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Bayesian mixture model for clustering rare-variant effects
in human genetic studies

Guhan Ram Venkataraman', Yosuke Tanigawa', Matti Pirinen?>**} Manuel A. Rivas'"

Rare-variant aggregate analysis from exome and whole genome sequencing data typically
summarizes with a single statistic the signal for a gene or the unit that is being aggre-
gated. However, when doing so, the effect profile within the unit may not be easily char-
acterized across one or multiple phenotypes. Here, we present an approach we call Multiple
Rare-Variants and Phenotypes Mixture Model (MRPMM), which clusters rare variants into
groups based on their effects on the multivariate phenotype and makes statistical inferences
about the properties of the underlying mixture of genetic effects. Using summary statis-
tic data from a meta-analysis of exome sequencing data of 184,698 individuals in the UK
Biobank across 6 populations, we demonstrate that our mixture model can identify clusters
of variants responsible for significantly disparate effects across a multivariate phenotype; we
study three lipid and three renal traits separately. The method is able to estimate (1) the
proportion of non-null variants, (2) whether variants with the same predicted consequence
in one gene behave similarly, (3) whether variants across genes share effect profiles across
the multivariate phenotype, and (4) whether different annotations differ in the magnitude of
their effects. As rare-variant data and aggregation techniques become more common, this
method can be used to ascribe further meaning to association results.
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1 Introduction

Population-scale sequencing studies are becoming pervasive!™. As a result, analyses considering
the joint contribution of rare variants to disease susceptibility and phenotypic variation are also
becoming pervasive. Commonly used aggregation approaches for rare-variant association studies
include the sequence kernel association test, the burden test, and more-general Bayesian model
comparison methods>'#. However, aggregation as performed in these methods also tends to lose
information within the blocks (typically, genes) specified; that is, they fail to indicate whether cer-
tain variants (or certain types of variants) within the same block may have different effects on the
multivariate phenotype. In particular, they do not pinpoint which variants are driving the associa-
tion signal. It is thus critical that we develop methods that can "trace back" variants’ effects, clus-
tering the variants used within the blocks of interest into groups that have distinct per-phenotype

aggregate effects while adequately accounting for the uncertainty that rare-variant studies exhibit.

Clustering methods fall into several categories, the most prevalent of which are distance-
based methods (such as K-means and self-organizing maps) that are sensitive to the noise that
typically plagues biological data®. Model-based methods such as mixture models are a simple but
elegant alternative that assume that data are generated from multiple source distributions, which
are then learned and set as the "clusters". Algorithms such as Expectation Maximization can esti-
mate latent variables that underlie these clusters. The finite-mixture model, one such model-based
method, assumes a finite number of clusters and asserts that this number can be estimated using

goodness-of-fit criteria like the Bayesian Information Criterion (BIC) or the Akaike Information
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Criterion (AIC)">16.

In this study, we propose to use a Bayesian hierarchical mixture model where a hierarchical
structure is introduced to allow the sharing of information among related clusters (in our case,
genes) and where the number of clusters are pre-specified. Our approach, the Multiple Rare-
Variants and Phenotypes Mixture Model (MRPMM), considers several factors when estimating
parameters of interest underlying the mixture of effects driving an association signal. We calculate
matrices of genetic correlations among phenotypes of interest using both common or null variants
and rarer or significant variants. The method also estimates the spread of effects across predicted
consequences of the genomic variants (variant annotations), which is a critical aspect of interpret-
ing genetic findings. The annotations represent expected severity of impact on phenotypes (for

example, protein-truncating variants, or PTVs!”-18

, are predicted to truncate the protein product,
and are purported to be much more deleterious than other variants). In MRPMM, we use summary
statistics (for single-variant single-phenotype GWAS, these are per-variant estimates of marginal
univariate effect size and corresponding standard errors). In practice, sharing of individual geno-
type and phenotype data across groups in large genetic consortia is difficult to achieve due to
privacy concerns and consent issues; using summary statistics can bypass these issues while also
increasing computational efficiency without reducing accuracy. Insights from Liu et al.!” and Ci-
chonska et al.2? also suggest that the use of additional summary statistics, like covariance estimates

across variants and studies, respectively, enable a lossless ability to detect gene-based association

signals using summary statistics alone.
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2 Methods

Algorithm: Our goal is to cluster the variants into groups based on their effects on the multivariate
phenotype; that is, we are interested in the joint posterior distribution that indicates cluster mem-
berships per-variant and per-gene. For multi-parameter models such as these, the joint posterior
may be difficult to sample from directly. Often, it is easier to sample sequentially from the full
conditional distribution of each parameter ! using a Gibbs sampler, a Markov Chain Monte Carlo
(MCMC) algorithm that constructs a dependent sequence of parameter values whose distribution

approximates the joint posterior 2!~2*, We implement the Gibbs sampler in MRPMM as follows:

e We index genes by j = 1,...,.J, denoting variant m in gene j by v;,,. Within gene j,
the variants vj,, are assigned to clusters ¢ = 1, ..., C, each of which is represented by an

unscaled effect size parameter b..

e The prior for b, is N (0, ®), where Oy is an estimate of genetic correlation across the traits.

e Consider the model with C' > 1 clusters. In order to model the sharing of clusters across the

genes, we first draw a C'-dimensional probability vector 7wy ~ Dirichlet (1,1,1,...,1).

e Next, for each gene j, we draw a probability vector 7|7, ~ Dirichlet (a7ry) to determine
the mixture proportions 7;. that dictate how the variants in gene j are distributed across the

clusters 1,...,C.

e The parameter o governs how similar the cluster proportions are across genes; it is drawn

from a prior & ~ Inv-Gamma (1, 1).
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e The algorithm also takes into account the functional annotation, via o2, a variance parameter
for annotation a across the clusters. It follows an inverse-gamma prior 02 ~ Inv-Gamma (shy, spa) ,

with hyperparameter values sh, (shape) and sp, (spread).

e Under the above assumptions of the model, the phenotype of individual ¢ with a rare allele
of variant m with annotation a in gene j is y,|(7;, b, 02) ~ Zle 7N (aabc, \A/y> , where
Vy is the estimated residual variance-covariance matrix of phenotypes after the effects of

the variants have been regressed out.

e If we have access only to summary statistics of estimated effect sizes 3., , then we estimate

Jm>
variance-covariance matrices V;,, for each variant m in gene j as V;,, ~ diag(SE,,) x

Qx diag(SE,,), where SE,, denotes the K -dimensional vector of standard errors across

K phenotypes for variant m, and 2 is the K x K matrix of correlation of errors esti-

-~

mated from null variants. Then, our sampling model for the data is 3

20021 WjCN <0’abc, i\/]m> .

jm|(7Tj> b7 0-621,) ~

e Similar to the individual level data model above, this formulation assumes independence
between the variants, which is approximately true when each individual carries at most one
of the rare variants considered. A connection between the two data types is that 3;,, ~

and \A/jm ~ Vy, where fjm 1s the frequency of the rare allele at

1 o 1
=275, Jim 2N fjm(1=2fjm)
variant m of gene j among the 2V haplotypes, and g ,,, is the mean phenotype of the carrier

individuals of that allele.

e To compare models with different numbers of clusters, we use the Bayesian Information
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Criterion (BIC)", defined for the model M with C' clusters as

BICs = —2log (p <D|§g, J\/[C)) + velog (n),

where D denotes the observed data, 5; is the vector of maximum likelihood estimates of the
parameters of M, v, is the number of independent parameters of M., and n is the number
of data points. The difference in BIC values between two models approximates twice the
logarithm of the Bayes Factor between the models, with lower BIC value corresponding to

the model preferred.

MRPMM utilizes Metropolis-Hastings (MH) steps to update the parameters of interest. The
algorithm is run for nyy, + N iterations, of which the first ny,,,, are discarded as an initial "burn-

in". With superscripts in parentheses denoting iteration, the steps of the algorithm are as follows.

1. Initialize parameters.

(a) Draw a(”) ~ Inv-Gamma (1,1).

(b) Draw 7\’ ~ Dirichlet (1,1,1,...,1).

(c) Draw for each gene j: 7r§0) ~ Dirichlet (04(0)7780)) ;
@ b\” =o.

(e) Foreachcin2,...,C draw b” ~ N (0,0,).

(f) (02)(0) = 0.22 for all a.
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2. Repeat the following steps for iterations t = 1,2, ..., npum + Niger:

(a) Update 7 (probability of cluster assignment independent of gene). We use a Metropolis-
Hastings sub-step 2* using a proposal centred around the current value, drawing 71';) ~
Dirichlet (77r(()t_1)> . To calculate the acceptance probability, we define the normaliz-

ing constant for the C-dimensional Dirichlet distribution with parameters z as

and the density at point x as

C

poir(@|2) = D(2) [ [ 2"

c=1

With this notation, the Metropolis-Hastings transition probability from wétil) to 7, is

Dpir <7r£) |77r(()t_1)> , and the density of the observed data depends on w(()t_l) only through

the product H;.Izl Dpir <7rj |om(()t_l)> . Hence, the proposal acceptance probability is

R AR '
Dpir (7"8 )’77"0> I1;—1 Poir (m;lam)

Dpir <7TE)"Y7"(()t71)> H}]:1 Dpir <7"j’a7"étil)>

A=min | 1

Ergo, with probability A, we set wét) = 71';), and with probability 1 — A, ﬂét) = ﬂ'ét_l).

(b) Foreach gene j = 1,...,J we update 7; (per-gene cluster parameter) to be
M M M;
7r; ~ Dirichlet | am, + I(jm =1, I0m=2),..., ) 1(0m=C)] |,
m=1 m=1 m=1


https://doi.org/10.1101/2021.08.03.454967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454967; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

where 0, is the index of the cluster to which the variant m of gene j belongs to and

I(-) is the indicator function.

(c) Update 6j,,, forallj =1,...,Jand m = 1,..., M;. For all ¢, compute

! e 2
pjmc =D </6]m7 bC7 Ua) 7TjC7
and renormalize in such a way that pj,,. & p;mc sums to 1 over all c. Then, we sample

djm ~ Discrete(pjmc)-

(d) Update b, (cluster effect profile) using a Gibbs update from a Gaussian distribution:

-1

_ ~1 2 g1 ~17
mean = |©, + E D I 5 Oajm e Bim
Vim€EC Vjm€C
-1
_ ~1 2 g1
var = | ©, + g T e
UijC

(e) Update o2 (annotation spread parameter). We use a Metropolis-Hastings sub-step using
a random-walk proposal. That is, sequentially for each annotation a, we sample a
proposal value

a, = |n|, where n ~ N (o™, &))

where & is a hyperparameter controlling the spread of the proposals. In the examples,


https://doi.org/10.1101/2021.08.03.454967
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.03.454967; this version posted August 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

we have used £y = 1. Then we calculate the acceptance probability

p (0;|Sha’ Sca) Hanno(vjm):a N </6jm|0:1bcj7rL7 V]m)
p <O'z(1t_1) |Sha7 SCG) Hanno(vjm):a N (/Bjm|o-(gt_1)b6jma ij)

A =min | 1,

9

where the products are over those variants v;,, whose annotation is a and c;,, is the

cluster of variant v;,,. With probability A, we set ol = a;, and with probability 1 — A,

ol = g7,

(f) Update o (parameter determining sharing of clusters across genes). We again use a
Metropolis-Hastings sub-step using a random-walk proposal. That is, we sample a
proposal value o’ = ||, where 7 ~ N(al!~1 £,) where &, is a fixed value controlling

the variance of the proposal distribution. Then, we compute the acceptance probability

p (@) [Ty poiy (7 a0 7))

A=min | 1,

where the prior for a is Inv-Gamma(1,1) (i.e., p(a) = a2 exp (—a 1)), and pp, is the
density of the Dirichlet distribution as defined above in part (a). With probability A, we

set o) = o', and with probability 1 — X\, a® = a(t=1,

Data: We used a combination of self-reported ancestry (UK Biobank field ID 21000), principal
component analysis on genotype data, and the relatedness matrix to identify six subpopulations in
the study: white British, African, South Asian, non-British white, semi-related, and an admixed

population. To determine the first four populations, which contain samples not related closer than
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the third degree, we first used the principal components of the genotyped variants from the UK
Biobank and defined thresholds on principal component 1 and principal component 2 and further
refined the population definition as described elsewhere?> Semi-related individuals were grouped as
individuals whose genetic data (after passing UK Biobank QC filters; sufficiently low missingness
rates; and genetically inferred sex matching reported sex), using a King’s relationship table, were
between conditional third and conditional second degrees of relatedness. Admixed individuals
were grouped as unrelated individuals who were flagged as “used_in_pca_calculation” by the UK

Biobank and were not assigned to any of the other populations®.

We performed genome-wide association analysis on individuals with whole-exome sequenc-
ing data for three lipid-related phenotypes (high-density lipoproteins [UK Biobank Field 30760],
triglycerides [UK Biobank Field 30870], and low-density lipoproteins [UK Biobank Field 30780])
and three renal-related phenotypes (creatinine [UK Biobank Field 30700], cystatin C [UK Biobank
Field 30720], and effective glomerular filtration rate [derived from UK Biobank Field 30700]).
The analyses were performed for each of the six population subgroups as defined above using
PLINK v2.00a (20 October 2020). The quantitative trait values were rank normalized using the —
pheno-quantile-normalize flag. We used age, sex, and the first ten genetic principal components as
covariates in the analyses. The analysis was performed for 5,850,789 rare (minor allele frequency

< 0.01) protein-truncating (492,151) and protein-altering (5,358,638) variants.

For the admixed population, we conducted local ancestry-corrected GWAS. We first assem-

bled a reference panel from 1,380 single-ancestry samples in the 1000 Genomes Project?®, the

10
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t27 t28

Human Genome Diversity Project®’ and the Simons Genome Diversity Project® choosing appro-
priate ancestry clusters by running ADMIXTURE? with the unsupervised setting. Using cross-
validation, eight well-supported ancestral population clusters were identified: African, African
Hunter-Gatherer, East Asian, European, Native American, Oceanian, South Asian, and West Asian.
We then used RFMix v2.03%° to assign each of the 20,727 windows across the phased genomes to
one of these eight ancestry clusters (for all individuals in the UK Biobank). These local ancestry
assignments were subsequently used with PLINK?2 as local covariates in the GWAS for the ad-
mixed individuals for SNPs within those respective windows. PLINK?2 allows for the direct input
of the RFMix output (the MSP file, which contains the most likely subpopulation assignment per
conditional random field [CRF] point) as local covariates using the “local-cov”, “local-psam”, and
“local-haps” flags, the “local-catsO=n" flag (where n is the number of assignments), and the “local-

pos-cols=2,1,2,7” flag (for a typical REMix MSP output file - see “Association Analysis” page on

PLINK website).

Subsequently, we used METAL?! to perform inverse-variance weighted meta-analysis to gen-

erate a single summary statistic file per phenotype.

For the remainder, we used Variant Effect Predictor (VEP)*? to annotate the most severe
consequence, the gene symbol, and HGVSp of each variant in the UK Biobank exome data. We
calculated minor allele frequencies using PLINK. We provide these metadata, which are necessary
for MRPMM, in exome and array tables, available for direct download via the Global Biobank

Engine®? (Code Availability).

11
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3 Results

To assess MRPMM’s ability to estimate the underlying mixture of effects from summary statis-
tics, we chose two sets of related phenotypes: one set of lipid phenotypes (high-density lipopro-
tein cholesterol levels [HDL], low-density lipoprotein cholesterol levels [LDL], and triglycerides
[TG]), and another set of renal phenotypes (creatinine [CRE], cystatin C [CSTC] and effective
glomerular filtration rate [eGFR]). We then identified genes with a significant burden of associ-
ated, rare, protein-truncating variants (PTVs) in a meta-analysis comprising 184,698 UK Biobank
individuals amongst six cohorts of different ancestries (white British [137,920], non-British white
[10,432], African [2,716], South Asian [3,569], semi-related [18,100], and admixed [11,961]). Af-
ter using a Bayesian model comparison approach® to consider GWAS evidence across each set of
phenotypes and across each gene, we chose 13 genes that had a log,, Bayes Factor (BF) > 5 for
lipid traits, and 5 genes that met that criterion for renal traits. We then ran MRPMM across PTVs
in these genes, increasing the number of hypothesized clusters until there was an increase in BIC,
a goodness-of-fit measure which is minimized under ideal conditions. We found that four clusters
(including the "null cluster" with a constant effect of 0 across phenotypes) was favored for both sets
of phenotypes (Figure 1), and that each cluster had a distinct effect size profile on the multivariate

phenotype (Figures 2, 3).

Specifically, we see that there are some APOB variants (Figure 4a - left side) that have a
strong negative effect on TG and LDL levels (Figure 2D) through exclusive membership to Cluster

3. To the right of those variants, other variants are definitively placed into Cluster 2 and Cluster

12
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1 respectively. The variants that are definitively placed into Cluster 2 feature the PCSK9 and
ANGPTL3 genes; MRPMM shows that these variants down-regulate TG and LDL levels (Figure
2C). The variants which belong exclusively to Cluster 1 feature the PDE3B, APOC3, CETP, and
ANGPTLS genes and have positive effects on HDL levels, negative effects on TG levels, and mild
negative effects on LDL levels (Figure 2B). We can perform a similar visual analysis with the
renal multivariate phenotype results (Figure 4b). Variants from the CGNLI, RNF186, SLC22A2,
and SLC34A3 genes largely seem to fall under Cluster 2, whereas variants from CS73 clearly fall
into Cluster 1 in an isolated manner. Cluster 3 seems to be populated partially by several variants in
CGNLI. These variant-specific breakdowns and their gene-aggregate counterparts (Figures 5a, 5b)
help trace back the variants’ effect profile on the multivariate phenotype. Unlike in aggregation
approaches, where a single statistic captures which genes are associated with the trait without
providing much context as to the nature of the association, MRPMM has the useful characteristic
of being able to cluster not only variants but also genes into different effect profiles. We provide
single-trait MRPMM results for all traits across the UK Biobank on the Global Biobank Engine*?

(Code Availability).

4 Future Directions and Discussion

In this study, we used a Bayesian hierarchical mixture model to estimate the underlying mixture
of components driving association signals between various protein-truncating variants and a set
of genetically related phenotypes. By explicitly modeling the sharing of effects across genes, we

are able to use Gibbs sampling to approximately infer the joint posterior distribution and thereby

13
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assign variants to clusters. In both applications, we see that clusters have vastly different effect
size profiles on the sets of phenotypes chosen; this shows that aggregating rare-variant signal in
blocks (e.g. genes) may not fully encapsulate the information that is available in summary statis-
tics. Coupling a Bayesian model comparison approach as described by Venkataraman et al.® with
MRPMM may be a way to (1) systematically screen for genes associated with the set of pheno-
types of interest and then (2) cluster the effect size profiles of rare variants within these genes,
thereby providing a window into the underlying biology. For example, aligning the results from
the MRPMM analysis and other function-elucidating analyses like protein domain models or 3D
structure analysis could potentially lead to the identification of promising therapeutic targets. Go-
ing forward, it is also essential that this analysis be performed using whole genome sequencing
data; as MRPMM is able to use any type of annotation, how variant effects translate across epige-
nomic profiles and/or conservation patterns may become relevant and useful to analyze in these
settings. Overall, MRPMM provides interpretability at the level of individual variants, in contrast

to typical rare-variant techniques that work only at the level of aggregated variants.

14
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AIC, BIC, log1o BF Per Hypothesized # Clusters: Lipid Traits

mmm AIC
6000 - ™= BIC - 500
log10 BF
5000 -

' ’
4000 - '
3000 -
2000 -
1000 -
0-
1 2 3 4 5 6 7

- 400

AIC/BIC
/Oglo BF

- 300
- 200
-100
-0

8

Figure 1a: AIC, BIC (goodness-of-fit), and log;, BF as compared to the null cluster for number of clusters
of effects on a lipid-related multivariate phenotype of high-density lipoprotein cholesterol (HDL), triglyc-
eride (TG) levels, and low-density lipoprotein cholesterol (LDL). The algorithm was stopped when these
AIC or BIC values trended upwards and log;, BF was maximized. In this case, we stopped at 5 and chose
4 clusters.

# Clusters
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AIC, BIC, log1o BF Per Hypothesized # Clusters: Renal Traits
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Figure 1b: AIC, BIC (goodness-of-fit), and log,, BF as compared to the null cluster for number of clusters
of effects on a renal-related multivariate phenotype of creatinine (CRE), cystatin C (CSTC) levels, and ef-
fective glomerular filtration rate (¢GFR). The algorithm was stopped when these AIC or BIC values trended
upwards and log;, BF was maximized. In this case, we stopped at 5 and chose 4 clusters.
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Figure 2: A (upper left): Effect sizes of Cluster 0 (with 95% credible intervals) on the lipid-related mul-
tivariate phenotype (the "null cluster"). B (upper right): Effect sizes of Cluster 1 (with 95% credible
intervals) on the lipid-related multivariate phenotype. PTVs in this cluster espouse positive effects on HDL
levels and negative effects on TG levels and LDL levels. C (lower left): Effect sizes of Cluster 2 (with
95% credible intervals) on the lipid-related multivariate phenotype. PTVs in this cluster espouse null effects
on the HDL phenotype and successively negative effects on TG and LDL. D (lower right): Effect sizes
of Cluster 3 (with 95% credible intervals) on the lipid-related multivariate phenotype. This cluster seems
to have disparate effects on HDL (positive effect) as compared to TG (strong negative effect) and LDL
(extremely strong negative effect).
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Figure 3: A (upper left): Effect sizes of Cluster O (with 95% credible intervals) on the renal-related
multivariate phenotype (the "null cluster"). B (upper right): Effect sizes of Cluster 1 (with 95% credible
intervals) on the renal-related multivariate phenotype. PTVs in this cluster espouse null effects on CRE and
eGFR levels and strong negative effects on CSTC levels. C (lower left): Effect sizes of Cluster 2 (with 95%
credible intervals) on the renal-related multivariate phenotype. PTVs in this cluster espouse mild positive
effects on CRE and CSTC and mild negative effects on eGFR. D (lower right): Effect sizes of Cluster
3 (with 95% credible intervals) on the renal-related multivariate phenotype. This cluster seems to have
inconclusive effects on the multivariate phenotype, as the 95% credible intervals for the effects cross 0.
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Figure 4b

of four clusters hypothesized with respect to a renal-related multivariate phenotype of creatinine (CRE), cystatin C (CSTC), and effective

glomerular filtration rate (eGFR). The PTVs in CST3 that are marked as belonging to Cluster 1 in the middle are responsible for coding
cystatin C directly, hence their strong effects CSTC levels (see Figure 4B). Only PTVs that have posterior probability < 0.2 of belong

the null cluster (Cluster 0) are shown. Variants are sorted by the posterior probability of belonging to the null cluster.
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Probabilities Per Cluster Per Gene: Lipid Traits
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Figure 5a: Gene-level posterior probabilities that PTVs in candidate genes in the UK Biobank exome
sequencing data set belong to each of four clusters hypothesized with respect to a lipid-related multivariate
phenotype of high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and
triglyceride (TG) levels. All PTVs in the analysis are accounted for here.
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Figure 5b: Gene-level posterior probabilities that PTVs in candidate genes in the UK Biobank exome
sequencing data set belong to each of four clusters hypothesized with respect to a renal-related multivariate
phenotype of creatinine (CRE), cystatin C (CSTC), and effective glomerular filtration rate (¢GFR). All PTVs
in the analysis are accounted for here.
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5 Code Availability

We have published the full set of associations (log;, BF > 5) from an independent effects model
amongst PAVs, from a similar effects model amongst PAVs, as well as from a similar effects
model amongst PTVs on the Global Biobank Engine®*. While this study focuses on exome associ-
ations (https://biobankengine.stanford.edu/RIVAS_HG38/mrpgene/all), we
also provide associations for array data (https://biobankengine.stanford.edu/RIVAS_
HG19/mrpgene/all). For every phenotype, we provide single-phenotype MRPMM results
(right-most columns in the tables) for PAVs and PTVs, with cluster effect size estimates as well as

cluster assignment probabilities and proportions displayed.

Exome and array metadata tables are available on the Global Biobank Engine for direct

download at these links:

https://biobankengine.stanford.edu/static/ukb_exm_ogfe-consequence_

wb_maf_gene_ld_indep_mpc_pli.tsv.gz - Exome

https://biobankengine.stanford.edu/static/ukb_cal-consequence_

wb_maf_gene_ld_indep_mpc_pli.tsv.gz - Array

MRPMM was implemented using Python (dependencies: pandas v1.1.5, numpy v1.16.4,
sklearn 0.24.0, scipy v1.3.0). The requirements, code, example usages, and interpretation of results

files can be found at https://github.com/rivas—lab/mrpmm.
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