/c/4NhtzS/8F7n+oIkQ
https://paperpile.com/c/4NhtzS/8F7n+oIkQ
https://paperpile.com/c/4NhtzS/WH44
https://paperpile.com/c/4NhtzS/WH44
https://paperpile.com/c/4NhtzS/WH44
https://paperpile.com/c/4NhtzS/BZYY
https://doi.org/10.1101/2021.08.02.454825
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

List   of   Supplementary   Materials   

Fig.   S1.   Related   to   Figure   1.   

Fig.   S2.   Related   to   Figure   2.   

Fig.   S3.   Related   to   Figure   3.   

Fig.   S4.   Related   to   Figure   3.   

Fig.   S5.   Related   to   Figure   5.   

Fig.   S6.   Related   to   Figure   7.   

Supplemental   Table   1.   Differentially   expressed   genes   across   identified   activation   stages   
in   reference   dataset,   related   to   Figures   1   and   S1.   

Identified   differentially   expressed   genes   associated   with   each   defined   cluster   in   Figure   1,   filtering   

for   adjusted   p   value   of   less   than   0.01,   a   percent   expression   greater   than   0.4   and   a   positive   log   

fold   change   greater   than   1.   The   top   15   most   significantly   regulated   genes   from   these   results   are   

presented   in   Figure   S1C.   

Supplemental   Table   2.   Gene   set   scores   

Genes   used   in   calculating   all   gene   set   scores   shown   in   the   study.   

Supplemental   Table   3.   Dataset   description   and   source   

A   description   of   single   cell   RNA-seq   datasets   used   in   the   study,   including   a   brief   outline   of   the   

immunological   conditions   within   each   dataset,   is   presented.   Accession   codes   and   associated   

publications   are   also   given.   

Supplemental   Table   4.   Differentially   expressed   genes   in   cross-condition   data   integration,   
related   to   Figure   5.   

Identified   differentially   expressed   genes   associated   with   each   defined   activation   stage   in   Figure   

5,   filtering   for   adjusted   p   value   of   less   than   0.01,   a   percent   expression   greater   than   0.25   and   a   

positive   log   fold   change   greater   than   0.25.   The   top   5   most   significantly   regulated   genes   from   

these   results   are   presented   in   Figure   5F.   
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Supplemental   Table   5.   Cell   surface   associated   differentially   expressed   genes   from   
cross-condition   data   integration,   related   to   Figure   5.   

Identified   differentially   expressed   genes   associated   with   each   defined   activation   stage   in   Figure   

5   and   with   Gene   Ontology   term   “Cell   surface”   (GO:0009986),   filtering   for   adjusted   p   value   of   less   

than   0.01,   a   percent   expression   greater   than   0.25   and   a   positive   log   fold   change   greater   than   

0.25.   The   top   4   most   significantly   regulated   genes   from   these   results   are   presented   in   Figure   5E.  
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Fig.   1.   Macrophage   activation   in   inflamed   tissues   follows   predefined   paths.   

(A)   Schematic   depiction   of   reference   dataset   construction,   outlining   overall   goals   of   strategy.   

(B)   scRNA-seq   analysis   of   macrophages   (cells   =   2000)   from   the   stromal   vascular   fraction   (SVF)   

of   adipose   tissue   from   naïve,    H.   poly    or    L.   mono    infected   animals   (n   =   1-8   per   group)   shown   as   a   

UMAP,   highlighting   identified   clusters.   

(C)   Relative   levels   (low   -   gray;   high   -   blue)   of   gene   set   scores   associated   with   identified   clusters.   

(D)   Relative   levels   (low   -   gray;   high   -   blue)   of   gene   set   scores   associated   with   Monocyte   

signature   (left)   and   predicted   lineage   breaking   points   (right).   

(E)   Lineage   and   pseudotime   calculation   showing   activation   trajectories.   Cells   assigned   to   

identified   paths   are   colored   to   match   stage   labels.   Non-participating   cells   are   shown   in   gray.   

(F)   UMAP   labelled   according   to   path   progression   indicating   shared   (Initial   >   Early   >   

Intermediate)   and   path   specific   (Phagocytic:   Late.P1   >   Final.P1;   Oxidative   stress:   Late.P2   >   

Final.P2;   Inflammatory:   Final.P3;   Remodelling:   Final.P4)   macrophage   activation   stages.   Cluster  

number   indicated   in   brackets.   

(G)   Activation   stage   distribution   shown   as   a   percentage   of   total   cells   per   biological   condition.   
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Fig.   2.   Macrophage   gene   expression   can   be   modelled   as   a   function   of   activation,   
revealing   a   transitory   stage   of   RELMɑ   expressing   cells.  

(A)   Macrophage   activation   stage   UMAP,   showing   an   example   of   a   fitted   general   additive   model   

(GAM)   for   gene   expression   as   a   function   of   pseudotime.     

(B)   Top   most   significant   GAM   fits   for   genes   associated   with   identified   paths,   showing   single   cells   

gene   expression   (dots   -   color   matching   activation   stage)   as   a   function   of   pseudotime   (x   axis)   for   

each   activation   path,   with   fitted   models   (black   lines)   and   associated   adjusted   p   values   also   

shown.    

(C)   Fitted   GAM   models   (colored   lines   matching   activation   paths)   of   gene   expression   of   

macrophage   activation   markers   (y   axis   -   fixed   across   all   paths   for   each   gene)   as   a   function   of   

pseudotime   (x   axis   -   specific   to   each   path).   

(D)   Left   -   Fitted   GAM   models   (colored   lines   matching   activation   paths)   of   Apoptosis   score   (y   

axis)   as   a   function   of   pseudotime   (x   axis).   Right   -   Fitted   GAM   model   of   expression   level   (y   axis)   

of   a   subset   of   genes   used   in   score   calculation   as   a   function   of   pseudotime   (x   axis)   shown   for   

“oxidative   stress”   path.   

(E)   Relative   expression   of   RELMɑ   coding   gene    Retnla    and    Ear2    shown   as   violin   plots   for   each   

activation   stage   (left)   or   as   a   fitted   GAM   models   specifically   for   each   activation   path   (right).     

(F)   Schematic   view   of   experimental   set   up   for   adoptive   bone   marrow   monocyte   transfer   from   

donor   (CD45.1 + )   mice   into   the   peritoneal   cavity   of   naïve   recipients   (CD45.2 + ).   

(G)   Representative   density   flow   cytometry   plots   (left)   and   quantification   of   percentage   positive   

cells   (right)   expressing   RELMɑ   protein   and   mRNA   ( Retnla )   in   adoptively   transferred   bone   

marrow   monocytes   recovered   from   the   peritoneal   cavity   of   recipient   mice   at   indicated   times.   

Individual   dots   represent   biological   replicates   from   combined   experiments   (n   =   10   across   2   

repeats).   Significant   differences   at   each   stage   compared   to   day   2   are   indicated   (****:   p   value   <   

0.0001)   based   on   single   factor   anova   analysis   followed   by   Tukey   Honest   Significant   Differences   

test.   

(H)   Quantification   of   percentage   positive   macrophages   expressing   RELMɑ   4   days   post   adoptive   

cell   transfer   within   host   large   peritoneal   macrophages,   adoptively   transferred   IL-4Rɑ   sufficient   

(IL-4Rɑ +/+ )   or   deficient   (IL-4Rɑ -/- )   monocytes   (left),   or   in   adoptively   transferred   large   peritoneal   

macrophages   (right).   Individual   dots   represent   biological   replicates   (n   =   4-18).   Significant   
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differences   at   each   stage   compared   to   host   macrophages   are   indicated   (**:   p   value   <   0.01;   *:   p   

value   <   0.05;   ns:   p   value   >   0.05)   or   between   transferred   cells   (ns:   p   value   >   0.05)   based   on   

single   factor   anova   analysis   followed   by   Tukey   Honest   Significant   Differences   test.   
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Fig.   3.   Macrophage   activation   stages   are   conserved   across   tissues   and   inflammatory   
conditions.   

(A-I)   Top   left   -   UMAP   of   macrophages   from   indicated   tissue   and   condition   labelled   according   to   

predicted   activation   stage,   including   “Not   classified”   cells   (gray).   Top   right   -   Label   probability   

distribution   from   indicated   tissue   and   condition,   showing   confidence   threshold   (dashed   blue   line)   

for   label   assignment.   Bottom   right   -   Stage   distribution   shown   as   a   percentage   of   total   cells   per   

biological   condition,   colored   to   match   predicted   labels.   Bottom   left   -   UMAP   of   relative   expression   

(low   -   gray;   high   -   blue)   of    Retnla    and    Ear2 .   Cell   numbers:   Lamina   propria   -   332;   Sciatic   nerve   -   

1500;   Breast   tumor   -   1000;   Atherosclerotic   plaque   -   1000;   Liver   -   1800;   Lung   -   1000;   Heart   -   773;   

Retina   -   897;   Skeletal   muscle   -   1000.   
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Fig.   4.   Dysregulation   of   path-associated   gene   expression   results   in   pathological   
macrophage   activation   stalling.   
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(A)   Label   probability   distribution   of   microglial   datasets   obtained   from   mice   at   indicated   

developmental   stages.   

(B)   UMAP   with   stage   labels   from   macrophages   obtained   from   Atherosclerotic   plaque   regressing   

(dark   blue)   and   progressing   (pink)   lesions.   

(C,   H)   Percentage   of   Late.P1   cells   per   biological   condition.   

(D)   Significantly   (adjusted   p   value   <   0.01)   regulated   genes   (log   fold   change   >   0.25)   in   

Progressing   compared   to   Regressing   lesion   macrophages.   

(E,   J)   Fitted   GAM   models   for   expression   of   differentially   regulated   genes   (y   axis)   as   a   function   of   

Phagocytic   path   pseudotime   (x   axis)   indicating   Late.P1   stage   (dashed   vertical   lines).   

(F)   UMAP   with   stage   labels   from   macrophages   obtained   from   spontaneous   breast   cancer   

tumors   in   animals   with   a   macrophage   specific    Dab2    deletion   ( Dab2    KO   -   light   blue)   and   wild   type   

littermates   (WT   -   ochre).   

(G)   Violin   plot   of   relative    Dab2    expression   across   activation   stages.   

(I)   Significantly   (adjusted   p   value   <   0.01)   regulated   genes   (log   fold   change   >   0.25)   in    Dab2    KO   

compared   to   WT   macrophages.   
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Fig.   5.   Wound   macrophage   recruitment   confirms   activation   path   model.   

(A)   UMAP   with   stage   labels   from   macrophages   (cells   =   1061)   obtained   from   wounded   skin   

biopsies   4   and   14   dpw   (n   =   5-9).   

(B)   Schematic   overview   of   experimental   set   up   for   adoptive   tdRFP +    monocyte   transfer   into   

wounded   animals.   

(C)   Label   probability   distribution   showing   confidence   threshold   (dashed   blue   line)   for   label   

assignment.   

(D)   Stage   distribution   shown   as   a   percentage   of   total   cells   per   biological   condition,   colored   to   

match   predicted   labels.   
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(E)   UMAP   with   tdRFP+   monocytes   labelled   in   red.   

(F)   tdRFP+   fluorescence   intensity   (FI)   in   all   cells   across   predicted   labels.   FI   threshold   for   

transferred   cell   detection   is   indicated   as   a   dashed   line.   

(G)   Stage   distribution   shown   as   a   percentage   of   total   tdRFP +    cells   per   biological   condition,   

colored   to   match   predicted   labels.   

(H)   Relative   expression   (low   -   gray;   high   -   blue)   in   tdRFP +    cells   of    Retnla    and    Ear2    shown   as   

UMAPs   (left)   and   as   violin   plots   for   each   activation   stage   (right).     

(I-K)   UMAP   calculated   based   on   indexed   flow   cytometry   data,   labelled   with   predicted   activation   

stages   (I),   k   means   clustering   (J)   or   tdRFP+   monocytes   (K).   

(L)   Stage   distribution   shown   as   a   percentage   of   total   cells   per   flow   cytometry   cluster,   colored   to   

match   predicted   labels.   

(M)   Relative   mean   fluorescence   intensity   (MFI;   low   -   blue;   high   -   orange)   in   flow   cytometry   

clusters.   
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Fig.   6.   Cross-condition   data   integration   reveals   stage-specific   marker   genes.   
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(A)   Activation   stage   distribution   shown   as   percentages   of   total   cells   per   biological   condition   and   

tissue.   Scale   was   modified   with   a   square-root   transformation   for   ease   of   visualization.   

(B)   Schematic   overview   of   data   reprocessing   strategy.   

(C-D)   Integrated   UMAP   of   macrophages   (cells   =   2843)   across   conditions   and   tissues   labelled   

with   identified   clusters   (C)   or   previously   assigned   activation   stages   (D).   

(E)   Dot   plot   of   top   significantly   regulated   genes   associated   with   GO   term   “Cell   surface”   

(GO:0009986)   across   activation   stages.   

(F)   Heatmap   showing   relative   expression   (low   -   blue;   high   -   orange)   of   top   significantly   (adjusted   

p   value   <   0.01)   regulated   genes   (log   fold   change   >   0.25)   across   activation   stages.   
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Fig.   7.   Macrophage   transcriptional   network   across   activation   paths.   
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(A)   Transcriptional   network   of   protein-protein   interactions,   depicting   genes   (n   =   242)   as   nodes   

and   interactions   as   edges   (n   =   716).   Node   size   corresponds   to   calculated   strength.   Node   color   is  

associated   with   the   assigned   network   cluster.   Edge   opacity   corresponds   to   calculated   weight   of   

interaction.   The   most   enriched   GO   term   associated   with   each   cluster   is   indicated.   

(B)   Transcriptional   network   as   in   A,   but   split   along   activation   paths,   with   arbitrary   node   size   and   

edge   opacity.   

(C)   Transcriptional   network   as   in   A,   limited   to   nodes   with   high   betweenness   (75%   quantile)   that   

connect   2   or   more   clusters.   Gene   names   indicated   in   red.   

(D)   Top   -   Transcription   factor   enrichment   analysis   shown   as   a   word   cloud   where   size   of   name   is   

proportional   to   the   number   of   gene   sets   in   transcriptional   network   clusters   associated   with   the   

specific   transcription   factor.   Bottom   -   Fitted   GAM   models   (colored   lines   matching   activation   

paths)   of   gene   expression   of   enriched   transcription   factors   (y   axis   -   fixed   across   all   paths   for   

each   gene)   as   a   function   of   pseudotime   (x   axis   -   specific   to   each   path).   

(E-F)   Heatmap   showing   relative   gene   set   score   variance   (low   -   blue;   high   -   orange)   of   enriched   

GO   terms   (E)   or   KEGG   pathways   (F).   
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Figure   S1.   Related   to   Figure   1. 
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(A)   UMAP   of   CD45 +    SVF   cells   isolated   from   mesenteric   adipose   tissue   of   naïve   and    H.   poly    infected  

mice,   labelled   and   colorer   according   to   identified   clusters   (top)   or   showing   relative   expression   (low   -   

gray;   high   -   blue)   of   macrophage   marker   genes   (bottom).   

(B)   UMAP   of   SVF   cells   isolated   from   popliteal   adipose   tissue   of   naïve   and    L.   mono    infected   mice,   

labelled   and   colorer   according   to   identified   clusters   (top)   or   showing   relative   expression   (low   -   gray;   

high   -   blue)   of   macrophage   marker   genes   (bottom).   

(C)   Heatmap   showing   relative   expression   (low   -   blue;   high   -   orange)   of   top   significantly   (adjusted   p   

value   <   0.01)   regulated   genes   (log   fold   change   >   0.25)   genes   across   identified   clusters   in   Figure   1B.   
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Figure   S2.   Related   to   Figure   2.   
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(A)   Adjusted   p   value   distribution   for   GAM   fits   for   each   activation   path,   showing   an   arbitrary   

significance   threshold   (blue   dashed   line   -   1x10 -9 ).     

(B)   Violin   plots   showing   relative   gene   expression   of   macrophage   activation   markers   across   identified   

stages.   

(C-D)   Representative   flow   cytometry   plots   showing   gating   strategy   for   the   isolation   of   live   bone   

marrow   monocyte   precursors   (C),   or   analysis   of   adoptively   transferred   cells   in   the   peritoneal   cavity   

(D).   
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Figure   S3.   Related   to   Figure   3.   

  

(A-H)   Analysis   of   CD45 +    cells   from   either   the   SVF   of    H.   poly    infected   animals   (A-D)   or   the   lamina   

propria   (E-H).   

(A,   E)   Label   probability   distribution   showing   confidence   threshold   (dashed   blue   line)   for   label   

assignment.   
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(B,   F)   Relationship   between   label   probability   and   macrophage   score   in   cells   shown   as   dots   and   

colored   according   to   transferred   labels.   Dashed   blue   line   indicates   confidence   threshold   (80%)   for   

label   transfer.   

(C,   G)   UMAP   showing   assigned   labels   (colored   cells)   and   cells   with   no   classification   in   grey.   

(D,   H)   UMAP   showing   relative   expression   (low   -   gray;   high   -   blue)   of   macrophage   specific   genes.   

(I-Q)   UMAP   showing   relative   expression   (low   -   gray;   high   -   blue)   of   2   genes   per   indicated   dataset,   

illustrating   the   effects   of   data   imputation   procedure   by   comparing   expression   patterns   in   original   

(bottom)   and   imputed   (top)   data.   
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Figure   S4.   Related   to   Figure   3.   

(A-R)   Query   datasets   were   clustered   and   visualized   as   UMAPs   (A,   C,   E,   G,   I,   K,   M,   O,   Q)   and   violin   

plots   illustrating   the   label   probability   distribution   for   every   detected   label   within   each   identified   cluster   

(B,   D,   F,   H,   J,   L,   N,   P,   R).    Dashed   blue   line   indicates   confidence   threshold   (80%)   for   label   transfer.   
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Figure   S5.   Related   to   Figure   5.   

(A)   UMAP   of   wounded   skin   macrophages   indicating   identified   clusters.   

(B)   Violin   plots   illustrating   the   label   probability   distribution   for   every   detected   label   within   each   

identified   cluster.    Dashed   blue   line   indicates   confidence   threshold   (80%)   for   label   transfer.   

(C-D)   tdRFP+   fluorescence   intensity   (FI)   in   all   cells   across   harvest   day   (C)   or   adoptive   transfer   day   

(D).     

(E)   Total   within   cluster   sum   of   squares   (SS)   as   a   function   of   k   means   (number   of   clusters).   Dashed   red   

line   indicates   the   selected   number   of   clusters   (k=   6).   

(F)   UMAP   calculated   based   on   indexed   flow   cytometry   data   with   day   of   tissue   harvest   indicated.   
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Figure   S6.   Related   to   Figure   7.   

(A)   Transcriptional   network   or   protein-protein   interactions,   depicting   genes   as   nodes   (n   =   586)   and   

interactions   as   edges   (n   =   3355).   

(B)   Edge   weight   distribution   indicating   threshold   (dashed   blue   line)   for   edge   trimming.   

(C)   Dot   plot   depicting   top   enriched   GO   terms   for   each   identified   network   cluster.     
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Supplemental   Table   2.   Gene   set   scores   

Genes   used   in   calculating   all   gene   set   scores   shown   in   the   study.   

Score   name   Associated   genes   Fig.   

Macrophage   Adgre1,   Csf1r,   H2-Ab1,   Cd68,   Lyz2,   Itgam,   Mertk   S1,   S3   

Complement   &   
Phagocytosis   

C1qc,   F13a1,   C1qa,   C4b,   Cfh,   C5ar1,   Snx2,   Tgfbr2,   Dab2,   Folr2,   Cltc,   Wwp1,   
Cd209d,   Mrc1,   Cd209f,   Cd209g,   Cd36,   Ctsb,   Lgmn,   Cltc,   Cd63   1C   

ECM   &   Actin   Regulation   Cd44,   Sdc1,   Fn1,   Pfn1,   Fn1,   Actg1,   Tmsb4x   1C   

Antigen   Presentation   H2-Ab1,   H2-Aa,   H2-Eb1,   H2-Oa,   H2-DMb2,   H2-Ob,   H2-DMb1   1C   

Innate   Immune   Response   
Tnfaip8l2,   Cyba,   Rsad2,   Anxa1,   Ifitm3,   Fcgr1,   Fgr,   Oasl2,   Clec4e,   Clec4d,   
Pglyrp1,   Oas3,   Isg20,   Samhd1,   Hmgb2,   Rnase6,   Slpi,   Msrb1,   Gbp2   1C   

Phagosome   Ctss,   Cyba,   Msr1,   Fcgr1,   Coro1a,   Thbs1,   Ncf4,   Fcgr3   1C   

Oxidative   Stress   Prdx5,   Txn1,   Gsr,   Ptgs2,   Ccs,   Prdx6,   Gpx4,   Sesn1,   Sod3,   Ltc4s   1C   

ECM   Organization   Col1a1,   Nid1,   Dpt,   B4galt1,   Lum,   Col3a1,   Ccdc80,   Ramp2,   Serpinh1,   Ddr2   1C   

Cycling   
Racgap1,   Cks1b,   Stmn1,   Ran,   Cep57,   Smc4,   Top2a,   Cks2,   Ube2s,   Ube2c,   
Cenpw,   Smc2,   Anp32b,   Ranbp1,   Cenpa   1C   

Monocyte   
S100a4,   Itgb7,   Napsa,   Cd300lg,   Adora2b,   Emb,   Ly6c2,   Ms4a4c,   Fn1,   Sell,   
Padi2,   Lilra6,   Ccnb2,   Galnt9,   Upb1,   Lmo1,   F13a1,   Ccr2,   Gm15987,   AI839979   1D   

Apoptosis   

Acin1,   Acvr1c,   Aifm1,   Aifm3,   Akt1,   Ano6,   Apaf1,   Bax,   Bbc3,   Bcl2l1,   Bcl10,   
Blcap,   Bok,   Casp3,   Casp7,   Casp8,   Casp14,   Casp16,   Cd24a,   Cdk5rap3,   
Cdkn2a,   Cecr2,   Cidea,   Cideb,   Cidec,   Cxcr3,   Dedd2,   Dffa,   Dffb,   Dicer1,   Dlc1,   
Dnase1l3,   Dnase2a,   Dnase2b,   Endog,   Ern2,   Exog,   Fap,   Foxl2,   Fzd3,   Gcg,   
Gm20594,   Gper1,   Hsf1,   Igfbp3,   Il6,   Madd,   Nmnat1,   Pak2,   Pam16,   Plscr1,   
Plscr2,   Ptgis,   Rffl,   Rnf34,   Rps3,   Sharpin,   Sirt2,   Stk24,   Taok1,   Tnf,   Top2a,   
Trp53,   Trp53bp2,   Trpc5,   Xkr4,   Xkr5,   Xkr6,   Xkr7,   Xkr8,   Xkr9,   Zc3h12a   2D   

Movement   Of   Cell   Or   
Subcellular   Component   

Actb,   Adam8,   Aif1,   Aldoa,   Apoe,   App,   Rhoc,   C3ar1,   C5ar1,   Cd44,   Cd63,   
Coro1a,   Ccr2,   Cnn2,   Csf1r,   Ednrb,   Fcer1g,   Fcgr3,   Fn1,   Srgap2,   Gas6,   
B4galt1,   Gna12,   Grn,   Cxcl1,   Igf1,   Cd74,   Itgam,   Itgb1,   Itgb2,   Itgb7,   Jun,   Jup,   
Lamp1,   Lgals3,   Lrp1,   Mif,   Mmp9,   Nck1,   Pdpk1,   Pfn1,   Pltp,   Lgmn,   Ptger4,   
Tmsb10,   Tmsb4x,   Rac2,   Ccl6,   Cxcl2,   Cxcl12,   Selplg,   Sparc,   Sdc3,   Sdc4,   
Thbs1,   Trf,   Vasp,   Iqgap1,   Bin1,   Pik3cg,   Sdcbp,   Cxcl13,   Ccl24,   Pf4,   Cxcl16,   
Pycard,   Arpc2,   Trem2,   Gpsm3,   Arrb2,   P2ry6,   Myo1g   7E   

Chemotaxis   

Adam8,   Aif1,   App,   C3ar1,   C5ar1,   Coro1a,   Ccr2,   Csf1r,   Ear2,   Ednrb,   Fcer1g,   
Fcgr3,   Fn1,   Gas6,   Cxcl1,   Cd74,   Itgam,   Itgb2,   Lgals3,   Lrp1,   Lsp1,   Mif,   Lgmn,  
Rac2,   Ccl6,   Cxcl2,   Cxcl12,   Thbs1,   Vasp,   Pik3cg,   Cxcl13,   Ccl24,   Pf4,   Cxcl16,   
Trem2,   Gpsm3,   Arrb2   7E   
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G   Protein-coupled   
Receptor   Signaling   
Pathway   

Apoe,   C3ar1,   C5ar1,   Ccr2,   Ednrb,   Gna12,   Gngt2,   Itgb1,   Lrp1,   Psap,   Ptger4,   
Rac2,   Ccl6,   Ezr,   Pik3cg,   Ramp1,   Ccl24,   Gpr132,   Pf4,   Arhgef12,   Hcar2,   Arrb2,   
P2ry6   7E   

Cytoskeleton   
Organization   

Actb,   Actg1,   Aif1,   Ap1g1,   Rhoc,   Arpc1b,   Capza2,   Coro1a,   Cnn2,   Csf1r,   Ctsl,   
Srgap2,   Itgb1,   Lrp1,   Lsp1,   Nck1,   Pfn1,   Ptger4,   Tmsb10,   Tmsb4x,   Rac2,   
S100a10,   Sdc4,   Trf,   Tubb5,   Tyrobp,   Vasp,   Ezr,   Bin1,   Sdcbp,   Ccl24,   Pycard,   
Cotl1,   Arpc2,   Arhgap10,   Mtss1,   Gsn   7E   

Actin   Filament   
Organization   

Aif1,   Rhoc,   Arpc1b,   Capza2,   Coro1a,   Nck1,   Pfn1,   Ptger4,   Tmsb10,   Tmsb4x,   
Rac2,   S100a10,   Sdc4,   Trf,   Vasp,   Ezr,   Bin1,   Ccl24,   Pycard,   Cotl1,   Arpc2,   
Mtss1,   Gsn   7E   

Actin   Polymerization   Or   
Depolymerization   

Aif1,   Arpc1b,   Capza2,   Coro1a,   Nck1,   Pfn1,   Tmsb10,   Tmsb4x,   Vasp,   Bin1,   
Ccl24,   Pycard,   Cotl1,   Arpc2,   Mtss1,   Gsn   7E   

Positive   Regulation   Of   
Lipid   Localization   Apoe,   Anxa2,   Cd36,   Lpl,   Lrp1,   Mif,   Pltp,   Msr1   7E   

Erk1   And   Erk2   Cascade  
Apoe,   App,   C5ar1,   Cd36,   Cd44,   Csf1r,   Fn1,   Gas6,   Igf1,   Cd74,   Il6,   Jun,   Lrp1,   
Mif,   Ptger4,   Ccl6,   Trf,   Ezr,   Ccl24,   Pycard,   Trem2,   Arrb2,   P2ry6   7E   

Positive   Regulation   Of   
Endocytosis   

Apoe,   B2m,   Anxa2,   Cd14,   Cd36,   Cd63,   Fcgr1,   Hfe,   Itgb1,   Itsn1,   Lrp1,   Trf,   
Bin1,   Trem2,   Arrb2   7E   

Regulation   Of   
Transcription   By   Rna   
Polymerase   Ii   

Aebp2,   App,   Ciita,   Cd36,   Ednrb,   Ezh2,   Fos,   Irf8,   Igf1,   Il6,   Jun,   Jup,   Mafb,   
Nck1,   Ncoa3,   Nfkb1,   Slc11a1,   Pbx1,   Pfn1,   Rel,   Spi1,   Ezr,   H2afz,   Ncoa6,   Pf4,   
Plac8   7E   

Regulation   Of   Myeloid   
Leukocyte   Differentiation   Adam8,   C1qc,   Csf1r,   Fos,   Cd74,   Jun,   Mafb,   Tyrobp,   Pf4,   Trem2   7E   

Regulation   Of   Nitrogen   
Compound   Metabolic   
Process   

Actb,   Adam8,   Aebp2,   Aif1,   Prdx6,   Fabp4,   Aplp2,   Apoe,   App,   Asah1,   Serping1,   
Ciita,   C3ar1,   C5ar1,   Anxa2,   Cct2,   Cd36,   Cd44,   Ccr2,   Csf1r,   Cst3,   Cstb,   Ctsc,   
Ctsd,   Cybb,   Ednrb,   Ezh2,   Fcgr1,   Fcgr3,   Fn1,   Fos,   Gas6,   Gna12,   Grn,   H3f3b,   
Hfe,   Irf8,   Igf1,   Igfbp4,   Cd74,   Il6,   Itgb1,   Itgb2,   Itm2b,   Jun,   Jup,   Mafb,   Psmb8,   
Lrp1,   Mif,   Mmp9,   Nck1,   Ncoa3,   Nfkb1,   Slc11a1,   Pbx1,   Pdpk1,   Pfn1,   Ctsa,   
Lgmn,   Psap,   Ptger4,   Tmsb4x,   Rel,   Ccl6,   Spi1,   Slpi,   Sdc4,   Thbs1,   Timp2,   
Tnfrsf1b,   Trf,   Tfrc,   Tyrobp,   Ezr,   Iqgap1,   Bin1,   Pik3cg,   H2afz,   Ramp1,   Sdcbp,   
Ccl24,   Ncoa6,   Pf4,   Ncstn,   Ctsz,   Pycard,   Cd209b,   Trem2,   Tlr7,   Arrb2,   Gsn,   
Plac8,   P2ry6   7E   

Antigen   Processing   And   
Presentation   Of   
Exogenous   Peptide   
Antigen   

B2m,   Fcer1g,   Fcgr1,   Fcgr3,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-K1,   H2-DMa,   
H2-DMb1,   H2-DMb2,   H2-Oa,   Cd74,   Unc93b1   7E   

Immune   System   Process   

Actg1,   Adam8,   Aif1,   Ap1g1,   Ap2a2,   Apoe,   App,   B2m,   Serping1,   C1qa,   C1qb,   
C1qc,   Ciita,   C3ar1,   C4b,   C5ar1,   Anxa2,   Cd14,   Cd36,   Cd44,   Cd68,   Cd83,   
Coro1a,   Ccr2,   Cnn2,   Csf1r,   Ctsc,   Cyba,   Cybb,   Ednrb,   Fcer1g,   Fcgr1,   Fcgr3,   
Fcgrt,   Fos,   Gas6,   B4galt1,   Grn,   Cxcl1,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-K1,   
H2-DMa,   H2-DMb1,   H2-DMb2,   H2-Oa,   H2-Ob,   Hfe,   Hp,   Irf8,   Igf1,   Cd74,   Il2rg,   7E   
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Il6,   Itgam,   Itgb1,   Itgb2,   Itgb7,   Jun,   Klrd1,   Mafb,   Lamp1,   Lgals1,   Lgals3,   
Psmb8,   Lrp1,   Lst1,   Mif,   Mmp9,   Clec4d,   Mpeg1,   Mrc1,   Nck1,   Nfkb1,   Slc11a1,   
Pbx1,   Pdpk1,   Cfp,   Lgmn,   Ptger4,   Rac2,   Ccl6,   Cxcl2,   Cxcl12,   Selplg,   Spi1,   
Slpi,   Sdc4,   Thbs1,   Tnfrsf1b,   Trf,   Tfrc,   Tyrobp,   Ezr,   Fyb,   Hcst,   Pik3cg,  
Unc93b1,   Cxcl13,   Ccl24,   Pf4,   Ncstn,   Cxcl16,   Pycard,   Rnase6,   Hcar2,   Trem2,   
Gpsm3,   Tlr7,   Cd209a,   Arrb2,   Gsn,   Clec12a,   Myo1g   

Innate   Immune   Response   

Actg1,   Adam8,   Ap1g1,   Apoe,   Serping1,   C1qa,   C1qb,   C1qc,   Ciita,   Cd14,   
Coro1a,   Csf1r,   Cyba,   Cybb,   Fcer1g,   Fcgr1,   Grn,   H2-Aa,   H2-Ab1,   H2-Eb1,   Irf8,   
Cd74,   Klrd1,   Lamp1,   Lgals3,   Mif,   Clec4d,   Mpeg1,   Mrc1,   Slc11a1,   Cfp,   Ccl6,   
Slpi,   Unc93b1,   Ccl24,   Cxcl16,   Pycard,   Rnase6,   Trem2,   Tlr7,   Arrb2,   Gsn   7E   

Response   To   External   
Stimulus   

Actg1,   Adam8,   Aif1,   Alox5ap,   Ap1g1,   Fabp4,   Apoe,   App,   B2m,   Serping1,   
C1qa,   C1qb,   C1qc,   Ciita,   C3ar1,   C5ar1,   Anxa2,   Cd14,   Cd36,   Cd44,   Cd63,   
Cd68,   Coro1a,   Ccr2,   Cnn2,   Csf1r,   Ctsc,   Cyba,   Cybb,   Ear2,   Ednrb,   Fcer1g,   
Fcgr1,   Fcgr3,   Fn1,   Fos,   Gas6,   Grn,   Cxcl1,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-K1,  
Hfe,   Hp,   Irf8,   Igf1,   Cd74,   Il6,   Itgam,   Itgb2,   Jun,   Jup,   Klrd1,   Lamp1,   Lamp2,   
Lgals3,   Lpl,   Lrp1,   Lsp1,   Lyz2,   Lyz1,   Mif,   Mmp9,   Clec4d,   Mpeg1,   Mrc1,   Nck1,   
Nfkb1,   Slc11a1,   Cfp,   Pros1,   Lgmn,   Ptger4,   Rac2,   Ccl6,   Cxcl2,   Cxcl12,   Slfn2,   
Slpi,   Thbs1,   Tnfrsf1b,   Trf,   Tfrc,   Vasp,   Cd52,   Pik3cg,   Unc93b1,   Cxcl13,   Ccl24,   
Mgst1,   Pf4,   Cxcl16,   Pycard,   Cd209b,   Cotl1,   Rnase6,   Trem2,   Gpsm3,   Tlr7,   
Cd209d,   Stab1,   Arrb2,   Gsn,   Plac8   7E   

Phagocytosis   

Aif1,   Cd36,   Coro1a,   Ccr2,   Cnn2,   Cyba,   Fcer1g,   Fcgr1,   Fcgr3,   Gas6,   Irf8,   Il2rg,   
Itgb1,   Itgb2,   Lrp1,   Ncf4,   Slc11a1,   Pros1,   Msr1,   Thbs1,   Tyrobp,   Pycard,   
Cd209b,   Trem2,   Gsn,   P2ry6,   Myo1g   7E   

Inflammatory   Response   

Adam8,   Aif1,   Alox5,   Alox5ap,   Fabp4,   Apoe,   App,   C1qa,   Ciita,   C3ar1,   C5ar1,   
Cd14,   Cd44,   Cd68,   Ccr2,   Csf1r,   Ctsc,   Cyba,   Cybb,   Ednrb,   Fcer1g,   Fcgr1,   
Fcgr3,   Fn1,   B4galt1,   Grn,   Cxcl1,   Hp,   Igf1,   Il6,   Itgam,   Itgb2,   Jun,   Lpl,   Lrp1,   Mif,   
Nfkb1,   Slc11a1,   Ptger4,   Rel,   Ccl6,   Cxcl2,   Thbs1,   Tnfrsf1b,   Tyrobp,   Pik3cg,   
Cxcl13,   Ccl24,   Pf4,   Pycard,   Trem2,   Cd163,   Gpsm3,   Tlr7,   Stab1   7E   

Protein   
Homooligomerization   

Alox5ap,   Apoe,   App,   Rhoc,   B2m,   Fcer1g,   B4galt1,   Lamp2,   Mif,   Vasp,   Mgst1,   
Pycard   7E   

Protein   Complex   
Oligomerization   

Alox5ap,   Apoe,   App,   Rhoc,   B2m,   Anxa2,   Fcer1g,   B4galt1,   Cd74,   Jup,   Lamp2,   
Mif,   Mmp9,   Prkcsh,   S100a10,   Vasp,   Hgsnat,   Mgst1,   Pycard   7E   

Leukotriene   Biosynthetic   
Process   Alox5,   Alox5ap,   Ltc4s   7E   

Icosanoid   Biosynthetic   
Process   Alox5,   Alox5ap,   Cd74,   Fabp5,   Ltc4s,   Mif   7E   

Carboxylic   Acid   Metabolic   
Process   

Aldoa,   Alox5,   Alox5ap,   Fabp4,   App,   Cd36,   Cd44,   Idh1,   Igf1,   Cd74,   Fabp5,   Lpl,   
Ltc4s,   Mif,   Nfkb1,   Ptger4,   Acly   7E   

Superoxide   Metabolic   
Process   Cd36,   Cyba,   Cybb,   Cxcl1,   Itgam,   Itgb2,   Ncf4,   Tyrobp   7E   

Positive   Regulation   Of   
Tumor   Necrosis   Factor   

Adam8,   App,   Cd14,   Cd36,   Ccr2,   Cyba,   Cybb,   Fcer1g,   Fcgr3,   Lpl,   Mif,   Thbs1,   
Tyrobp,   Pf4,   Pycard,   Cd209b   7E   
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Superfamily   Cytokine   
Production   

Response   To   Hypoxia   Adam8,   Cybb,   Hmox2   7E   

Defense   Response   To   
Bacterium   

C5ar1,   Cd36,   Cyba,   Fcer1g,   Fcgr1,   Grn,   H2-K1,   Hp,   Irf8,   Lyz2,   Lyz1,   Clec4d,   
Mpeg1,   Slc11a1,   Slpi,   Cxcl13,   Pycard,   Rnase6,   Trem2,   Cd209d,   Stab1,   Plac8   7E   

Regulation   Of   Proteolysis   

Adam8,   Apoe,   App,   Serping1,   Anxa2,   Cd44,   Cst3,   Cstb,   Ctsc,   Ctsd,   Gas6,   
Gna12,   Grn,   Hfe,   Igf1,   Il6,   Psmb8,   Mmp9,   Lgmn,   Slpi,   Thbs1,   Timp2,   Tnfrsf1b,   
Bin1,   Sdcbp,   Ctsz,   Pycard,   Trem2,   Arrb2,   Gsn   7E   

Lipid   Catabolic   Process   Prdx6,   Apoe,   Asah1,   Gm2a,   Hexa,   Idh1,   Lpl,   Lrp1,   Neu1,   Psap,   Pik3cg,   Hcar2   7E   

Chemokine   Signaling   
Pathway   

Cxcl1,   Cxcl2,   Cxcl12,   Cxcl13,   Cxcl16,   Pf4,   Ccl6,   Ccl24,   Ccr2,   Pik3cg,   Nfkb1,   
Rac2,   Gngt2,   Arrb2   7D   

Cytokine-cytokine   
Receptor   Interaction   

Ccl6,   Ccl24,   Cxcl1,   Cxcl2,   Pf4,   Cxcl13,   Cxcl12,   Cxcl16,   Il6,   Ccr2,   Il2rg,   Csf1r,   
Tnfrsf1b   7D   

Complement   And   
Coagulation   Cascades   

F10,   F5,   F13a1,   Pros1,   C1qa,   C1qb,   C1qc,   C4b,   C3ar1,   Itgam,   Itgb2,   C5ar1,   
Serping1   7D   

Aldosterone-regulated   
Sodium   Reabsorption   Igf1,   Pdpk1   7D   

mTOR   Signaling   Pathway   Igf1,   Pdpk1   7D   

Regulation   Of   Actin   
Cytoskeleton   

Cxcl12,   Fn1,   Itgam,   Itgb1,   Itgb2,   Itgb7,   Gna12,   Arhgef12,   Rac2,   Arpc1b,   
Arpc2,   Actg1,   Actb,   Pfn1,   Ezr,   Tmsb4x,   Iqgap1,   Gsn   7D   

Phagosome   

Actg1,   Actb,   Coro1a,   H2-K1,   H2-K1,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-DMa,   
H2-DMb1,   H2-DMb2,   H2-Oa,   H2-Ob,   Tfrc,   Tubb5,   Lamp1,   Lamp2,   Ctsl,   Fcgr1,   
Fcgr3,   Itgam,   Itgb2,   Itgb1,   Thbs1,   Cd14,   Mrc1,   Cd209d,   Cd209a,   Cd209b,   
Cd209f,   Cd209g,   Msr1,   Cd36,   Cyba,   Cybb,   Ncf4   7D   

Leukocyte   
Transendothelial   
Migration   

Itgam,   Itgb2,   Itgb1,   Ezr,   Actg1,   Actb,   Cybb,   Cyba,   Ncf4,   Mmp9,   Vasp,   Cxcl12,   
Rac2   7D   

Focal   Adhesion   Thbs1,   Fn1,   Itgb1,   Itgb7,   Igf1,   Actg1,   Actb,   Vasp,   Pdpk1,   Rac2,   Jun   7D   

FC   gamma   R-mediated   
phagocytosis   Fcgr1,   Gsn,   Vasp,   Arpc1b,   Arpc2,   Rac2,   Bin1   7D   

ECM-receptor   Interaction   Thbs1,   Fn1,   Itgb1,   Itgb7,   Cd44,   Sdc4,   Cd36   7D   
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Antigen   Processing   And   
Presentation   

H2-K1,   H2-K1,   B2m,   Klrd1,   Lgmn,   Ctsb,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-DMa,   
H2-DMb1,   H2-DMb2,   H2-Oa,   H2-Ob,   Cd74,   Ctsl,   Ciita   7D   

Lysosome  

Ctsa,   Ctsb,   Ctsc,   Ctsd,   Ctsl,   Ctsz,   Napsa,   Lgmn,   Hexa,   Man2b1,   Neu1,   Gns,   
Asah1,   Psap,   Gm2a,   Lamp1,   Lamp2,   Cd68,   Cd63,   Npc2,   Slc11a1,   Laptm5,   
Hgsnat,   Clta,   Ap1g1,   Ap1b1,   Ap1s2   7D   

Hematopoietic   Cell   
Lineage   

Il6,   H2-Aa,   H2-Ab1,   H2-Eb1,   H2-DMa,   H2-DMb1,   H2-DMb2,   H2-Oa,   H2-Ob,   
Cd44,   Tfrc,   Fcgr1,   Csf1r,   Itgam,   Cd14,   Cd36   7D   

Other   Glycan   
Degradation   Neu1,   Hexa,   Man2b1   7D   
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Supplemental   Table   3.   Dataset   description   and   source   

A   description   of   single   cell   RNA-seq   datasets   used   in   the   study,   including   a   brief   outline   of   the   

immunological   conditions   within   each   dataset,   is   presented.   Accession   codes   and   associated   

publications   are   also   given.   

Tissue   Cells   Conditions  Description   Timing   Source   Accession   Technology   

Popliteal   

adipose   
Stromal   

vascular   

fraction   

Naïve   control   or    L.   

monocytogenes   

infection   

Footpad   s.c.   injection   
of    L.   monocytogenes   24   hpi  This   

publication   GSE171328   10X   Chromium   

controller   

Mesenteric   

adipose   
Stromal   

vascular   

fraction   

Naïve   control   or    H.   

polygyrus    infection   

Oral   infection   with    H.   
polygyrus    larvae   14   dpi  This   

publication   GSE157313   10X   Chromium   

controller   

Lamina   

propria   
CD45+   cells   

Control   (chow)   diet   

or   High   fat   diet   

Rodent   Diet   60%   kcal   
from   fat   

12   wks   This   
publication   GSE171330   10X   Chromium   

controller   

Sciatic   

nerve   
Macrophages   

Naïve   control   or   

Nerve   crush  

Sciatic   nerve   was   
chirurgically   exposed   
then   crushed.   

1   and   5   
dpw   

Ydens   et   
al.   2020   GSE144707   10X   Chromium   

controller   

Breast   

tumor   
Myeloid   cells   

Spontaneous   tumor   

in   mice   with   WT   or   

Dab2    deficient   

macrophages   

Dissected   
spontaneous   lobular   
breast   carcinoma   in   
MMTV-PyMT   Dab2fl/fl   
Tie2-cre+   or   Tie2-cre-   
mice   

13   wks   
Marigo   et   
al.   2020   GSE152674   10X   Chromium   

controller   

Atherosclero 

tic   plaque   Macrophages   
Progressing   or   

Regressing   lesion   

20   weeks   western   diet   
or   18   weeks   western   
diet   then   2   weeks   
chow   diet   with   
apolipoprotein   B   
antisense   
oligonucleotide   
treatment   (50   mg/kg,   2   
doses/wk)   

20   wks   Lin   et   al.   
2019   GSE123587   10X   Chromium   

controller   

Lung   CD45+   cells   

Naïve   control   or   

Cryptococcus   

neoformans   
infection   

Oro-tracheal   exposure   
to    Cryptococcus   
neoformans    yeasts   

9   hpi   
Xu-Vanpal 
a   et   al.   
2020     

GSE146233   10X   Chromium   

controller   

Liver   Non-parenchy 

mal   liver   cells     

Healthy   control   or   

Fibrotic   tissue   

Overnight   fasting   
followed   by   o.g.   
administration   of   
carbon   tetrachloride   in   
corn   oil   (1:4)   or   vehicle   
control   twice   per   week   

2   and   4   
wks   

Terkelsen   
et   al.   2020   GSE145086   10X   Chromium   

controller   

Heart   CD45+   cells   
Healthy   control   or   

Infarcted   tissue   

Left   anterior   
descending   coronary   
artery   occlusion   by   
permanent   suture   
ligation.   

4   days   King   et   al.   
2017   GSE106472   

inDrop   ( Zilionis   et   

al,   Nature   Protocols   

2016 )   
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Retina   CD45+   cells   

Healthy   (dark)   

control   or   

Neurodegeneration   

(light)   

Arrestin   1   deficient   
maintained   in   constant   
darkness   before   
exposure   to   light   (200   
lux,   48 hours).   

48   hours   
Ronning   et.   
al.   2019   GSE121081   10X   Chromium   

controller   

Skeletal   

muscle   
CD45+   cells   

Naïve   control   or   

Toxoplasma   gondii   

infection   

Oral   infection   with   
ME49    T.gondii    cysts   28   dpi  Jin   et.   al.   

2018   GSE113111   10X   Chromium   

controller   

Brain   Microglia   Steady   state   No   intervention   
E14,   P4/5,   
P30,   P100   

Hammond   
et.   al.   2019   GSE121654   10X   Chromium   

controller   

Skin   Macrophages   Wounded   skin   

Sterile   wounding   via   
skin   punch   biopsies.   
i.v.   administration   of   
tdRFP+   monocytes.   

4   or   14   
dpw   

This   
publication   GSE   Smart-Seq2   
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