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Rare-variant aggregate analysis from exome and whole genome sequencing data typically
summarizes with a single statistic the signal for a gene or the unit that is being aggre-
gated. However, when doing so, the effect profile within the unit may not be easily char-
acterized across one or multiple phenotypes. Here, we present an approach we call Multiple
Rare-Variants and Phenotypes Mixture Model (MRPMM), which clusters rare variants into
groups based on their effects on the multivariate phenotype and makes statistical inferences
about the properties of the underlying mixture of genetic effects. Using summary statis-
tic data from a meta-analysis of exome sequencing data of 184,698 individuals in the UK
Biobank across 6 populations, we demonstrate that our mixture model can identify clusters
of variants responsible for significantly disparate effects across a multivariate phenotype; we
study three lipid and three renal traits separately. The method is able to estimate (1) the
proportion of non-null variants, (2) whether variants with the same predicted consequence
in one gene behave similarly, (3) whether variants across genes share effect profiles across
the multivariate phenotype, and (4) whether different annotations differ in the magnitude of
their effects. As rare-variant data and aggregation techniques become more common, this
method can be used to ascribe further meaning to association results.
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1 Introduction

Population-scale sequencing studies are becoming pervasive1–4. As a result, analyses considering

the joint contribution of rare variants to disease susceptibility and phenotypic variation are also

becoming pervasive. Commonly used aggregation approaches for rare-variant association studies

include the sequence kernel association test, the burden test, and more-general Bayesian model

comparison methods5–14. However, aggregation as performed in these methods also tends to lose

information within the blocks (typically, genes) specified; that is, they fail to indicate whether cer-

tain variants (or certain types of variants) within the same block may have different effects on the

multivariate phenotype. In particular, they do not pinpoint which variants are driving the associa-

tion signal. It is thus critical that we develop methods that can "trace back" variants’ effects, clus-

tering the variants used within the blocks of interest into groups that have distinct per-phenotype

aggregate effects while adequately accounting for the uncertainty that rare-variant studies exhibit.

Clustering methods fall into several categories, the most prevalent of which are distance-

based methods (such as K-means and self-organizing maps) that are sensitive to the noise that

typically plagues biological data8. Model-based methods such as mixture models are a simple but

elegant alternative that assume that data are generated from multiple source distributions, which

are then learned and set as the "clusters". Algorithms such as Expectation Maximization can esti-

mate latent variables that underlie these clusters. The finite-mixture model, one such model-based

method, assumes a finite number of clusters and asserts that this number can be estimated using

goodness-of-fit criteria like the Bayesian Information Criterion (BIC) or the Akaike Information
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Criterion (AIC)15, 16.

In this study, we propose to use a Bayesian hierarchical mixture model where a hierarchical

structure is introduced to allow the sharing of information among related clusters (in our case,

genes) and where the number of clusters are pre-specified. Our approach, the Multiple Rare-

Variants and Phenotypes Mixture Model (MRPMM), considers several factors when estimating

parameters of interest underlying the mixture of effects driving an association signal. We calculate

matrices of genetic correlations among phenotypes of interest using both common or null variants

and rarer or significant variants. The method also estimates the spread of effects across predicted

consequences of the genomic variants (variant annotations), which is a critical aspect of interpret-

ing genetic findings. The annotations represent expected severity of impact on phenotypes (for

example, protein-truncating variants, or PTVs17, 18, are predicted to truncate the protein product,

and are purported to be much more deleterious than other variants). In MRPMM, we use summary

statistics (for single-variant single-phenotype GWAS, these are per-variant estimates of marginal

univariate effect size and corresponding standard errors). In practice, sharing of individual geno-

type and phenotype data across groups in large genetic consortia is difficult to achieve due to

privacy concerns and consent issues; using summary statistics can bypass these issues while also

increasing computational efficiency without reducing accuracy. Insights from Liu et al.19 and Ci-

chonska et al.20 also suggest that the use of additional summary statistics, like covariance estimates

across variants and studies, respectively, enable a lossless ability to detect gene-based association

signals using summary statistics alone.
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2 Methods

Algorithm: Our goal is to cluster the variants into groups based on their effects on the multivariate

phenotype; that is, we are interested in the joint posterior distribution that indicates cluster mem-

berships per-variant and per-gene. For multi-parameter models such as these, the joint posterior

may be difficult to sample from directly. Often, it is easier to sample sequentially from the full

conditional distribution of each parameter 21 using a Gibbs sampler, a Markov Chain Monte Carlo

(MCMC) algorithm that constructs a dependent sequence of parameter values whose distribution

approximates the joint posterior 21–23. We implement the Gibbs sampler in MRPMM as follows:

• We index genes by j = 1, . . . , J , denoting variant m in gene j by vjm. Within gene j,

the variants vjm are assigned to clusters c = 1, ..., C, each of which is represented by an

unscaled effect size parameter bc.

• The prior for bc is N (0,Θ0), where Θ0 is an estimate of genetic correlation across the traits.

• Consider the model with C > 1 clusters. In order to model the sharing of clusters across the

genes, we first draw a C-dimensional probability vector π0 ∼ Dirichlet (1, 1, 1, . . . , 1) .

• Next, for each gene j, we draw a probability vector πj|π0 ∼ Dirichlet (απ0) to determine

the mixture proportions πjc that dictate how the variants in gene j are distributed across the

clusters 1, . . . , C.

• The parameter α governs how similar the cluster proportions are across genes; it is drawn

from a prior α ∼ Inv-Gamma (1, 1) .
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• The algorithm also takes into account the functional annotation, via σ2
a, a variance parameter

for annotation a across the clusters. It follows an inverse-gamma prior σ2
a ∼ Inv-Gamma (sha, spa) ,

with hyperparameter values sha (shape) and spa (spread).

• Under the above assumptions of the model, the phenotype of individual i with a rare allele

of variant m with annotation a in gene j is yi|(πj, b, σ2
a) ∼

∑C
c=1 πjcN

(
σabc, V̂Y

)
, where

V̂Y is the estimated residual variance-covariance matrix of phenotypes after the effects of

the variants have been regressed out.

• If we have access only to summary statistics of estimated effect sizes β̂jm, then we estimate

variance-covariance matrices V̂jm for each variant m in gene j as V̂jm ≈ diag(SEm) ×

Ω× diag(SEm), where SEm denotes the K-dimensional vector of standard errors across

K phenotypes for variant m, and Ω is the K × K matrix of correlation of errors esti-

mated from null variants. Then, our sampling model for the data is β̂jm|(πj, b, σ2
a) ∼∑C

c=1 πjcN
(
σabc, V̂jm

)
.

• Similar to the individual level data model above, this formulation assumes independence

between the variants, which is approximately true when each individual carries at most one

of the rare variants considered. A connection between the two data types is that β̂jm ≈

1
1−2fjmyjm and V̂jm ≈ 1

2Nfjm(1−2fjm)
V̂Y , where fjm is the frequency of the rare allele at

variant m of gene j among the 2N haplotypes, and yjm is the mean phenotype of the carrier

individuals of that allele.

• To compare models with different numbers of clusters, we use the Bayesian Information
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Criterion (BIC)15, defined for the model MC with C clusters as

BICC = −2 log
(
p
(
D|θ̂C ,MC

))
+ νC log (n) ,

where D denotes the observed data, θ̂C is the vector of maximum likelihood estimates of the

parameters of MC , νc is the number of independent parameters of Mc, and n is the number

of data points. The difference in BIC values between two models approximates twice the

logarithm of the Bayes Factor between the models, with lower BIC value corresponding to

the model preferred.

MRPMM utilizes Metropolis-Hastings (MH) steps to update the parameters of interest. The

algorithm is run for nburn + niter iterations, of which the first nburn are discarded as an initial "burn-

in". With superscripts in parentheses denoting iteration, the steps of the algorithm are as follows.

1. Initialize parameters.

(a) Draw α(0) ∼ Inv-Gamma (1, 1) .

(b) Draw π(0)
0 ∼ Dirichlet (1, 1, 1, . . . , 1) .

(c) Draw for each gene j: π(0)
j ∼ Dirichlet

(
α(0)π

(0)
0

)
;

(d) b(0)1 = 0.

(e) For each c in 2, . . . , C draw b(0)c ∼ N (0,Θ0) .

(f) (σ2
a)

(0)
= 0.22 for all a.
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2. Repeat the following steps for iterations t = 1, 2, . . . , nburn + niter:

(a) Updateπ0 (probability of cluster assignment independent of gene). We use a Metropolis-

Hastings sub-step 24 using a proposal centred around the current value, drawing π′
0 ∼

Dirichlet
(
γπ

(t−1)
0

)
. To calculate the acceptance probability, we define the normaliz-

ing constant for the C-dimensional Dirichlet distribution with parameters z as

D(z) =
Γ
(∑C

c=1 zc

)
∏C

c=1 Γ (zc)

and the density at point x as

pDir(x|z) = D(z)
C∏
c=1

xzc−1c .

With this notation, the Metropolis-Hastings transition probability from π
(t−1)
0 to π′

0 is

pDir

(
π

′
0|γπ

(t−1)
0

)
, and the density of the observed data depends onπ(t−1)

0 only through

the product
∏J

j=1 pDir

(
πj|απ(t−1)

0

)
. Hence, the proposal acceptance probability is

λ = min

1,
pDir

(
π

(t−1)
0 |γπ′

0

)∏J
j=1 pDir

(
πj|απ

′
0

)
pDir

(
π

′
0|γπ

(t−1)
0

)∏J
j=1 pDir

(
πj|απ(t−1)

0

)


Ergo, with probability λ, we set π(t)
0 = π

′
0, and with probability 1− λ, π(t)

0 = π
(t−1)
0 .

(b) For each gene j = 1, . . . , J we update πj (per-gene cluster parameter) to be

πj ∼ Dirichlet

απ0 +

 Mj∑
m=1

I(δjm = 1),

Mj∑
m=1

I(δjm = 2), . . . ,

Mj∑
m=1

I(δjm = C)

 ,
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where δjm is the index of the cluster to which the variant m of gene j belongs to and

I(·) is the indicator function.

(c) Update δjm for all j = 1, . . . , J and m = 1, . . . ,Mj . For all c, compute

p
′

jmc = p
(
β̂jm; bc, σ

2
a

)
πjc,

and renormalize in such a way that pjmc ∝ p
′
jmc sums to 1 over all c. Then, we sample

δjm ∼ Discrete(pjmc).

(d) Update bc (cluster effect profile) using a Gibbs update from a Gaussian distribution:

mean =

Θ−10 +
∑
vjm∈c

σ2
ajm

Σ−1c

−1∑
vjm∈c

σajmΣ−1c β̂jm


var =

Θ−10 +
∑
vjm∈c

σ2
ajm

Σ−1c

−1 .
(e) Update σ2

a (annotation spread parameter). We use a Metropolis-Hastings sub-step using

a random-walk proposal. That is, sequentially for each annotation a, we sample a

proposal value

σ
′

a = |η|, where η ∼ N
(
σ(t−1)
a , ξ0

)
,

where ξ0 is a hyperparameter controlling the spread of the proposals. In the examples,
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we have used ξ0 = 1. Then we calculate the acceptance probability

λ = min

1,
p
(
σ

′
a|sha, sca

)∏
anno(vjm)=aN

(
β̂jm|σ

′
abcjm , V̂ jm

)
p
(
σ
(t−1)
a |sha, sca

)∏
anno(vjm)=aN

(
β̂jm|σ

(t−1)
a bcjm , V̂ jm

)
 ,

where the products are over those variants vjm whose annotation is a and cjm is the

cluster of variant vjm. With probability λ, we set σ(t)
a = σ

′
a, and with probability 1− λ,

σ
(t)
a = σ

(t−1)
a .

(f) Update α (parameter determining sharing of clusters across genes). We again use a

Metropolis-Hastings sub-step using a random-walk proposal. That is, we sample a

proposal value α′
= |η|, where η ∼ N(α(t−1), ξα) where ξα is a fixed value controlling

the variance of the proposal distribution. Then, we compute the acceptance probability

λ = min

1,
p
(
α

′)∏J
j=1 pDir

(
π

(t)
j |α

′
π

(t)
0

)
p (α(t−1))

∏J
j=1 pDir

(
π

(t)
j |α(t−1)π

(t)
0

)
 ,

where the prior for α is Inv-Gamma(1,1) (i.e., p(α) = α−2 exp (−α−1)), and pDir is the

density of the Dirichlet distribution as defined above in part (a). With probability λ, we

set α(t) = α
′ , and with probability 1− λ, α(t) = α(t−1).

Data: We used a combination of self-reported ancestry (UK Biobank field ID 21000), principal

component analysis on genotype data, and the relatedness matrix to identify six subpopulations in

the study: white British, African, South Asian, non-British white, semi-related, and an admixed

population. To determine the first four populations, which contain samples not related closer than
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the third degree, we first used the principal components of the genotyped variants from the UK

Biobank and defined thresholds on principal component 1 and principal component 2 and further

refined the population definition as described elsewhere25 Semi-related individuals were grouped as

individuals whose genetic data (after passing UK Biobank QC filters; sufficiently low missingness

rates; and genetically inferred sex matching reported sex), using a King’s relationship table, were

between conditional third and conditional second degrees of relatedness. Admixed individuals

were grouped as unrelated individuals who were flagged as “used_in_pca_calculation” by the UK

Biobank and were not assigned to any of the other populations6.

We performed genome-wide association analysis on individuals with whole-exome sequenc-

ing data for three lipid-related phenotypes (high-density lipoproteins [UK Biobank Field 30760],

triglycerides [UK Biobank Field 30870], and low-density lipoproteins [UK Biobank Field 30780])

and three renal-related phenotypes (creatinine [UK Biobank Field 30700], cystatin C [UK Biobank

Field 30720], and effective glomerular filtration rate [derived from UK Biobank Field 30700]).

The analyses were performed for each of the six population subgroups as defined above using

PLINK v2.00a (20 October 2020). The quantitative trait values were rank normalized using the –

pheno-quantile-normalize flag. We used age, sex, and the first ten genetic principal components as

covariates in the analyses. The analysis was performed for 5,850,789 rare (minor allele frequency

≤ 0.01) protein-truncating (492,151) and protein-altering (5,358,638) variants.

For the admixed population, we conducted local ancestry-corrected GWAS. We first assem-

bled a reference panel from 1,380 single-ancestry samples in the 1000 Genomes Project26, the
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Human Genome Diversity Project27 and the Simons Genome Diversity Project28 choosing appro-

priate ancestry clusters by running ADMIXTURE29 with the unsupervised setting. Using cross-

validation, eight well-supported ancestral population clusters were identified: African, African

Hunter-Gatherer, East Asian, European, Native American, Oceanian, South Asian, and West Asian.

We then used RFMix v2.0330 to assign each of the 20,727 windows across the phased genomes to

one of these eight ancestry clusters (for all individuals in the UK Biobank). These local ancestry

assignments were subsequently used with PLINK2 as local covariates in the GWAS for the ad-

mixed individuals for SNPs within those respective windows. PLINK2 allows for the direct input

of the RFMix output (the MSP file, which contains the most likely subpopulation assignment per

conditional random field [CRF] point) as local covariates using the “local-cov”, “local-psam”, and

“local-haps” flags, the “local-cats0=n” flag (where n is the number of assignments), and the “local-

pos-cols=2,1,2,7” flag (for a typical RFMix MSP output file - see “Association Analysis” page on

PLINK website).

Subsequently, we used METAL31 to perform inverse-variance weighted meta-analysis to gen-

erate a single summary statistic file per phenotype.

For the remainder, we used Variant Effect Predictor (VEP)32 to annotate the most severe

consequence, the gene symbol, and HGVSp of each variant in the UK Biobank exome data. We

calculated minor allele frequencies using PLINK. We provide these metadata, which are necessary

for MRPMM, in exome and array tables, available for direct download via the Global Biobank

Engine33 (Code Availability).
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3 Results

To assess MRPMM’s ability to estimate the underlying mixture of effects from summary statis-

tics, we chose two sets of related phenotypes: one set of lipid phenotypes (high-density lipopro-

tein cholesterol levels [HDL], low-density lipoprotein cholesterol levels [LDL], and triglycerides

[TG]), and another set of renal phenotypes (creatinine [CRE], cystatin C [CSTC] and effective

glomerular filtration rate [eGFR]). We then identified genes with a significant burden of associ-

ated, rare, protein-truncating variants (PTVs) in a meta-analysis comprising 184,698 UK Biobank

individuals amongst six cohorts of different ancestries (white British [137,920], non-British white

[10,432], African [2,716], South Asian [3,569], semi-related [18,100], and admixed [11,961]). Af-

ter using a Bayesian model comparison approach6 to consider GWAS evidence across each set of

phenotypes and across each gene, we chose 13 genes that had a log10 Bayes Factor (BF) ≥ 5 for

lipid traits, and 5 genes that met that criterion for renal traits. We then ran MRPMM across PTVs

in these genes, increasing the number of hypothesized clusters until there was an increase in BIC,

a goodness-of-fit measure which is minimized under ideal conditions. We found that four clusters

(including the "null cluster" with a constant effect of 0 across phenotypes) was favored for both sets

of phenotypes (Figure 1), and that each cluster had a distinct effect size profile on the multivariate

phenotype (Figures 2, 3).

Specifically, we see that there are some APOB variants (Figure 4a - left side) that have a

strong negative effect on TG and LDL levels (Figure 2D) through exclusive membership to Cluster

3. To the right of those variants, other variants are definitively placed into Cluster 2 and Cluster
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1 respectively. The variants that are definitively placed into Cluster 2 feature the PCSK9 and

ANGPTL3 genes; MRPMM shows that these variants down-regulate TG and LDL levels (Figure

2C). The variants which belong exclusively to Cluster 1 feature the PDE3B, APOC3, CETP, and

ANGPTL8 genes and have positive effects on HDL levels, negative effects on TG levels, and mild

negative effects on LDL levels (Figure 2B). We can perform a similar visual analysis with the

renal multivariate phenotype results (Figure 4b). Variants from the CGNL1, RNF186, SLC22A2,

and SLC34A3 genes largely seem to fall under Cluster 2, whereas variants from CST3 clearly fall

into Cluster 1 in an isolated manner. Cluster 3 seems to be populated partially by several variants in

CGNL1. These variant-specific breakdowns and their gene-aggregate counterparts (Figures 5a, 5b)

help trace back the variants’ effect profile on the multivariate phenotype. Unlike in aggregation

approaches, where a single statistic captures which genes are associated with the trait without

providing much context as to the nature of the association, MRPMM has the useful characteristic

of being able to cluster not only variants but also genes into different effect profiles. We provide

single-trait MRPMM results for all traits across the UK Biobank on the Global Biobank Engine33

(Code Availability).

4 Future Directions and Discussion

In this study, we used a Bayesian hierarchical mixture model to estimate the underlying mixture

of components driving association signals between various protein-truncating variants and a set

of genetically related phenotypes. By explicitly modeling the sharing of effects across genes, we

are able to use Gibbs sampling to approximately infer the joint posterior distribution and thereby
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assign variants to clusters. In both applications, we see that clusters have vastly different effect

size profiles on the sets of phenotypes chosen; this shows that aggregating rare-variant signal in

blocks (e.g. genes) may not fully encapsulate the information that is available in summary statis-

tics. Coupling a Bayesian model comparison approach as described by Venkataraman et al.6 with

MRPMM may be a way to (1) systematically screen for genes associated with the set of pheno-

types of interest and then (2) cluster the effect size profiles of rare variants within these genes,

thereby providing a window into the underlying biology. For example, aligning the results from

the MRPMM analysis and other function-elucidating analyses like protein domain models or 3D

structure analysis could potentially lead to the identification of promising therapeutic targets. Go-

ing forward, it is also essential that this analysis be performed using whole genome sequencing

data; as MRPMM is able to use any type of annotation, how variant effects translate across epige-

nomic profiles and/or conservation patterns may become relevant and useful to analyze in these

settings. Overall, MRPMM provides interpretability at the level of individual variants, in contrast

to typical rare-variant techniques that work only at the level of aggregated variants.
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Figure 1a: AIC, BIC (goodness-of-fit), and log10 BF as compared to the null cluster for number of clusters
of effects on a lipid-related multivariate phenotype of high-density lipoprotein cholesterol (HDL), triglyc-
eride (TG) levels, and low-density lipoprotein cholesterol (LDL). The algorithm was stopped when these
AIC or BIC values trended upwards and log10 BF was maximized. In this case, we stopped at 5 and chose
4 clusters.
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Figure 1b: AIC, BIC (goodness-of-fit), and log10 BF as compared to the null cluster for number of clusters
of effects on a renal-related multivariate phenotype of creatinine (CRE), cystatin C (CSTC) levels, and ef-
fective glomerular filtration rate (eGFR). The algorithm was stopped when these AIC or BIC values trended
upwards and log10 BF was maximized. In this case, we stopped at 5 and chose 4 clusters.
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Figure 2: A (upper left): Effect sizes of Cluster 0 (with 95% credible intervals) on the lipid-related mul-
tivariate phenotype (the "null cluster"). B (upper right): Effect sizes of Cluster 1 (with 95% credible
intervals) on the lipid-related multivariate phenotype. PTVs in this cluster espouse positive effects on HDL
levels and negative effects on TG levels and LDL levels. C (lower left): Effect sizes of Cluster 2 (with
95% credible intervals) on the lipid-related multivariate phenotype. PTVs in this cluster espouse null effects
on the HDL phenotype and successively negative effects on TG and LDL. D (lower right): Effect sizes
of Cluster 3 (with 95% credible intervals) on the lipid-related multivariate phenotype. This cluster seems
to have disparate effects on HDL (positive effect) as compared to TG (strong negative effect) and LDL
(extremely strong negative effect).
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Figure 3: A (upper left): Effect sizes of Cluster 0 (with 95% credible intervals) on the renal-related
multivariate phenotype (the "null cluster"). B (upper right): Effect sizes of Cluster 1 (with 95% credible
intervals) on the renal-related multivariate phenotype. PTVs in this cluster espouse null effects on CRE and
eGFR levels and strong negative effects on CSTC levels. C (lower left): Effect sizes of Cluster 2 (with 95%
credible intervals) on the renal-related multivariate phenotype. PTVs in this cluster espouse mild positive
effects on CRE and CSTC and mild negative effects on eGFR. D (lower right): Effect sizes of Cluster
3 (with 95% credible intervals) on the renal-related multivariate phenotype. This cluster seems to have
inconclusive effects on the multivariate phenotype, as the 95% credible intervals for the effects cross 0.
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Figure 5a: Gene-level posterior probabilities that PTVs in candidate genes in the UK Biobank exome
sequencing data set belong to each of four clusters hypothesized with respect to a lipid-related multivariate
phenotype of high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), and
triglyceride (TG) levels. All PTVs in the analysis are accounted for here.
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Figure 5b: Gene-level posterior probabilities that PTVs in candidate genes in the UK Biobank exome
sequencing data set belong to each of four clusters hypothesized with respect to a renal-related multivariate
phenotype of creatinine (CRE), cystatin C (CSTC), and effective glomerular filtration rate (eGFR). All PTVs
in the analysis are accounted for here.
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5 Code Availability

We have published the full set of associations (log10 BF ≥ 5) from an independent effects model

amongst PAVs, from a similar effects model amongst PAVs, as well as from a similar effects

model amongst PTVs on the Global Biobank Engine33. While this study focuses on exome associ-

ations (https://biobankengine.stanford.edu/RIVAS_HG38/mrpgene/all), we

also provide associations for array data (https://biobankengine.stanford.edu/RIVAS_

HG19/mrpgene/all). For every phenotype, we provide single-phenotype MRPMM results

(right-most columns in the tables) for PAVs and PTVs, with cluster effect size estimates as well as

cluster assignment probabilities and proportions displayed.

Exome and array metadata tables are available on the Global Biobank Engine for direct

download at these links:

https://biobankengine.stanford.edu/static/ukb_exm_oqfe-consequence_

wb_maf_gene_ld_indep_mpc_pli.tsv.gz - Exome

https://biobankengine.stanford.edu/static/ukb_cal-consequence_

wb_maf_gene_ld_indep_mpc_pli.tsv.gz - Array

MRPMM was implemented using Python (dependencies: pandas v1.1.5, numpy v1.16.4,

sklearn 0.24.0, scipy v1.3.0). The requirements, code, example usages, and interpretation of results

files can be found at https://github.com/rivas-lab/mrpmm.
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