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Abstract 

Microglial cells are the first line of defense within the central nervous system, with morphological 

characterization being widely used to define their activation status. Most methods to evaluate 

microglia status are manual, and, therefore, often biased, inaccurate, and time consuming. In fact, 

the process to collect morphological data starts with the acquisition of photomicrographs from 

where images of single cells are extracted. Then, the researcher collects the morphological 

features that characterize each cell. However, a manual data collection process from single cells 

can take weeks to complete. This work describes an open-source ImageJ plugin, MorphData, 

which automatizes the data extraction process of morphological features of single microglial cells. 

The plugin collects, processes, and organizes features associated with cell complexity and 

ramification. In a computer with limited computing power, it took less than 14 minutes to handle 

the morphological features of 699 single cells of two experimental groups. The same process, if 

performed manually, would take around 19 working days. Overall, MorphData significantly 

reduces the time taken to collect morphological data from microglial cells, which can then be used 

to study, understand, and characterize microglia behavior in the brain of human patients or of 

animal models of neurological and psychiatric diseases. 
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1. Introduction 

Microglial cells represent a population of macrophages-like cells in the central nervous system, 

with a broad range of roles in neurodevelopment, synaptic plasticity, and brain protection and 

repair [1]. Hence, the morphological characterization of these cells is of the utmost importance to 

ascertain and establish their state in particular conditions. It is known that microglia morphology 

and function are closely related [2]. In fact, in response to injury, microglial cells undergo 

morphological and functional changes, changing from a highly ramified into an amoeboid-like 

shape [3]. This implies that a rigorous analysis of microglia morphology data is of essence for the 

understanding of cellular behavior [3, 4, 5]. 

The collection of morphological data goes through several steps. First, one is required to obtain 

photomicrographs from where images of cells can be extracted. Then, ImageJ is required for 

image processing [6]. Being an open-source software, it is frequent to find macros and plugins, 

conceived by the community, that provide ImageJ with extra features. Examples include SlideJ 

[7], aNMJ-morph [8], and AutoNeuriteJ [9], among others. A different example is provided by 

Heindl and colleagues [10], where the authors developed a method outside ImageJ, using a 

proprietary programming language and numeric computing environment. 

For the morphological analysis of microglial cells, ImageJ provides two key plugins: (i) 

AnalyzeSkeleton (2D/3D) [11], which tags skeletal features relevant to cell ramification, and (ii) 

FracLac [12], which quantifies cell surface and size, soma thickness, and the cylindrical shape of 

cells. The use of both plugins is recommended, as cell ramification data are complementary to 

cell complexity [13]. While the former may be applied to entire photomicrographs, the latter is 

applied over single cells, thus requiring a significant investment of time to collect all data. 

However, since the former is typically applied over entire photomicrographs, results come with 

significant noise. Hence, we aimed to develop a protocol that allowed the application of both 

plugins over single cells, not only reducing the amount of noise that comes from analyzing larger 

and noisy photomicrographs, but also solving the problem of stacked cells. This comes, however, 

with a significant time cost when collecting the morphological features that characterize each 

single cell. In fact, the process to obtain morphological features, when performed manually over 

each cell, is a demanding, repetitive, and laborious task, that can take several weeks to complete. 

Another potential issue is the human error associated with the data collection process. This sets 

the need for the MorphData plugin. 

This manuscript describes the design, implementation, and use of a new plugin that 

automatically runs and collects morphological features for single cells in a matter of minutes, 

significantly reducing the time spent on the data collection process. The goal of MorphData is set 

on optimizing the data collection process of morphological features. 
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2. Materials and methods 
 

2.1  Ethics statement 

All procedures with mice were conducted in accordance with the ARRIVE 2.0 guidelines (Animal 

Research: Reporting In Vivo Experiments). Animal facilities and the people that worked directly 

in animal procedures were certified by the Portuguese regulatory – Direção Geral de Alimentação 

e Veterinária, license number 020317. All animal procedures were approved by the Animal Ethics 

Committee of the Life and Health Sciences Research Institute, University of Minho (SECVS 

120/2014), and conducted in consonance with the European Union Directive 2010/63/EU. Health 

monitoring was performed according to the Federation of European Laboratory Animal Science 

Associations guidelines, where the Specified Pathogen Free health status was confirmed by 

sentinel mice maintained in the same animal housing room. 

 

2.2  Animal maintenance 

Two groups, control (CTR) and experimental group (EX) mice on a C57BL/6J background, were 

considered. Animals were maintained in a conventional animal facility and under standard 

laboratory conditions, which includes an artificial 12h light/dark cycle, lights on from 8:00 am to 

8:00 pm, an ambient temperature of 21 ± 1ºC and relative humidity of 50–60%. 

 

2.3  Immunofluorescence staining 

CTR (n=4) and EX (n=4) mice were deeply anesthetized with a mixture of ketamine 

hydrochloride (150mg/kg) and medetomidine (0.3mg/kg), and transcardially perfused with 

phosphate-buffered saline (PBS) followed by 4% paraformaldehyde (PFA) solution (PFA, 0.1 M, 

pH 7.4, in PBS). Brains were removed and immersed in 4% PFA (48h), followed by 1 week in a 

30% sucrose PBS buffer (at 4ºC). Coronal sections were obtained using a vibratome (VT1000S, 

Leica, Germany) with 40μm of thickness. For staining, the permeabilization in the free-floating 

sections was performed with PBS-T 0.3% (0.3% triton X-100, Sigma Aldrich, in PBS) for 10 

min, followed by immersing the slices in pre-heated citrate buffer (10 mM, pH 6.0; Sigma 

Aldrich) during 20 min using a thermoblock (D1200, LabNet) set at 80ºC. Once cooled, slices 

were blocked with goat serum blocking buffer (10% normal goat serum, 0.3% triton X-100, in 

PBS) at room temperature (RT) for 90 min. After this, the sections were incubated with the 

primary antibody anti-ionized calcium binding adaptor molecule 1 (rabbit polyclonal IgG anti-

Iba-1, 1:600; Wako) overnight at 4ºC. In the next day, sections were incubated with a secondary 

antibody (Alexa Fluor 594 goat anti-rabbit, 1:1000; ThermoFisher Scientific) during 90 min at 

RT, protected from light, followed with 4',6-Diamidin-2-phenylindol (DAPI, 1:1000; Invitrogen) 

for nuclei staining. Sections were mounted on microscope slides (Menzel-Glaser Superfrost©Plus, 

Thermo Fisher Scientific) and covered with a coverslip (Menzel-Glaser 24–60mm, Wagner und 

Munz) using aqueous mounting medium (Fluoromount TM, Sigma-Aldrich). 
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2.4  Image acquisition 

Images were acquired using the Olympus Confocal FV1000 laser scanning microscope, with a 

resolution of 1024×1024px, using a 40× objective (UPlanSApo, N.A. 0.90; dry; field size 

624.39×624.39μm; 0.31μm/px), being used to obtain Z-stacked images, which include two 

distinct channels (red, Iba-1; blue, DAPI). The acquisition settings were the following: scanning 

speed = 4μm/px; pinhole aperture = 110μm; Iba-1, excitation = 559nm, emission = 618nm; DAPI, 

excitation = 405nm, emission = 461nm; in a 3-dimensional scenario (X, Y, and Z axis). Four 

coronal brain sections per animal were imaged in both hemispheres, for a particular region of 

interest, to yield 4-6 digital photomicrographs per section containing the region of analysis. 

 

2.5  Image preparation 

The Z-stacked 3D volume images from sections of the brain region of interest were prepared for 

microglial morphology analysis using a semi-automatic method, adapted from [13], to obtain both 

skeleton and fractal data. However, contrary to the cited method, we went further and obtained 

binary (white cells on black background) single cells (one cell per file) to feed both the 

AnalyzeSkeleton (2D/3D) and the FracLac plugins. 

Briefly, after stacking the 3D volume images, the double-color image was split to obtain the 

Iba-1 label in the red channel, which accurately mirrors the cell profile. Brightness and contrast 

of the red-channel were adjusted as needed and an unsharp mask was applied. Then, a despeckle 

filter was used to remove salt and pepper noise, with the threshold option being used and adjusted, 

as needed, to convert the image into a binary one. Noise was subsequently reduced using 

despeckle and by removing outliers. After that, random cells from both the original and the binary 

images were selected with the rectangle tool, using the region of interest to set the same rectangle 

dimensions for all the selected cells (field size 296×264). Then, after selecting the cells, the 

paintbrush tool was used to complete and draw the morphology of the cells (always comparing 

with the original image) and to clean extra signal that is not related to these cells, thus producing 

a single-cell image without any noise. This process is summarized in Figure 1A and 1B. 

699 single-cell images, for both CTR (310 single cells) and EX (389 single cells) groups, were 

obtained and stored in the file system, in the TIFF format. At this point, the researcher is ready to 

start collecting the morphological features that characterize each microglial cell using the 

MorphData plugin. 

 

2.6  Experimental setup 

The MorphData plugin requires basic computational resources. The experiments here described 

were carried out on a personal computer with an 8th generation i7 CPU with 4 cores at 1.80GHz, 

8GB of RAM, a SSD disk, and the Windows 10 operating system. ImageJ 1.53c, embedded in 
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Fiji, has been set with 6989MB of maximum heap size. For scripting, Python, version 3.7.10, was 

used, together with a set of libraries, including pandas, math, and tkinter. 

 

2.7  Requirements 

To successfully execute the MorphData plugin, the user must comply with a set of requirements: 

i. ImageJ version must be, at least, 1.52t; 

ii. AnalyzeSkeleton (2D/3D) plugin installed in ImageJ; 

iii. FracLac plugin installed in ImageJ; 

iv. Collect a set of binary single cells from where morphological data will be obtained. 

      

It is important to clearly structure the obtained images in the file system. Ideally, the user 

should create a structure such as the one depicted in Figure 2A. To comply with the MorphData 

plugin, while the name of the folders at the two first levels is irrelevant, it is important to guarantee 

that the last two levels are entitled as “Slice i”, where i identifies different slices, and “Image j”, 

where j identifies different photomicrographs. Single cells should be placed inside the 

corresponding image folder, being entitled as “Microgliak.tif”, where k identifies each cell within 

the image folder. 
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3. Results and discussion 

 

3.1  Implementation 

The MorphData plugin was developed using ImageJ Macro language (IJM), a scripting language 

that allows a developer to control many features of ImageJ. Plugins written in IJM can be 

programmed to perform sequences of actions, thus automating repetitive processes. It has a set of 

basic structures, including variables, conditional statements, loops, and user-defined functions. 

Importantly, IJM allows the developer to access ImageJ functions that are available from its 

Graphical User Interface (GUI). MorphData takes advantage of IJM to automatically collect 

morphological features, working on any operating system in which ImageJ can work. The plugin 

is open-source and available online (github.com/anabelacampos/MorphData). A straightforward 

architectural diagram is depicted in Figure 2B. 

 

3.2  MorphData algorithm 

The MorphData plugin, when executed, starts by asking the user to indicate the folder containing 

the single cell images (Figure 3A). Following the file structure defined in Figure 2A, the user 

should indicate the EX folder (the root folder). The plugin then creates auxiliary folders to store 

the collected data and starts navigating the indicated folder looking for single cell images. Then, 

for each image, the algorithm is summarized as follows: 

i. To obtain skeletal features relevant to cell ramification: 

a) Open a single cell; 

b) Run the command “Process > Binary > Skeletonize” to create a skeletonized 

image; 

c) Run the Analyze Skeleton (2D/3D) plugin; 

d) Run the “saveAs” command to collect and store, in a csv file, skeletal data; 

e) Run the “saveAs” command to collect and store, in a csv file, branch information 

data. 

ii. To obtain features relevant to cell complexity: 

a) Open a single cell; 

b) Run the “saveAs” command to store a shaped single cell, in TIFF format, in a 

folder entitled as “Area”; 

c) Run the “Process > Binary > Outline'' and “saveAs” commands to store an outlined 

single cell, in TIFF format, in a folder entitled as “Perimeter”. 

iii. Repeat steps 1. and 2. for each single cell; 

iv. At the end, the algorithm indicates the number of analyzed cells. 
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Finally, contrary to the Analyze Skeleton (2D/3D) plugin, which is automatically executed by 

MorphData, the FracLac plugin cannot be directly executed from within another plugin. This 

limitation requires the user to manually execute the FracLac plugin itself after the MorphData 

plugin has finished. Fortunately, since the “Area” and the “Perimeter” folders, which were 

automatically created by MorphData, already contain all shaped and outlined cells (Figure 3B 

and 3C), the user can execute the FracLac plugin in batch mode. Hence, with a single execution 

of this plugin, the user obtains fractal data for all cells almost immediately (avoiding the need to 

execute FracLac for each cell individually). 

 

3.3  Post-processing 

Up to this point, all morphological data are now available, for all single cells, in multiple csv files 

in auxiliary “results” folders. In total, the MorphData plugin gathers 221 features (from skeleton 

to fractal ones), and some of them may be irrelevant to the characterization of microglial cells. 

Hence, the post-processing step consists in joining all data, cleaning irrelevant features, and 

performing a feature engineering process to create new features, including the cell_area, 

cell_perimeter, roughness, and cell_circularity, among others. 

Due to the potential high number of rows (cells) and columns (morphological features), an 

ImageJ plugin is unsuitable for the task, as it would eventually run out of memory. Hence, a 

Python script, entitled as MorphData_PostProcessing.py, was conceived and released as part of 

the MorphData plugin. This script requires a simple python environment to execute, again asking 

the user to indicate the location of the root folder. It will then automatically apply the post-

processing procedures, creating three final files, containing the following 46 features: 

i. skeleton_final_results.csv: 

• # Branches, # Junctions, # End-point voxels, # Junction voxels, # Slab voxels, 

Average Branch Length, # Triple points, # Quadruple points, Maximum 

Branch Length, animal, microglia_id. 

ii. branch_info_final_results.csv: 

• Skeleton ID, Branch length, V1 x, V1 y, V1 z, V2 x, V2 y, V2 z, Euclidean 

distance, running average length, average intensity (inner 3rd), average 

intensity, animal, microglia_id. 

iii. fraclac_final_results.csv: 

• fractal_dimension, lacunarity, outline_mean_fg, density, 

span_ratio_major_minor, convex_hull_area, convex_hull_perimeter, 

convex_hull_circularity, diameter_bounding_circle, mean_radius, 

max_span_across_convex_hull, max_min_radii, shape_mean_fg, 

1_pixel_side_micron, 1_pixel_area_micron_sq, cell_area, cell_perimeter, 

roughness, cell_circularity, animal, microglia_id. 
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Figure 3D contains a graphical perspective of part of the content of the 

skeleton_final_results.csv file, which contains 11 features relevant for cell ramification. The 

remaining two files are similar, varying only on the quantified features. 

          

3.4  Performance evaluation 

The performance of the MorphData plugin and its post-processing script was evaluated based on 

the validity of the collected values and on the time it took to obtain the morphological data of all 

single cells of both experimental groups, when compared to a manual collection of such data. 

Totally, in a computer with limited computing power, it took less than 14 minutes to collect 

46 morphological features associated with 699 single cells of two experimental groups. In 

particular, 6.5 minutes were spent by the MorphData plugin, and its post-processing script, 

handling the CTR group. Of those, nearly 3 minutes were spent collecting skeleton data, 3.25 

minutes by the FracLac plugin on batch mode, and 10 seconds by the post-processing script. On 

the other hand, 7.5 minutes were spent handling the EX group. Of those, 3.5 minutes were spent 

collecting skeleton data, 3.8 minutes by the FracLac plugin on batch mode, and 11 seconds by 

the post-processing script. 

The same process was performed manually, by a skilled user of ImageJ, for a set of ten single 

cells of the CTR group. To ease the process, the same file system structure (as required by the 

MorphData plugin) was used. The goal was to mimic the processes that are automatically 

performed by MorphData, and manually collect 46 morphological features for the ten cells. The 

mean time to collect such morphological features was of 13 minutes per cell. Skeleton data were 

faster to collect (around 1.5 minutes), since the AnalyzeSkeleton (2D/3D) plugin only opens two 

results' windows that the user can immediately save in two distinct files in the file system, in csv 

format, and then close the opened windows. However, fractal data were considerably harder to 

collect (around 11.5 minutes). On the one hand, for each cell, the FracLac plugin must be 

executed twice - one for a shaped cell and one for an outlined cell, which the user must prepare. 

On the other hand, for each execution, this plugin opens multiple results' windows. The ones to 

keep opened are the “Hull and Circle Results” and the “Box Count Summary” windows. 

However, these results' windows are not user-friendly and, besides providing the user with an 

overwhelming amount of 173 features (most of them formulas and unwanted columns), it does 

not allow the user to copy only the desired features - the user must manually write each value of 

each desired feature to a csv, or excel, file. In fact, the process of selecting features from the 

FracLac plugin is extremely exhausting and error-prone. Finally, it is up to the user to calculate 

the value of non-existing features such as cell_area, cell_perimeter, roughness, and 

cell_circularity.  
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A couple more obstacles emerged with the manual process. First, the user was required to edit 

each stored file, for each cell, to identify the animal and the microglia of each row of data. 

Secondly, the user was required to copy the contents of each file to an overall file, aggregating 

the data for the experimental group - since each cell is made of three files (two skeleton files and 

one fractal file) this would require the user to open and copy 699×3 files, which would, again, be 

a time-consuming task that would have to be performed after collecting all data.  

Overall, the manual process for ten single cells of the CTR group took more than 2 hours to 

complete. On the other hand, the MorphData plugin and its post-processing script took less than 

14 minutes to collect, process, and organize the morphological features of 699 cells. Assuming a 

mean value of 13 minutes per cell, the manual process to collect the morphological features of all 

cells would take 151 hours, which corresponds to almost 19 working days (8 hours/day) collecting 

data without stopping. 

MorphData brings obvious advantages, mainly by significantly reducing the time it takes to 

collect morphological data. These values could be further reduced by a computer with higher 

computation power. In addition, the automation of the data collection process completely removes 

the risk of human error. It is worth mentioning that since MorphData is using well established 

plugins to collect morphological features, it produces the same exact results as when performing 

the data collection process manually. In fact, MorphData's collected values were further 

compared and validated with multiple cells data that were manually collected, without a single 

collection error. 

Finally, some limitations must be acknowledged. MorphData's focuses on microglial cells. 

Hence, the plugin may require adjustments for different cell types. The plugin was also conceived 

to work with binary white cells on a black background. The plugin can, however, be modified to 

work with the reverse. 
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4. Concluding Remarks 

Morphological characterization of cells is highly relevant in the sciences field, and particularly in 

neurosciences. However, when performed manually, the process for obtaining morphological 

features from single cells is a demanding, repetitive, and laborious task; it is error-prone and can 

take several weeks to complete. 

MorphData automatizes the data extraction process of morphological features of microglial 

cells. This plugin has already been used successfully in a morphological characterization study, 

where several thousands of single cells, from multiple experimental groups, were used. The 

benefits were considerable - several weeks of work were spared. Here, we demonstrate the ability 

of the MorphData plugin and its post-processing script to handle 699 microglial cells from two 

experimental groups. It took the plugin 14 minutes to collect, process, and organize 46 

morphological features. If performed manually, this would take 19 working days just to collect 

and process the data. 

The conceived macros, python scripts, used data, and other examples can be found at 

MorphData's online repository, under an open-source license. 
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Figures 

 

 

Figure 1. Representative photomicrograph from the region of interest, showing microglial cells (red) and 

the representation of two binary single microglial cells (gray) from a control mouse. (A) Original Z-stacked 

3D volume photomicrograph. (B) Going from a noisy cell to a binary single cell (from the left to the right). 
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Figure 2. MorphData's architectural structure. (A) Recommended file system structure to store single cells 

images. The root folders, EX and CTR, hold the images of the corresponding experimental group. (B) 

MorphData's architectural diagram, receiving, as input, the root folders, and producing, as output, three csv 

files with the morphological features that characterize each single cell. 
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Figure 3. Execution and results of the MorphData plugin. (A) MorphData dialog GUI asking the user 

where the single cell images are located. (B) Shaped images, produced by MorphData, stored in the “Area” 

folder. (C) Outlined images, produced by MorphData, stored in the “Perimeter” folder. Both shaped and 

outlined images are ready to be passed to the FracLac plugin for batch mode execution. (D) A sample of 

the skeleton_final_results.csv file, produced by MorphData. This file contains 11 features relevant to cell 

ramification and cell identification. 
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