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Abstract

Reconstruction of serial section electron microscopy (ssEM) data greatly facilitates 
neuroscience research, but such reconstruction is computationally expensive. 
Informative data about physiological functions can in theory be obtained from ssEM 
datasets by extracting distinct cellular structures without large-scale reconstruction, but 
an efficient method is needed to accomplish this. Here, we developed a Region-CNN 
(R-CNN) based deep learning method to identify, segment, and reconstruct synapses 
and mitochondria from ssEM data. We applied this method to explore the changes in 
synaptic and mitochondrial configuration in the auditory cortex of mice subjected to 
auditory fear conditioning. Upon reconstructing over 135,000 mitochondria and 
160,000 synapses, we found that fear conditioning significantly increases the number—
while decreasing the size—of mitochondria, and also noted that it promoted the 
formation of multi-contact synapses comprising a single axonal bouton and multiple 
postsynaptic sites from different dendrites. Combinatorial modeling indicated that such 
multi-dendritic synapses increased information storage capacity of new synapses by 
over 50%, representing a synaptic memory engram. Our method achieved high 
accuracy and speed in synapse and mitochondrion extraction, and its application 
revealed structural and functional insights about cellular engrams associated with fear 
conditioning. 

Introduction 

The mammalian brain consists of a vast and complex network of neurons 
interconnected by specialized sites called synapses. In this network, a neuron may 
receive input from, and send output to, thousands of other neurons. The concerted 
activities of neurons, which encode, process, and store information, fundamentally 
depend on the connectivity patterns of synapses. Thus, it is critical to elucidate the 
organization of synaptic circuits in order to understand brain functions.  

Dissecting the synaptic circuit is technically challenging due to small size, complex 
morphology, dense distribution, and enormous number of synapses. Light microscopy 
has been used to examine populations of synapses in vitro and in vivo. Previous work 
has shown that learning effectively modifies synaptic structures of the mammalian 
cerebral cortex1-3. Auditory fear conditioning (AFC), a common paradigm of 
associative learning, increases formation of presynaptic boutons and postsynaptic 
spines in the auditory cortex (A1)3. However, although boutons and spines can be 
visualized using light microscopy, the width of the synaptic cleft is below the diffraction 
limit and therefore synapses are difficult to discern using light microscopy images4. The 
serial-section electron microscopy (ssEM) technique5 overcomes the resolution 
problem and enables large-scale three-dimensional (3D) reconstruction of brain tissue 
with nanometer-scale resolution, which is sufficient to resolve the ultrastructural 
features of synapses, such as presynaptic vesicles, the synaptic cleft, and the 
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postsynaptic density (PSD). However, manual identification and segmentation of 
synapses from massive ssEM datasets is extremely time-consuming, and thus requires 
an automated pipeline.  

To date, a variety of machine learning-based approaches for synapse detection have 
been proposed. Some methods require saturated reconstruction or segmentation of 
neuronal structures prior to synapse detection6, 7, which themselves are daunting tasks 
for large datasets. Other methods do not make full use of the contextual information or 
structural properties of synapses8, 9, making them more prone to errors. Some other 
methods require nearly isotropic imaging data10, a requirement incompatible with 
standard ssEM, in which the axial resolution (section thickness) is typically much worse 
than the lateral resolution. Most recently, an indirect method detect synapses by identify 
the synaptic connectivity (pre- and postsynaptic component of each synapse)11. 
Therefore, there is much to be desired in terms of the identification accuracy, speed, 
and general applicability of automated synapse analysis tools.  

Mitochondria have essential roles in cellular functions, such as producing 
adenosine triphosphate (ATP) and calcium homeostasis12. Moreover, synaptic 
mitochondria are linked to the process of neurotransmitter release and organization of 
synaptic vesicles13. In the past decade, ssEM has been increasingly used to investigate 
mitochondrial structures. Along with this, a variety of automated methods have been 
developed to detect mitochondria from ssEM images. One method is based on 
handcrafted features and traditional classifiers14-16, the other is based on powerful 2D or 
3D convolutional neural networks (CNNs)10, 17.  

In this study, we used Region-CNN (R-CNN) based deep learning algorithms to 
identify, segment, and reconstruct synapses and mitochondria from ssEM images of the 
mouse auditory cortex. Our pipeline achieved state-of-the-art accuracy with a speed 
two orders of magnitude faster than human experts, enabling us to sample more than 
one hundred thousand synapses and mitochondria. Using this method, we studied how 
a classical learning model, namely AFC, affects the synaptic and mitochondrial 
organization in the A1 (Figure 1). Using large-scale synapse reconstruction together 
with mathematical modeling, we found that AFC increases multi-synaptic boutons 
connecting one axonal bouton to multiple different dendrites in the A1, and these 1-to-
N connections dramatically increased the information coding capacity, thus 
representing a synaptic memory engram. 

Results 

Auditory fear conditioning as a model for learning and memory 

To investigate changes in cellular structures induced by learning and memory in 
the adult brain, we used a simple and robust behavioral model for associative learning: 
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auditory fear conditioning (AFC). Specifically, conditioned mice received 5 sessions of 
paired tone pips (conditioned stimulus, CS) and foot shock (unconditioned stimulus, 
US), while control mice received 5 sessions of just tone pips (Figure 1A). Mice were 
tested with the conditioned stimulus 24 hours after conditioning. All conditioned mice 
(n = 3) exhibited a high freezing response, while all control mice (n = 3) exhibited a 
low freezing response as expected (Extended Data Figure 1). At 4 days after 
conditioning, we harvested auditory cortex (A1) tissue blocks from these mice and 
prepared them for ssEM (Figure 1A). We sectioned and imaged a total of 2.8×105 µm3 
A1 tissue at 2-4 nm lateral resolution and 50 nm section thickness for ssEM imaging 
and reconstruction. 

Deep learning-based reconstruction of synapses in A1 

We first explored synaptic changes associated with AFC, by extracting structural 
information of synapses from ssEM data. Synapses have distinct ultrastructural 
properties: pre- and postsynaptic membranes with a synaptic cleft in between, 
postsynaptic density (PSD) and abundant synaptic vesicles in presynaptic terminals. 
These special features enabled us to design a 2D-3D pipeline to detect and reconstruct 
synapses at the two-dimensional (2D) and 3D levels. Due to the high anisotropy of 
voxels (x-y resolution: 2-4 nm, z: 50 nm) and intrinsic local misalignments in most 
ssEM data, using a 3D convolutional neural network (3D CNN) increases the 
computational complexity without offering any improvement in performance.  

At the 2D level, we used the Mask R-CNN18 model to detect and segment synapses 
in each 2D image (Figure 2A). The Mask R-CNN is a deep neural network for instance 
segmentation, which can separate distinct objects in an image. As illustrated in Figure 
2B, Mask R-CNN is composed of three primary parts: backbone network, Region 
Proposal Network (RPN) and Region-CNN (R-CNN). The backbone network provides 
shared feature maps for the other two parts. The backbone used for synapse detection 
is a Feature Pyramid Network (FPN, Methods, Figure 2B)19, which we modified from 
the ResNet50 model20. As a typical two-stage detector, it first generates enough region 
proposals to guarantee the pre-specified recall rate with a RPN. Subsequently, the 
feature maps of the proposals are extracted as Regions of Interest (RoIs). R-CNN then 
makes further classification (predicting the scores being synapses or not), regression 
(predicting the coordinates of synapses’ bounding boxes) and predicts a pixel level 
mask for the RoIs identified in the first stage. The classification branch that predicted 
each RoI as a synaptic or non-synaptic object explored both the features of the synaptic 
vesicles and the PSD. This second stage guarantees the precision rate. After obtaining 
the final positions, the mask branch predicted the segmentation masks of the detected 
PSDs. 

 To train the network, a total of 600 ssEM images from the aforementioned A1 
dataset were annotated by two expert annotators with cross-validation (two volumes of 
2,048 × 2,048 × 300 voxels for the control and conditioned groups, respectively), 
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which was split into training (60%), validation (20%), or test (20%) sets. Evaluation 
against the test set showed that our pipeline achieved a 0.90 precision rate and a 0.83 
recall rate for synapse detection (Extended Data Figure 4A and 4C).  

To quantitatively evaluate the performance (efficiency and accuracy) of the Mask R-
CNN, we compared it against other state-of-the-art CNNs using a previously reported 
public ssEM dataset1 comprising 178 slices sized 8576 × 7616 pixels. The dataset is 
divided into two equal parts, one for training and one for testing. The baseline network 
U-Net21 and the 3D U-Net22 are commonly used for biomedical image segmentation
tasks. In terms of precision rate, recall rate, and F1-score (the harmonic mean of
precision and recall), our pipeline outperformed U-Net and 3D U-Net (Figure 2E).

 We also compared the running time of the three networks equipped with one 
graphics processing unit (GPU) as well as the time consumption of complete manual 
annotation (Figure 2F). The results confirmed that the speed of our method (1.27 ×
1011 ± 1.44 × 1010  voxels/day) is in the same order of magnitude as 3D U-Net 
(1.40 × 1011 ± 1.39 × 1010 voxels/day), one order of magnitude faster than U-Net 
(7.33 × 1010 ± 8.40 × 109 voxels/day), but two orders of magnitude faster than that 
manual annotation (1.77 × 108 voxels/day). 

At the 3D level, we used a 3D connection algorithm (Figure 2C) to find the instance-
level connected components and reconstruct synapses. Based on the continuity of the 
aligned ssEM volume and the spatial structure of the synapses, we constructed 
similarity matrices (Methods) between adjacent layers with synapse detection boxes. If 
the similarity of the two bounding boxes was greater than a certain threshold (0.5), we 
considered the corresponding synapse to be the same one at the 3D level. If a synapse 
appeared in more than 3 continuous layers, it was retained and given a unique label; 
otherwise, it was discarded as a false positive. Therefore, this connection algorithm was 
also used as a post-processing method to remove false positives and refine the 
segmentation and detection results. After connected component labeling, we could 
obtain the synaptic instance segmentation results where each label indicated a unique 
synapse in 3D. 

Using our 2D-3D pipeline, we automatically extracted ultrastructural information of 
all synapses (Extended Data Figure 3), including synapses formed on dendritic spines 
and shafts, from the mouse A1 tissue blocks. We identified, segmented, and 
reconstructed over 160,000 synapses from 12 image stacks of 6 mice. To compare the 
spatial distribution of synapses in control and conditioned animals, we computed the 
distance between any two synapses, and found that synapses were uniformly distributed 
both in control and conditioned animals (Figure 2D). Therefore, AFC does not cause a 
major change in synapse number and distribution in A1. 

1 https://www.micro-visions.org/data/Synapse-ATUM/ 
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Deep learning-based reconstruction of mitochondria in A1 

We designed our 2D-3D pipeline such that it is capable of identifying any cellular 
compartment or organelle with borders and distinct structural properties. We thus also 
used our pipeline to identify mitochondria, the major energy source for cellular 
functions and neuronal activities, from the same ssEM dataset. Mask R-CNN first 
predicted a binary mitochondrial mask (Figure 3A) of each input image, after which the 
3D connection algorithm produced the reconstructed mitochondria (Figure 3B). To 
build a groundtruth mitochondria dataset, mitochondria from 20 images (7,492 × 
7,492 pixels) were labeled by experienced annotators. The train-validation-test split 
ratio used here was same as for synapses. To correct for discrepancies in imaging 
conditions, we preprocessed the images using histogram matching. The images were 
cropped into smaller patches (1,024 × 1,024 pixels) for training the R-CNN. The 
proposed algorithm achieved a 0.96 precision rate and a 0.81 recall rate for 
mitochondria on the test set. 

After validation against the groundtruth dataset, we applied the 2D-3D pipeline to 
study changes in mitochondrial configuration after fear conditioning. We identified, 
segmented, and reconstructed over 135,000 mitochondria from 12 image stacks of 6 
mice in A1. By combining the synapse dataset and mitochondria dataset, we found PSD 
areas of presynaptic bouton with mitochondria were larger than those without 
mitochondria (synapse with mitochondria: 0.21 ± 0.008 µm2, synapse without 
mitochondria: 0.12 ± 0.002 µm2, Figure 3F). Surprisingly, fear conditioning 
significantly decreased mitochondrial volumes (control: 0.11 ± 0.003 µm3, conditioned: 
0.08 ± 0.001 µm3, Figure 3D), however, increased mitochondrial density (control: 0.57 
± 0.023 µm3, conditioned: 0.65 ± 0.014 µm3, Figure 3E). Thus although AFC does not 
alter the spatial distribution of synapses, it increases the number while decreases the 
size of mitochondria. 

A synapse dataset combined with mitochondria and synaptic vesicles 

We successfully quantified the number and size of mitochondria and PSD of synapses 
from ssEM images in A1 with our 2D-3D pipeline, but the pre- and postsynaptic sites 
of each synapse (i.e., synaptic connectivity) are still unclear. Vesicle cloud in the 
presynaptic terminal provides essential information for distinguishing axon or dendrite 
segments in ssEM images, i.e., presynaptic and postsynaptic neurons of each synapse. 
The 2D level vesicle segmentation is sufficient without the need to produce detection 
results. Thus, we applied FusionNet23, a variant of U-Net, to detect the synaptic vesicle 
clouds (Extended Data Figure 5A). FusionNet used the residual blocks and summation-
based skip connections (Extended Data Figure 5B), which could achieve state-of-the-
art performance in the segmentation task of the ssEM data. The network output 
probability maps each element indicating the probability of belonging to the foreground. 
Synaptic vesicles were about 60 nm in diameter and concentrated in the presynaptic 
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region. Since labeling them individually would be extremely time-consuming, we 
annotated vesicle clouds to reduce the annotation workload. We extracted two volumes 
(2,048 × 2,048 × 50 voxels) for synaptic vesicle annotation, and divided them into 
training, validation, and test sets using the same split ratio as for synapses and 
mitochondria. To evaluate the performance on the test set, a thresholding operation was 
conducted, and FusionNet yielded a precision rate of 0.83 and a recall rate of 0.80.  

After applying the trained version of FusionNet to identify vesicle clouds in A1, we 
constructed a large-scale dataset containing synapses, mitochondria and vesicles from 
control and conditioned mice, which can be used then for studying the cellular 
ultrastructural changes associated with AFC. An example showing synaptic 
ultrastructure, including synaptic cleft, mitochondria, and vesicle cloud, is presented in 
Figure 3G. 

Fear conditioning increased a specific type of multi-contact synapses  

Synapses that form 1-to-N or N-to-1 connections, termed multiple-contact synapses 
(MCSs), have been observed in the brains of mice, rabbits and monkeys24-26, and were 
implicated in special functions such as memory storage associated with eye-blink 
conditioning 27. But statistical and structural analyses were limited due to the small 
sample size obtained by manual notation of EM data in previous studies. In our previous 
work, we found that in A1, synaptogenesis rarely occurs de novo, but rather by addition 
of new boutons or spines to existing counterparts. The finding that AFC leads to an 
increase in spine and bouton formation together with the “partial addition rule” may 
lead to an increase in MCSs, if the additions are not accompanied by eliminations of 
existing synapses via synaptic competition.  

To find out if MCSs serve as a synaptic memory engram for AFC, we designed a 
semi-automated method to localize all MCSs in the tissue blocks, in order to study 
MCSs in a large scale (Figure 4A and Extended Data Figure 8A). As the MCSs contain 
the same bouton or the same spine, the distances of multiple postsynaptic or presynaptic 
sites are restricted in a certain scope ( ~ 1- µm ). Based on this biological prior 
information, the candidate MCSs were detected by restricting the distances between 
identified synapses. Then expert annotators proofread to exclude the false positives 
(Figure 4B) which were not easily distinguished in 2D images. By combining the 
segmentation results of synapses and vesicle clouds to estimate the number of boutons 
in one MCS, we then classified all the identified MCSs into two types: those consisting 
of a single bouton contacting multiple postsynaptic sites (“Multi-Synaptic Bouton”, 
MSB, Figure 4C and 4D) or those consisting of a single spine contacting multiple 
boutons (“Multi-Synaptic Spine”, MSS, Figure 4E).  

We found that the percentage of MSB synapses was significantly increased after fear 
conditioning (control: 5.0 ± 0.3 %, conditioned: 6.8 ± 0.2 %, Figure 4F), whereas that 
of MSS synapses did not change (control: 1.8 ± 0.4 %, conditioned: 1.4 ± 0.4 %, Figure 
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4G). We also noted that the majority (~98.58 ± 0.4%) of MSBs had 2 postsynaptic 
targets, yet a few had 3 or more (Figure 4D), and the percentage of MSBs forming more 
than 2 synapses was significantly elevated higher in the conditioned animals (control: 
1.07 ± 0.3%, conditioned: 2.26 ± 0.3 %, Extended Data Figure 8D). Together, these 
results showed that fear conditioning affects MCSs, specifically by promoting 
formation of MSBs. We also found that the percentage of MSB synapses with 
presynaptic mitochondria is significantly higher than the percentage of single-synaptic 
bouton (SSB) synapses with presynaptic mitochondria (MSB: 59.41 ± 1.3%, SSB: 
34.12 ± 0.6%, Figure 4H), indicating that MSBs are more energy-demanding. 

Combinatorial modeling to assess bouton and spine turnover patterns 

Synapses undergo constant turnover in the adult brain, and long-term memory 
storage may involve the formation of new synapses1-3. However, it is unclear to what 
extent such synaptic additions may be accompanied by the elimination of existing 
synapses (or whether they tend to co-exist). We addressed this question using our 
MSS/MSB dataset combined with in vivo imaging results. We performed in vivo two-
photon imaging of fluorescently labeled boutons and spines in A1 of control and fear 
conditioned mice, and computed the bouton and spine turnover rates at 4 days after 
AFC. The formation and elimination rates of spines over the 4-day period are 9.7 ± 
1.02% and 8.9 ± 0.41%, and of boutons 14.7 ± 1.03% and 17.8 ± 1.24%, with no 
significant net increase or decrease. We reasoned that if the addition of a new synaptic 
bouton/spine is always accompanied by the elimination of an existing bouton/spine 
(Figure 5A), then the percentage of MCSs should remain constant. Thus, our finding 
that the percentage of MSSs remained unchanged after fear conditioning (Figure 4G) 
suggests that new boutons tend to replace old ones, which would represent supplanting 
of old connectivity patterns by new ones. In contrast, the significant increase in the 
number of MSBs that results from fear conditioning (Figure 4F) suggests that new 
spines are added to existing synapses without eliminating old ones, representing 
addition of new connections while preserving old ones. 

We generated a mathematical model based on MSB/MSS percentages and the in vivo 
bouton/spine turnover results to quantitatively assess the difference in the turnover 
pattern of boutons and spines. Specifically, seeking to estimate the proportions of newly 
formed boutons/spines being replaced (replacement) and/or added (addition) during 
synaptic turnover, we developed a combinatorial mathematical model that exhausted 
all turnover possibilities based on results from ssEM and in vivo imaging (Figure 5C 
and 5D). We used the model to estimate: 1) the proportion of boutons/spines for which 
formation was accompanied by elimination, and 2) the proportion of boutons/spines 
that are simply added to existing synapses without eliminating old ones. 

We took the MCS/1-to-1 synapse composition of control mice as the starting 
situation and that of conditioned mice as the end situation, using a bipartite graph to 
model synaptic connections. In order to better reflect the difference in the MSB ratio 
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before and after learning, as well as to take into account computational complexity, we 
modeled using 120 synapses to obtain the final expected values, using combinatorics to 
calculate the possibility of different patterns. We assumed an equal possibility for all 
turnover patterns. The percentages of MSBs and MSSs, and the elimination and 
formation rates of spines and boutons were all based on experimental data (Figure 4F, 
4G and 5B). Synaptic turnover patterns that involve newly formed boutons/spines 
include the following 6 categories (‘-’ represents elimination and ‘+’ formation):  

synaptic turnover (involving formation):

⎩
⎪⎪
⎨

⎪⎪
⎧ 1-to-1 synapse → 1-to-1 synapse: − 1 and +1 (A.)

multiple-contact synapse → 1-to-1 synapse: − 2 and +1 (B.)

1-to-1 synapse → multiple-contact synapse: �−0 and +1 (C.)
−1 and +2 (D.)

multiple-contact synapse → multiple-contact synapse: �−1 and +1 (E.)
−2 and +2 (F.)

According to the above classification, “synaptic competition” includes (A.), (B.), (D.), 
(E.) and (F.), and “synaptic addition” includes only (C.). We built two models, one for 
bouton turnover and MSS, the other for spine turnover and MSB. These two models 
can each capture bouton and spine turnover patterns (for detailed calculation, see the 
Methods). 

Our combinatorial mathematical modeling predicts a much higher percentage of 
competition of boutons than that of spines (Figure 5E, 5G and 5H, Methods), which is 
consistent with our observation in vivo: among 856 putative synapses identified from 
two-photon imaging of the A1 (Methods), there were 9 cases of a new bouton replacing 
an old bouton, and 4 cases of a new spine adding onto an existing synapse; there were 
no cases wherein a new bouton was added to an existing synapse (Figure 5F). Note that 
we attribute the low frequency of turnover events of MCSs present in our in vivo dataset 
to the sparseness of neuronal labeling. Together, these data suggest that each bouton 
tends to be the sole input of its postsynaptic counterpart, whereas spines can co-exist 
on a single bouton. 

Evaluating the information storage capacity of MSBs in static synaptic 

networks 

Compared to two 1-to-1 synapses, two synapses formed by one MSB saved cellular 
resources required for two distinct presynaptic boutons. To investigate the information 
coding capacity of MSBs, we developed a mathematical model to calculate the 
information storage capacity (ISC)28-31 of a synaptic network comprising a set number 
of synaptic connections. The ISC of a synaptic network is given by the Shannon’s 
information entropy 𝐻𝐻32, which measures the average uncertainty in the synaptic 
connection patterns of the network, and can be expressed as: 
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𝐻𝐻(𝑋𝑋) = 𝐸𝐸[−𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥)] = −�𝑝𝑝(𝑥𝑥𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 , 

where, 𝑛𝑛 is the number of all possible connection patterns, 𝑋𝑋 is a random variable of 
synaptic connection patterns, 𝑝𝑝(𝑥𝑥) is the probability mass function of 𝑋𝑋, and 𝑝𝑝(𝑥𝑥𝑖𝑖) 
is the probability measure of the occurrence of the ith synaptic connection pattern 𝑥𝑥𝑖𝑖. 
We assume that the probability of each pattern of synaptic connection is equal, then the 
model transforms into a mode to solve for the number of eligible patterns. Here, the 
degree of uncertainty in the network depends on the number of available dendrites to 
which each bouton could connect to. For cases where the multiple postsynaptic 
structures of one MSB originate from the same dendrite, we consider the connection to 
be the same as a 1-to-1 synapse. Therefore, the ISC of an MSB synapse is determined 
by how many dendrites that the MSB connects to.  

To determine the number of available dendrites for each bouton and the percentages 
of both single-dendritic and multi-dendritic MSBs, we used the Multicut pipeline33 and 
performed saturated reconstruction for two A1 tissue blocks of one control (22 × 24 × 
25 µm) and one conditioned (33 × 28 × 25 µm) mouse (Figure 6A, Supp. Video 2-5, 
Extended Data Figure 9, Methods). Since the typical length of a spine is 1-µm34, we 
calculated the number of dendrites passing the vicinity of a bouton within a 1-µm 
radius in the reconstructed data set (Figure 6C, Supp. Video 6, Methods). Among the 
5,774 boutons analyzed (Methods, Figure S10), the median number of potential 
postsynaptic dendrites was 9 (Figure 6D), indicating that each bouton can potentially 
make synapse with 9 dendrites. We also traced each spine to its original dendrite to 
support categorization of MSB subtypes. Contrary to previous in vitro results reporting 
that LTP can lead to single-dendritic MSB—and thereby generating stronger 
connections between pre- and post-synaptic neurons35—we found that more than 90% 
of MSBs were connected to multiple dendrites (Figure 6B), forming 1-to-N connections.  

We then calculated the ISC of the synaptic network based on the synapse 
reconstruction results containing different types of connections: 1) 1-to-1 synapses only; 
2) 1-to-1 synapses and single-dendritic MSBs; 3) 1-to-1 synapses, single- and multi-
dendritic MSBs (Figure 6E). In a model with 100 synapses, of which 6% are MSB 
synapses (Figure 4F), single-dendritic MSB increased ISC by 2.5% over 1-to-1 
synapses, and multi-dendritic MSB further added 2.2%. The benefits of adding MSBs 
remained when the model was scaled up to 106 synapses (Figure 6G, Methods). These 
results indicate that MSBs in a static network do increase information coding capacity, 
but only slightly. 
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A plastic connectivity model for the information storage capacity of 

synaptic networks 

The percentage of multi-dendritic MSBs among all MSBs was higher in the 
conditioned mouse (95.1%) than in the control mouse (87.0%). This result, together 
with the percentages of MSBs in control and conditioned mice (5.0 ± 0.3% vs. 6.8 ± 
0.2%, Figure 4F), indicates that essentially all of the MSBs newly formed after fear 
conditioning were multi-dendritic. Thus, fear conditioning resulted in boutons making 
novel connections with other dendrites, rather than strengthening existing connections.  

To evaluate the difference in ISC from establishment of new synaptic connections 
under the two conditions, multi-dendritic vs. single-dendritic, we built a synaptic 
network model that incorporated synaptic plasticity by adding 10% more spines to the 
boutons (Figure 6F), based on the in vivo imaging results (Figure 5B). The increase in 
ISC depends on the number of new connections formed, and the number of potential 
connection targets for each new connection. For newly formed multi-dendritic 
connections, the number of potential targets for each new connection is the number of 
dendrites surrounding a bouton (Figure 6D; condition A, forming multi-dendritic MSB); 
for single-dendritic, the number of potential target is 1 (condition B, forming single-
dendritic MSB).  

The changes in ISC due to this 10% addition of synapses in the network, denoted by 
the increase of information entropy ∆𝐻𝐻 , were calculated for the condition A and 
condition B as follows:  

∆𝐻𝐻 = 𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑋𝑋) = 𝐸𝐸[−𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑦𝑦)]− 𝐸𝐸[−𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥)]

= −�𝑝𝑝(𝑦𝑦𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑦𝑦𝑖𝑖)
𝑚𝑚

𝑖𝑖=1

− �−�𝑝𝑝(𝑥𝑥𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙2𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

� , 

where, 𝑛𝑛 and m are the number of all synaptic connection patterns before and after 
formation, respectively; 𝑌𝑌 and 𝑋𝑋 are the random variables of the connection patterns 
after and before formation, respectively; 𝑝𝑝(𝑦𝑦)  and 𝑝𝑝(𝑥𝑥) are the probability mass 
functions of 𝑌𝑌 and 𝑋𝑋, respectively; 𝑝𝑝(𝑦𝑦𝑖𝑖) is the probability of occurrence of the ith 
synaptic connection pattern after formation 𝑦𝑦𝑖𝑖 ; 𝑝𝑝(𝑥𝑥𝑖𝑖) is the probability of the ith 
connection pattern before formation 𝑥𝑥𝑖𝑖 . We assume that the probability of each 
possible connection pattern is equal, the above dynamic model can also transform into 
a mode to solve for the number of eligible patterns.  

Notably, whereas a multi-dendritic MSB only slightly adds to the ISC in a static 
network (Figure 6G), in this plastic network, the increase in ISC for condition A was 
more than 50% higher (Figure 6H) than that of condition B. And we found that this 
relative advantage for multi-dendritic connectivity scaled linearly with network size 
(Figure 6I). 
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Discussion 

It is well-established that learning can induce neuronal plasticity in the brain. In 
previous in vivo imaging studies, only a limited population of synapses were 
investigated, and it is not known how learning changes the shape and size of 
mitochondria in the brain. In this study, we used deep learning techniques to 
automatically detect synapses and mitochondria in ssEM images (Extended Data Figure 
2). This method allowed us to examine hundreds of thousands of synapses and 
mitochondria, and our results demonstrated that synaptic and mitochondrial 
organization were significantly affected by the learning process. With a particular focus 
on synapses consisting of multiple synaptic elements, we were able to identify a specific 
form of MCSs consisting of a single bouton and multiple spines from different dendrites, 
which were indicated by mathematical modeling to confer higher information storage 
than single-contact synapses. 

In this paper, we proposed a novel 2D-3D pipeline to outline the 3D morphology of 
synapses and mitochondria from ssEM images. The first step focused on detecting and 
segmenting instances on 2D slices with advanced R-CNN. The second step converted 
the 2D instances into 3D individuals, mainly based on the similarity index of adjacent 
layers. Compared with other CNN techniques, the experimental results demonstrated 
that our method greatly improved performance. This pipeline can potentially be used to 
identify any cellular compartment or organelle with distinct structural properties. Apart 
from PSD, vesicles are an important feature to help identify synapses from ssEM 
images. The SyConn framework10 designed a multiclass CNN to learn the co-
occurrence of synaptic junctions and vesicle clouds. How to combine information from 
vesicles to enhance detection of the synaptic cleft is a possible future research direction. 
As for the detection of MCSs, we first located them based on close-proximity criterion. 
Then, presynaptic vesicle information was introduced to classify MSBs and MSSs. 
After that, we obtained the dense reconstruction results by solving the graph 
partitioning problem. The origination of multiple elements of MSBs or MSSs can be 
traced according to the dense reconstructions. This is the first report of detecting MCSs 
using vesicle and neuronal segmentation results. However, the inherent error of our 
MCS detection algorithm is a limitation of this study. Predicting the synaptic partner 
neurons using CNNs may be a solution in the future. 

Dendritic spines have been extensively studied by in vivo imaging methods, because 
their unique shape makes them easily identifiable. However, there are also synapses 
formed on dendritic shafts, which are not visible by fluorescent imaging. They can, 
however, be easily identified using our synapse classifier (Methods) algorithms from 
ssEM images. In fact, 26% of all identified synapses were shaft synapses (Extended 
Data Figure 7C), and after learning, their number decreased as spine synapses increased 
(Extended Data Figure 7A and 7B), ultimately resulting in an unaltered total number of 
synapses. These synapses likely contribute to the homeostasis of cellular resource 
relocation and synapse organization. 
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The ssEM method enabled us to identify a special type of synapse, namely the 
multiple-contact synapses. Our previous work3 indicated that most new synapses are 
formed by adding a synaptic element, either a presynaptic bouton or postsynaptic spine, 
to an existing synapse. We called this the “partial addition rule”. Adding a bouton to an 
existing synapse creates an MSS, while adding a spine creates an MSB. We found that 
both the MSB number and proportion increased significantly after learning, but MSS 
stayed the same. Since bouton formation and spine formation both increased after 
learning, this result suggested that a new bouton was more likely to compete and oust 
the previous bouton in a synapse for being the sole input to a postsynaptic spine, while 
the new spine and the old spine could co-exist on a single bouton, leading to a higher 
proportion of MSBs. MSS synapses may remain in a transient state during the switch 
from an old synaptic contact to a new one, while MSB represents a more stable synaptic 
configuration, allowing simultaneous information transfer from a single bouton to 
multiple postsynaptic sites. For any MSS, boutons from different neurons likely have 
unsynchronized activities, and only one of them would correlate best with the MSS. 
According to the Hebbian postulate “fire together, wire together”, only the best 
correlated bouton will win the competition to be the sole input for the spine, and the 
MSS will turn into a single-synaptic spine.  

In most cases, the transmitters released from presynaptic sites outnumber the 
postsynaptic receptors, so it is efficient to transmit information from one bouton to 
multiple postsynaptic targets. Indeed, most MSBs made contact with more than one 
dendritic branch, broadcasting information from one neuron to multiple neurons with 
one multiple-contact bouton, with minimal cellular energy consumed. We noted that 
the proportion of MSB is very low, consistent with the notion that memory encoding 
may be very sparse. For any piece of memory, only very few synapses are involved in 
coding the information. Our model indicated a 50% increase in information storage 
capacity for multi-dendritic MSBs, which provides great potential for synaptic 
plasticity with minimal increase of synapse number and structures. 

Mitochondria adapt to the cellular energy requirements by highly dynamic fusion 
and fission36. Mitochondrial dynamics are also found to be related to synaptic 
transmission and plasticity. There is evidence to suggest that increasing mitochondrial 
fragments can promote synapse formation37. Our results show significant decrease in 
size and increase in number of mitochondria along with changes of synaptic 
organization following fear conditioning, suggesting that mitochondria may play a role 
in learning by balanced fusion and fission.  

The recently reported connectome of 1mm3  human cerebral cortex11 shows the 
substantial improvement of EM imaging speed and the powerful ability of deep learning. 
Similar to our work, they found many strong (multi-synaptic) connections on both 
excitatory and inhibitory neurons. The biggest difference is that rather than performing 
large-scale saturated reconstruction, we conducted specific and local classification of 
synapses and mitochondria, which allows ultra-structural analyses of specific cellular 
organelles without resource-demanding heavy computation. As our method applies 
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region-based CNN to identify objects, it can potentially be used to extract other discrete, 
distinct structures from ssEM data as well, such as Golgi apparatus and nucleus, making 
it a versatile tool for ssEM image processing. 
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Figure legends 

Figure 1. Overall schematic of the experimental procedure. 
(A) Auditory fear conditioning and sample preparation. Control mice are subjected to
5 sessions of single tone pip delivery; conditioned mice are subjected to 5 sessions of
paired tone pip and foot shock delivery. At 4 days after conditioning, auditory cortex
(A1) tissue blocks are harvested from these mice and prepared for serial section electron
microscopy (ssEM).
(B) The ssEM image acquisition and alignment procedure. Serial sections are
automatically sectioned using automated tape-collecting ultramicrotome (ATUM);
these are collected onto 4-inch silicon wafers. The wafers are then imaged using
scanning electron microscopy. Raw images are aligned using a SIFT-flow-based, non-
linear registration algorithm.
(C) Identification of synapses and mitochondria in A1. Synapses and mitochondria are
automatically identified using our 2D-3D pipeline based on Region-Convolutional
Neural Network (R-CNN).
(D) The reconstructed dendrites from the saturated reconstruction by applying the
Multicut pipeline33. The spine fragments are manually traced to the original dendrite.
(E) MCSs localization and classification. Multiple-contact synapses (MCSs) are
manually located and then classified into Multi-Synaptic Boutons (MSBs, those
consisting of a single bouton contacting multiple postsynaptic sites) and Multi-synaptic
Spines (MSSs, those consisting of a single spine contacting multiple boutons) by
incorporating the vesicle cloud features.
(F) Comparative statistical analysis and mathematical modeling. A combinatorial
mathematical model is built to simulate the synaptic turnover associated with the fear
conditioning process.
(G) MSB subtypes. MSBs are classified into single- or multi- dendritic MSBs by
incorporating saturated reconstructions to identify the origination dendrites of multiple
postsynaptic spines.
(H) Comparative statistical analysis and synaptic connectivity modeling. A synaptic
network is built by connecting the axon and potential dendrite pairs within a 1-µm
radius sphere around a bouton.

Figure 2. Automated identification and reconstruction of synapses. 
(A) Examples of an EM image and a binary synaptic mask predicted by Mask R-CNN.
Scale bar: 1 μm.
(B) Network architecture of Mask R-CNN, which takes a 1,024×1,024 image patch as
input and outputs the bounding boxes (golden box) and binary masks (orange box) of
all synapses in the input image

(C) Sketch of the similarity-index-based 3D connection algorithm used for

reconstructing synapses. The similarity of two synapses from adjacent layers depends 
on the intersection-over-union of the bounding boxes. 
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(D) Normalized histograms of Euclidean distances between any two synapses in control
(blue) and conditioned mice (red); note that these accord with a normal distribution
(control: p = 0.1149, two-sided Kolmogorov-Smirnov test, conditioned: p = 0.4801,
two-sided Kolmogorov-Smirnov test).
(E) Comparison with other state-of-the-art methods in terms of precision, recall, and
F1-score metrics on a public ssEM dataset. Each circle indicates an image from the test
sets (half of this public ssEM dataset).
(F) Comparison with other automatic state-of-the-art CNN methods as well as manual
annotation on computation efficiency, which was here evaluated as the number of
voxels processed per day. With one GPU, R-CNN (golden) is in the same order of
magnitude as 3D U-Net (red), one order of magnitude faster than U-Net (blue), and
two orders of magnitude faster than manual processing by humans (purple).

Figure 3. Automated identification of mitochondria and vesicle clouds. 
(A) Examples of an EM image and a binary mitochondrial mask predicted by Mask R-
CNN. Scale bar: 1 μm.
(B) EM image and 3D visualization of 8 mitochondria located in dendrites or axons.
Scale bar: 1 μm.
(C) 3D visualizations of all mitochondria from one 22 × 24 × 25 µm image stack.
(D) The mitochondrial volume is smaller in conditioned mice (0.08±0.001 µm3) than
in controls (0.11±0.003 µm3). p < 0.01, two-sided t-test.
(E) The mitochondrial density is higher in conditioned mice (0.65±0.014 µm3) than in
controls (0.57±0.023 µm3). p < 0.01, two-sided t-test.
(F) The postsynaptic density (PSD) area with mitochondria in presynaptic boutons
(0.21±0.008 µm2) is larger than the PSD area without mitochondria in presynaptic
boutons (0.12±0.002 µm2). p < 0.001, two-sided t-test.
(G) Typical example of a spine synapse with the identified PSD (green), mitochondria
(red) and vesicle cloud (purple). Another view and the corresponding EM images are
displayed on the right. Scale bar: 1 μm.

Figure 4. Synaptic organization in A1. 
(A) MCSs detection and classification. MCS candidates are first automatically marked
based on a close-vicinity criterion, and are then manually verified and classified as
MSBs or MSSs by estimating the number of boutons based on vesicle cloud
segmentation. Specifically, the bouton number is estimated by intersecting the fitting
circle of synapse and bounding box of vesicle cloud. Neurite reconstructions are then
introduced to determine the origination of multiple spines or boutons. Red circles: fitted
circles by synapse segmentation; Green boxes: minimum boundary rectangles of
vesicle cloud segmentation. Scale bar: 1 μm.
(B) Two examples of false positives that were identified after 3D reconstruction of
synapses. The lefthand subpanel is an MSB false positive that was falsely detected
owing to the horse shoe-shaped bouton (dark green). The righthand subpanel is an MSS
false positive comprising two shaft synapses. Scale bar: 1 μm.
(C-E) Examples of a 3D reconstructed MSB (A), an MSB with more than 2 postsynaptic
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sites (B), and an MSS (C). Scale bar: 1 μm. 
(F) The percentage of MSB synapses is higher in conditioned mice (6.8±0.2 %) than in
controls (5.0±0.3 %). p < 0.01, two-sided t-test.
(G) There is no difference in the percentage of MSS synapses between control
(1.8±0.4 %) and conditioned mice (1.4±0.4 %). p = 0.46, two-sided t-test.
(H) The percentage of MSB synapses with presynaptic mitochondria (59.41±1.3%) is
higher than the percentage of SSB synapses with presynaptic mitochondria
(34.12±0.6%). p < 0.001, two-sided t-test.

Figure 6. Synaptic turnover patterns. 
(A) Cartoons showing competition and addition in bouton and spine turnover.
(B) Turnover rates of spines (formation: 9.71±1.02 %, elimination: 8.93±0.41 %) and
boutons (formation:14.73±1.03 %, elimination: 17.76±1.24 %) in the auditory cortex
of fear conditioned mice. Each circle represents data from a single mouse. The bouton
turnover rate is averaged among axons that project to the auditory cortex from the
lateral amygdala (LA), the anterior cingulate cortex (ACC), and the medial geniculate
nucleus (MGN).
(C-D) Diagram showing spine and bouton turnover in combinatorial mathematical
models. Model for bouton (green) turnover (C). Model for spine (purple) turnover (D).
white: eliminated spine/bouton; yellow: added new spine/bouton; arrow: synaptic
connection.
(E) Estimation of the percentage of competition and addition for boutons (left) and
spines (right) based on combinatorial mathematical modeling. Models predict 95.4%
competition of boutons and 73.2% competition of spines.
(F) Synaptic turnover examples from in vivo two-photon microscopy anlaysis. Arrows
point to elimination of an old bouton and to formation of a new bouton (top), and to an
addition of a new spine (bottom). Scale bar: 1 μm.
(G) The percentage of competition in bouton turnover is maintained around 96% when
the model size is scaled up to 12,000 synapses.
(H) The percentage of competition in spine turnover is maintained around 72% when
model size is scaled up to 12,000 synapses.

Figure 7. Saturated reconstruction and information storage capacity calculation. 
(A) Two reconstructed tissue blocks from control (left: 22 × 24 × 25 µm) and
conditioned mice (right: 33 × 28 × 25 µm). Insets show examples of single- or multi-
dendritic MSBs. Scale bar: 1 μm.
(B) Percentage of single- and multi-dendritic MSBs in control (multi-dendrite MSBs:
86%) and conditioned mice (multi-dendrite MSBs: 95% ).
(C) A reconstructed example showing 10 dendrites intersecting within a 1μm radius of
a bouton. Scale bar: 1 μm.
(D) Distribution of the number of dendrites within a 1-μm radius of a bouton. n = 5774
boutons.
(E) Illustrations showing synaptic connectivity patterns of a static model. Condition 1:
1-to-1 synapses only; condition 2: 1-to-1 synapses and single-dendritic MSBs;
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condition 3: 1-to-1 synapses, single- and multi-dendritic MSBs. 
(F) Illustrations showing synaptic connectivity patterns of a dynamic model. Condition
A: multi-dendritic MSBs, condition B: single-dendritic MSB only. Red: dendrite; green:
bouton; solid arrow: one possible synaptic connection; dashed arrow: potential synaptic
connection.
(G) Information storage capacity (ISC) for static networks of different sizes for 3
conditions: 1-to-1 synapses only (condition 1); 1-to-1 synapses and single-dendritic
MSBs (condition 2); 1-to-1 synapses, single- and multi-dendritic MSBs (condition 3).
(H) Increase in ISC for dynamic networks of different sizes for 2 conditions: new
synapse on any passing dendrite (condition A); new synapse on the same dendrite
(condition B).
(I) Linear relationship for the increase in ISC for conditions A and B across different
network sizes.
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Extended Data Figure 1
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Extended Data Figure 1. Behavioral test. Behavioral results of auditory fear

conditioning for control (18.89±8.01%) and conditioned (89.44±3.89%) mice. Each

circle represents one mouse. p < 0.005, Student’s t-test.
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Extended Data Figure 2. Whole diagram of EM data processing procedure. The aligned

EM stacks are first fed to CNNs to detect the synaptic ultrastructures (PSD and vesicle),

mitochondria, and neuronal membrane. The synapses are then classified into spine or shaft

synapses based on the ultrastructural features. MCSs are located and classified into two

MSB or MSS. Dense segmentation is obtained by Multicut pipeline and is introduced to

determine the MCSs’ origination.
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Extended Data Figure 3

Extended Data Figure 3. Pipeline of synapses reconstruction from ssEM images. The

original image are cropped into overlapping small patches. The patches are fed into the

trained network for synapse inference, and the overlapping areas are fused using the single-

layer fusion algorithm. The multilayer 3D connection algorithm is applied to obtain the

reconstructed synapses. 3D visualization is shown in ImageJ.
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Extended Data Figure 4. Automatic detection of synapses.

(A) Examples showing automatically detected synapses in an EM image. Colored thick lines

represent automatically detected synaptic clefts. Insets show false positives and false negatives

identified by manual verification. Scale bar: 1μm.

(B) Diagram of single-layer fusion algorithm. Orange and green boxes represent two cropped

patches with overlap. 𝐷𝐷𝑖𝑖𝑖𝑖 and 𝐷𝐷𝑖𝑖𝑗𝑗 are repeated detection boxes in overlapping region. Scale

bar: 1μm.

(C) Evaluation on the synapse test set in terms of precision and recall. Each circle indicates an

image from the test set.
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Extended Data Figure 5. Identification of vesicle clouds.

(A) Examples of EM image and binary vesicle cloud mask predicted by CNN. Scale bar:

1 μm.

(B) Network architecture of FusionNet, which takes a 1,024×1,024 image patch as input

and outputs the binary vesicle cloud masks of input image. One golden circle represents a

residule module. The yellow arrows indicate the sum operation to fuse features from

encode path and decode path. Red arrows and blue arrows indicate the convolution with

maxpooling and deconvolution operations, respectivey.

Extended Data Figure 5

Residual module

in out

Maxpooling

Deconv

Sum

Convolution

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455246doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455246
http://creativecommons.org/licenses/by-nc-nd/4.0/


A

Extended Data Figure 6

spine 
synapse

shaft 
synapse

axon

dendrite
spine 

synapse

shaft 
synapse

Shape factor << 0.33 Shape factor >> 0.33

B

Spine synapse Shaft synapse

C D

E Ground 
truth

Predict
spine shaft

spine 445 13

shaft 12 89

Extended Data Figure 6. Classification of spine and shaft synapses.

(A) Spine and shaft synapse classification based on the lack (right) or existence (left) of

mitochondria (yellow) in postsynaptic structures. Scale bar: 1 μm.

(B) Spine and shaft synapse classification based on spiny (right) or flat (left) postsynaptic

structures. Scale bar: 1 μm.

(C-D) Example of 3D reconstructed spine and shaft synapse. Scale bar: 1 μm.

(E) Confusion matrix of classification results on the test dataset.
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Extended Data Figure 7. Changes of spine and shaft synapses in A1 after AFC.

(A) Spine synapse density is higher in the conditioned mice (0.674±0.0379/µm3) than in

controls (0.489±0.0099/µm3). p<0.01，two-sided t-test.

(B) Shaft synapse density is lower in the conditioned mice (0.12±0.0094/µm3) than in

controls (0.173±0.0102/µm3). p<0.01，two-sided t-test.

(C) Shaft and spine synapse proportion in the control mice (spine: 73.84±1.49%, shaft:

26.16±1.49% ) and conditioned mice (spine: 84.54±1.81%, shaft: 15.47±1.81%) . p<0.01，

two-sided t-test.
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Extended Data Figure 8. Semi-automatic detection, verification and classification of

MCSs.

(A) MCSs detection and verification. MCS candidates are first automatically marked based on

a close-vicinity criterion, and then manually verified and classified into MSBs or MSSs based

on the vesicle cloud features. Colored line: PSD; yellow box: MCS candidates; red box: false

detection; blue box: verified MSB; orange box: verified MSS; blue patch: boutons. Scale bar:

1 μm.

(B) A continuous series of EM images showing an MSB that was omitted by the automatic

close-vicinity detection algorithm because the two spines never co-appeared on a single slice. 

Bottom left: a cartoon illustrating the false negative scenario. Scale bar: 1 μm.

(C) False negative rate of MSBs estimated by manual identification of MSBs in saturated

reconstruction blocks (control: 26.3%, 11 × 12 × 5 mm, conditioned: 24%, 17 × 14 × 2.5 

mm).

(D) The percentage of MSB synapses having more than 2 postsynaptic sites is higher in the

conditioned mice (2.26±0.3 %) than in controls (1.07±0.3%). p < 0.05, two-sided t-test.
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Extended Data Figure 9. Workflow of volume segmentation. Trained network takes raw

images as input and membrane probability maps as output, then distance transform is

applied to create superpixels and a graph G is constructed to build the relationships between

segments. 3D segmentation results are obtained by solving the graph partitioning problem.

Scale bar: 1 μm.

Extended Data Figure 9
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Extended Data Figure 10. Identification of dendrites from saturated reconstruction.

(A) Each point represents a dendrite or non-dendrite (other) segment.

(B) Examples of identified axonal bouton (yellow) and dendritic branch (blue). Scale bar: 1

μm.
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Methods 

Animals 

C57BL/6 mice were purchased from SLAC Laboratory Animals (Shanghai, China). 
YFP-H line mice were obtained from the Jackson Laboratory (Bar Harbor, ME, USA). 
Mice were bred and housed in the animal facility of Shanghai Protein Center under a 
12 h light-dark cycle (7 am-7 pm light). Eight- to twelve-week-old male and female 
mice were used for the experiments. All procedures were approved by the Animal 
Committee of the Shanghai Tech University. 

Behavior

Fear conditioning and behavioral test for the freezing response took place in different 
environments. Mice were handled prior to conditioning. A commercial fear 
conditioning apparatus (MED Associates Inc., St. Albans, VT, USA) was used for the 
fear conditioning and behavioral test. Before conditioning and testing, the apparatus 
was wiped clean with 70% ethanol. The conditioned stimulus (CS) is a series of 14 kHz 
beeps (interleaved 0.5 s on, 0.5 s off) at 80 dB, lasting 10s in total; the unconditioned 
stimulus (US) is a 0.6 mA foot shock lasting 2 s. The sound co-terminates with the foot 
shock. For conditioned animals, CS-US pairing was presented 5 times with random 
intervals ranging from 60 to 90 s. For naïve animals, CS was presented 5 times with 
random intervals, without presentation of US. The behavioral responses to CS were 
tested 1 day after conditioning for both groups, using CS lasting 60 s. All conditioned 
animals showed high levels of freezing when CS was played, and naïve animals did not 
show a freezing response (Extended Data Figure 1). 

Electron microscopy sample preparation 

The mouse was deeply anaesthetized with sodium pentobarbital (50 mg/kg, i.p.) and 
transcardially perfused with freshly prepared 4% paraformaldehyde and 0.5% 
glutaraldehyde (EM grade) in phosphate-buffered saline (PBS) 3 days after behavioral 
training. The brain was post-fixed in 2% paraformaldehyde and 2% glutaraldehyde 
overnight in a cold room. Blocks of the auditory cortex were dissected and embedded 
in resin for serial sectioning. Serial sections of the samples were continuously sectioned 
at 50 nm with an ATUMtome automated tape-collecting ultramicrotome (RMC, 
Boeckeler instruments Inc., Tucson, AZ, USA) and then collected onto a Kapton 
polyimide tape (8 mm wide and 100 μm thick). The tape with brain sections were then 
segmented and attached to 4-inch silicon wafers via double coated carbon conductive 
tape (TED Pella Inc, Redding, CA, USA). Lastly, the wafers were coated with 6 nm of 
carbon though an EM ACE60 high vacuum film deposition instrument (Leica 
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Microsystems GmbH, Wetzlar, Germany) to prevent charging during scanning EM 
imaging (Figure 1). 

Electron Microscopy 

The tape-collected ultra-thin sections were imaged on a Carl Zeiss Supra 55 scanning 
electron microscope (Carl Zeiss AG,. Oberkochen, Germany) using a secondary 
electron detection (9 kV accelerating potential, working distance of approximately 6.0 
mm), with resolution of 2-4 nm/pixel and pixel dwelling time of 1.5 μs. 

Image Alignment 

To correct for distortions of serial sections from automated tape-collecting 
ultramicrotome scanning electron microscopy (ATUM-SEM), we used a non-linear 
registration algorithm38 to create 3D image stacks that retain the original morphology 
as much as possible. We assumed that the tissue deformations on different sections 
were independent. In order to extract reliable correspondences between adjacent 
sections, we used the dense correspondence matching SIFT-flow algorithm39. Then, the 
corresponding points on different sections were simultaneously adjusted based on an 
energy function to retain the same x-y coordinates. In addition, the displacements of 
these corresponding points were constrained to be smooth and small, thereby restricting 
the non-linear deformation of the original images. Finally, with the displacement vector 
of the extracted corresponding points, the positions of the points in the original sections, 
as well as in the aligned images, were obtained. The Moving-Least-Square (MLS) 
method40 was used to warp each section image. The deformation result produced by the 
MLS method was globally smooth, and the biological tissue could retain its shape as a 
result of the rigid local transformation. 

Network Architecture of FPN 

The FPN consists of a bottom-up pathway and a top-down pathway with lateral 
connections. The bottom-up pathway leverages the hierarchy of the natural pyramid 
features of the ResNet50, and the top-down pathway recovers the original resolution by 
using the upsample layer step by step. On each level of the pyramid, the top-down 
pathway features will be fused (element-wise addition) with the bottom-up pathway 
features in the corresponding level. By constructing the feature pyramid, the lower-
resolution feature maps contain more semantic information, while the higher-resolution 
feature maps contain more detailed information. The scale-space induced from the 
feature pyramid fits well with the object-space. Thus, the RPN and R-CNN predict the 
class and regress the bounding box of objects at different scale using feature maps at 
different levels of the pyramid. The same applies for the mask branch. Specifically, the 
feature pyramid has 5 levels and the corresponding object scales are 32, 64, 128, 256, 
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512, respectively.   
 

Block-wise inference strategy for large-scale data 

Due to the constraints of the GPU, the inference was designed to proceed in a block-
wise way for large-scale data (Extended Data Figure 4B). The original images were 
first cropped into small patches (2,048 × 2,048) with overlaps (100 × 100), which 
were then fed into the trained network to generate detection boxes and segmentation 
masks. To obtain the connection relationship at the 3D level, we used a strategy which 
first fused the results on 2D and then connected the adjacent 2D layers to produce the 
3D results. 

To facilitate the description of our algorithm, we defined 𝑁𝑁𝑖𝑖 as the number of detection 
boxes in the i-th layer, and 𝐷𝐷𝑖𝑖𝑖𝑖 represented the j-th synaptic detection box in the i-th 
layer: 

𝐷𝐷𝑖𝑖𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖1 ,𝑦𝑦𝑖𝑖𝑖𝑖1 , 𝑥𝑥𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑖𝑖2 ) 

where 𝑥𝑥𝑖𝑖𝑖𝑖1 ,𝑦𝑦𝑖𝑖𝑖𝑖1 , 𝑥𝑥𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑖𝑖2  represented the left-upper coordinate, left-upper coordinate, 

right-lower coordinate and right-lower coordinate, respectively; 𝐷𝐷𝑖𝑖 = {𝐷𝐷𝑖𝑖𝑖𝑖 , 𝑗𝑗 =
1,2, … ,𝑁𝑁𝑖𝑖} denoted the set of all detection boxes on the i-th layer. 𝐶𝐶𝑖𝑖𝑖𝑖 represented the 
corresponding segmentation result of the j-th synapse in the i-th layer. 𝐶𝐶𝑖𝑖 = {𝐶𝐶𝑖𝑖𝑖𝑖, 𝑗𝑗 =
1,2, … ,𝑁𝑁𝑖𝑖  } represented the set of all binary segmentation results in the i-th layer. 

（1）Single-layer fusion algorithm for detection and segmentation results 

After obtaining the synaptic detection and the segmentation results of small patches by 
deep neural network, we stitched them to recover the original image size. At the 
overlapping region, there could be multiple different detection results for the same 
synapse. In this case, the synapse was repeatedly detected. Therefore, we designed an 
iterative 2D fusion algorithm to fuse the detection bounding boxes and corresponding 
segmentation masks in the overlapping areas. The main procedures are as follows: 

Step 1: Construct the Intersection-over-Union (IoU) matrix 𝑆𝑆𝑖𝑖 between all candidate 
detection boxes 𝐷𝐷𝑖𝑖𝑖𝑖 in the i-th layer. The 𝑆𝑆𝑖𝑖 matrix can be formulated as: 

𝑆𝑆𝑖𝑖 =

⎝

⎜
⎛
𝑠𝑠11𝑖𝑖 𝑠𝑠12𝑖𝑖 ⋯ 𝑠𝑠1𝑁𝑁𝑖𝑖

𝑖𝑖

𝑠𝑠21𝑖𝑖 𝑠𝑠22𝑖𝑖 … 𝑠𝑠2𝑁𝑁𝑖𝑖
𝑖𝑖

⋮
𝑠𝑠𝑁𝑁𝑖𝑖1
𝑖𝑖

⋮
𝑠𝑠𝑁𝑁𝑖𝑖2
𝑖𝑖

⋱ ⋮
⋯ 𝑠𝑠𝑁𝑁𝑖𝑖𝑁𝑁𝑖𝑖

𝑖𝑖
⎠

⎟
⎞
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where 𝑠𝑠𝑖𝑖𝑗𝑗𝑖𝑖  represents the IoU of the j-th detection box and the k-th detection box, and 

the calculation formula can be expressed as follows: 

𝑠𝑠𝑖𝑖𝑗𝑗𝑖𝑖 =
𝐴𝐴(∩ {𝐷𝐷𝑖𝑖𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑗𝑗})
𝐴𝐴(∪ {𝐷𝐷𝑖𝑖𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑗𝑗})

, 𝑗𝑗 = 1,2, … ,𝑁𝑁𝑖𝑖 

where 𝐴𝐴 is a function of calculating area. ∩ {𝐷𝐷𝑖𝑖𝑖𝑖,𝐷𝐷𝑖𝑖𝑗𝑗} and ∪ {𝐷𝐷𝑖𝑖𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑗𝑗} represent the 

intersection and union of 𝐷𝐷𝑖𝑖𝑖𝑖  and 𝐷𝐷𝑖𝑖𝑗𝑗, respectively. Obviously, 𝑠𝑠𝑖𝑖𝑗𝑗𝑖𝑖 𝜖𝜖[0,1]. It is not 

difficult to find that 𝑆𝑆𝑖𝑖 is a sparsely symmetric matrix with a main diagonal of 1. 

Step 2: Find the coordinates of elements in 𝑆𝑆𝑖𝑖, which are greater than the threshold 𝜃𝜃1. 
Let 𝐼𝐼𝑛𝑛𝐼𝐼 be a set, then: 

𝐼𝐼𝑛𝑛𝐼𝐼 =  Ⅱ{𝑆𝑆𝑖𝑖>𝜃𝜃1} 

where Ⅱ denotes the indicator function. This operation acts on each element of 𝑆𝑆𝑖𝑖 and 
returns the row and column number 𝑗𝑗𝑗𝑗 satisfying the condition. 

Step 3: For ∀𝑗𝑗𝑗𝑗 ∈ 𝐼𝐼𝑛𝑛𝐼𝐼 , merge 𝐷𝐷𝑖𝑖𝑖𝑖  and 𝐷𝐷𝑖𝑖𝑗𝑗  into a new detection box 𝐷𝐷𝑖𝑖𝑖𝑖𝑗𝑗′ . The 

coordinates of the new detection box are illustrated as follows: 

𝐷𝐷𝑖𝑖𝑖𝑖𝑗𝑗′ = (min�𝑥𝑥𝑖𝑖𝑖𝑖1 , 𝑥𝑥𝑖𝑖𝑗𝑗1 � , min�𝑦𝑦𝑖𝑖𝑖𝑖1 ,𝑦𝑦𝑖𝑖𝑗𝑗1 � , max�𝑥𝑥𝑖𝑖𝑖𝑖2 , 𝑥𝑥𝑖𝑖𝑗𝑗2 � , max (𝑦𝑦𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑗𝑗2 )) 

Step 4: Update 𝑁𝑁𝑖𝑖 and 𝐷𝐷𝑖𝑖, and repeat above steps until no box need to be merged. 

（2）Multilayer 3D connection algorithm  

In order to obtain 3D synapses from the serial 2D segmentation results as well as screen 
out false positives, we develop and implement a 3D connection algorithm in the fine 
registered stacks according to the continuity of ssEM images and the spatial structural 
information of synapses. This procedure not only recovers synaptic morphology at the 
3D level, but also assigns a unique label to each 3D synapse. The main steps are as 
follows: 

Step 1: Construct the similarity matrix 𝑆𝑆𝑖𝑖𝑖𝑖 between the synapses in the i-th layer and 
synapses in the t-th layer. 𝑆𝑆𝑖𝑖𝑖𝑖 can be formulated as follows: 
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𝑆𝑆𝑖𝑖𝑖𝑖 =

⎝

⎜
⎛
𝑠𝑠11𝑖𝑖𝑖𝑖 𝑠𝑠12𝑖𝑖𝑖𝑖 ⋯ 𝑠𝑠1𝑁𝑁𝑖𝑖

𝑖𝑖𝑖𝑖

𝑠𝑠21𝑖𝑖𝑖𝑖 𝑠𝑠22𝑖𝑖𝑖𝑖 … 𝑠𝑠2𝑁𝑁𝑖𝑖
𝑖𝑖𝑖𝑖

⋮
𝑠𝑠𝑁𝑁𝑖𝑖1
𝑖𝑖𝑖𝑖

⋮
𝑠𝑠𝑁𝑁𝑖𝑖2
𝑖𝑖𝑖𝑖

⋱ ⋮
⋯ 𝑠𝑠𝑁𝑁𝑖𝑖𝑁𝑁𝑖𝑖

𝑖𝑖𝑖𝑖
⎠

⎟
⎞

 

where t = i+1. It should be noted that 𝑠𝑠𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  represents the ratio of the overlapping area 

between 𝐷𝐷𝑖𝑖𝑝𝑝 and 𝐷𝐷𝑖𝑖𝑝𝑝 to the minimum area of these two, and the calculation formula 
is: 

𝑠𝑠𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 =
𝐴𝐴(∩ {𝐷𝐷𝑖𝑖𝑝𝑝,𝐷𝐷𝑖𝑖𝑝𝑝})

min (𝐴𝐴�𝐷𝐷𝑖𝑖𝑝𝑝�,𝐴𝐴�𝐷𝐷𝑖𝑖𝑝𝑝�)
 

Step 2: Find the coordinates of elements of 𝑆𝑆𝑖𝑖𝑖𝑖, which are greater than the threshold 
𝜃𝜃2, i.e. 

𝐼𝐼𝑛𝑛𝐼𝐼1 =  Ⅱ{𝑆𝑆𝑖𝑖𝑖𝑖>𝜃𝜃2} 

where Ⅱ denotes the indicator function. This operation acts on each element of 𝑆𝑆𝑖𝑖𝑖𝑖 and 
returns the row and column number 𝑝𝑝𝑝𝑝 satisfying the condition. 

Step 3: For ∀𝑝𝑝𝑝𝑝 ∈ 𝐼𝐼𝑛𝑛𝐼𝐼1, assign the same and unique label value to 𝐶𝐶𝑖𝑖𝑝𝑝 and 𝐶𝐶𝑖𝑖𝑝𝑝. Then, 
the binary segmentation is converted into a label image. 

Step 4: Repeat above steps for all layers and obtain a labeled stack. Look through all 
the labels to check the number of layers 𝐿𝐿𝑖𝑖 for each label 𝑡𝑡. If 𝐿𝐿𝑖𝑖 is less than the 
predefined threshold 𝜃𝜃3 , then delete the corresponding segmentation 𝐶𝐶𝑖𝑖𝑖𝑖  from the 
original results, which can be expressed as follows: 

𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑖𝑖\𝐶𝐶𝑖𝑖𝑖𝑖 

After implementing the block-wise algorithm, we obtain the final result of each large 
image, where the same label value indicates the same synapse at the 3D level. 

2D segmentation of neuronal processes 

We extracted two volumes (2,048 x 2,048 x 50 voxels) from control and conditioned 
group as the training data for membrane detection and dense reconstruction. In the 
ground truth, voxels with the same value belong to the same neurite in 3D. Three 
experienced annotators labeled the dense labels with cross-validation. 

FusionNet 23was trained to predict the neuronal membrane. The training data was 
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extracted from the volume segmentation data set. Pixels that were labeled as 
background or at the edge of any adjacent neurite objects were collected as boundaries. 
The membrane probability maps obtained from the network were binarized with a 
threshold of 0.5, and morphologically dilated with a disk radius of 2 in order to dismiss 
the small cracks in membranes and avoid merge errors. A watershed algorithm was then 
used to obtain connected neuronal components. 

Automated volume segmentation 

The thickness of ssEM sections is a key factor for automatic reconstruction. High 
anisotropy brings more problems and challenges in learning the affinity between voxels 
along the Z-direction. The state-of-the-art approach, which learns an affinity graph by 
3D CNN, did not perform well on our data set. Therefore, we used the Multicut  
pipeline 33 to analyze our data. We first applied a distance transform to generate 
superpixels in 2D slices. Subsequently, we constructed a 3D region adjacency graph to 
connect the superpixels in 2D slices as well as between sections. We then abstracted 
the graph as G(V, E), where the node set V denoted all the superpixels and the edge set 
E represented boundaries between adjacent superpixels. Then, a random forest 
classifier was trained to predict the scores (probability of whether an edge should be 
cut) of every edge in the graph to obtain a weighted un-directed graph (Extended Data 
Figure 9). We thus solved the graph partitioning problem with an approximate solution. 
Finally, we imported the segmentation results to the proofreading tool, and assigned the 
proofreading task to 6 experienced experimenters. The proofreading took about 4 weeks. 

Experimental setup 

All networks were implemented in Keras with Tensorflow41 as backend. A stochastic 
gradient descent algorithm42 with learning rate of 0.001 was used to optimize the 
networks. To avoid overfitting, we used online data augmentation, including random 
rotation, random flipping and adding random noise for all training data sets. All training 
and inference procedures were performed on servers equipped with NVIDIA Tesla K40 
GPUs. 

Spine and Shaft Synapse Classification 

Excitatory and inhibitory synapses are classified according to some established 
criteria43. Due to the low axial resolution, indistinct synaptic vesicles and 
symmetry/asymmetry of PSDs can’t be used to identify the classes of synapses. 
Although it is generally believed that excitatory synapses are mostly located on spines, 
some studies have indicated that excitatory synapses can also form on dendritic shafts44, 
which cannot be quantified in vivo by counting spines using microscopy. Accordingly, 
based on the presence of postsynaptic mitochondria (Extended Data Figure 6A) and the 
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shape of postsynaptic structures (Extended Data Figure 6B), we established some rules 
to classify the spine and shaft synapses (Extended Data Figure 6C and 6D).  

Previous studies have shown that there are very few mitochondria in dendritic spines, 
thus the absence of mitochondria can be used as one informative feature for spine 
identification. If no mitochondria are present in the postsynaptic site on any layer, the 
synapse is classified as a “spine synapse”. If the proportion of mitochondria present on 
all layers is greater than 50%, the synapse is classified as a “shaft synapse”. Since the 
sectioning orientation may lead to false negatives (e.g., Extended Data Figure 6B), we 
added a morphological criterion, i.e., whether the shape of the postsynaptic element is 
spiny or flat, for classification of remaining conditions. The mean change rate of 
postsynaptic areas from adjacent sections is defined as the shape factor—another 
informative feature for spine identification. A higher shape factor value (greater than 
0.33) indicates a higher probability of existence of spines; a lower shape factor value 
indicates the presence of shafts (Extended Data Figure 6B). The evaluation on the test 
data set consisting of 559 synapses showed that our method yielded an accuracy rate of 
0.95 (Extended Data Figure 6E). 
 

Error analysis of MCS detection algorithm 

The multiple boutons or spines in a single MCS had to appear on the same section for 
them to be successfully identified by our semi-automatic MCS detection algorithm 
(Extended Data Figure 8B). Indeed, a comparison against manually quantified 
MSB/MSS suggested that the our semi-automatic MCS detection algorithm had a false 
negative detection rate of 25% for two densely reconstructed image stacks (Extended 
Data Figure 8C). The data in Figure 5D and Figure 5E were adjusted accordingly. 

Virus injection for in vivo imaging 

The AAV-hSyn-EGFP and AAV-hSyn-tdTomato vectors were produced by Taitool 
Bioscience, Co., Ltd. (Shanghai, China). Virus injection was performed using a 
previously described protocol3. Briefly, mice were anaesthetized with sodium 
pentobarbital (7 mg/kg) and placed in a stereotaxic frame (RWD Life Sciences Co., 
Ltd., Shenzhen, China). For axonal labeling and imaging in the auditory cortex, 0.1-0.2 
µl GFP or tdTomato viruses (~1013 virus particles per ml) were injected, using a glass 
micropipette with a Nanoject III micro-injector (Drummond Scientific Company, 
Broomall, PA, USA), into three different regions that project axons to the auditory 
cortex: lateral amygdala (LA, 1.0 mm from Bregma, 3.25 mm lateral from the midline, 
3.55 mm vertical from the cortical surface), anterior cingulate cortex (ACC, −1.00 mm 
from Bregma, 0.5 mm lateral from the midline, and 1.5 mm vertical from the cortical 
surface), medial geniculate nucleus: (MGN, 3.2 mm from bregma, 2.0 mm lateral from 
the midline, and 2.8 mm vertical from the cortical surface). 
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Two-photon microscopy and data analysis 

We performed cranial window implantation and two-photon imaging in mouse auditory 
cortex using previously described protocols3. Mice were imaged 1 day before and 3 
days after fear conditioning. All images were analyzed using ImageJ (NIH, Bethesda, 
MD, USA). Dynamic turnover assays of boutons and spines were based on comparison 
of the images collected at two different time points (3 days after vs. 1 day before 
conditioning). Percentages were normalized to the initial image taken at 1 day before 
conditioning. Turnover of boutons was calculated by averaging the turnover rates of 
LA, ACC and MGN axonal boutons in the auditory cortex. For the dual-color labeled 
images, potential bouton-spine pairs were visually identified when a presynaptic bouton 
and a postsynaptic spine overlaid in the image stacks 3. 

Details for Mathematical modeling to assess bouton and spine 

turnover patterns: competition/addition ratio 

(1) Estimating bouton competition and addition ratio by MSS percentages and 
bouton turnover rate 

According to the ssEM data (Figure 4G), there were 1.8% MSS synapses in control 
animals and 1.4% in conditioned animals. Based on in vivo microscopic analysis 
(Figure 5B), the bouton elimination rate was approximately 15% and the formation rate 
was 15%. We built a model starting with 120 synapses consisting of 118 1-to-1 
synapses (98.3%) and 2 MSS synapses (1 MSS; 1.7%, approximated to 1.8%), and 
ending with 120 synapses, also 118 1-to-1 synapses and 2 MSS synapse (1.7%, 
approximated to 1.4%). Note that in this model, the spine entities remained the same, 
and the number of boutons eliminated and the number newly formed were both 18 (120 
x 15%) since the number of spines and MSSs were both constant. Three major 
assumptions were made: 1) each bouton forms at most one synapse (MSB is not 
considered in this model); 2) each spine contains 1 or 2 synapses (for simplicity of 
modeling, we do not consider MSS containing 3 or more synapses); 3) the 
elimination/formation of synapses is represented by the elimination/formation of 
boutons.  

To count all possible bouton turnover patterns, we considered bouton elimination 
before formation. There were a total of 3 types of bouton elimination, with the number 
of each type denoted as 𝑎𝑎𝑗𝑗(𝑗𝑗 = 1,2,3) and the number of corresponding formation 
patterns satisfying the end situation denoted as 𝑏𝑏𝑗𝑗(𝑗𝑗 = 1,2,3). The three types are as 
follows: 

(1) All 18 bouton eliminations are from 1-to-1 synapses (118 in total), 𝑎𝑎1 = 𝐶𝐶11818 ; All 
18 bouton formations occur on above alone spines, 𝑏𝑏1 = 1; 
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(2) There are 17 eliminations from 1-to-1 synapses and 1 from MSS synapses (2 in 
total), 𝑎𝑎2 = 𝐶𝐶11817 𝐶𝐶21; 17 bouton formations on above alone spines and then another one 
on one of the 119 candidate 1-to-1 synapses (118-17+1+17) to form MSS, 𝑏𝑏2 = 𝐶𝐶1191 ; 
(3) There are 16 eliminations from 1-to-1 synapses and 2 eliminations from 1 MSS, 
𝑎𝑎3 = 𝐶𝐶11816 𝐶𝐶22; 17 bouton formations on above alone spines and then another one on one 
of the 119 candidate 1-to-1 synapses (118-16+17) to form MSS, 𝑏𝑏3 = 𝐶𝐶1191 . 

Thus, the total number of synaptic turnover patterns, denoted by 𝑁𝑁, can be calculated 
by:  

𝑁𝑁 = �𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖

3

𝑖𝑖=1

 , 

Then, we calculate the formation ratio of (A.), (B.), (D.), (E.), (F.) vs. (C.), indicating 
the percentage of bouton competition and addition in new synapses, respectively. 
Assuming that the possibility of each synaptic turnover pattern is equal, the 
mathematical expectation for the number of synapses corresponding to Situation (C.) 
in 18 new synapses, 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 , and the corresponding number of new synapses where 
bouton competition occurs, 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐, can be derived using the following equations: 

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ 𝑗𝑗𝑁𝑁𝑖𝑖18
𝑖𝑖=0

𝑁𝑁′
 , 

𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐 + 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 = 18 , 

where, 𝑁𝑁𝑖𝑖(𝑗𝑗 = 0,1,2, … ,18) is the number of synaptic turnover patterns in which only 
𝑗𝑗 out of 18 new synapses belong to Situation (C.). As the number of MSS after learning 
is only one, there can be no more than 1 addition. So 𝑁𝑁2 = 𝑁𝑁3 = ⋯ = 𝑁𝑁17 = 𝑁𝑁18 = 0. 
𝑁𝑁𝑖𝑖(𝑗𝑗 = 0,1) can be obtained as follows: 

𝑁𝑁0 = 𝑁𝑁 −�𝑁𝑁𝑖𝑖

18

𝑖𝑖=1

 , 

𝑁𝑁1 = 𝑎𝑎2𝐶𝐶1011 + 𝑎𝑎3𝐶𝐶1021  . 
In order to gain a better understanding of the above formula, both items in 𝑁𝑁1 are 
elaborated as follows. For elimination type (2), after adding one synapse to each of the 
17 alone spines, the last formed synapse to be determined is randomly added to one of 
101 1-to-1 synapses that have previously remained unchanged (118-17), so the number 
of patterns is calculated as 𝑎𝑎2𝐶𝐶1011 . For elimination type (3), the last formed synapse to 
be determined is randomly added to one of 102 1-to-1 synapses that have previously 
remained unchanged (118-16), and thus the number of patterns is obtained as 𝑎𝑎3𝐶𝐶1021 .  

Using the above equations, we determined that of the 18 new boutons, on average, 
17.17 were accompanied by old bouton elimination (i.e., competition) and the other 
0.83 were added to existing 1-to-1 synapses to form MSSs, accounting for 95.4 and 
4.6%, respectively. 
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In addition, we extended the model programmatically to any size regarding the number 
of synapses. The input parameters of the program included only the ratio of multiple-
contact synapses before and after learning, turnover rate, and the number of synapses. 
To test our model with different parameters: the last parameter is scaled up to 12,000 
and the other parameters are fixed. In general, the obtained results with different model 
sizes were similar, as shown in Figure 5G and Table 1. 

Table 1. the bouton competition and addition ratio with different model sizes 

Model size 120 1,200 12,000 

𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐 (%) 95.4% 96.3% 96.1% 

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 (%) 4.6% 3.7% 3.9% 

 
(2) Estimating spine competition and addition ratio by MSB percentages and 

spine turnover rate 

According to the ssEM data (Figure 4F), 5.0 and 6.8% of all synapses were MSB 
synapses in control and conditioned animals, respectively. Based on in vivo imaging 
data (Figure 5B), spine turnover rate was approximately 10% for elimination and 10% 
for formation. The starting 120 synapses consisted of 114 1-to-1 synapses (95%) and 6 
MSB synapses (3 MSBs; 5.0%), and the end situation consisted of 121 synapses 
including 12 new synapses (113 1-to-1 synapses and 8 MSB synapses, i.e., 4 MSBs, 
6.6%, approximated to 6.8%). It should be noted that in this model, the bouton entities 
remain the same, and the difference between the number of synapses eliminated (11) 
and the number newly formed (120 x 10% = 12) is due to the constant number of 
boutons and variable number of MSBs. Three major assumptions were made: 1) each 
spine forms at most one synapse (MSS is not considered in this model); 2) each bouton 
contains 1 or 2 synapses; 3) the elimination/formation of synapses is represented by the 
elimination/formation of spines. 

To count all possible spine turnover patterns, we considered spine elimination before 
formation. There were a total of 10 types of spine elimination, with the number of each 
type denoted as 𝑎𝑎𝑗𝑗′(𝑗𝑗 = 1,2, … ,10)  and the number of corresponding formation 
patterns satisfying the end situation denoted as 𝑏𝑏𝑗𝑗′(𝑗𝑗 = 1,2, … ,10). The 10 types are 
as follows:  

(1’) All 11 spine eliminations are from 1-to-1 synapses (114 in total), 𝑎𝑎1′ = 𝐶𝐶11411 ; 11 
out of 12 spine formations occur on above alone boutons and then another one on one 
of the 114 candidate 1-to-1 synapses (114-11+11) to form MSB, 𝑏𝑏1′ = 𝐶𝐶1141 ; 
(2’) There are 10 eliminations from 1-to-1 synapses and 1 from MSB synapses (6 in 
total), 𝑎𝑎2′ = 𝐶𝐶11410 𝐶𝐶31𝐶𝐶21; 10 spine formations on above alone boutons and then another 
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two on 115 1-to-1 synapses (114-10+1+10), 𝑏𝑏2′ = 𝐶𝐶1152 ; 
(3’) There are 9 eliminations from 1-to-1 synapses and 2 eliminations from one single 
MSB, 𝑎𝑎3′ = 𝐶𝐶1149 𝐶𝐶31𝐶𝐶22; 10 spine formations on above alone boutons and then another 
two on 115 1-to-1 synapses (114-9+10), 𝑏𝑏3′ = 𝐶𝐶1152 ; 
(4’) 9 eliminations from 1-to-1 synapses and 2 eliminations from two different MSBs, 
𝑎𝑎4′ = 𝐶𝐶1149 𝐶𝐶32(𝐶𝐶21)2; 9 spine formations on above alone boutons and then another three 
on 116 1-to-1 synapses (114-9+2+9), 𝑏𝑏4′ = 𝐶𝐶1163 ; 
(5’) There are 8 eliminations from 1-to-1 synapses and 3 eliminations from MSBs, of 
which 2 are on the same MSB, 𝑎𝑎5′ = 𝐶𝐶1148 𝐶𝐶31𝐶𝐶22𝐶𝐶21𝐶𝐶21; 9 spine formations on above 
alone boutons and then another three on 116 1-to-1 synapses (114-8+1+9), 𝑏𝑏5′ = 𝐶𝐶1163 ; 
(6’) There are 8 eliminations from 1-to-1 synapses and 3 eliminations from different 
MSBs, 𝑎𝑎6′ = 𝐶𝐶1148 𝐶𝐶33(𝐶𝐶21)3 ; 8 spine formations on above alone boutons and then 
another four on 117 1-to-1 synapses (114-8+3+8), 𝑏𝑏6′ = 𝐶𝐶1174 ; 
(7’) There are 7 eliminations from 1-to-1 synapses and 4 eliminations from 2 MSBs, 
𝑎𝑎7′ = 𝐶𝐶1147 𝐶𝐶32(𝐶𝐶22)2; 9 spine formations on above alone boutons and then another three 
on 116 1-to-1 synapses (114-7+9), 𝑏𝑏7′ = 𝐶𝐶1163 ; 
(8’) There are 7 eliminations from 1-to-1 synapses and 4 eliminations from 3 MSBs, 
𝑎𝑎8′ = 𝐶𝐶1147 𝐶𝐶31𝐶𝐶22𝐶𝐶22(𝐶𝐶21)2; 8 spine formations on above alone boutons and then another 
four on 117 1-to-1 synapses (114-7+2+8), 𝑏𝑏8′ = 𝐶𝐶1174 ; 
(9’) There are 6 eliminations from 1-to-1 synapses and 5 eliminations from 3 MSBs, 
𝑎𝑎9′ = 𝐶𝐶1146 𝐶𝐶32(𝐶𝐶22)2𝐶𝐶21; 8 spine formations on above alone boutons and then another 
four on 117 1-to-1 synapses (114-6+1+8), 𝑏𝑏9′ = 𝐶𝐶1174 ; 
(10’) There are 5 eliminations from 1-to-1 synapses and 6 eliminations from 3 MSBs, 
𝑎𝑎10′ = 𝐶𝐶1145 𝐶𝐶33(𝐶𝐶22)3; 8 spine formations on above alone boutons and then another four 
on 117 1-to-1 synapses (114-5+8), 𝑏𝑏10′ = 𝐶𝐶1174 .  

Therefore, the total number of synaptic turnover patterns, denoted by 𝑁𝑁′ , can be 
calculated by: 

𝑁𝑁′ = �𝑎𝑎𝑖𝑖′𝑏𝑏𝑖𝑖′
10

𝑖𝑖=1

 , 

Then, we calculate the formation ratio of (A.), (B.), (D.), (E.), (F.) vs. (C.), indicating 
the percentage of spine competition and addition in new synapses, respectively. 
Assuming that the possibility of each synaptic turnover pattern is equal, the 
mathematical expectation for the number of synapses corresponding to Situation (C.) 
in 12 new synapses, 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎′, and the corresponding number of new synapses where spine 
competition occurs, 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐′, can be derived from the following equations: 

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎′ =
∑ 𝑗𝑗𝑁𝑁𝑖𝑖′12
𝑖𝑖=0

𝑁𝑁′
 , 

𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐′+ 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎′ = 12 , 
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where, 𝑁𝑁𝑖𝑖′(𝑗𝑗 = 0,1,2, … ,12) is the number of synaptic turnover patterns in which only 
𝑗𝑗  out of 12 new synapses belong to Situation (C.). As the number of MSBs after 
learning is 4, there can be no more than 4 additions. So, 𝑁𝑁5′ = 𝑁𝑁6′ = ⋯ = 𝑁𝑁11′ =
𝑁𝑁12′ = 0. 𝑁𝑁𝑖𝑖′ (𝑗𝑗 = 0,1, … ,4) can be obtained as follows: 

𝑁𝑁0′ = 𝑁𝑁′ −�𝑁𝑁𝑖𝑖′
12

𝑖𝑖=1

 , 

𝑁𝑁1′ = 𝑎𝑎1′𝐶𝐶1031 + 𝑎𝑎2′𝐶𝐶1041 𝐶𝐶111 + 𝑎𝑎3′𝐶𝐶1051 𝐶𝐶101 + 𝑎𝑎4′𝐶𝐶1051 𝐶𝐶112 + 𝑎𝑎5′𝐶𝐶1061 𝐶𝐶102 + 𝑎𝑎6′𝐶𝐶1061 𝐶𝐶113

+ 𝑎𝑎7′𝐶𝐶1071 𝐶𝐶92 + 𝑎𝑎8′𝐶𝐶1071 𝐶𝐶103 + 𝑎𝑎9′𝐶𝐶1081 𝐶𝐶93 + 𝑎𝑎10′𝐶𝐶1091 𝐶𝐶83 , 

𝑁𝑁2′ = 𝑎𝑎2′𝐶𝐶1042 + 𝑎𝑎3′𝐶𝐶1052 + 𝑎𝑎4′𝐶𝐶1052 𝐶𝐶111 + 𝑎𝑎5′𝐶𝐶1062 𝐶𝐶101 + 𝑎𝑎6′𝐶𝐶1062 𝐶𝐶112 + 𝑎𝑎7′𝐶𝐶1072 𝐶𝐶91

+ 𝑎𝑎8′𝐶𝐶1072 𝐶𝐶102 + 𝑎𝑎9′𝐶𝐶1082 𝐶𝐶92 + 𝑎𝑎10′𝐶𝐶1092 𝐶𝐶82 , 
𝑁𝑁3′ = 𝑎𝑎4′𝐶𝐶1053 + 𝑎𝑎5′𝐶𝐶1063 + 𝑎𝑎6′𝐶𝐶1063 𝐶𝐶111 + 𝑎𝑎7′𝐶𝐶1073 + 𝑎𝑎8′𝐶𝐶1073 𝐶𝐶101 + 𝑎𝑎9′𝐶𝐶1083 𝐶𝐶91 + 𝑎𝑎10′𝐶𝐶1093 𝐶𝐶81 , 

𝑁𝑁4′ = 𝑎𝑎6′𝐶𝐶1064 + 𝑎𝑎8′𝐶𝐶1074 + 𝑎𝑎9′𝐶𝐶1084 + 𝑎𝑎10′𝐶𝐶1094  . 
The first three items in 𝑁𝑁1′ are selected for detailed explanation. For elimination type 
(1’), after adding one synapse to each of the 11 alone boutons, the last formed synapse 
to be determined is randomly added to one of 103 1-to-1 synapses that have previously 
remained unchanged (114-11), and therefore the number of patterns is obtained as 
𝑎𝑎1′𝐶𝐶1031 . For elimination type (2’), the last two newly formed synapses to be determined 
are randomly added to one of 104 1-to-1 synapses that have previously remained 
unchanged (114-10) and one of other 11 “new” 1-to-1 synapses (10 1-to-1 synapses 
formed by 1 elimination of old 1-to-1 synapses and subsequent 1 addition; 1 1-to-1 
synapse by eliminating 1 synapse of MSB), respectively. So, the number of patterns is 
calculated as 𝑎𝑎2′𝐶𝐶1041 𝐶𝐶111 . For elimination type (3’), the last two new synapses to be 
determined are randomly added to one of 105 1-to-1 synapses that have previously 
remained unchanged (114-9) and one of other 10 “new” 1-to-1 synapses (9 formed by 
1 elimination of old 1-to-1 synapses and subsequent 1 addition; 1 formed by 2 synaptic 
elimination of an old MSB and subsequent 1 addition), respectively. So, the number of 
patterns is obtained as 𝑎𝑎3′𝐶𝐶1051 𝐶𝐶101 . 

Using the above equations, we determined that of the 12 new spines, on average, 8.78 
were accompanied by old spine elimination (i.e., competition) and the other 3.22 were 
added to existing 1-to-1 synapses to form MSBs, accounting for 73.2 and 26.8%, 
respectively. 

In addition, we also developed the model programmatically for any model size about 
the number of synapses. In general, the obtained results with different model sizes are 
similar, as shown in Figure 5H and Table 2. 

Table 2. the spine competition and addition ratio with different model sizes 

Model size 120 1,200 12,000 
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𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑖𝑖𝑐𝑐 (%) 73.2% 72.6% 72.8% 

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 (%) 26.8% 27.4% 27.2% 

 

Calculating the number of dendrites intersecting within 1-μm radius 

of a bouton 

Based on the dense reconstruction results, we formulated some criteria to identify each 
neurite as dendritic or not. We extracted a 2D vector (number of voxels and ratio of 
vesicle cloud) as features to classify the segments. If the number of voxels in a neurite 
was greater than 250,000 and the ratio of vesicle cloud in it was less than 5%, this 
neurite was classified as dendritic (Extended Data Figure 10). For each bouton, we fit 
a minimum circumscribed circle and obtained the radius (R) and center (x, y, z) 
approximately. Then, we extended a sphere centered on (x, y, z) with radius of R+1 μm, 
and the number of dendrites that pass through the sphere was calculated. 

Details for Static Connectivity Model 

For simplicity, our model consists of 100 synaptic connections (Figure 6E). Based on 
our experimental data (Figure 6D), each bouton can make contact with its 9 potential 
dendrites. There are two notable constraints: 1) at most 2 synapses can be formed per 
bouton; 2) 6% of the synapses are MSB synapses (Figure 5G) for conditions 2 and 3. 

For condition 1, the constraint of the number of synapses and only one synapse formed 
per bouton makes the existence of exactly 100 boutons. Each independent bouton has 
𝐶𝐶91 possible connections, so there is a total of (𝐶𝐶91)100 patterns for condition 1.  

For condition 2, since 6% of synapses are MSB synapses, there are a total of 6 MSB 
synapses from 3 MSBs. Thus, this condition consists of 97 boutons including 94 1-to-
1 boutons and 3 MSBs. Accordingly, the number of patterns for condition 2 can be 
given by 𝐶𝐶973 (𝐶𝐶91)94(𝐶𝐶91)3. In other words, the selection of 3 MSBs from 97 boutons 
and the independent connection of each bouton are all factors that contribute to the 
increase of the number of patterns.  

For condition 3, each of the 3 boutons selected as MSBs has (𝐶𝐶92 + 𝐶𝐶91) optional 
connection patterns that meet the condition. Rethinking the consideration of condition 
2, the total number of patterns that meet condition 3 can be calculated as 
𝐶𝐶973 (𝐶𝐶91)94(𝐶𝐶92 + 𝐶𝐶91)3.  
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In detail, we express the respective calculation equations of information entropy that 
satisfy conditions 1, 2 and 3, as follows: 

𝐻𝐻𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛1 = − �
1

(𝐶𝐶91)100
𝑙𝑙𝑙𝑙𝑙𝑙2

1
(𝐶𝐶91)100

= 317𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠 ,
(𝐶𝐶91)100

𝑖𝑖=1

 

𝐻𝐻𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛2 = − �
1

𝐶𝐶973 (𝐶𝐶91)97
𝑙𝑙𝑙𝑙𝑙𝑙2

1
𝐶𝐶973 (𝐶𝐶91)97

= 325𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠 ,
𝐶𝐶973 (𝐶𝐶91)97

𝑖𝑖=1

 

𝐻𝐻𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛3 = − �
1

𝐶𝐶973 (𝐶𝐶91)94(𝐶𝐶92 + 𝐶𝐶91)3
𝑙𝑙𝑙𝑙𝑙𝑙2

1
𝐶𝐶973 (𝐶𝐶91)94(𝐶𝐶92 + 𝐶𝐶91)3

= 332 𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠 ,

𝐶𝐶973 �𝐶𝐶91�
94(𝐶𝐶92+𝐶𝐶91)3

𝑖𝑖=1

 

where, 𝐶𝐶𝑛𝑛𝑚𝑚 is the combinatorial number with respect to 𝑛𝑛 and 𝑚𝑚. 

Thus, including an MSB that connect to the same dendrite increases the ISC by 2.5% 
in this model, and the connectivity of the MSB to multiple dendrites increases another 
2.2%. The results hold when we scale up the model tenfold each time up to 106 synapses 
(Figure 6G). The information entropy values of 3 conditions under 5 model scales are 
listed in Table 3. The benefits of adding MSBs remained when the model was scaled 
up to 106 synapses (Figure 6G).  

Table 3. The information storage capacity (ISC) of a static neural network 

Model scale 102 103 104 105 106 

Condition 1 317 bits 3,170 bits 31,699 bits 316,993 bits 3,169,925 bits 

Condition 2 325 bits 3,264 bits 32,673 bits 326,781 bits 3,267,872 bits 

Condition 3 332 bits 3,334 bits 33,370 bits 333,747 bits 3,337,529 bits 

Details for Dynamic Connectivity Model 

We built a neural network model that incorporated plasticity by adding 10% more 
contacts to the boutons as a form of learning-induced synaptic formation. Plasticity is 
represented by a 10% increase in synaptic connections by adding 10 connections to 
existing boutons in a network consisting of 100 boutons and 100 1-to-1 synapses. There 
are two notable constraints: 1, at most one synapse is added to each bouton; 2, formation 
of the new synapses is random. 
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Before the synaptic formation, the number of possible connections for both conditions 
A and B was (𝐶𝐶91)100, which is the same as condition 1 of the static model.  

For condition B, new connections can only be formed on the same dendrite. Therefore, 
only the factor of the selection of the 10 boutons from the 100 boutons to form new 
synapses can lead to an increase in the number of patterns triggered by the synaptic 
formation. Furthermore, the number of patterns after formation can be written as 
𝐶𝐶10010 (𝐶𝐶91)90(𝐶𝐶91)10.  

For condition A, like condition 3 in the static model, each of the 10 boutons selected as 
MSBs has (𝐶𝐶92 + 𝐶𝐶91) optional connection patterns that meet the criterion. Rethinking 
the consideration of condition B, the total number of patterns that meet condition A can 
be calculated as 𝐶𝐶10010 (𝐶𝐶91)90(𝐶𝐶92 + 𝐶𝐶91)10. We can obtain the increase of information 
entropy for conditions A and B, as follows: 

∆𝐻𝐻𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛𝑜𝑜 = − �
1

𝐶𝐶10010 (𝐶𝐶91)90(𝐶𝐶92 + 𝐶𝐶91)10
𝑙𝑙𝑙𝑙𝑙𝑙2

1
𝐶𝐶10010 (𝐶𝐶91)90(𝐶𝐶92 + 𝐶𝐶91)10

𝐶𝐶10010 �𝐶𝐶91�
90�𝐶𝐶92+𝐶𝐶91�

10

𝑖𝑖=1

− �− �
1

(𝐶𝐶91)100 𝑙𝑙𝑙𝑙𝑙𝑙2
1

(𝐶𝐶91)100

�𝐶𝐶91�
100

𝑖𝑖=1

� = 67 𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠 , 

∆𝐻𝐻𝑐𝑐𝑐𝑐𝑛𝑛𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑛𝑛𝑐𝑐 = − �
1

𝐶𝐶10010 (𝐶𝐶91)100
𝑙𝑙𝑙𝑙𝑙𝑙2

1
𝐶𝐶10010 (𝐶𝐶91)100

𝐶𝐶10010 �𝐶𝐶91�
100

𝑖𝑖=1

− �− �
1

(𝐶𝐶91)100 𝑙𝑙𝑙𝑙𝑙𝑙2
1

(𝐶𝐶91)100

�𝐶𝐶91�
100

𝑖𝑖=1

�

= 44 𝑏𝑏𝑏𝑏𝑡𝑡𝑠𝑠 . 

Clearly, in a plastic network, the possibility of a bouton connecting to multiple dendrites 
dramatically increases the information entropy added by synaptic plasticity. The results 
hold when we scale up the model tenfold each time up to 106 synapses (Figure 6H). 
The increase of information entropy values of 2 conditions under 5 model scales is 
shown in Table 4. Notably, whereas multi-dendritic MSB only slightly adds to the ISC 
in a static network (Figure 6G), the increase in the ISC for condition A by adding 
synapses is more than 50% (Figure 6H) higher than that of condition B in the plastic 
network. The relative advantage of multidendritic connectivity in ∆𝐻𝐻 scaled linearly 
with the network size (Figure 6I). 

Table 4. the increase of the ISC of a dynamic neural network 

Model scale 102 103 104 105 106 

Condition A 67 bits 697 bits 7,006 bits 70,111 bits 701,179 bits 
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Condition B 44 bits 464 bits 4,684 bits 46,892 bits 468,986 bits 
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