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Abstract 43	

Background: Genetic variations across the SARS-CoV-2 genome may influence 44	

transmissibility of the virus and the host’s anti-viral immune response, in turn affecting the 45	

frequency of variants over-time. In this study, we examined the adjacent amino acid 46	

polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the 47	

background of the spike D614G change and describe how strains harboring these changes 48	

became dominant circulating strains globally. Methods: Deep sequencing data of SARS-49	

CoV-2 from public databases and from clinical samples were analyzed to identify and map 50	

genetic variants and sub-genomic RNA transcripts across the genome.  Results: Sequence 51	

analysis suggests that the three adjacent nucleotide changes that result in the K203/R204 52	

variant have arisen by homologous recombination from the core sequence (CS) of the leader 53	

transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting 54	

sequence changes generate a novel sub-genomic RNA transcript for the C-terminal 55	

dimerization domain of nucleocapsid. Deep sequencing data from 981 clinical samples 56	

confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with 57	

the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the 58	

K203/R204 variant may also have increased expression of sub-genomic RNA from other 59	

open reading frames. Conclusions: The finding that homologous recombination from the 60	

TRS may have occurred since the introduction of SARS-CoV-2 in humans resulting in both 61	

coding changes and novel sub-genomic RNA transcripts suggests this as a mechanism for 62	

diversification and adaptation within its new host. 63	

	64	

	  65	
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Introduction 66	

It is believed SARS-CoV-2 originated from a bat coronavirus transmitted to humans, likely 67	

via an intermediate host such as a pangolin, acquiring a furin-cleavage site in the process. 68	

This new motif allows cleavage at the boundary of the S1 and S2 domains of the spike 69	

protein in virus-producing cells (1). A SARS-CoV-2 variant in the spike protein, D614G (B.1 70	

lineage), emerged early in the epidemic and has rapidly became dominant in virtually all 71	

areas of the world where it has circulated (2). Several studies have shown this variant to be 72	

associated with higher viral RNA levels in the upper respiratory tract, higher titers in 73	

pseudoviruses in-vitro (2, 3) and increased infectivity (4, 5). More recently, emerging 74	

lineages from this genetic background (B.1.1.7 – ‘Alpha or UK variant’, B.1.351 – ‘Beta or 75	

South African variant’,  or B.1.617.2 - ‘Delta variant’) have been identified with reported 76	

rapid local expansions of these viruses.  77	

 78	

The diversification of coronaviruses can occur via point mutations and recombination events 79	

(6, 7) that can result in increased prevalence due to selective advantage related to increased 80	

infectiousness and transmission of the virus or by chance. Evidence of viral adaptation to 81	

selective pressures as a virus spreads among diverse human populations has important 82	

implications for the ongoing potential for changes in viral fitness over time, which in turn 83	

may impact transmissibility, disease pathogenesis and immunogenicity. Furthermore, the 84	

functional impact of new genetic changes need to be considered in the performance of 85	

diagnostic tests, ongoing public health measures to contain infection around the world and 86	

the development of universal vaccines and antiviral therapies including monoclonal 87	

antibodies.  88	

 89	
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Here we examined a variant of SARS-CoV-2 that emerged within the subset of sequences 90	

harboring the D614G variant and contains three adjacent nucleotide changes spanning two 91	

residues of the nucleocapsid protein (R203K/G204R; B.1.1 lineage) that has resulted in a 92	

novel sub-genomic RNA transcript. Sequence analysis suggests these changes are the result 93	

of homologous recombination from the core sequence (CS) of the leader transcription-94	

regulating sequence (TRS). This event introduced a new TRS between the RNA binding and 95	

dimerization domains of nucleocapsid providing the template for the generation of a novel 96	

sub-genomic RNA transcript. Further novel sub-genomic RNA transcripts arising in 97	

association with incorporation of leader sequence and TRS were also observed, suggesting 98	

homologous recombination from this region as a potential mechanism for SARS-CoV-2 99	

diversification and adaptation within its new host. 100	

	  101	
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Methods 102	

Study Design  103	

This study utilized deposited SARS-CoV-2 genomic sequences in public databases, with a 104	

further 981 Oxford Nanopore Technology genomes and clinical metadata from Sheffield, 105	

UK, as a validation set, to identify and map genetic variants and sub-genomic RNA 106	

transcripts across the genome.  Accession numbers and links to datasets are in Supplementary 107	

Material.  108	

 109	

SARS-CoV-2 sequence generation from patients with COVID-19 110	

SARS-CoV-2 sequences, with matched clinical metadata, were generated using samples 111	

taken for routine clinical diagnostic use from 981 individuals presenting with COVID-19 112	

disease to Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. This work 113	

was performed under approval by the Public Health England Research Ethics and 114	

Governance Group for the COVID-19 Genomics UK consortium (R&D NR0195).  115	

Following extraction, samples were processed using the ARTIC Network SARS-CoV-2 116	

protocol. After RT-PCR, SARS-CoV-2 specific PCR and library preparation with Oxford 117	

Nanopore LSK-109 and barcoding expansion packs NBD-104 and NBD-114 samples were 118	

sequenced on an Oxford Nanopore GridION X5 using R9.4.1D flow cells. Bases were called 119	

with either fast or high accuracy guppy with demultiplexing enabled and set to --require-120	

both-ends. Samples were then analyzed using ARTIC Network pipeline v1.1.0rc1.  121	

 122	

SARS-CoV-2 sequence acquisition from public repositories  123	

Complete SARS-CoV-2 genome sequences were downloaded from the GISAID EpiCoV 124	

repository on 24th January 2021 (https://www.gisaid.org/). The complete dataset of 455,774 125	

sequences with coverage across the genome were aligned in CLCbio Genomics Workbench 126	
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12 (QIAGEN Bioinformatics) to the GenBank reference sequence NC_045512.2. Aligned 127	

sequences were exported in FASTA format and imported into Visual Genomics Analysis 128	

Studio (VGAS), an in-house program for visualizing and analyzing sequencing data 129	

(http://www.iiid.com.au/software/vgas). The chronological appearance of the sequences was 130	

generated using the collection dates for each of the sequences. Of note, our current 131	

knowledge of the global circulating variants is dependent on the ability of laboratories in 132	

different countries to deposit full genome length SARS-CoV-2 sequences and may be subject 133	

to ascertainment bias. As such, the frequencies of specific variants shown may not reflect the 134	

size of the outbreak. However, the data does provide the opportunity to predict the presence 135	

of specific variants in areas given the known epidemiology within different countries and 136	

regions. A subset of subjects also had individual deep sequence reads deposited in the 137	

Sequence Read Archive (SRA) at www.ncbi.nlm.nih/sra. These sequence reads were 138	

downloaded and aligned as indicated above.   139	

 140	

Identification of amino acid substitutions  141	

Codon usage output allowed for identification of amino acid substitutions across the SARS-142	

Cov-2 genome. A cut-off of 5% frequency within the consensus SARS-CoV-2 protein 143	

sequences was set to obtain the codon usage across all sequences and as shown in S1 Table.  144	

The viral polymorphisms detected are present in viral variants sequenced using different 145	

NGS platforms (e.g. nanopore, Illumina) and the Sanger-based sequencing method making it 146	

unlikely that the new changes are sequence or alignment errors. In addition, different 147	

laboratories around the world have deposited sequences with these polymorphisms in the 148	

database and examination of individual sequences in the region failed to uncover obvious 149	

insertions/deletions likely representing alignment issues or homopolymer slippage.    150	

 151	
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HLA peptide binding prediction  152	

The region containing the adjacent amino acid polymorphisms in the nucleocapsid was 153	

divided into sliding windows of 8-14 amino acids. NetMHC 4.0 154	

(http://www.cbs.dtu.dk/services/NetMHC/) and NetMHCpan 4.0 155	

(http://www.cbs.dtu.dk/services/NetMHCpan/) with default settings were utilized to predict 156	

HLA-class I binding scores and binding differences across all HLA class-I alleles for the 157	

original 2003 SARS and current SARS-CoV-2 sequences harboring the R203/G204 and 158	

K203/R204 polymorphisms in the nucleocapsid (output listed in S2 Table).    159	

 160	

HLA peptide binding assays  161	

MHC was purified from the Steinlin EBV transformed homozygous cell line (IHWG ID: 162	

9087; A*01:01, B*08:01 and C*07:01) using the B123.2 (anti-HLA-B, C) and W6/32 (anti-163	

class I) monoclonal antibodies, and classical MHC-peptide inhibition of binding assays 164	

performed, as previously described (8). To develop an HLA C*07:01-specific binding assay, 165	

the IEDB was utilized to identify candidate peptides reported as HLA-C*07:01 epitopes or 166	

eluted ligands. One peptide (3424.0028; sequence IRSSYIRVL, Macaca mulatta and Homo 167	

sapiens DNA replication licensing factor MCM5 289-297) was radiolabeled and found in 168	

direct binding assays to yield a strong signal with as little as 0.5 nM MHC. Subsequent 169	

inhibition of binding assays established that 3424.0028 bound with an affinity of 0.21 nM. To 170	

establish that the putative assay was specific for C*07:01, and not co-purified B*08:01, two 171	

additional peptides previously reported as HLA-C*07:01 ligands were also tested, with one 172	

found to bind with high affinity (IC50 67 nM) and the other with intermediate (IC50 1600 173	

nM). At the same time, a panel of known B*08:01 ligands were not found to have the 174	

capacity to inhibit binding of radiolabeled 3424.0028 (S3 Table). By contrast, when the same 175	

panel of peptides was tested in the previously validated B*08:01 assay (9), 3424.0028 was 176	
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found to bind with about 1500-fold lower affinity, all of the known B*08:01 ligands bound 177	

with IC50s <10 nM, and the C*07:01 ligands with affinities >1000 nM.    178	

 179	

Sub-genomic RNA classification & quantification in the Validation Dataset  180	

We developed a tool, “periscope” (v0.0.0), to classify and quantify sub-genomic RNA in the 181	

Sheffield ARTIC network Nanopore dataset (10). The tool can be downloaded from git-hub 182	

at https://github.com/sheffield-bioinformatics-core/periscope. Briefly, this tool uses local 183	

alignment to identify putative sub-genomic RNA supporting reads and uses genomic reads 184	

from the same amplicon to normalize.   185	

 186	

RNA structure modeling  187	

The RNAfold program from the ViennaRNA Web Server (http://rna.tbi.univie.ac.at/) was 188	

used for structural predictions using the default settings and the minimum free energy 189	

structures were acquired using the base-pairing probability color scheme. The Dot-bracket 190	

folding notations were obtained for each of the R203K/G204R sequences and used for 191	

Junction Explorer (nature.njit.edu/biosoft/Junction-Explorer/) and CHS-align 192	

(nature.njit.edu/biosoft/CHSalign/).   193	

 194	
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Statistical Analysis  195	

Fisher exact test was used to compare the proportion of subjects with specific sub-genomic 196	

RNA transcripts. P values less than 0.05 was used as the statistical threshold. Comparisons 197	

between sub-genomic and genomic RNA expression in R203/G204 compared to K203/R204 198	

containing sequences was made using the Mann-Whitney U test, corrected for multiple 199	

comparisons using the Holm method. Logistic and linear regression modeling used to explore 200	

the impact of K203/R204 and other co-variates on hospitalization, CT values and sub-201	

genomic RNA expression.   202	

	203	

	  204	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2020.04.10.029454doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.029454


	

	

11	

	

Results and Discussion  205	

Adjacent nucleocapsid polymorphisms emerged from the existing spike protein D614G 206	

variant  207	

We utilized publicly available SARS-CoV-2 sequences from the GISAID database (available 208	

on the 24th of January 2021; www.gisaid.org) to identify amino acid polymorphisms arising 209	

in global circulating forms of the virus in relation to region and time of collection. Of the 210	

455,774 circulating variants there were 29 amino acid polymorphisms present in >5% of the 211	

deposited sequences (of a total of 9413 sites; S1 Table) including the spike D614G variant 212	

(B.1 lineage) that emerged early in the pandemic and the adjacent R203K/G204R variants 213	

(B.1.1 lineage) in the nucleocapsid protein (11) that formed one of the main variants 214	

emerging from Europe in early 2020. As of the end of January 2021, the K203/R204 variant 215	

comprises 37.4% of globally reported SARS-CoV-2 sequences (Fig 1) and almost 216	

exclusively occurs on the D614G genetic background (S4 Table).  217	

 218	

Although the D614G change rapidly increased in prevalence in almost all regions, the 219	

prevalence rates of the K203/R204 subset of the D614G variant are variable in different 220	

geographic areas and over-time (Fig 2).  For example, an almost complete replacement of 221	

D614 by G614 was noted in South America between March and April 2020 and a similar 222	

replacement pattern was seen with the K203/R204 variant most marked in Chile, Argentina 223	

and Brazil (12). A closer examination of the deposited sequences in the UK shows the 224	

K203/R204 variant increasing in prevalence early in 2020 but the second wave later in the 225	

year shows a shift in the proportion of deposited sequences with the R203/G204 subset of the 226	

D614G variant (B.1.177 lineage) until the recent appearance of the B.1.1.7 ‘Alpha or UK 227	

variant’ that harbors the K203/R204 polymorphisms (S1 Fig and S4 Table); supporting a 228	

likely increased infectivity of this variant.  229	
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 230	

Amino acid polymorphisms due to three adjacent nucleotide changes in the 231	

nucleocapsid likely due to homologous recombination  232	

Of the publicly available sequences examined with the two amino acid polymorphisms 233	

K203/R204, all showed the three adjacent nucleotide changes from AGG GGA to AAA 234	

CGA. There was no differential codon usage for the K203/R204 variant in the database. 235	

However, there was evidence of low frequency alternative codon usage for arginine at 203 236	

(AGA) for the R203/G204 variant and for lysine (AAG) at 203 for the K203/G204 variant 237	

(S5 Table). Overall, circulating variants that contain the intermediate codon as the consensus 238	

that could facilitate a single step from the AGG arginine codon to the AAA lysine codon at 239	

position 203 appear rare among captured variants to date (S5 Table). Furthermore, a K203 240	

polymorphism alone was seen in 0.3% and an R204 polymorphism alone seen in only 0.02% 241	

of sequences (S5 Table). The low frequency K203/L204 and K203/P204 variants are both 242	

one nucleotide step from the K203/R204 variant, have been deposited into the public 243	

databases (November 2020) well after the emergence of the K203/R204 variant (February 244	

2020) and accordingly likely arose from this genetic background. 245	

 246	

The rapid emergence of closely linked polymorphisms in viruses can also reflect strong 247	

selection pressure on this region of the genome in which the original mutation incurred a 248	

replicative capacity, or other fitness cost, which could be restored by a linked compensatory 249	

mutation. Evidence for such adaptations with closely linked compensatory mutations are 250	

known to occur under host immune pressure as is well established for other RNA viruses 251	

such as HIV (13-15) and Hepatitis C virus (16).  In the absence of anti-viral treatment, these 252	

viruses have such a high rate of viral replication, error-prone polymerases and lack associated 253	

proofreading, mismatch repair, and other nucleic acid repair pathways generating a swarm of 254	
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viral variants with ongoing recombination between variants (in the case of HIV) being 255	

generated continuously. As a result, selection pressure exerted by immune responses or other 256	

selective pressures effectively operate on each separate residue independently (15). In 257	

contrast, coronaviruses encode proofreading machinery and have a propensity to adapt by 258	

homologous recombination between viruses (6) rather than necessarily by classic stepwise 259	

individual mutations driven by selective pressures effectively operating on individual viral 260	

residues. Furthermore, a simulation based on the nucleocapsid genomic region and allowing 261	

up to 10 random mutations indicates the likelihood of observing three consecutive nucleotide 262	

changes is less than 0.0005. These findings argue against stepwise change of the nucleotides 263	

for the R203K/G204R variant.  264	

 265	

The introduction of the AAACGA motif by homologous or heterologous recombination is a 266	

more parsimonious mechanistic explanation and would have immediately resulted in both an 267	

R to K change and adjacent G to R change at the positions 203 and 204, respectively. It is 268	

critical to determine if the introduction of the AAACGA motif has induced any replicative or 269	

other fitness change for the virus as a result of either structural or functional changes in the 270	

RNA or the concomitant change of amino acids from R203/G204 to K203/R204 and any 271	

related structural or functional impact on the nucleocapsid protein. 272	

 273	

SARS-CoV-2 itself as likely source for homologous recombination  274	

To identify possible viral sources for homologous recombination with SARS-CoV-2, 275	

we initially performed a search of the motif in the nucleocapsid in related beta coronaviruses 276	

from human and other species in the public databases and only found the presence of the 277	

R203/G204 combination. We performed a similar search in our metatranscriptome data 278	

generated from a cohort study consisting of 65 subjects of whom 43 had acute respiratory 279	
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infections and 22 were asymptomatic. From the data we assembled near complete and coding 280	

complete viral genomes of the Coronavirus (NL63 - alpha, OC43 - beta, 229E - alpha), RSV 281	

(A, B), Rhinovirus (A, B, C), Influenza (A - H3N2), and Bocavirus family. None of the alpha 282	

coronaviruses had the R203/G204 or K203/R204 combination or indeed any variation at 283	

these sites (n=14; sequence depth >3000). We then performed a search for stretches of 284	

similarity using varying window sizes (>14 base-pair (bp) including the motif) in all 285	

sequences. A 14bp window was selected as 14bp has been shown to be the minimum amount 286	

of homology required for homologous recombination in mammalian cells (17). No significant 287	

hits were identified. However, the AAACGA sequence encoding the K203/R204 amino acids 288	

overlaps with the CTAAACGAAC motif of the leader transcription-regulating sequences 289	

(TRS; core underlined) (18) of SARS-CoV-2 itself and this core sequence motif is also found 290	

near the start codon of the protein for surface glycoprotein (S), ORF3a, E, M, ORF6, ORF7a, 291	

ORF8, ORF10 and nucleocapsid, in keeping with its known roles in mediating template 292	

switching and discontinuous transcription (18). 293	

 294	

Deep sequencing confirms quasi-species with the leader sequence linked to known or 295	

introduced TRS region 296	

Discontinuous transcription of SARS-CoV-2 results in sub-genomic RNA (sgRNA) 297	

transcripts containing 5’-leader sequence-TRS-start codon-ORF-3’. These RNA transcripts 298	

should also be captured from reads generated from NGS platforms. We therefore reasoned we 299	

should be able to find such sequences within deep sequencing reads at the sites of known 300	

sub-genomic regions (corresponding to the ORFs) and adjacent to position 203/204 of the 301	

nucleocapsid in subjects infected with the K203/R204 variant but not in those with the 302	

R203/G204 variant (Fig 3).  303	

 304	
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We searched for sgRNAs in sequence data generated from n=981 patients with COVID-19 305	

based on the ARTIC network protocol (www.artic.network/ncov-2019; Fig 3) and subsequent 306	

Nanopore sequencing in Sheffield, UK. As expected, the most frequent sgRNA transcripts in 307	

each subject, irrespective of variant, corresponded to the known regions containing the start 308	

codon of the SARS-CoV-2 proteins (Fig 4A). However, out of a total of 550 K203/R204 309	

sequences, 231 had evidence (>=1 read containing leader sequence at the novel TRS site) of 310	

the non-canonical nucleocapsid sgRNA (42%) but only 1 out of a total of 431 R203/G204 311	

subjects had evidence of the novel sgRNA (likely a false positive as described in S2 Fig).  312	

 313	

We confirmed the presence of the novel non-canonical nucleocapsid sgRNA in 27/45 314	

individuals with the K203/R204 variant but in none of 45 individuals with the R203/G204 315	

variant (Fisher test, p=5.0e-11; S6 Table) from the sequence read archive (SRA) database 316	

(www.ncbi.nlm.nih/sra). Interestingly, we also found the presence of 23 other non-canonical 317	

sgRNA transcripts with the 5’-leader-TRS-start codon-3’ at low frequency in the 90 subjects 318	

(irrespective of variant) due to multiple adjacent changes to the consensus sequence across 319	

the genome generating new core TRS motifs (including with minor mismatches) (S6 Table). 320	

It should be noted that none of these changes are present in the consensus sequence of the 321	

SARS-CoV-2 genomes downloaded and represent low frequency quasispecies within 322	

individuals. It does, however, suggest other instances of the introduction of the core 323	

sequences from the leader TRS elsewhere in the SARS-CoV-2 genome.  324	

 325	

SARS-CoV-2 viruses with K203/R204 are not associated with greater hospitalization 326	

with COVID-19 or higher virus levels in the upper respiratory tract	327	

The same dataset from COVID-19 patients in Sheffield, UK, was used to explore whether the 328	

K203/R204 variant had any association with clinical outcome. The median age of this cohort 329	
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was 54 years (IQR 38 to 74) and 59.8% were female. Of these, 440 (44.9%) were 330	

hospitalized COVID-19 patients and 42 (4.3%) subsequently required critical care support. A 331	

multivariable logistic regression model including 203/204 status, age and sex showed no 332	

association of K203/R204 with hospitalization (OR 0.82, 95% confidence intervals (CI 0.58 – 333	

1.16), p=0.259). As expected, higher age and male sex were significantly association with 334	

hospitalization with COVID-19 (OR 1.09, 95% CI 1.08 – 1.11, p <2e-16 for age and OR 335	

4.47, 95% CI 3.13 – 6.43, p=2.91e-16 for male sex). Male sex, but not age or 203/204 status, 336	

was associated with risk of critical care admission (S7 Table). 	337	

 338	

We explored whether K203/R204 was associated with greater virus levels in the upper 339	

respiratory tract as estimated by cycle threshold (CT) values from the diagnostic RT-PCR. As 340	

day of illness will impact CT value, we focused on a subset of the cohort (n=478) where this 341	

information was available (all non-hospitalized patients, median symptom day 3, range 1 – 13 342	

days). Data were analyzed with sequences stratified by spike 614 and nucleocapsid 203/204 343	

status (D614/R203/G204, G614/R203/G204 and G614/K203/R204). Multivariable linear 344	

regression models showed no impact of G614/K203/R204 compared to G614/R203/G204 345	

status on CT values (p= 0.83, S6B Table), but as expected, later day of symptom onset was 346	

significantly associated with higher CT values, therefore lower viral load (S8 Table, 347	

p=2.05E-05). Consistent with recent findings (2), presence of a spike D614G variant was 348	

significantly associated with lower CT values (higher viral loads) in the same subset of 349	

individuals, even when day of illness at sampling is included in the model (S8A Table, 350	

D614/R203/G204 vs G614/R203/G204, p=0.00011, Fig 5A & B).  351	

 352	

SARS-CoV-2 viruses with K203/R204 have evidence of higher sub-genomic RNA 353	

expression  354	
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We hypothesized that the amount of sgRNA at each of the ORF TRS positions in the SARS-355	

CoV-2 genome in ARTIC nanopore sequencing data could serve as a proxy for expression 356	

levels of each of the ORFs due to their positions in the amplicons (Fig 3). To test this 357	

hypothesis we developed a tool, periscope (19), which quantifies the number of sgRNA and 358	

genomic RNA reads at each ORF TRS position in ARTIC network nanopore sequencing 359	

data. We applied periscope to the 981 sequences in the Sheffield validation dataset. To 360	

control for the sequencing depth differences evident between amplicons, we determined the 361	

amplicon that shares the 3’ primer with the sgRNA reads and used the total count of genomic 362	

RNA at this amplicon to calculate the proportion of sgRNA for each ORF. The N ORF 363	

sgRNA is expressed at high levels in all samples. ORF10 sgRNA was absent as others have 364	

shown (20). A significant increase in sgRNA levels for several ORFs in samples with 365	

K203/R204 compared to R203/G204 samples is apparent (Fig 4B). N is the most striking 366	

example (Fig 4C, Mann-Whitney U test p value, adjusted for multiple testing p = 2.06e-37), 367	

but sgRNA from ORFs E, M and ORF6 are also significantly increased. There is no 368	

significant difference in genomic RNA levels (Fig 4D, normalized to total mapped reads) 369	

between these two groups.  370	

 371	

As discussed above, the K203/R204 variants appear to have emerged within the subset of 372	

SARS-CoV-2 sequences with a D614G variant in the spike protein, which has been 373	

associated with infections with a higher viral load in the upper respiratory tract. To explore 374	

whether the differences between K203/R204 and R203/G204 sequences in sgRNA quantities 375	

were due to D614 compared to G614 variant differences, we repeated the comparisons 376	

following further stratification of sequences. Interestingly, G614/R203/G204 variants showed 377	

lower total sgRNA expression than D614/R203/G204 samples (S3 Fig). Of note, sgRNA for 378	

spike (S), membrane (M) and envelope (E) ORFs were significantly higher in samples with 379	
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D614/R203/G204 compared to those with G614/R203/G204 (adjusted p values 1.02e-4 for S, 380	

0.0495 for M and 0.00696 for E). Total sgRNA in G614/K203/R204-containing samples was 381	

still significantly higher than in G614/R203/G204 samples (S3A Fig, Mann-Whitney U test p 382	

value, adjusted for multiple testing p = 3.5e-6). Similar increases in some individual ORF 383	

sgRNA quantities in G614/K203/R204 compared to G614/R203/G204 sequences were also 384	

seen, most notably for nucleocapsid (S3B Fig, adjusted p value 1.34e-12).  385	

 386	

To ensure that the increase in sgRNA in K203/R204-containing sequences was not due to 387	

confounding by differences in sampling date compared to date of symptom onset, we 388	

evaluated the impact of K203/R204 and day of illness on sgRNA expression in a 389	

multivariable linear regression model using the subset of 478 sequences described above 390	

(stratified by D614/R203/G204, G614/R203/G204 and G614/K203/R204 status). Higher 391	

sgRNA levels were significantly associated with later day from symptom onset (S9 Table, 392	

p=9.9E-08). G614/R203/G204 compared to D614/R203/G204 was again associated with a 393	

reduction in sgRNA levels (p=0.011, S9A Table), whereas a K203/R204 change on the 394	

background of spike G614-containing sequences was associated with a significant increase in 395	

sub-genomic RNA (p=4.51E-05, S9B Table). Spike canonical sub-genomic RNA was higher 396	

in D614/R203/G204 samples, whereas nucleocapsid canonical sub-genomic RNA was higher 397	

in G614/K203/R204 samples (Fig 5C and D, S3 Fig). 398	

 399	

RT-PCR assays have been developed to directly assess sub-genomic mRNA (sgRNA) as a 400	

measure of replicative intermediates of SARS-CoV-2 representing putative replication in 401	

cells rather than RNA packaged in virions or residual viral RNA (21, 22). A decline in 402	

sgRNA in sputum typically occurs from day 10 to 11 after onset of symptoms	 (22).  Our 403	

finding that a variant can emerge that is associated with a novel sub-genomic RNA or may 404	
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differentially impact the level of different sgRNAs suggest that the viral sequences should be 405	

analyzed to ensure the primers or probes used are appropriate and analysis of short read deep 406	

sequences with the periscope tool considered to help interpret results obtained from different 407	

variants.   408	

 409	

Potential impact of introduced TRS sequences on RNA structure  410	

Modeling of the region around the mRNA encoding position 203 and 204 of the nucleocapsid 411	

using RNAfold (23) predicts the presence of a three-way junction in the RNA (S4 Fig), 412	

which was also predicted using Junction-Explorer (24). Three-way junction motifs are 413	

common throughout biology and are found both in pure RNAs, such as riboswitches or 414	

ribozymes, and in RNA-protein complexes, including the ribosome (25). RNA three-way 415	

junctions are often stabilized via terminal loop interactions with distant tertiary contacts 416	

while the junctions act like flexible hinges. These attributes allow these structures to sample 417	

unusual conformational spaces and they often form platforms for interactions with other 418	

molecules such as proteins, RNAs or small molecule ligands (25), and these folds often have 419	

an essential role in either the function or assembly of the molecules in which they are 420	

contained.  421	

 422	

RNAfold predicts the mutation from AGGGGA to AAACGA strongly disrupts this structure 423	

as the lengths of the predicted helices and each of the junctions are altered and the stability of 424	

Helix 2 is undermined (S4 Fig). A comparison of the two-modeled sequences using 425	

CHSalign (26) also indicates that none of the junctions are maintained. Given these 426	

widespread alterations, this modeling predicts that the AGGGGA to AAACGA mutation 427	

would have a strong impact on the local RNA structure of this region, and likely impacts the 428	

normal function of this three-way junction motif. Interestingly, the RNA modeling shown in 429	
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S4 Fig also suggests that pairing of specific nucleotides to maintain these RNA structures 430	

may require the preferential codon usage by RG (AGGGGA) and KR (AAACGA) and be a 431	

contributory factor to preferential codon usage in RNA viruses more generally even in 432	

protein coding regions.  433	

 434	

While it is not possible to determine the impact of this proposed structural alteration on 435	

SARS-CoV-2 without a defined function for this structure, there are precedents where minor 436	

changes in a three-way junction have large functional consequences for their host viruses. For 437	

example, Flaviviruses such as Dengue and West Nile virus utilize the host cell machinery to 438	

degrade viral genomes until they encounter structures near the 3’ end that are resistant to 439	

XRN1 5’-3’ exonuclease (27). The resulting small flaviviral RNAs (sfRNAs) are non-coding 440	

RNAs that induce cytopathicity and pathogenicity. The resistance of sfRNA to XRN1 is 441	

dependent on the structure of a three-way junction and a single nucleotide change at the 442	

junction alters the fold sufficiently to prevent the accumulation of disease-related sfRNAs. 443	

Thus, small changes at the nucleotide level can have profound functional consequences for 444	

viral RNA three-way junctions. 445	

 446	

Lack of evidence that the RG to KR change at positions 203 and 204 of nucleocapsid 447	

was driven by HLA-restricted immune selective pressure  448	

Selection of viral adaptations to polymorphic host responses mediated by T cells, NK-cells 449	

and antibodies are well described for other RNA viruses such as HIV and HCV (15, 28). 450	

HIV-1 adaptations to human leucocyte antigen (HLA)-restricted T-cell responses have also 451	

been shown to be transmitted and accumulate over time (29, 30). As previously shown for 452	

SARS-CoV, T-cell responses against SARS-CoV-2 are likely to target the nucleocapsid (31). 453	

Notably, SARS-CoV-2 R203K/G204R polymorphisms modify the predicted binding of 454	
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putative HLA-restricted T-cell epitopes containing these residues (S2 Table). One of the 455	

predicted T-cell epitopes is restricted by the HLA-C*07 allele; and we therefore considered 456	

whether escape from HLA-C-restricted T-cell responses may conceivably confer a fitness 457	

advantage for SARS-CoV-2, particularly in European populations where HLA-C*07 is 458	

prevalent and carried by >40% of the population (www.allelefrequencies.net). However, 459	

using HLA-C*07:01 purified from the Steinlin cell line (IHWG ID: 9087; A*01:01, B*08:01 460	

and C*07:01) and the anti-HLA Class I B123.2 mAb in inhibition assays we were not able to 461	

detect binding of either of the SARS-CoV-2 peptides SRGTSPARM or SKRTSPARM (S3 462	

Table).  We therefore have, as yet no evidence of any impact or selective advantage to the 463	

virus at the protein level of a change at position 203/204 from the RG to KR residues.  464	

 465	

SARS-CoV-2 and Host Adaptation: Implications for global viral dynamics, 466	

pathogenesis and immunogenicity 467	

Currently the possible functional effect(s) of the introduction of the AAACGA motif from the 468	

leader TRS into the RNA encoding position 203 and 204 of the nucleocapsid at the RNA and 469	

protein level are not known. TRS sites are usually intergenic and it has been assumed that 470	

recombination events at such sites are more likely to be viable. It has also been shown 471	

recently that recombination breakpoint hotspots in coronaviruses are more frequently co-472	

located with TRS-B sites than expected (32). Our findings suggest that a novel TRS-B site 473	

can be introduced in a recombination breakpoint from the leader TRS, and that this can occur 474	

within an ORF and remain viable. The exact mechanism by which the AAA CGA codons 475	

could have been incorporated from the TRS-L into the nucleocapsid is not known but may 476	

have first required the AAACGA to be captured from the TRS-L and then for replication to 477	

be reinitiated at the nucleocapsid to generate a full-length genomic RNA.  478	

 479	
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The nucleocapsid protein is a key structural protein critical to viral transcription and 480	

assembly (33), suggesting that changes in this protein could either increase or decrease 481	

replicative fitness. The K203/R204 polymorphism is located between the RNA 482	

binding/serine-rich domains and the dimerization structural domain (S5 Fig) in a part of the 483	

protein that has not been characterized in terms of 3-dimensional structure. The sequence of 484	

this region is not similar enough to solved structures to allow prediction of the influence of 485	

the K203/R204 polymorphisms on the structure or function of the protein. However, it is 486	

known that SARS-CoV-2 is exquisitely sensitive to interferons and that it depends on the 487	

nucleocapsid and M proteins to maintain interferon antagonism (34, 35). Specifically the C 488	

terminus (aa 362 to 422) of the nucleocapsid, which is predicted to be expressed at higher 489	

levels in those with the KR variant and novel sgRNA, has been shown to interact with the 490	

SPRY domain of TRIM25 disturbing its interaction with CARDs of RIG-I inhibiting RIG-I 491	

ubiquitination and Type 1 interferon signaling (36). Importantly the cells expressing the C-492	

terminal nucleocapsid protein in that study produced lower viral titer, suggesting the 493	

incorporation of this protein into the nucleocapsid may reduce the formation of functional 494	

virus. This raises the possibility that any enhancement of inhibition of interferon signaling 495	

associated with the novel K203/R204 sgRNA may be offset by less efficient replication, 496	

potentially accounting for the lack of association with higher viral load in the upper 497	

respiratory tract and absence of epidemiologic evidence of increased transmission. It is also 498	

possible that the increase in sgRNA directly inhibits RIG-I signaling and downstream Type I 499	

interferon responses as has been described for Dengue serotype 2 (37).  Finally, the central 500	

region of coronavirus nucleocapsid (aa 117 to 268) has been shown to have RNA chaperone 501	

activity that enhances template switching and efficient transcription possibly accounting for 502	

the increase in sgRNA for the E and M proteins and ORF6 in KR-sequences compared to 503	
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RG-sequences (38). Note we cannot exclude that the novel sgRNA may also use the 504	

downstream ATG in the ORF9c reading frame. 505	

 506	

The adaptive potential of differential expression of sgRNAs is supported by a recent study by 507	

Thorne and colleagues that demonstrates that the B.1.1.7 (‘Alpha’ or UK variant) isolate 508	

containing the R203K/G204R substitutions is associated with enhanced antagonism of the 509	

innate immune response (39). Specifically, this study showed that in-vitro infection of human 510	

lung epithelial (Calu-3) cells by B.1.1.7 isolates showed diminished RNA and protein 511	

expression of IFNβ and reduced induction of interferon sensitive genes relative to other 512	

isolates without these defining mutations in the nucleocapsid (normalized for intracellular 513	

viral RNA). This effect was independent of the reduced sensitivity to type I and III IFNs 514	

described for isolates carrying the D614G spike mutation (40). Further evaluation of this 515	

system showed that infection with the B.1.1.7 isolate resulted in significant changes in 516	

protein expression of known innate immune regulators such as ORF9b (41), ORF6 (42) and 517	

nucleocapsid (36, 43), as well as increased levels of the N* sgRNA described in this study 518	

and was again confirmed to be unique to those isolates with the R203K/G204R mutations. 519	

These increased levels of sgRNAs and protein support the findings in this study showing 520	

increased sgRNA levels for N, ORF6 and N* in clinical samples from B.1.1.7-infected 521	

subjects relative to subjects infected with other SARS-CoV-2 isolates. Interestingly, the 522	

increased levels of ORF9b may be due to the D3L mutation in the nucleocapsid that we have 523	

proposed to have arisen similarly to the R203G/G204R mutations and is associated with 524	

increased levels of B.1.1.7 sgRNA encoding ORF9b in clinical samples (44).  525	

 526	
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The B.1.617.2  (‘Delta’) variant appears to be more transmissible even in the context of 527	

previous vaccination and is now replacing other variants.  This variant has acquired an 528	

R203M substitution as a result of a single nucleotide change while retaining an arginine (G) 529	

at position 204.  This raises the possibility that the residue 203 is critical to the interaction of 530	

nucleocapsid with TRIM25 decreasing the Type 1 interferon response or increases 531	

transmissibility in some other way (36). 532	

 533	

Other contemporary concerns include the fall in antibody levels following infection or 534	

vaccination, the potential limited durability of protection afforded by currently available 535	

vaccines and the risk of reinfection by variants after vaccination (45, 46). At low levels of 536	

antibodies, the lungs appear to remain relatively protected against severe disease presumably 537	

by some combination of antibodies and amnestic responses restimulated by the time the lung 538	

is involved.  In contrast, the early establishment of infection in the upper respiratory tract 539	

appears possible if antibody levels are low	(47). We therefore postulate that variants that are 540	

more effective in interfering with Type 1 interferon responses would be more transmissible, 541	

but not necessarily cause severe disease in the context of waning immunity at an individual or 542	

population level. 543	

 544	

Conclusion 545	

Marked viral diversity and adaptation of other RNA viruses such as HIV, HCV and influenza 546	

to host selective pressures have been a barrier to successful treatment and vaccination to date.  547	

Although SARS-CoV-2 is less diverse and adaptable, the D614G variant and the K203/R204 548	

and Delta variants have emerged by either nucleotide mutation or homologous recombination 549	

during its rapid, widespread global spread and do appear to have functional impact. It will 550	
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therefore be critical to continue molecular surveillance of the virus and elucidate the 551	

functional consequences of any newly emerging viral genetic changes to guide development 552	

of diagnostics, antivirals and universal vaccines and to target conserved and potentially less 553	

mutable SARS-CoV-2 elements. The ability of SARS-CoV-2 to introduce new TRS motifs 554	

throughout its genome with the potential to introduce both novel sub-genomic RNA 555	

transcripts and coding changes in its proteins may add to these challenges.  556	

 557	

 558	

 559	

	  560	
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FIGURES 797	

 798	
 799	
Fig 1. Proportion of weekly deposited SARS-CoV-2 sequences globally (n=455774). The 800	
D614G (B.1) variant has become one of the dominant forms globally. Note a small 801	
proportion of deposited sequences did not include information regarding specific collection 802	
date and as such were excluded. 803	
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 809	

 810	

 811	
 812	
Fig 2. Proportion of weekly deposited SARS-CoV-2 sequences by region. The proportion 813	
of R203/G204 to K203/R204 sub-variants of the D614G variant differs in different regions 814	
with recent increases in the frequency of new variants. 815	
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 819	

 820	

Fig 3. The configuration of canonical sgRNAs and the novel non-canonical nucleocapsid 821	
sgRNA (N*) in SARS-CoV-2. The bottom bar illustrates the presence of the leader sequence 822	
(blue text) followed by the transcription-regulating sequence (TRS; red text) within the 823	
genomic sequence that continues into the first ORF 1a. The presence of other canonical 824	
sgRNA transcripts in which the leader sequence and TRS precede the start codon 825	
(methionine; pink) of the other proteins are shown. The presence of the novel non-canonical 826	
sgRNA transcript containing the K203/R204 polymorphisms (N*) is shown. The ARTIC 827	
primer locations and resultant amplicons are shown. 828	
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 830	
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 832	

 833	
 834	
 835	
Fig 4. Exploration of sgRNAs in 981 samples from Sheffield, UK. A. A heatmap showing 836	
presence or absence of sgRNAs from different ORFs. K203/R204 (KR)-containing sequences 837	
have evidence of the novel truncated N ORF sgRNA (N*, red, 233/553, 42%). An ORF 838	
sgRNA was deemed present if we could find >=1 read in support. Heatmap is ordered by the 839	
presence or absence of the novel sgRNA. There were a total of 448 R203/G204 (RG)-840	
containing sequences and 1 had evidence of a novel sgRNA (likely false positive, Fig S2). B. 841	
Significantly higher (Mann-Whitney U p < 2.2e-16) total sgRNA in KR-containing compared 842	
to RG-containing sequences. C. Sub-genomic RNA is significant increased in KR-containing 843	
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compared to RG-containing sequences for a number of ORFs, most notably nucleocapsid (N; 844	
Mann-Whitney U p = 2.06e-37 corrected for multiple testing using the Holm method). Y-axis 845	
denotes square root transformed sub-genomic reads normalized to 100,000 genomic reads 846	
from the same ARTIC amplicon. D. There is no difference in genomic RNA levels 847	
(normalized to total mapped reads) between KR- and RG-containing sequences. *novel 848	
sgRNA, ORF10 and ORF1a are excluded from this analysis due to ORF10 not being 849	
expressed, difficulty in discriminating ORF1a sgRNA from genomic RNA and the novel 850	
truncated N sgRNA is only being present in KR-containing sequences. *** < 0.001, ** < 851	
0.01, * < 0.05. All p values shown are following correction for multiple testing with the 852	
Holm method. 853	
 854	
 855	
  856	
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 857	

 858	
 859	
 860	
Fig 5. Spike 614 and Nucleocapsid 203/204 Status, Diagnostic Metrics and level of sub-861	
genomic and genomic RNA. A. E gene cycle threshold (CT) normalized to RNAseP CT 862	
stratified by variant status in N = 478 individuals from Sheffield dataset with day of symptom 863	
onset data available. This normalization was done to combine and display E gene CT data 864	
from two different extraction protocols. Y-axis reversed to aid interpretation, as lower 865	
normalized CT values equal higher virus levels. B. Normalized E gene CT vs the day of 866	
sampling from day of symptom onset. P values provided are from a generalized multivariable 867	
linear regression model (GLM) for the difference in normalized E gene CT value between 868	
samples containing each variant, with extraction method and day of illness included in the 869	
model (Table S6) C. Normalized (per 1000 genomic reads) sgRNA levels for ORFs S and N. 870	
D. Normalized (per 100,000 mapped reads) genomic RNA levels for ORFs S and N. 871	
 872	
 873	
 874	

	875	
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