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ABSTRACT

Tumours are routinely profiled with single-cell RNA sequencing (scRNA-seq) to characterize
their diverse cellular ecosystems of malignant, immune, and stromal cell types. When
combining data from multiple samples or studies, batch-specific technical variation can confound
biological signals. However, scRNA-seq batch integration methods are often not designed for, or
benchmarked, on datasets containing cancer cells. Here, we compare 5 data integration tools
applied to 171,206 cells from 5 tumour scRNA-seq datasets. Based on our results, STACAS and
fastMNN are the most suitable methods for integrating tumour datasets, demonstrating robust
batch effect correction while preserving relevant biological variability in the malignant
compartment. This comparison provides a framework for evaluating how well single-cell
integration methods correct for technical variability while preserving biological heterogeneity of
malignant and non-malignant cell populations.
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BACKGROUND

Single cell transcriptome profiling of tumours has the ability to decode cellular heterogeneity in
both the malignant and microenvironmental compartments. While profiling individual samples
will incrementally expand our understanding of the cell types and states present within a single
tumour, integrating data across different patients, longitudinal timepoints and cancer types is
crucial to uncovering shared cell states underlying disease pathogenesis and treatment resistance.
However, biological variation can easily be masked by technical factors introduced during
sample processing and sequencing1–3, making it difficult to batch correct and integrate data from
multiple sources.

Previous single cell batch correction benchmarking studies evaluated algorithm performance on
simulated data or datasets derived from healthy tissues and peripheral blood mononuclear
cells4–6. Despite an abundance of data, no single cell batch-effect correction methods are
designed for or benchmarked on single cell datasets containing malignant cells7. Due to the
inherent biological complexity both within and between tumours, these samples present unique
technical challenges for batch correction that are not represented in previous benchmarking
efforts. Unlike their normal counterparts, malignant cancer cells often express patient-specific
transcriptional programs driven by somatic alterations at the DNA level, resulting in clustering
patterns with little overlap between tumors from different individuals8–13. Additionally, in some
cancer types, malignant cells hijack developmental pathways and share transcriptional programs
with their normal cellular counterparts14–17. Transcriptional similarity between malignant and
normal cells poses another batch correction challenge, as over-integration could result in
co-clustering of fundamentally different cell types, thereby masking underlying biological
signals within these populations.

Here, we perform a benchmark of 5 data integration tools on 5 cancer single cell or single nuclei
RNA-sequencing datasets. We further discuss a framework to evaluate the accuracy of an
integration method in terms of limiting technical variability while preserving true biological
heterogeneity between cancer patients in both malignant and non-malignant compartments of the
tumour microenvironment. With the continued growth of tumour single cell transcriptomics,
effective batch correction and data integration will be crucial to mitigate technical artifacts
between studies to generate large-scale, pan-cancer cellular atlases.

RESULTS & DISCUSSION

We evaluated the performance of 5 batch correction algorithms for their ability to integrate
batches (separate single cell encapsulation experiments) while maintaining separation between
dissimilar cell types and preserving integrity of malignant cell clusters that may have
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patient-specific transcriptional programs driven by somatic alterations8–13 . We focused on data
integration tools available in the R programming language, capable of integrating with the single
cell genomics analysis package Seurat18,19. Seurat is widely used by cancer genomics researchers,
and so compatible data integration tools will likely have high uptake by the community.
Specifically, we compared uncorrected data to integrations generated with Conos20, fastMNN21,22,
Harmony23, STACAS24,25 and the Seurat implementation of reciprocal principal component
analysis26 (RPCA). We did not include Seurat’s canonical correlation analysis19 (CCA), as it
employs a similar methodology to RPCA but has inferior performance on datasets that share only
a subset of cell types, as often encountered when comparing cancerous tissues5. The underlying
methodology of each tool is described in the Methods.

Batch correction algorithms were tested on 5 datasets (4 published, 1 newly generated) covering
a diverse spectrum of cell and cancer types. Datasets contained mixtures of malignant and
non-malignant cells found in the tumour microenvironment (ie. immune and stromal) in
glioblastoma (GBM; “Richards-GBM-LGG”), oligoastrocytoma (LGG; “Richards-GBM-LGG”)
(Table S1), basal cell carcinoma27 (BCC; “Yost-BCC”), childhood acute lymphoblastic
leukemia28 (cALL; “Caron-ALL”), hepatocellular carcinoma29 (HCC; “Ma-LIHC”) and clear cell
renal cell carcinoma30 (cRCC; “Bi-RCC”). All datasets were derived from human samples and
profiled with 10x Genomics single cell RNA-seq technologies with either live cells or nuclei as
input. Collectively, these 5 datasets profiled the transcriptomes of 171,206 cells or nuclei from
68 tumour samples derived from 52 patients across 6 cancer types (Figure S1A). We generated
two sets of biological replicates from in our in-house glioma snRNA-seq dataset, providing a
unique opportunity to better assess technical influences while limiting confounding
patient-to-patient heterogeneity. We define a biological replicate as two independent single cell
encapsulation experiments on two pieces of the same tumor (Tumour 1=B_P_GBM593.1,
B_P_GBM593.2; Tumour 2=C_P_GBM577.1, C_P_GBM577.2), acknowledging that these
replicates may exhibit intratumoural heterogeneity. Additionally, Richards-GBM-LGG and
Yost-BCC contain longitudinal samples from the same patient before and after treatment. Before
data integration, datasets were processed in a harmonized manner including data normalization,
scaling and identification of variable genes (Methods). Unlike simulated data or data from
normal tissues, batches (samples) did not necessarily have similar cell type composition. Both
cell type representation and proportion varied between samples and biological replicates within
datasets (Figure S1C).

To qualitatively evaluate integration results, we used Uniform Manifold Approximation and
Projection (UMAP) visualizations before (uncorrected) and after data integration (Figures 1, S2
& S3). To quantitatively assess batch correction, we computed the Local Inverse Simpson’s
Index (LISI) metric23 using UMAP or LargeVis cell embeddings (Figure 2). LISI has been
shown to effectively assess whether groups of cells are well mixed across batches, and performs
well amongst other batch assessment metrics (ie. adjusted Rand Index, average silhouette width,
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k-nearest neighbor batch-effect test31) on single-cell RNA-sequencing data4–6. For every
dataset-integration method combination, we calculated the median scaled LISI metric to assess
batch (sample) mixing within individual cell types and across entire datasets (Figure 2;
Methods). To permit comparison of LISI scores between datasets, we scaled scores between 0
and 1 using batch size (Methods), where 1 represents a good integration defined by high mixing
between batches.

First, we evaluated the ability for data integration methods to improve mixing between batches
(samples) compared to the uncorrected analysis. Comparing UMAP visualizations, we observed
a universal increase in sample mixing post-data integration across cellular compartments and
cancer types (Figure 1, S2 and S3). In agreement with the visualizations, all data integration
methods had higher dataset LISI scores compared to uncorrected data, demonstrating improved
cell mixing between samples post-integration regardless of the method (Figure 2 and S4A).
Most notably, malignant cells clustered almost entirely by patient in the uncorrected analysis, but
displayed increased overlap after integration. However, there are examples when increasing
mixing between batches may not be biologically appropriate when analyzing tumour-derived
data. For example, in Richards-GBM-LGG there are two different types of gliomas present -
samples from high-grade glioblastoma (Patients C & F; GBM) and low-grade oligoastrocytoma
(Patient B; LGG). Single cell profiling of these tumour types has shown they harbour different
malignant transcriptional programs10,15,32, and so one would expect tumour cells from these two
pathologies to have limited overlap. In our glioma cohort, clinical annotations revealed
differences in the treatment regimens of GBMs and LGGs, as well as variable IDH1 mutation
status across patients (IDH1 p.R100Q in F_P_GBM620 & F_R_GBM691) (Table S1).
Treatment history and somatic mutations may induce additional layers of transcriptional
heterogeneity between the two glioma subtypes.

STACAS maintained the best separation between the two glioma types, while fastMNN
maintained moderate separation. High-grade and low-grade gliomas almost completely
overlapped after integration with Seurat’s-RPCA, Conos and Harmony–masking potential
biological signal in the malignant compartment (Figure 1A). Similar trends were observed in the
malignant compartments of kidney cancer (Bi-RCC), where patient-specific clustering patterns
are visible in the malignant compartment with STACAS and fastMNN, without sacrificing
improved overlap between batches in normal cell types (Figure 1B).

Next, we compared batch mixing within non-malignant cell compartments. Across each
uncorrected dataset, there are UMAP regions within normal cell types dominated by cells from
individual samples, suggesting the presence of technical batch effects between samples (Figure1,
S2 and S3). Batch mixing improved in each normal cell type across datasets after-integration,
regardless of method, with the exception of T cells in Richards-GBM-LGG integrated with
STACAS (median LISI uncorrected = 0.26 vs. STACAS = 0.19) (Figure 2). Further
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investigation is needed to determine if there are sample-specific T cell states present in these
cancer types that could explain reduced sample mixing between batches. Comparing median cell
type LISI scores of all normal cell types, Harmony had the highest batch mixing across all
datasets (Figure S4B), in concordance with results on normal tissues4. STACAS had the lowest
batch correction but was still comparable to other integration methods and was an improvement
over uncorrected data.

Finally, we assessed separation between dissimilar cell types. A good integration should
eliminate batch-specific variability while limiting overlap between different cell types. Across
cancer types and datasets, Conos integrations did not substantially separate different cell types.
Dissimilar cell types frequently co-localized on LargeVis plots, such as endothelial, T cells and
malignant cells in Richards-GBM-LGG and myofibroblasts and melanocytes in Yost-BCC
(Figure 1A and S3). STACAS routinely provided good separation between cell types, while
fastMNN, RPCA and Harmony had variable results depending on the dataset. STACAS and
RPCA were the only algorithms able to cleanly separate a very small population of T cells in
Richards-GBM-LGG, suggesting these tools may be beneficial when working with datasets
containing rare subpopulations of cells specific to a subset of samples (Figure 1A). Surprisingly,
all data integration methods, but not uncorrected data, struggled to separate macrophages and
malignant leukemia cells in Caron-ALL, likely because of transcriptional similarity between
monocytes/macrophages and differentiated monocyte-like leukemia cells17 (Figure S2A).
Differentiating cancer cells from their cell of origin, which may co-exist at high frequencies in
the tumour microenvironment, represents a unique challenge when integrating cancer datasets
and suggests that different cancer types may require different integration strategies to obtain
optimal results.

Taken together, we identified STACAS as the best data integration algorithm based on its ability
to eliminate technical biases and improve mixing of non-malignant cellular compartments across
samples, while maintaining logical malignant clustering patterns representative of cancer
pathology. Although STACAS was the top performer, it required extensive parameter
optimization to integrate datasets with small batches (low cell counts less than 500) and had the
longest run time (Figure S4). In these scenarios, the user can optimize the dist.pct and k.weight
parameters during the anchor filtering and data integration steps, respectively, or remove
problematic samples with few cells from the dataset entirely. However, this optimization is not
always successful. For example, we were unable to generate a STACAS integration for
Yost-BCC, likely due to the presence of several samples with low cell counts and high variability
in batch (sample) size within the dataset (108 vs. 10,429 cells) (Figure S1B and S3; Methods).
Accordingly, we nominated fastMNN as a suitable alternative for integrating malignant datasets.
fastMNN runs quickly (~7x faster than STACAS) without the need for parameter optimization
and produces biologically reasonable integrations across cancer types. In our hands, Harmony
and Conos often overintegrationed datasets, as demonstrated by inflated mixing between batches
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in the malignant compartment and poor separation between dissimilar cell types. In these cases,
an uncorrected analysis may be more suitable than implementing a data integration tool.

CONCLUSIONS

Single cell or nuclei transcriptomics datasets generated using different sequencing technologies
or experimental conditions, such as dissociation protocols, will have batch-specific variation that
needs to be accounted for during analysis. This benchmark addresses a gap on how well these
methods integrate scRNA-seq data generated from tumor specimens. We demonstrated variable
success of data integration methods across cancer types, highlighting the nuances of
batch-correcting tumour scRNA-seq data and the importance of manual inspection to ensure
integrations are biologically reasonable before proceeding with downstream analysis. We
anticipate effective batch correction of cancer scRNA-seq datasets will enable the assembly of
large-scale tumour atlases, revealing shared therapeutically-relevant cell types and states across
cancer types.
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METHODS

Single-nuclei RNA sequencing of gliomas.

Generation of single nuclei suspensions. For the dataset “Richards-GBM-LGG”, single nuclei
RNA-sequencing of gliomas was performed as previously described11. In brief, nuclei
suspensions were generated from snap-frozen tumors. Tissues were minced on dry ice and
dissolved in a lysis buffer, followed by homogenization with a pellet pestle. Nuclei integrity and
quantity was assessed with SYBR Green II RNA Gel stain (Thermo Fisher Scientific). Nuclei
were filtered through a 40-µm cell strainer and sorted for intact nuclei using DAPI
(Sigma-Aldrich) on a BD Influx FACS sorter. Nuclei were re-suspended according to 10x
Genomics concentration guidelines to obtain a target of 6,000 nuclei per sample.

Library preparation and sequencing. Library preparation was carried out as per the 10x
Genomics Chromium single-cell protocol using the v2 chemistry reagent kit for 3’ expression
profiling as previously described11. Libraries were sequenced on an Illumina HiSeq 2500 in High
Output mode using the 10x Genomics recommended sequencing parameters to achieve the
desired median read depth per cell (target mean 60,000 reads per nuclei).

Data pre-processing. We used the 10x Genomics CellRanger software pipeline (v.2.0) to
demultiplex cell barcodes and map reads to a custom GRCh38 human reference transcriptome
that included intron sequences to accurately quantify nuclear unspliced messenger RNA. We
calculated the number of reads per cell barcode using the BamTagHistogram function in the
Drop-seq Alignment Cookbook33 and subsequently determined the number of nuclei per library
using the cumulative fraction of reads corresponding to cell barcodes. Cell barcodes were sorted
in decreasing order and the inflection point was identified using the R package Dropbead34

(v.0.3.1) to distinguish between empty droplets and droplets containing a nucleus. The raw
matrix of gene counts versus cells from CellRanger (v.2) output was filtered by the list of true
cell barcodes from Dropbead. We processed the resultant unique molecular identifier (UMI)
count matrix using the R package Seurat18,19,26 (v.4.0.1) as described below.

Quality control and data filtration. Following recent guidelines2 for frozen tumours profiled as
single nuclei with v2 chemistry from 10x Genomics, we retained high-quality nuclei with at least
250 genes and 500 UMIs detected. We filtered out nuclei where >15% of UMIs came from
mitochondrial genes. We removed lowly expressed genes present in 0.01% of cells in the
average cell size. We predicted and removed potential doublets using Scrublet35 (v.0.2) with an
expected_doublet_rate=0.06.

Public dataset curation.
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For this study, we focussed on cancer scRNA-seq datasets that contained both malignant tumor
cells and non-malignant cells from the tumour microenvironment. Only studies with raw UMI
count matrices were considered. We did not perform additional cell-based quality control on
count matrices, as this was already completed in the original publications. A detailed overview of
all datasets can be found in Figure S1.

Ma-LIHC. Raw UMI count matrices and metadata, including cell type annotations, were
downloaded from the Gene Expression Omnibus portal (GSE125449;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125449)29. We merged matrices from
Set1 (n=12/19 tumours) and Set2 (n=7/12 tumours) for downstream analysis. To minimize
ambiguity during integration, we removed cells labelled as “unclassified” in Ma-LIHC
(n=194/9,946 cells). We relabelled a subset of cell type annotations provided by the authors to
harmonize labels across datasets used in this study: “TAM” to “Macrophages”; “TEC” to
“Endothelial; ‘HPC-like” to “HPCs”; “Malignant cell” to “Malignant”; “T cell” to “T_cells”; “B
cell” to “B_cells”; “CAF” to “CAFs”.

Yost-BCC. Raw UMI count matrices and metadata, including cell type annotations, were
downloaded from the Gene Expression Omnibus portal (GSE123813;
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE123813)27. We relabelled a subset of
cell type annotations provided by the authors to harmonize labels across datasets used in this
study: “CD4_T_cells”, “CD8_act_T_cells”, “CD8_ex_T_cells”, “CD8_mem_T_cells”,
“Tcell_prolif”, “Tregs” to “T_cells”; “B_cells_1”, “B_cells_2” to “B_cells”; “Tumor_1”,
“Tumor_2” to “Malignant”.

Caron-ALL. Raw UMI count matrices were downloaded from the Gene Expression Omnibus
portal (GSE132509; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132509)28.
Sample and cell-level metadata, including cell type annotations, were retrieved from the authors.
Count matrices were merged across samples and used for downstream analysis. We relabelled
some author cell type annotations as follows to harmonize labels across datasets used in this
study: “ETV6.RUNX1.1”, “ETV6.RUNX1.2”, “ETV6.RUNX1.3”, “ETV6.RUNX1.4”,
“HHD.1”, “HHD.2”, “PRE-T.1”, “PRE-T.2” to “Malignant”. We further subdivided author cell
annotations “B cells + Mono” to “B_cells” and “Macrophages”, and “T cells + NK” to “T_cells”
and “NK_cells”. Data was clustered as described below and clusters were annotated using
expression of canonical cell type markers: B_cells (MS4A1, BANK1), Macrophages (CD14, LYZ,
FCGR3A, MS4A7), NK_cells (NKG7, GNLY) and T_cells (CD2, CD3G, CD4, CD8A).

Bi-RCC. Raw UMI count matrices were downloaded from the Broad Institute Single Cell Portal
(https://singlecell.broadinstitute.org/single_cell/study/SCP1288/)30. To minimize ambiguity
during integration, we removed cells labelled as “Misc/Undetermined” in Bi-RCC
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(n=278/34,326 cells). We relabelled a subset of cell type annotations provided by the authors to
harmonize labels across datasets used in this study: “41BB-Hi CD8+ T cell”, “MitoHigh
T-Helper”, “41BB-Lo CD8+ T cell”, “T-Reg”, “Effector T-Helper”, “MitoHigh CD8+ T cell”,
“Cycling CD8+ T cell”, “MX1-Hi CD8+ T cell”, “Memory T-Helper”, “NKT” to “T_cells”;
“GPNMB-Hi TAM”, “FOLR2-Hi TAM”, “LowLibSize Macrophage”, “VSIR-Hi TAM”,
“MitoHigh Myeloid”, “CXCL10-Hi TAM”, “CD16+ Monocyte”, “CD16- Monocyte”, “Cycling
TAM” to “Macrophages”; “B cell” to “B_cells”; “MitoHigh NK”, “FGFBP2- NK”, “FGFBP2+
NK”, to “NK_cells”; “TP1”, “TP2”, “Cycling Tumor” to “Malignant”; “CD1C+ DC”,
“CLEC9A+ DC” to “DCs”; “Plasma cell” to “Plasma_cells”; “Mast cell” to “Mast_cells”,

Single cell or nuclei RNA-sequencing analysis.

Normalization and highly variable gene detection. We normalized the total UMIs per nucleus to
10,000 and log-transformed these values using the LogNormalize() function in Seurat. The top
2000 genes with highly variable expression were identified using the “vst” method and
subsequently, expression values were scaled across all samples and cells in a given dataset.
Scaled z score residuals (‘relative expression’) were used for dimensionality reduction.

Dimensionality reduction and clustering. Principal component analysis (PCA) was conducted on
the top 2000 highly variable genes as implemented in Seurat (RunPCA() function). Significant
principal components were determined by the inflection point in a scree plot and used as input
for non-linear dimensionality reduction techniques and batch-correction methods as described
below. Uniform manifold approximation and projection (UMAP) was performed on significant
PCs with 30 nearest neighbors for visualization in two dimensions. When required, we clustered
datasets with the Seurat implementation of the leiden algorithm with a resolution of 1.5. This
workflow corresponds to the “Uncorrected” analysis for each dataset.

Cell annotation. For the glioma snRNA-seq dataset (Richards-GBM-LGG), we annotated
clusters with SingleR and a custom glioma scRNA-seq reference made up of 5 public
datasets10,15,36–38. For all public datasets, we used published cell annotations provided by the
authors. Some cell labels were adjusted for consistency across datasets as described above.

Data integration.

fastMNN. Fast matching mutual nearest neighbors for batch correction (fastMNN) algorithm
identifies mutual nearest neighbours (MNNs) between datasets in the PCA reduced dimension
space21. The resulting MNNs are used to align datasets into a shared space. fastMNN analysis
was performed in the R programming environment (v.3.6.1). We used the Seurat (v.3.2.0)
pre-processing workflow to normalize data, scale data, identify the top 2000 variable genes and
run PCA as described above before integration. We used the SeuratWrappers (v.0.2.0) and
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batchelor (v.1.2.4) package to run fastMNN on variable genes. The top 20 resulting MNNs were
then used for downstream UMAP reduction.

Conos. Clustering On Network of Samples20 (Conos) uses a joint graph to identify and
co-localize subpopulations across different samples. First, we applied a standard Seurat (v.4.0.2)
pre-processing workflow to normalize data, identify the top 2000 highly variable genes, scale
data and run PCA on each batch (sample) individually in the R programming environment
(v.4.0.0). We used the conos (v.1.4.1) and SeuratWrappers (v.0.3.0) R packages to perform
pairwise comparisons between datasets to identify inter-sample mappings. Then, we used these
inter-sample edges to construct a joint graph using the first 30 PCs, the top 2000 overdispersed
genes, an inter-sample neighbour size (k) of 15, an within-sample neighbourhood size (k.self) of
5 and mutual nearest neighbours matching method. The joint graph was then embedded and
visualized with LargeVis.

Harmony. Harmony is an unsupervised joint embedding method that employs an iterative
clustering approach to align cells from different batches23. First the algorithm, embeds cells into
reduced PCA space and soft assigns cells to clusters with favour towards mixed dataset
representation. Then Harmony calculates both cluster and dataset centroids, and uses these
centroids to calculate a correction factor for each dataset. The correction factor is then used to
correct each cell with a cell-specific factor to move cells based on soft cluster membership and
improve batch mixing. This process is repeated until convergence. In this study, we used the
Seurat (v.3.2.0) pre-processing workflow to normalize data, scale data, identify the top 2000
variable genes and run PCA as described above before integration. We executed the Harmony
algorithm through the harmony (v.1.0) and Seurat Wrappers (v.0.2.0) packages in the R
programming environment (v.3.6.1). We ran Harmony using 50 PCs and a default theta value of
2 and lambda value of 1. The top 20 resulting harmony factors were then used for downstream
UMAP reduction.

RPCA in Seurat. The Seurat implementation of reciprocal principal component analysis26

(RPCA) employs a similar methodology to canonical correlation analysis19 (CCA), where
anchors are determined between datasets using RPCA and then each dataset is projected into the
others PCA space with mutual neighbourhood constraints on the anchors to harmonize datasets.
CCA identifies shared sources of variation and works well on very similar datasets with
conserved anchors, but is not ideal for datasets of mixed composition such as malignant samples.
For this reason, we chose to only benchmark RPCA which is a more conservative approach and
less likely to overcorrect different biological cell states present between batches (samples) which
are common between tumors. We used the Seurat (v.4.0.2) pre-processing workflow to
normalize data and identify the top 200 highly variable genes individually within each batch
(sample) in the R programming environment (v.4.0.0). We then selected the top 2000 genes that
are repeatedly variable across batches as the integration features. Integration features were used
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for data scaling and PCA of each sample individually. We identified shared anchors across
datasets using reciprocal PCA and a k.anchor value of 5. Finally, these anchors were used to
integrate data using a k.weight of 100. If data integration was unsuccessful, we systematically
reduced the k.weight by increments of 10. All datasets had a k.weight of 100, with the exception
of Ma-LIHC (k.weight=50) and Yost-BCC (k.weight=80). We then ran data scaling, PCA and
UMAP reduction using the top 20 PCs on the integrated dataset.

STACAS. Sub-Type Anchor Correction for Alignment in Seurat24 (STACAS) is an algorithm,
similar to RPCA and CCA, that uses reciprocal PCA to identify anchors, project datasets into a
shared reduced PCA space and then calculate mutation nearest neighbours. STACAS is designed
for datasets that share only a subset of cells, as in tumor samples. Unlike RPCA and CCA,
STACAS corrects batch effects while preserving biological heterogeneity by filtering aberrant
integration anchors with a distance measurement and constructing an optimized sample-ordering
tree for integration. Additionally, STACAS does not rescale gene expression to have a mean and
variance of 0 before PCA, as this can mask biological signals between datasets. For each sample,
we used Seurat (v.4.0.2) to normalize the data and identify the top 2000 highly variable genes,
excluding mitochondrial and ribosomal genes. We then identified anchors between datasets using
2000 highly variable genes shared across batches, and filtered these anchors based on pairwise
reciprocal PCA distance (dist.pct) of 0.8 using the STACAS (v.1.1.0) R package. Next, STACAS
determined the optimal hierarchical tree for Seurat integration using filtered anchors and
integrated the samples accordingly using the IntegrateData() function in Seurat with a k.weight
of 100. If data integration was unsuccessful, we systematically tested k.weight and dist.pct
combinations by reducing k.weight in increments of 10 and increasing dist.pct in increments of
0.05. Richards-GBM-LGG and Bi-RCC integrated with default parameters (k.weight=100,
dist.pct=0.8), while Caron-ALL (k.weight=100, dist.pct=0.95) and Ma-LIHC (k.weight=20,
dist.pct=0.8) required parameter optimization. Despite attempting >45 k.weight and dist.pct
combinations, we were unable to generate a STACAS integration for Yost-BCC, perhaps because
of the low cell count for some samples in the dataset. Integrated data was then scaled and
reduced using PCA and UMAP on the top 20 PCs.

Calculation of evaluation metrics.

Local Inverse Simpson’s Index (LISI) metric. We used LISI scores to evaluate mixing between
batches (samples) across entire datasets and within individual cell types. We calculated LISI
scores using the compute_lisi() function in the immunogenomics R package
(https://github.com/immunogenomics/LISI; v.1.0)23 with a perplexity of 30. If a cell type had less
than 40 cells, we adjusted the perplexity to 10. We used UMAP (Uncorrected, RPCA, Harmony,
STACAS, fastMNN) or LargeVis (Conos) cell embeddings as input for LISI scores. A high LISI
score approaching the number of categorical variables present (i.e. batches or samples) indicates
good mixing between groups in the local neighbourhood of a given cell. For example, the
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Bi-RCC dataset has 8 batches (samples), therefore an effective batch correction would have a
LISI score around 8. To facilitate comparison of LISI scores across studies, we normalized the
scores between [0,1] by dividing by the number of batches present within a given category. To
accommodate the variable cellular composition between samples, we scaled by the number of
batches with at least 1 cell present during cell-type specific LISI calculations. For visualizations,
we calculated the median LISI score across cells for each categorical variable.

Runtime. We calculated the runtime of each method using the time function available in R
(v.3.6.1 or v.4.0.0) environment. We did not time the pre-filtering steps (variable gene
identification, PCA, etc.), and only measured runtime of the main integration function for each
method.

Statistics and reproducibility

No statistical method was used to predetermine sample size or cellular composition before data
integration. Glioma nuclei with insufficient library complexity were excluded from the analyses
as described in the methods. All plotting and statistical analysis was performed in the R
statistical environment (v.3.6.1 and v.4.0.0), with the exception of doublet detection which was
performed in a Python environment (v.3.6.1). We used the following plotting packages in R:
ggplot239 (v.3.3.3), ggpubr (v.0.4.0) (https://github.com/kassambara/ggpubr), ComplexHeatmap40

(v.2.5.4).

Data sharing

To promote reproducibility and open-access, data generated and re-processed in this study has
been shared through the interactive single-cell analysis portal CReSCENT41

(https://crescent.cloud/; Study IDs CRES-P24, CRES-P25, CRES-P26, CRES-P27, CRES-P28).
For each study, we uploaded raw count and normalized expression matrices. For each integration
method within a study, we uploaded UMAP coordinates (Figures 1, S2, S3) and cell-level
metadata files detailing cell annotations, sample IDs, patient IDs and transcriptional clusters.
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FIGURE LEGENDS

Figure 1. Qualitative comparison of data integration methods across cancer datasets.
UMAP or LargeVis (Conos) visualizations of cells from (A) high-grade glioblastoma (GBM) and
low-grade oligoastrocytoma (LGG) (Richards-GBM-LGG; n=35,549 cells), or (B) liver cancer
(Ma-LIHC, n=9,752 cells). Each dot represents a cell. Cells are colored by cell type (top row),
sample (middle row) or patient (bottom row). Columns represent either uncorrected (first
column) or integrated data (columns 2 to 6). HPCs, hepatic precursor cells; CAFs, cancer
associated fibroblasts.

Figure 2. Evaluating data integration performance with Local Inverse Simpson’s Index
(LISI) metric. Dot plot depicting sample mixing with scaled median LISI scores across the
entire dataset (top panel) or within individual cell types (bottom panel) for each data integration
method (x-axis) . Color and size of dot represent median LISI score. The absence of a dot
represents cell types that are not found in a given dataset. Grey bar denotes missing integration
(unable to generate STACAS integration for Yost-BCC). Vertical black lines separate datasets.
pDCs, plasmacytoid dendritic cells. DCs, dendritic cells; HPCs, hepatic precursor cells; CAFs,
cancer associated fibroblasts.
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SUPPLEMENTARY FIGURE & TABLE LEGENDS

Table S1. Clinical characteristics of glioma samples. N.D. denotes no data available.

Figure S1. Cell type composition across datasets. (A) Table outlining cancer single-cell RNA
sequencing datasets used in benchmark. (B) Histogram depicting the number of cells or nuclei
profiled (y-axis) per sample (x-axis). Samples are ordered alphabetically within datasets, as
shown in Panel C. Vertical solid lines separate samples from different datasets. Dashed
horizontal line marks 500 cells. Values under study represent range across samples. (C) Dot plot
representing the proportion and frequency of cell types (n=23; x-axis) across samples (n=68;
y-axis). Dot size represents the portion of each sample corresponding to a given cell type. Dot
color represents the discrete number of cells per sample for each cell type. Cell types with no dot
are absent from a given sample. pDCs, plasmacytoid dendritic cells; DCs, dendritic cells; HPCs,
hepatic precursor cells; CAFs, cancer associated fibroblasts.

Figure S2. Comparison of data integration methods applied to childhood acute
lymphoblastic leukemia and clear cell renal cell carcinoma datasets. UMAP or LargeVis
(Conos) visualization of cells from (A) childhood acute lymphoblastic (Caron-ALL; n=38,827
cells) and (B) clear cell renal cell carcinoma (Bi-RCC; n=53,030 cells). Each dot represents a
cell. Cells are colored by cell type (top row) or sample (bottom row). Columns represent either
uncorrected (first column) or integrated data (columns 2 to 6). DCs, dendritic cells.

Figure S3. Comparison of data integration methods applied to basal cell carcinoma
dataset. UMAP or LargeVis (Conos) visualization of cells from basal cell carcinoma
(Yost-BCC; n=53,030 cells). Each dot represents a cell. Cells are colored by cell type (top row),
sample (middle row) or patient (bottom row). Columns represent either uncorrected (first
column) or integrated data (columns 2 to 6). DCs, dendritic cells; CAFs, cancer associated
fibroblasts.

Figure S4. Evaluation of data integration performance and run time. Box plots grouped by
dataset (x-axis) comparing normalized LISI score (y-axis) distributions between methods. Box
plots are colored by data integration method. Box plots represent the median, first and third
quartiles of the distribution and whiskers represent either 1.5-times interquartile range or most
extreme value. Outliers are represented by open circles. (A) LISI scores represent sample mixing
across entire datasets. (B) LISI scores represent sample mixing within normal cell types,
excluding malignant cells. (C) Dot plot depicting run time in minutes (x-axis) for data
integration method across datasets (y-axis). Dots are colored by data integration method.
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Figure S1.

A
Dataset Cancer Type Sequencing 

Technology
Input 

Material
No. Samples 
(No. Patients)

No.  
Cells

Richards-GBM-
LGG

Glioblastoma, 
Oligoastrocytoma 10 Genomics, 3’ (v2) Nuclei 8 (3) 35,549

Yost-BCC Basal cell carcinoma 10x Genomics, 5’ Cells 22 (11) 53,030

Ma-LIHC
Hepatocellular carcinoma, 

Intrahepatic 
cholangiocarcinoma

10 Genomics, 3’ (v2) Cells 19 (19) 9,752

Caron-ALL Childhood acute 
lymphoblastic leukemia 10 Genomics, 3’ (v2) Cells 11 (11) 38,827

Bi-RCC Clear cell renal cell 
carcinoma 10 Genomics, 3’ (v2) Cells 8 (8) 34,048
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