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Abstract:

Background: Pytoptosis is essential for tumorigenesis and progression of clear cell renal cell
carcinoma (ccRCC). However, the heterogeneity of pyroposis and its relationship with the tumor
microenvironment (TME) remain unclear. The aim of the present study was to identify
proptosis-related subtypes and construct a prognosis prediction model based on pyroptosis
signatures.

Methods: First, heterogenous pyroptosis subgroups were explored based on 33
pyroptosis-related genes and ccRCC samples from TCGA, and the model establsihed by LASSO
regression  was verified by ICGC database. Then, the clinical significance, functional status,
immune infiltration, cell-cell communication, genomic alteration and drug sensitivity of different
subgroups were further analyzed. Finally, the LASSO-Cox algorithm was applied to narrow down
the candidate genes to develop a robust and concise prognostic model.

Results: Two heterogenous pyroptosis subgroups were identified: pyroptosis-low immunity-low
C1 subtype, and pyroptosis-high immunity-high C2 subtype. Compared with C1, C2 was
associated with a higher clinical stage or grade and a worse prognosis. More immune cell
infiltration was observed in C2 than that in C1, while the response rate in C2 subgroup was lower

than that in C1 subgroup. Pyroptosis related genes were mainly expressed in myeloid cells, and T
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cells and epithelial cells might influence other cell clusters via Pyroptosis related pathway. In
addition, C1 was characterized by MTOR and ATM mutation, while C2 was characterized by more
significant alterations in SPEN and ROS1 mutation. Finally, we constructed and validated a robust
and promising signature based on the pyroptosis-related risk score for assessing the prognosis in
ccRCC.

Conclusion: We identified two heterogeneous pyroptosis subtypes and 5 reliable risk signatures
to establish a prognosis prediction model. Our findings may help better understand the role of
pyroptosis in ccRCC progression and provide a new perspective in the management of ccRCC

patients.
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Introduction

Renal cell carcinoma (RCC) is a common urologic malignancy with an incidence only secondary
to prostate and bladder cancer!. According to the characteristics of molecular biology and
histopathology, RCC can be categorized into two main types: clear cell renal cell carcinoma
(ccRCC), and non-clear cell renal carcinoma (nccRCC) including papillary renal cell carcinoma
(pRCC), chromophobe cell renal cell carcinoma (cRCC) and collecting duct renal cell carcinoma
(cdRCC)%. Among them, ccRCC accounts for approximately 75-80%. As only 6-10% patients
developed typical symptoms like backache, an abdominal mass or hematuria, it is difficult to
diagnose RCC in the early stage®. As ccRCC is insensitive to conventional chemotherapy and
radiotherapy, nephrectomy, target therapy and immunotherapy are the mainstay of treatment
for ccRCC* But as ccRCC is an extremely heterogeneous disease, even patients with similar
clinical characteristics wo received similar treatments may have distinctive outcomes®. Hence, it
is urgent to explore the innate mechanism of ccRCC for the sake of developing novel therapeutic

strategies for improving the overall clinical outcome of this disease.

Cell death is not only a physiological regulator of cell proliferation, stress response and
homeostasis but a tumor inhibitive mechanism®. There are several known cell death types,
including necrosis, apoptosis, necroptosis, autophagy, anoikis and pyroptosis. Apoptosis has been
extensively and thoroughly investigated as a significant mechanism of anti-cancer defense, but
the relationship between pyroptosis and cancer remains unclear. Pyroptosis is an inflammatory
form of cell death triggered by certain inflammasomes, leading to the cleavage of gasdermin D
(GSDMD) and activation of inactive cytokines interleukin-18 (IL-18) and IL-1B. Recently, extensive
studies have focused on elucidating the molecular mechanism underlying pyroptosis as well as
the mechanism of inducing pyroptosis in tumor cells’. Tan et al reported that BRD4 inhibition
prevented RCC cell proliferation and epithelia-mesenchymal transition (EMT) progression, and
exerted an antitumor effect in RCC by activating the NF-kB-NLRP3-caspase-1 pyroptosis signaling
pathway®. All these findings suggest that pyroptosis play an essential role in the progression and
therapy in ccRCC, and comprehensive analysis of pyroptosis may shed new light on the
development of strategies for the treatment of ccRCC. However, the accurate mechanism of

pryoptosis in ccRCC has been less studied. Herein, we aimed to perform a systematic research to
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compare the expression level in ccRCC and normal renal tissue, decipher the role of pyroptosis in

the ccRCC microenvironment and construct a pyroptosis related risk model for ccRCC.

Materials and Methods
Public dataset collection

ccRCC data were enrolled from The Cancer Genome Atlas (TCGA) cohorts(n=607) and
International Cancer Genome Consortium(ICGC) cohorts(n=91). For datasets in the TCGA and
ICGA databases, institutional review board approval and informed consent were not required.
Level-3 transcriptome and clinical information were download form TCGA and ICGC. Patients
were excluded if they 1) did not have prognostic information, and 2) died within 30 days. The

overall workflow of this study is displayed in Figure S1.

Identification of differentially expressed genes (DEGs) related to pyroptosis

Altogether 33 pyroptosis-related genes were retrieved from prior articles and reviews
(Supplement Table S1). Correlations between these pyroptosis-related genes were assessed by
Spearman’s rank correlation using R ‘corrplot’ package. The cluster analysis of pyroptosis-related
genes was performed by hclust and kmeans algorithms. Then, 531 ccRCC patients were
categorized into different subgroups using PCA, and finally the subtype number k = 2 was
selected in that it turned out to be the best classifier number. R package ‘DEseq2’ was employed
to identify DEGs between different groups, with the threshold set as p-adjusted value < 0.01 and
abstract log-foldchange = 2. To explore the potential molecular mechanisms underlying the
subgroups, R package ‘clusterProfiler’ was used to perform gene ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway and Gens set enrichment analysis (GSEA).
Gene set permutations were performed 1000 times for each analysis. Gene sets with FDR < 0.01

were considered significantly enriched.

Classification of the pyroptosis status

Based on 33 pyroptosis gene expression matrix data sets of 516 ccRCC patients, two different
pyroptosis status groups (C1 and C2) were identified by using R ‘ConseensusClusterPlus’ package.
Principal component analysis (PCA) was analyzed and visualized by R ‘ggord’ and ‘ggplot’

packages.
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Analysis of the DEGs

DEseq2 package was used to identify DEGs between C1 and C2, with the adjusted P value<0.05
and abstract logFC>1.2 considered a significant difference. Then Gene Ontology (GO) enrichment
analysis including biological process (BP), cellular components (CC) and molecular function(MF).
The Cytoscape plugin iREgulon was employed to ananlyze transcription of the down- and
up-regulated genes, and the iRegulon plugin could identify regulons using motifs and track
discovery in an existing network or in a set of coregulated genes. KEGG and GSEA analyses were
performed by using R ‘clusterprofiler’ packages, and the difference in signaling pathways
between C1 and C2 subgroups were presented by adoption of the gene set from MSigDB
database®. The potential transcription factors for DEGs were analyzed by using module ‘iRegulon’

form Cytoscape software.

Differences in tumor microenvironment (TME) and immunotherapy response

To quantify the proportion of immune cells between the subtypes, several immune-related
algorithms including TIMER, CIBERSORT, QUANTISEQ, MCPCOUNTER, XCELL and EPIC were
employed to calculate the cellular components or immune cell enrichment scores in ccRCC
tissues, and differences between C1 and C2 subgroups were compared. Single sample gene set
enrichment analysis (ssGSEA) was employed to quantify the relative abundance of 28 immune
cells in ccRCC TME®13, Differences in immune cell infiltration in TME were visualized by Heatmap
and boxplot. R ESIMATE package was used to identify the stromal component and immune
component between the two subgroups. Tumor Immune Dysfunction and Exclusion (TIDE)

algorithms were applied to predict the immunotherapy response of each ccRCC patient.

Cell-cell interaction analysis

PRINA705464, which is a large database containing cells totally, was applied to investigate the
role of pyroptosis-related genes in cell-cell interaction in ccRCC TME. Only untreated tumor
samples from PRINA705464 were selected for further analysis. R package “Seurat” was applied
for dimension reduction and clustering analysis, and R package “SingleR” was introduced for cell
type identification!*. R package “CellChat” and software “cellphonedb” were applied for cell-cell
interaction analysis, and cell—cell interactions based on the expression of known L—R pairs in

different cell types were calculated'>. In brief, gene expression data of cells and assigned cell
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types were used as input for CellChat. Firstly, overexpressed ligands or receptors in one cell group
were identified, and then gene expression data were projected onto the protein-protein
interaction network. The overexpressed L-R interactions were identified if either the ligand or
receptor was overexpressed. Next, CellChat was used to infer the biologically significant cell—cell
communication by assigning each interaction with a probability value and performing a
permutation test. Finally, communication networks were visualized using circle plot and signaling

pathways visualized using bubble plot.

Multi-omics data analysis

Mutation and copy number variations were downloaded from TCGA database. WES data were
used to compare differences in somatic mutation between C1 and C2 using the R ‘maftools’
package'’. Fisher’s exact test was introduced to identify the different mutation genes with a P
value <0.05. The co-occurrence and mutually exclusive mutation were identified using the CoMEt
algorithms. For copy number variation data, th GISTIC 2 software in GenePatterns was applied to

identify significantly deleted or amplified broad and focal segments*®,

Construction and validation of the pyroptosis-related risk scores in public data sets

To assess the prognostic value of the pyroptosis-related genes, a single analysis was first
performed, and 17 survival-related genes were selected for further analysis. Then, lasso-cox
algorithm was applied to narrow down the candidate genes to develop a robust and concise
prognostic model. Ultimately, a risk model based on five genes was constructed and the penalty
parameter was decided by 1se using R ‘glmnet’ package. After standardization and normalization
of the TCGA ccRCC expression data, the risk score of each patient was calculated using the
following equation: Risk score =
0.0271113*AIM2+0.04147645*GSDMB+0.01748664*IL6+0.01968024*PYCARD-0.08678271*TIRA

P (Risk score= °

). Then, each patient from TCGA and ICGC database was assigned to
either a high-risk group or a low-risk group based on the median value of the risk score.
Kaplan-Meier survival curves were depicted to predict the clinical outcomes in the two groups
using R ‘survival’ package. Differences in survival between the two groups were evaluated by
log-rank test. The ROC curves were depicted and the area under the curves (AUC) for 0.5-,1-, 2-,
3- and 5-year overall survival (OS) and progression-free interval (PFI) were calculated using R

‘timeROC’ package.
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Assessment of clinical significance of the pyroptosis subtypes

Clinical characteristics including age, gender, grade, AJCC stage, TNM, OS and PFl were
compared between Cl and C2 subtypes by R ‘compare’ package. Sensitivity to several
chemotherapy drugs were compared by R ‘pRRohetic’ package!®. 1C50(half maximal inhibitory
concentration) values of C1 and C2 subgroups were estimated by ridge regression. The sensitivity
of the two subgroups to immune check point inhibitor therapy was predicted by TIDE
(http://tide.dfci.harvard.edu) algorithm. The Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org) was applied to screen the potential drug for the

high-risk subgroup by R ‘pRRphetic’ package?.

Validation of risk model-related gene expression in the SMMU cohort

According to the expression of prognostic genes in the gene signature in TCGA and ICGC
database, we selected five hub genes (PYCARD, AIM2, IL6, GSDMB and TIRAP) that were
differentially expressed between the cancer and normal tissues for validation using quantitative
real-time PCR (RT-gPCR). Informed consent about the tissue sample analysis was obtained from
each patient before initiation of the study, and the study protocol was approved by the
Institutional Review Board of the Second Military Medical University (SMMU) Cancer Center. A
total of 40 pairs of normal and cancer tissues were stored at -80 °C before use. Total RNA was
extracted from the tissue samples using TRIzol reagent (Thermo Fisher Scientific, Waltham, MA,
USA). The concentration of the isolated RNA was measured with the NanoDrop2000
Spectrophotometer (Thermo Scientific, Wilmington, DE, USA). Total RNA (2 pg) was
reverse-transcribed and RT-gPCR was carried out on the triplicate samples in an SYBR Green
reaction mix (Takara Biotechnology, Shiga, Japan) with an ABI Quant Studio5 Real-Time PCR
System (Applied Biosystems, Carlsbad, CA, USA). The primer sequences used are listed in Table S1
(see Supplementary Data). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was employed
for normalization. Reactions without an RNA template or reverse transcriptase were used as
negative controls. The expression of individual RNA molecules was determined by the -ACT
approach (ACT=CT grna - CT caron_rna). All procedures for RT-qPCR were performed according to

the manufacturer’s protocol.

Statistical analysis

Differences in the expression of the pyroptosis-related genes in the public data sets were
compared by One-way ANOVA, and differences in clinical information and immune check point
inhibitor response between the two different subgroups were compared by Chi-squared test.
Differences in OS and PFI between the two subgroups were compared by Kaplan-Meier method
and log-rank rest. The hazard ratios (HRs) were calculated by univariate Cox regression and
multiple Cox regression analysis. The receiver operating characteristic (ROC) curves were plotted

by ‘timeROC’ R package. The performance of the risk score in predicting OS and PFI was
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evaluated by area under the ROC curve (AUC) and Harrell's concordance index (C-index). All
P-values were two-sided, with P < 0.05 as statistically significant. Adjusted P-value was obtained
by Benjamini-Hochberg (BH) multiple test correction. All data processing, statistical analysis and

plotting were conducted using R 4.0.4 software.

Results
Landscape of pyroptosis genes in ccRCC

Firstly, the expression levels of 33 pyroptosis genes were compared between the ccRCC and
normal renal tissues in TCGA dataset. The result showed that the expression level of NLRP1,
NOD1, PLCG1, PLCG1, GSDMB, NLRP6, GSDMC, NLRP7, IL1B, GSDMA, CASP3, NLRRCAMNLRP3,
CASP8, CASP1, CASP4, CASP5, AIM2, NOD2, GPX4, GSDMD, PYCARD and IL18 in the ccRCC tissues
was higher than that in the normal renal tissues, while the expression level of genes containing
CASP9 and NLRP2 in the normal renal tissues was higher than that in the ccRCC tissues (Figure
1A). To further explore the interaction and correlation of the pyroptosis genes, we constructed a
comprehensive network and divided the genes into 4 clusters. It was found that three pyroptosis

genes were risk prognosis factors (Figure 1B).

Two clusters of ccRCC are identified by consensus clustering of pyroptosis genes.

After removing the normal renal tissues, we used unsuperbised clustering methods to classify
the tumor samples into different molecular subgroups based on pyroptosis-related genes. The
optimal cluster number was identified by R ‘ConsensusClusterPlus’ package, and the clustering
stability was evaluated by the proportion of the PAC algorithm. Finally, two distinct clusters,
termed as C1 and C2, were identified (Figure 2A-C). To better understand the clustering result,
clinical outcomes and clinicopathological features, differences in survival in terms of OS and PFI
were compared between the two clusters by log-rank test and Kaplan-Meier curve (Figure 2D-E).
In addition, we found that most pyroptosis-related genes were highly expressed in C2 as
compared with C1 (Figure 2F) . Compared with C1, C2 was significantly correlated with a higher
grade, AJCC score and TNM status (Table 1).

Identification of DEGs and functional analysis

The gene expression profiles of ccRCC were analyzed to identify pyroptosis-related DEGs,
including the up-regulated and down-regulated ones in C2 relative to C1 (Figure 3A). Then, DEGs
were used to perform GO enrichment, KEGG pathway, GSEA and GSVA analyses. The GO results

demonstrated that the DEGs were enriched in humoral immune response, receptor ligand activity


https://doi.org/10.1101/2021.08.05.455284

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455284; this version posted August 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

and collagen-containing extracellular matrix (Figure 3B, S2A). Transcription factor analysis of the
downregulated and unregulated genes were conducted using iRegulon, a Cytoscape plugin, and a
normalized enrichment score (NES) >10 was considered to be significant. The transcriptional
regulation network of these down- and up-regulated genes were shown in Figure S.  GSEA
analysis showed that the adaptive immune system, cytokine signaling in the immune system and
hemostasis were upregulated, while eukaryotic translation termination, peptide chain elongation
and regulation of apoptosis were downregulated in C2 vs. C1(Figure 3C-D). The TF was .GSVA
analysis indicated that fatty acid metabolism, adipogenesis and PI3K-Akt-mtor pathway were
upregulated in C2, while inflammatory response, apoptosis and IL6-JAK-STAT3 pathway were
upregulated in C1(Figure 3E). The KEGG results demonstrated that cytokine receptor interaction
and primary immunodeficiency were upregulated, while collecting duct acid secretion was

down-regulated in C2 relative to C1(Figure 3F).

Comparison of the immune landscape between the subgroups

The heatmap of immune response based on different immune-related algorithms (including
TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, XCELL and EPIC) is depicted in Figure 4A. Then,
single-sample gene set enrichment analysis (ssGSEA) was introduced to compare the immune cell
enrichment scores between C1 and C2(Figure 4B). It was found that most immune cells, including
activated B, CD4 T, CD8 T and dendritic cells, CD56 bright natural killer cell, central memory CD4
T cell, central memory CD8 T cell, effector memory CD4 T cell, effector memory CD8 T cell,
eosinophil, Gamma delta T cell, immature dendritic cell, macrophage, mast cell, MDSC, memory
B cell, monocyte, natural killer cell, natural killer T cell, regulator T cell, T follicular helper cell,
type 1 T helper cell, type 17 T helper cell and type 2 T helper cell were all highly infiltrated in C2
subgroup. Only neutrophil was highly infiltrated in C1 subgroup. Then, the expression level of 9
immune check inhibitor genes was compared between C1 and C2 subgroups. It was found that
most of these genes (including CD274, CD276, CTLA4, CXCR4, IL6, LAG3, PDCD1 and TGFB1) were
upregulated in C2 subgroup (Figure 4C). Meanwhile, R ‘estimate’ package was utilized to
investigate the immune-related scores between C1 and C2, and all the immune-related scores
(including stromal score, immune score and estimate score) were significantly higher in C2
subgroup (Figure 4D). R ‘GSVA’ package was used to compare the immune-related signal
enrichment scores between C1 and C2, and the result was consistent with the result forehead,

indicating that all immune signals were more highly enriched in C2 (Figure 4E). Finally, by using
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TIDE algorithm, we compared the sensitivity of the immune check point inhibitors between the
two subgroups, and found that the response rate in C1 subgroup was higher than that in C2

subgroup (40.8% vs. 24.6%) (Figure 4F).

Crosstalk between cancer and immune cells based on pyroptosis

To identify the role of pyroptosis-related genes in the TME of ccRCC, we collected the single
cell sequence datasets from ccRCC patients who had never received any drug therapy, totally
containing 29799 cells. We next used nonlinear dimensionality reduction (t-distributed stochastic
neighbor embedding, t-SNE) and graph-based Louvain clustering algorithm to investigate cell
distribution and heterogeneity of ccRCC, which included 1252 endothelial cells ,5552 epithelial
cell, 1329 mast cells, 7151 myeloid cells, 81 naive B cells, 152 plasma cells, 192 smother muscle
cells, 11909 T cells, and 2142 unknow cells (Figure 5A). The expression level of pyroptosis-related
genes in myeloid cells was significantly higher than that in other cells (P < 0.01 ) (Figure 5B). To
investigate the impact of pyroptosis-related genes on cell-cell communication, we used ‘CellChat’
and “cellphonedb” to analyze the crosstalk between cancer and immune cells, and determine the
complex cell-cell interaction network between cancer and immune cells (Figure 5C-D). All the
cell-cell communications among cells were explored via CellChat and
cellphonedb,respectively(Figure S3). Next, we explored the pathways involved in proptosis and
found that TNF pathway (including TNFRSF1B-GRN and TNFRSF1A-GRN) could trigger pyroptosis
in myeloid cells (Figure 5E-G). Our correlation analysis further verified the above results (Figure
5H). In summary, our results revealed that pyroptosis-related genes had the potential to shape

the unique TME of ccRCC.

Comprehensive and integrated genomic characterization of the two subgroups

After detecting the transcriptional alterations in the above section, we further investigated the
disparity in the genomic layer in the wo subgroups. It was fund that the mutation rate was similar
between the two subgroups (185/214, 86.45% in C1 vs. 82/106, 77.36%). The top 20 most
frequently mutated genes in the corresponding cohort are depicted in Figure 6A-B, showing
significant differences between the two subgroups. We found that most of mutation genes were

identified as protective factors in C2 subgroup(Figure 6C). Also, the tumor mutation burden rate
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in C2 was higher than that in C1 (Figure 6D). Next, the co-occurrence and exclusive mutations of
the top 20 most frequently mutated genes were investigated by using CoMEt algorithm.
Compared with the pervasive co-occurrence landscape, there were unique cases in the two
subgroups had respective unique cases that exhibited mutually exclusive mutations, suggesting
that they may have the redundant effect in the same pathway and selective advantages between
them to keep more than one copy of the mutation (Figure S4). Other than the mutation pattern,
we also investigated differences in the copy number between the two subgroups. GISTIC2.0
software was used to decode the amplification and deletion of CNV on chrmosomes. Compared
with C2, C1 had a higher copy number gained in genome and a lower copy number in genome

(Figure 6E) . The results showed that the two subtypes had frequent copy number variations
(CNVs) in the region of oncogenes and tumor suppressor genes (e.g. VHL and TTN), as well as
metabolic regulators (e.g. COL9A1 and COL19A1), suggesting that CNVs may play a significant role
in the tumorigenesis and progression of ccRCC. The recurrent CNVs in C2 included the
amplification of 5q14.3 (NR2F1-AS1), 5933.2 (KIF4B) and 1p36.11(SYF2), as well as the deletion of
4924 (PPA2) and 3p21.31 (LTF). The specific CNVs in C1 were mainly associated with cell
proliferation, such as the amplification of 5931.3 (KCTD16), 7p22.2 (SDK1),as well as the deletion
of 4924 (PPA2) (Figure 6F) . These results suggest the two subtypes had distinctive CNV events,
which not only may cause different immune infiltrations but promote the target treatment of

ccRCC.

Drug sensitivity between the two subgroups

GDSC database was used to forecast the chemotherapy response of the two pyroptosis
subtypes to common chemotherapy drugs. It was found that IC50 was significantly different
between C1 and C2 subgroups(Figure 7A). At the same time, several potential prodrugs with
therapeutic potentialities were investigated in C1 and C2, and the results also showed different
IC50values between the two groups (Figure 7B). The detailed molecular structures of these drugs

are shown in Figure S5.

Construction and validation of a 5-gene pyroptosis related signature model

Firstly, we used univariate analysis to select pyroptosis genes that had impact on OS. Then, the


https://doi.org/10.1101/2021.08.05.455284

bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455284; this version posted August 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

remaining 19 pyroptosis genes were subjected to Lasso-Cox regression analysis and 10-fold
cross-validation to generate the optimal model. The Lasso coefficient profile plot was produced
against the log(k) sequence, and the minimize k method resulted in 5 optimal coefficients (Figure
8A,B). Finally, a risk model with 5 pyroptosis genes (PYCARD, AIM2, IL6, GSDMB and TIRAP)
reached the optimal regression efficiency to speculate the prognostic ability. Furthermore, a
pyroptosis risk signature was constructed to estimate the risk score of each patient based on the
linear combination of the 5 mRNA expression levels weighted by the Lasso-Cox regression
coefficients:

Risk score =
0.0271113*AIM2+0.04147645*GSDMB+0.01748664*1L6+0.01968024*PYCARD-0.08678271*TIRA
P. To identify the pytoptosis signature responsible for OS and PFI survival prediction, TCGA-ccRCC
and ICGC-ccRCC cohort samples were divided into a high-risk group and a low-risk group by using
the median risk score as a cutoff point (Figure 8C,D). It was found that OS and PFl in the high-risk
TCGA group were poorer than those in the low-risk TCGA group (Figure 8E). To determine
whether the risk model had a similar prognostic value in the outer dataset, ICGC-ccRCC cohort
was used as a validation dataset. The patients from ICGC dataset were divided to a high-risk
group and a low-risk groups based the median risk scores evaluated with the same coefficient.
The similar clinical outcome was found in ICGC cohort (Figure 8F). Finally, the different expression

level of five risk related genes were verified in SMMU cohort, in which (Figure S6).

Discussion

Pyroptosis is recognized as a type of programmed cell death and has been demonstrated to be
significantly associated with oncogenesis, tumor progression, immune status and anti-tumor
response?’. The role of pyroptosis in urologic carcinoma has attracted increasing attention in
recent years. In this study, we firstly analyzed the role of pyroptosis-related genes in ccRCC and
found that most of those genes were differentially expressed between ccRCC and normal renal
tissues. Then, we identified two heterogeneous pyroptosis-related subgroups (C1 and C2) in
ccRCC patients by unsupervised cluster algorithms. It was found that C1 subgroup possessed a
high level of pytoptosis-related genes and high abundance of immune cells, which was defined as
high high subtype. C2 expressed low pyroptosis genes and lacked

the pytoptosis and immunity
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infiltrating immune cells, which was defined as the pyroptosis '°% and immunity '°* subtype. In
addition, we constructed a pyroptosis based risk model based on the pyroptosis signature and
evaluated its accuracy and stability in validation datasets, hoping that the results obtained would

help better understand the pyroptosis role in ccRCC and promote precise therapy of ccRCC.

It was found in this study that the two subgroups had distinctive clinical characteristics.
Patients in C1 subgroup had better OS and PFI relative to C2, and patients in C2 subgroup were
associated with worse clinical characteristics in terms of the stage and grade. We further
analyzed the drug sensitivity between the two subgroups and found that IC50 in C1 was higher
than that in C2 under the treatment of bicalutamide and afatinib, while patients in C2 subgroup
were more sensitive to imatinib, lisitinib, gefitinib and sunitinib. In addition, compared with C2,
patients in C1 subgroup obtained more benefits from immune therapy as compared those in C2

subgroup.

Next, we investigated genome alterations in C1 and C2 subtypes and found that that SPEN was
a particular SMG of C2 and associated with the formation of centrosomes and cilia, and the loss
of centrosomes was required for the formation of apoptotic microtubule network. Based on the
above evidence, we speculated that SPEN loss in ccRCC may induce pyroptosis formation. SETD2
is a histone H3 K36 methyltransferase that regulates chromatin biology and thereby modulates
gene transcription and DNA repair??. Intriguingly, SETD2 was recently demonstrated to methylate
tubulin for cytoskeleton remodeling and STAT1 for interferon response?3. It was found in our
study that the mutation frequency in C2 subgroup was higher than that in C1. Until now, there
has been no research about SETD2 mutation with pytoptosis, and we speculate that SETD2 could

enhance pyroptosis in ccRCC.

Additionally, we explored the relationship between ccRCC TME and pyroptosis. Compared with
C1, C2 presented more accumulation of immune cell infiltration in TME and higher immune
activity. In addition, the expression of the immune check point inhibitor genes was also higher
than that in C2. All these findings suggest that the response for immune check point therapy in

C1 was significantly higher than that in C2. Given the high pyroptosis status in C2, we speculate
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that even pyroptosis could not only recruit immune cell infiltration in TME but build an immune
suppressive state in TME, suggesting that targeting pyroptosis may convert the immune
suppressive state and enhance the immunotherapy effect. Recently, two simultaneously
published studies reported that tumor cells undergoing pyroptosis recruit tumor suppressed

immune cells, thus waken immune check point inhibitors efficiency?*%°.

Based on the pyroptosis status and prognostic characteristics between the two subgroups, we
tried to explore and discover different treatment strategies. Interestingly, although TMB in C2
subgroup was higher than that in C1 subgroup, the latter was associated with a better response
with ICB therapy, suggesting that the pyroptosis status may play a role in ICB therapy in ccRCC by

influencing TME.

Tumorigenesis is a mutagenic process involving participation of the TME component. Recent
studies have indicated the necessity of cell-to-cell communications in the progress of various
tumors?®. It is therefore urgent to analyze the role of pyroptosis-related genes in TME. We found
that the pyroptosis-related genes were highly expressed in myeloid cells but not in epithelial cells,
and T and epithelial cells triggered the pyroptosis effect in other cells in TME via the TNF signaling
pathways. Combined with previous immune microenvironment analysis, we speculated that TNF
signaling pathways may play an important role in myeloid cells and further mediate the immune
impressive environment in ccRCC, and it might reverse the immune impressive state by

pyroptosis -medicine target at epithelial cells.

Furthermore, the pyroptosis status may also have impact on sensitivity to chemotherapy.
According to the estimate IC50, patients in C1 may be more sensitive to Bicalutamide and
Afatinib, while C2 may be sensitize to Imatinib, Lisitinib, Gefitinib and Sunitinib. Based on the
pyroptosis status, medical care workers can choose a suitable treatment scheme for patients
more accurately. Since the poorer prognosis and lower sensitivity to drug therapy in C2, we used
GDSC database to identify small-molecule drugs for C2 patients, including some anti-cancer drugs
such as AICAR, Camptothecin and Cytarabine. AICAR (5-Aminotimidazole-4-carboxamide riboside

or acadesine) is an AMP-activated protein kinase (AMPK) agonist, which can induce a cytotoxic
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effect against several cancer cell types. Liang et al found that the combination use of Rapamycin
and AICAR could effectively reduce cell proliferation, increase cell apoptosis, and markedly
decrease the level of p-Akt, HIF-2a  and vascular endothelial growth factor expression in
kidney tumor tissues?’. Camptothecin is a natural anticancer drug in traditional Chinese medicine.
Xiao et al found that the Camptothecin analogue G2 could induce apoptosis in liver cancer and
colon cancer cell lines by inducing ROC accumulation and reducing MMP?8, Galley et al reported
two types of Camptothecin analogues CPT-11 and 9-AC, which showed a marked survival
advantage in an orthotopic model of advanced renal cancer?. Cytarabine is an effective drug in
the treatment of certain hematologic malignancies. Song et al found that a new generation of
cytarabine (Ara-C) analogs could induce the apoptosis effect in prostate cancer via targeting MK2
and inducing the synergistic antitumor activity in p53-deficient prostate cancer cells combining
with cabozantinib®. Hence, these candidate molecular drugs might also possess potential

efficacy for ccRCC.

In this study, we constructed a pyroptosis-related genes risk model and found that it could
predict OS and PFl in ccRCC patients both in training and validation cohorts. IL6 is a cytokine that
functions in inflammation and maturation of B cells. IL6 is involved in the STATS-mediated signal
transduction pathway by mediating tumor immune suppression, tumor cell survival,
premetastatic niche formation, and chemotherapy resistance. Yang et al found that CS-lva-Be,
which is a special IL6R antagonist, inhibited IL6/STAT3 signaling pathway and sensitized breast
cancer cells to TRAIL-induced cell apoptosis3!. We found that high IL6 expression was associated
with a poor survival outcome in ccRCC, which may be a result of its negative regulation of
pyroptosis in ccRCC. GSDMB belongs to the gasdermin (GSDM) family which may adopt
different mechanisms of intramolecular domain interactions to modulate their lipid-binding and
pore-forming activities. The GSDM family has regulatory functions in cell proliferation and
differentiation, especially in the pyroptosis process. Previous studies on human cancers have
demonstrated that GSDMB is highly expressed in both healthy and cancer tissues including
gastric, uterine, cervical and breast cancers32. Researchers have demonstrated that GSDMB is
located in the amplicons, genomic regions that are often amplified during cancer development.

Therefore, GSDMB may be involved in cancer progression and metastasis. In this study, we found
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that GSDMB was highly expressed in ccRCC, and this high expression was positively correlated
with ccRCC progression. TIRAP is an important adaptor protein belonging to the TLR/IL-1R
superfamily, with a TIR domain in the cytoplasmic tail. It was reported that aberrant expression of
TIRAP could induce the development of multiple tumors including lymphocytic leukemia, gastric
cancer and colorectal cancer®. It was also found that phycocyanin, a food derived inhibitor, could
inhibit TIRAP in NSCLS cells and exert an anti-proliferation effect through down-regulating
TIRAP/NF-KB activity in lung cancer33. We found that phycocyanin could also serve as a protective
factor in renal cancer patients, and its expression was positively correlated with the renal cancer
stage. AIM2 is a protein of the interferon-inducible PYRIN and HIN domain-containing (PYHIN)
family. Some recent studies reported that AIM2 acted as a DNA sensor in innate immunity by
directly binding to foreign double-stranded DNA in infected macrophages3*. AIM2 could trigger
the assembly of inflammasomes to induce a caspasel mediated inflammatory response, causing
cell apoptosis. Chen et al found that exogenous AIM2 expression could reduce breast cancer cell
proliferation by inhibiting the nuclear factor kappa-B (NF-kB) transcriptional activity and
suppressing mammary tumor growth3. PYCARD is a pro-apoptotic gene encoding a signaling
factor that consists of an N-terminal PYRIN-PAAS-DAPIN domain (PYD) and a C-terminal
caspase-recruitment domain (CARD) and operates in the intrinsic and extrinsic cell death
pathways. Miao et al found that a IncRNA antisense to PYCARD exhibited a dual nuclear and
cytoplasmic distribution and promoted proliferation of cancer cell lines by downregulating the
expression of PYCARD3®. Several studies found that PYCARD was a tumor-inhibiting factor in that
it was silenced in many tumor types and the level of methylation in its promoter was negatively
correlated with tumor progression®’. We found that PYCARD was highly expressed in tumor cells
and its expression was positively correlated with renal tumor progression. Kumari et al found that
exogenous overexpression of AIM2 could suppress the tumorigenicity in immunocompromised
nude mice by suppressing mTOR-S6K1 pathways3®. Our study found that AIM2 was highly
expressed in renal tumor tissues as compared with that in normal renal tissue, and its high

expression was positively correlated with poor prognosis of ccRCC patients.

Although Ours study has provided a more comprehensive view into the role of pyroptosis in

ccRCC and established a powerful model for prognostic prediction, there are still two major
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drawbacks that require further exploration. Firstly, we only analyzed the prognostic role of the
pyroposis-related genes in ccRCC, but how these genes interact with each other during pyroptosis
remains to be further investigated. Secondly, although we performed an independent internal
validation, it is difficult to cover all variations in patients from different geographical regions

when tissues and information were retrospectively collected in publicly available databases.
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Figure legends

Figure 1 The landscape of pyroptosis-related genes in ccRCC. (A) The expression levels of 33
pyroptosis-related genes in ccRCC. The darker color indicates a higher expression, where the red
color indicates up-regulation and the blue color indicates down-regulation. The upper tree
diagram represents clustering results for different samples from different experimental groups,
and the left tree shows the results of cluster analysis for different genes from different samples.
(B) Interaction of pyroptosis-related genes. Gene cluster A, blue; gene cluster B, red; gene cluster
C, yellow; gene cluster D, green. The circle size represents the effect of each gene on prognosis,
and the range of values was calculated by log-rank test as p<0.05 and p<0.001. The triangle dots
in the circle represent the risk factors of prognosis. The lines linking regulators show their
interactions, and thickness shows the correlation strength between the regulators. A negative

correlation is marked with blue and a positive correlation with red.

Figure 2 Identification of pyroptosis clusters of ccRCC (A) The consensus score matrix of all
samples when k = 2. A higher consensus score between two samples indicates that they are more
likely to be grouped into the same cluster in different iterations. (B) The proportion of ambiguous
clustering (PAC) score, where a low value of PAC implies a flat middle segment, allowing
conjecture of the optimal k (k = 2) by the lowest PAC. (C) Two-dimensional principal component
plot by the expression of 33 pyroptosis-related genes in the two subtypes. The blue dots
represent C1, and red dots represent C2. (D-E) Kaplan-Meier analysis for overall survival (left) and
progression-free interval of the two subtypes in the TCGA cohort; (E) The expression heatmap of

the 33 pyroptosis-related genes in the two subtypes.

Figure 3 Functional enrichment analysis of DEGs between C1 and C2 subtypes. (A) Volcano map
of differentially expressed genes. (B) GO enrichment analysis. (C-D) GSEA analysis shows the
hallmarks between the subgroups. (E) Gene set enrichment analysis (GSVA) shows the significant

enrichment differences between the subgroups. (F) KEGG pathway analysis.

Figure 4 Immune landscapes between the pyroptosis subgroups. (A) Heatmap of tumor related
infiltrating immune cells based on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPcounter,
XCELL and EPIC algorithms between the subgroups. (B) Different normalized enrichment scores of
immune cells between the subgroups. (C) Different expressions of the immune check point
inhibitor between the subgroups. (D) Differences in ESTIMATE score between the subgroups. (E)

Heatmap of different immune related pathway enrichment scores between the subgroups. (F)
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Differences in response to the immune check point inhibitor treatment based on TIDE algorithm.

Figure 5 Crosstalk between cancer and immune cells. (A) The t-SNE plot shows that 29799 cells
were divided into 35 clusters, among which T cell accounts for the largest cluster. (B) Pyroptosis-
related genes expressed in the 10 cell clusters. (C) Cell-cell interaction in cell clusters as analyzed
by “CellChat”. (D) Cell-cell interaction in cell clusters as analyzed by “cellphonedb”. (E) Connection
probability of main signaling pathways in cell clusters as analyzed by “CellChat”. (E) TNF signaling
pathways between T cells and other cells. (G) Connection probability of main signaling pathways
in cell clusters as analyzed by “cellphonedb”. (H) Correlation of the communication ratio between

cell clusters.

Figure 6 Mutation and CNV differences between subgroups (A-B) Waterfall plot shows the
mutation distribution of the top most frequently mutated genes. (C) Forest plots display the top 6
most significantly differentially mutated genes between the two subgroups. (D) Boxplot of TMB
between the two subgroups. (E) Barplot of fraction genome altered in the two identified
subtypes. (F) Composite copy number profiles for ccRCC with gains in red and losses in blue and

grey highlighting differences.

Figure 7 Difference of drug sensitivity (A) Differences in estimate IC50 of the molecular
targeted drugs between the subgroups. (B) The chemotherapy response of the two prognostic

subtypes to 10 chemotherapy drugs.

Figure 8 Construction of the pyroptosis related risk scores (A) LASSO coefficient plot of
pyroptosis related genes. (B) The optimal parameter (A) was chosen by cross validation. (C-D) Risk
score analysis in ccRCC patients in the TCGA (left) and ICGC (right) cohort. (E-F) Kaplan-Meier
analysis for OS (left) and PFI (right) of the two subtypes in the TCGA and ICGC cohort and the

corresponding ROC curve.

Table 1 Difference of clinical characteristics between C1 and C2 subgroups

Table S1 Primer sequences of 5 hub genes
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Figure S1. Workflow of this study

Figure S2. (A)Enrichment analysis of DEGs; (B)Transcription factor analysis of dysregulated genes;
the purple nodes represent  down-regulated genes(left) and un-regulated genes(right), and
green nodes represent transcription factors.

Figure S3. (A) Heatmap showing the selected ligand-receptor interactions between cancer cells
and other cells via CellChat; (B) Bubble plot showing the selected ligand-receptor interactions
between cancer cells and other cells via cellphonedb.

Figure S4. Heatmap illustrates the mutually co-occurring and exclusive mutations of the top 25
frequently mutated genes. The color and symbol in each cell represent the statistical significance
of the exclusivity or co-occurrence for each pair of genes.

Figure S5. The structure tomographs of the ten candidated small-molecule drugs.

Figure S6. Different expression level of five risk related genes in SMMU cohort.
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Summary descriptives table by groups of ‘Cluster’

C1 C2 p.overall
N=324 N=197
age 60.2 (12.2) 61.2 (12.1) 0.325
gender: 0.032
FEMALE (3;.265%) >7 (28.9%)
MALE (611 i?%) (71.41%/0)
grade: <0.001
G1 14 (4.32%) 0 (0.00%)
G2 (58.6;/0) 60 (30.5%)
G3 (371_202/0) 86 (43.7%)
G4 22 (6.79%) 50 (25.4%)
GX 4 (1.23%) 1 (0.51%)
AJCC: <0.001
Stage I (5;?6?;/0) 69 (35.0%)
" Stage a5 (10.8%) 21 (10.7%)
Stage

O,
- 61 (18.8%)

62 (31.5%)
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C1 C2 p.overall
N=324 N=197
v Stage 55 (10.8%) 45 (22.8%)
N: 0.011
NO (4:‘;50/0) 92 (46.7%)
N1 4 (1.23%) 11 (5.58%)
NX (5i.7050 oy 94 (47.7%)
M: <0.001
MO (8;6090/0) (7;%12/0)
M1 32 (9.88%) 43 (21.8%)
MX 23 (7.10%) 6 (3.05%)
0S 0.24 (0.43) 0.47 (0.50)  <0.001
PFI 0.24 (0.43) 0.40 (0.49)  <0.001

*P value <0.05 is considered statistically significant.
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