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Abstract

Advances in artificial intelligence for image processing hold great promise for increasing the

scales at which ecological systems can be studied. The distribution and behavior of individuals
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is central to ecology, and computer vision using deep neural networks can learn to detect

individual objects in imagery. However, developing computer vision for ecological monitoring is

challenging because it needs large amounts of human-labeled training data, requires advanced

technical expertise and computational infrastructure, and is prone to overfitting. This limits

application across space and time. One solution is developing generalized models that can be

applied across species and ecosystems. Using over 250,000 annotations from 13 projects from

around the world, we develop a general bird detection model that achieves over 65% recall and

50% precision on novel aerial data without any local training despite differences in species,

habitat, and imaging methodology. Fine-tuning this model with only 1000 local annotations

increases these values to an average of 84% recall and 69% precision by building on the

general features learned from other data sources. Retraining from the general model improves

local predictions even when moderately large annotation sets are available and makes model

training faster and more stable. Our results demonstrate that general models for detecting broad

classes of organisms using airborne imagery are achievable. These models can reduce the

effort, expertise, and computational resources necessary for automating the detection of

individual organisms across large scales, helping to transform the scale of data collection in

ecology and the questions that can be addressed.

Introduction

Airborne image capture is revolutionizing data collection in ecology by providing information on

animal presence, abundance and behavior at unprecedented scales (Afán et al., 2018; Bondi et

al., 2018; Reintsma et al., 2018; Weissensteiner et al., 2015). A central challenge in airborne

monitoring is converting the large amount of sensor data into ecological information. Ecological

image annotation is laborious and the amount of imagery collected can quickly overwhelm

human annotators (Kellenberger et al., 2020). Automated tools for animal detection are
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therefore critical to make image-based data collection feasible at large scales. Computer vision

using deep neural networks is a form of artificial intelligence that connects sensor data, such as

image pixels, to semantic concepts such as the category and location of individual objects within

an image. The rapid growth of computer vision for ecological monitoring has allowed surveys to

scale to unprecedented extents using ground-based (Berger-Wolf et al., 2017) and airborne

imaging systems (Moreland et al., 2015). There have been a number of recent studies

demonstrating that with sufficient quantities of human-annotated data, computer vision using

deep neural networks can accurately predict animal location, abundance and behavior

(Ahumada et al., 2020; Beery et al., 2020; Beijbom et al., 2015; Bondi et al., 2018; Bowley et al.,

2018; Crall et al., 2013; Kellenberger et al., 2018; Torney et al., 2019; Weinstein, 2018; Willi et

al., 2019). However, developing and deploying computer vision for ecological monitoring can be

challenging because: 1) large amounts of human labeled training data are typically necessary

for training deep neural networks, 2) building neural networks requires technical expertise and

access to significant computational infrastructure that are often unavailable to ecological teams,

and 3) the large number of parameters in deep neural networks tend to overfit to available data

preventing application across space and time.

One solution to these challenges is the development of generalized models that can be

applied to a broad range of species and ecosystems. Generalized models attempt to produce a

single model that works effectively regardless of the details of image background and target

object (Kawaguchi et al., 2020). Due to shared evolutionary history, animals within broad

taxonomic groups, such as class (e.g Aves, Mammalia) and order (e.g. Charadriiformes,

Carnivora) share general visual characteristics that can be useful for detection in natural

landscapes. While there will be significant variation in appearance within these groups, the goal

is to combine annotations from many studies to produce the large data sets needed to train a

general detector. Neural networks provide improved predictions for specific local conditions.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455311doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?JzuRPY
https://www.zotero.org/google-docs/?NFHDVP
https://www.zotero.org/google-docs/?aAKAtQ
https://www.zotero.org/google-docs/?aAKAtQ
https://www.zotero.org/google-docs/?aAKAtQ
https://www.zotero.org/google-docs/?MUAhEl
https://doi.org/10.1101/2021.08.05.455311
http://creativecommons.org/licenses/by/4.0/


Despite these benefits the vast majority of computer vision models developed in ecology focus

on a single species or ecosystem. As a result, it is not clear how accurately deep learning

models predict under truly novel ecological conditions, how effective fine-tuning is for producing

improved predictions for individual studies, and how these models compare to similar models

developed using only training data collected specifically for that study.

The detection of large birds in airborne imagery is an ideal scenario for developing and

evaluating the performance of generalized models. Birds are a major indicator of ecosystem

health and represent an important intersection of remote sensing and conservation (Gregory

and Strien, 2010). Airborne monitoring of birds using unoccupied aerial vehicles (UAVs) and

airplanes is increasingly common due to the need to monitor birds over large scales (Dulava et

al., 2015; Groom et al., 2013; Kim and Kim, 2020; Pfeifer et al., 2021). Much of this work

involves hand counting birds in imagery using human annotators. When computer vision

methods are used, they typically use between 10,000 and 40,000 local annotations developed

for a single species and ecosystem (Chabot et al., 2018; Liu et al., 2020). The widespread use

of airborne imagery for monitoring birds has created sufficient data for developing a general

model, but doing so is challenging because bird species vary dramatically in appearance and

the airborne imagery is not collected in a standardized manner, with each monitoring effort

collecting data using different airborne vehicles, sampling protocols, and sensors.

Here we develop and evaluate a deep learning object detection model that identifies

large birds in high resolution airborne imagery across species and ecosystems. We build from a

well-annotated image monitoring program of long legged wading birds in the Everglades

ecosystem of South Florida and add data from projects around the world to train the model to

detect birds regardless of species and habitat (Table 1, Figure 1). To address variation resulting

from differences in sensors and survey methods, we used data from a range of acquisition

platforms and performed on-the-fly data augmentation changing the sizes of individual

annotations to represent variation in the height and resolution of image capture. We show that
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this model performs well for detecting novel species in novel environments, that its performance

can be improved by fine-tuning with only small amounts of human-labeled data, and that these

fine-tuned models outperform models based only on local training data. This approach creates a

framework for general models covering common animal taxa and will lower the barrier to

automated monitoring using airborne imagery.

Figure 1: Example orthomosaics for A) the Everglades dataset (ID = 1 in Table 1), B) West

African Terns (ID = 4), C) Seabirds from the South Pacific (ID = 2), and D) Chinstrap Penguins

from Antarctica (ID = 3). The datasets differ in acquisition backgrounds, target species,

individual density and camera specifications.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455311
http://creativecommons.org/licenses/by/4.0/


Results and Discussion

General models for ecological object detection will be most useful if they can detect individuals

in novel environments, allow customization to new datasets using local annotations, and

produce better detections than models developed with limited local annotations alone. To test

for these characteristics, we trained a suite of local and general models for analysis (Table 2 in

Methods). All models shared the same workflow and architecture, a one-shot object retinanet

detector with a convolutional neural network backbone (Lin et al., 2017), but differed in input

data, evaluation data and hyperparameters. We performed on-the-fly-data augmentation during

training, zooming in on individual annotations to represent variation in the height and resolution

of image capture (Zoph et al., 2019).

To evaluate the ability of a general model to predict birds in novel locations, we

performed a leave-one-out cross-validation analysis. For each large dataset, we trained a

‘cross-validation’ model using all other datasets and then predicted the test images of the

withheld dataset (Table 2). The mean recall of the held-out dataset was 67.9% (range = 29.8,

95.4%) and the mean precision was 52.9% (range = 18.8, 79.7%; Figure 2). In general,

performance was better for datasets with high resolution imagery, such as the West African

Terns (ID = 4; recall = 87.7%; resolution = <1cm), whereas lower resolution datasets like the

Antarctic Chinstrap Penguins (ID = 5; resolution = > 2cm)) had lower values (recall = 29.8%).

Datasets with forested backgrounds similar to the everglades dataset (ID = 1), which forms the

backbone of the training annotations, had higher precision, such as the South Pacific Seabirds

(ID = 2, precision = 74.0%)  whereas datasets with complex aquatic backgrounds had lower

precision (e.g Canadian Marshbirds, ID=7, precision = 18.9%). These results suggest that there

is the potential for a generalized model to make accurate predictions for completely novel

species and environments, but that its performance will depend on having sufficiently diverse

data to obtain highly accurate predictions across all novel environments.
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General models can be refined to local conditions to improve performance by fine-tuning

the model using small amounts of local human-labeled data. Using ~1000 annotated birds from

the local site improved the mean recall and precision to 84.3% and 66% respectively, driven by

large improvements in the datasets with the lowest precision and recall scores in the

cross-validation models (Figure 2). For example, the Atlantic Seaducks (ID = 8) improved from

27% recall to 98% recall (Figure 2A, 2C). Visual inspection showed that improvements often

resulted from remedying issues with background objects (e.g, shadows, rocks, leaves) being

erroneously predicted as birds, as well as providing the model with information on bird size,

which varied due to differences in species, acquisition height, and resolution (Figure 3). Recall

and precision where high for all datasets, including those with no clear analog in the general

model training data like the SeabirdWatch dataset (where the imagery is from land based

cameras not UAVs; Figure 2C; ID = 9) and the Atlantic Seaducks (where the background is

exclusively water; ID = 8). This suggests that general models can be used effectively for most

airborne monitoring of large birds using a small number of bird annotations, allowing monitoring

efforts to automate bird detection without developing their own deep learning models or

investing in time consuming and expensive annotation efforts for every species and environment

being studied. For an example cross-validation prediction for each dataset, please Appendix 1.

In addition to making effective predictions with little or no local training data, building on

general models may result in more straightforward model development and better predictions

for ecological studies even in cases with moderate amounts of training data (Figure 4). This is

due to their ability to learn robust general features, thus avoiding overfitting and producing more

accurate predictions on images that deviate from the training set, which is a common

occurrence when scaling up monitoring efforts. We evaluated the performance of ‘local-only’

models versus the cross-validation models that had the same structure but were initially trained

with the training data from all other datasets. Starting from a model trained on all other datasets

led to higher precision and recall for all datasets when there were fewer than 5,000 local
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annotations. While this difference was largest when using small amounts of local data, it

persisted for some datasets even when using >10,000 local annotations, and the fine-tuned

general model always performed at least as well as the local-only model (Figure 4). Local-only

models were also highly variable with large changes in performance among runs, sensitive to

learning rate and training hyperparameters, and required more computationally intensive

training. Fine-tuned models required only 20 epochs of training, whereas local-only models

needed to be trained for at least 70 epochs to produce reasonable results (Table 2). Even

among local-only models there was large variation in the amount of training needed. For

example, the West African Terns dataset (ID = 4) had 0% recall and 0% precision after 70

epochs even when using 20,000 local annotations. Extending to 110 epochs resulted in a rapid

increase to 84% recall and 87% precision, but the potential for good predictions for datasets like

this would often be missed given the consistently poor performance at shorter training times.

This idiosyncratic behavior was difficult to anticipate since the tern dataset is similar to other

datasets in terms of the density of birds, image resolution, and background complexity.

Compared to local-only models, the fine-tuned models were more uniform, exhibiting

significantly less between-run variance (Figure S3), and achieved good prediction with less data

and less intensive computational training. This highlights that even when large numbers of

annotations are available for an ecological study, starting with a general model makes

developing models easier and provides more stable results. As a result, starting with a general

model requires less expertise, less time spent on model development, and fewer computational

resources. Our experience developing these models suggests that the difference is significant

enough that starting with a general model will allow more studies to successfully build

automated approaches to detect individual organisms in airborne imagery and thereby reduce

the number of efforts that are limited in the scale of research due to manually annotating all

birds being studied.
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From a computer vision perspective, one of the major challenges for developing this type

of general model for ecological systems is the range of sizes and representations of objects in

images caused by differences in the altitude of image acquisition and the sensor resolution. Due

to differences in species behavior, UAV regulations, and research questions it is unlikely that

there will ever be a standard approach to the acquisition of airborne monitoring imagery in

ecology. Therefore, methods are needed that can help overcome this key source of variation.

We used a data augmentation strategy to synthesize datasets at different flight elevations and

resolutions by zooming in and out on each annotation during model training. This strategy

reduced the size-based errors of the dataset, but it did not completely eliminate them (Figure

S10). Additional strategies to address this challenge going forward include synthesizing new

data by combining abundant background data in airborne datasets with bird images from high

quality benchmarks such as iNaturalist, which includes tens of thousands of zoomed in images

of birds taken by ground-based observers (Van Horn et al., 2018). Synthetic data has been

effective in animal detection in thermal airborne imagery and would allow greater control of the

range of image scales shown during the model training (Bondi et al., 2018).

While the datasets used in this study differed in capture altitudes, angle, and sensor

specifications, they were still broadly similar in using RGB data with resolutions <3 cm.

Generalizing to spatial resolutions >3 cm and using non-RGB remote sensing (e.g.,

hyperspectral imagery) requires further study across sensors and data acquisition strategies.

For example, fixed-wing aircraft surveys covering hundreds of miles are unlikely to capture

images at ultra-high resolution due to storage and processing limitations. It is unknown how well

the features learned in 2 cm imagery will transfer to 10 cm airborne imagery or high resolution

satellite imagery (~30cm). One approach to this type of generalization is to reduce the higher

resolution data and train a series of models to bridge the features learned from high resolution

to low resolution data. This is known as ‘curriculum learning’ (Graves et al., 2017) and can be

useful in transferring information among spatial resolutions.
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Figure 2. Results of predictions on novel datasets with and without fine-tuning. Recall and

precision for each dataset for the cross-validation model with 0 local annotations and the

fine-tuned model with 1000 local bird annotations. Recall is defined as the proportion of ground

truth boxes that are correctly predicted, precision is defined as the proportion of predicted that

match a ground truth box.
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Figure 3. Example images from cross-validation (top) models with no local training data and

fine-tuned models (bottom) with 1000 local bird annotations. From left to right, images are from

a) South Pacific Seabirds (ID = 2), b) Pelicans from Utah, USA (ID = 11), c) Terns from West

Africa (ID = 4), and d) Seabirds from the North Atlantic (ID = 9). Predicted birds are in blue,

ground truth birds are in orange.
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Figure 4. Difference between models fit using only local annotations (the ‘local-only’ model) and

general models retrained with the same local data (the ‘fine-tuned’ model) for each dataset

using different numbers of local annotations for training. The fine-tuned model is pre-trained on

all other datasets, whereas the local-only model contains no annotations from other datasets.

Each dataset was run up to its available number of annotations.

Conclusion

Aerial imagery is a powerful tool for studying species and ecosystems at temporal frequencies

and spatial extents that are difficult using traditional methods, but it comes with computational

and analysis challenges that have limited its widespread application. General computer vision

models provide a solution for simplifying the processing of aerial imagery to allow researchers to

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 6, 2021. ; https://doi.org/10.1101/2021.08.05.455311doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.05.455311
http://creativecommons.org/licenses/by/4.0/


more easily, efficiently, and accurately extract ecological data from large amounts of imagery.

We showed that general models can provide accurate predictions in novel ecosystems and with

novel species, with either no local training data or by retraining with very small numbers of

annotations. Even when large amounts of local-data are available, starting with general models

produces more stable results, with less computational expense, and often performs better than

local-only models because of the general features these models learn from other ecosystems

and taxa. The ability of general computer vision models to make accurate predictions in novel

circumstances will make them an essential tool for monitoring dynamic ecosystems, where

species and habitats may change over time or space. Because the need for local

hand-annotations is limited, general models can potentially be rapidly deployed in new

environments and support aerial monitoring of rare species which can be difficult to study and

have limited annotations available for local model development. By reducing the effort,

expertise, and computational resources necessary to develop computer vision models for image

processing, general models have the potential for revolutionizing the types of data ecology can

collect.

Our approach to developing a general computer vision model for bird detection was

based on the concept of transfer learning, where a model trained for one task is applied to a

different task (Pan and Yang, 2010). While we used transfer learning to generalize among bird

monitoring projects with new species, in new ecosystems, using images of differing resolutions

and image capture features, transfer learning can potentially be applied more broadly to create

general detectors across taxonomic groups, including birds, mammals, reptiles, or any other

organism visible in airborne images. Using the same general model structure, (Weinstein et al.,

2020) developed detection models for individual trees in airborne imagery, suggesting that the

underlying architecture is suitable for a broad array of ecological objects. The increased use of

UAV-based monitoring, combined with developments in very high resolution satellite imagery

(LaRue et al., 2017) increase the potential for animal detection at broad scales with high
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temporal frequency (Willi et al., 2019). We anticipate that a cross-taxon model of animal

detection is achievable with sufficient annotations and research into the most effective way of

overcoming the large differences in resolution, object appearance and scale. A general model

for automated airborne monitoring of many types of individual organisms would fundamentally

change the scales at which we can monitor ecological systems, allowing us to tackle critical

questions about the processes that determine population dynamics and biodiversity patterns

across scales.

Methods

Data

Initial model development was conducted with a large dataset of wading bird imagery collected

in the Everglades. This data was collected using UAV surveys over wading bird nesting colonies

from January - June 2020 to capture roosting and nesting behavior of wading birds in the central

Everglades, Florida, United States. We used a DJI Inspire II quadcopter fitted with a Zenmuse

X7 RGB camera and 35mm equivalent fixed lens. Flight transects were created using the DJI

Ground Station Pro App® and included 80% front and 75% side overlap of imagery collected at

15° off-nadir for a ground resolution of approximately 1cm. Flights were conducted between 76

and 91 m above ground level (AGL) (dependent on disturbance and air space). Target species

of wading birds included White Ibis (Eudocimus albus), Roseate Spoonbill (Platalea ajaja),

Great Egret (Ardea alba), Snowy Egret (Egretta thula) and Wood Stork (Mycteria americana),

but images also included incidental detections of other species in the ecosystem. After data

acquisition and preprocessing, we divided the orthomosaic into small clips and annotated all

visible birds with a single x,y point. Points were then transformed into boxes using a fixed buffer

size of 0.25m. We annotated a total of 4,653 images yielding 57,000 individual bird annotations.
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Prior to model training, orthomosaic image tiles were divided into 1500 x 1500 pixel crops and

the resulting crops were split into train and test samples. The training data sample for each

dataset was composed of randomly selected crops that represented as close to 90% of the

annotations as possible within that dataset given the structure of the annotations within the

images (range 50% - 90%).

To build a global dataset, we contacted ecologists and conservation biologists using

airborne monitoring to request datasets from airborne images with largely nadir camera position

and ground sampling distance of 1-3cm (Figure 1). We obtained 13 datasets covering over

250,000 annotations for model training and testing (Table 1). All datasets came from airborne

bird monitoring projects with the exception of Seabird Watch (Table 1, ID = 9), which uses

ground based remote time lapse cameras to view distant rocky cliffs. This dataset was judged

sufficiently similar to be included based on size and resolution. For each dataset we split into

training and test sets. Wherever possible test sets were selected to be separate in time or space

from training images. For example, if there were multiple flights in an area, each flight would

occur only in train or test sets. Or if multiple islands were surveyed, each island would occur

only in train or test sets. See Appendix 1 for information on each dataset, including camera

specifications, species lists and flight information. Code, processed images and annotations are

made available on Zenodo (Weinstein, 2021). The final model

(https://github.com/weecology/BirdDetector) and evaluation procedures are made directly

available through the DeepForest python package allowing users to extend, train and evaluate

models with minimal difficulty (Weinstein et al., 2020).

Table 1. Description of the datasets used to train and evaluate the general model. For more

detail on taxa, resolution and acquisition conditions, please see Appendix 1.

ID Taxa Location Citation Train
Annotations

Test
Annotations
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1 Wading Birds Florida, USA - 50869 5647

2 Seabirds Palmyra
Atoll, South

Pacific

- 1305 456

3 Penguins Antarctic
Peninsula

Liu et al. 2020 1744 1293

4 Terns Guinea (Kellenberger
et al., 2020)

20790 2301

5 Penguins and Shags South
Shetland
Islands,

Antarctica

(Pfeifer et al.,
2021)

25337 2528

6 Albatross and
Penguin

Falkland
Islands

(Hayes et al.,
2021)

8408 930

7 Marsh Birds Saskachawa
n, Canada

(McKellar et
al., 2021)

1598 60

8 Ducks Cape Cod,
USA

- 26417 226

9 Seabirds North Atlantic - 61009 2363

10 Seabirds Indian Ocean
Seabirds

- 9846 327

11 Pelicans Utah, USA - 39623 5119

12 Ducks, Geese and
Cranes

New Mexico,
USA

- 2582 174

13 Waterbirds (Ducks,
Swans, Herons,
Terns and Gulls)

Poland 7584 -

14 Gulls Lake
Michigan,

USA

- 40233 6199

15 Miscellaneous
Images

Global 2137 -
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Models and Analysis

Table 2. Model descriptions and terminology for the analysis of the general bird model. Global

annotations come from all datasets except for the dataset being evaluated. Local annotations

come from the dataset being evaluated. During zoom data augmentation, images are randomly

preprocessed to zoom in or out on a subset of birds within an image to mimic flights at different

heights. All models were trained using SGD optimization with learning rate of 0.001 and

momentum of 0.9 with a batch size of 32 on two NVIDIA DGX A100 GPUs

Model Global
Annotations

Local
Annotations

Zoom
Augmentation

Epochs Description

Base
Model

No Yes No 10 Everglades dataset only. This
model was used for finding

optimal parameters and data
augmentation.

Cross-
validation

Yes No Yes 12 For each dataset we trained on
all other datasets and then
predicted a portion of the

withheld dataset.

Local-
only

No Yes No 70-110 Individual models using only
local annotations for each
dataset. This model was

repeated for up to 1000, 5000,
10000 and 20000 local

annotations.

Fine-tune Yes Yes No 20 For each dataset we started
from the cross-validation model

using all other datasets and
then fine-tuned using local

annotations. This model was
repeated for up to 1000, 5000,

10000 and 20000 local
annotations.

General
model

Yes Yes Yes 12 Final model trained with all
training and test data for future

use
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A general model for bird detection should predict birds in novel environments, allow

customization to new datasets using local annotations, and perform better than solely local data.

To test these characteristics, we trained a suite of models for analysis (Table 2). All models

shared the same architecture and general workflow, but differed in input data, evaluation data

and hyperparameters. The architecture was initially developed for identifying trees in airborne

imagery by Weinstein et al., (2020b, 2019). The model was a one-shot object retinanet detector

with a convolutional neural network backbone (Lin et al., 2017) implemented in the ‘DeepForest’

Python package (Weinstein et al. 2020a). The retinanet detector uses focal loss to increase the

weight of difficult to predict images, reducing the overfitting to easy-to-predict samples. The

retinanet backbone was a resnet-50 network pretrained on the ImageNet classification

benchmark. To reduce overfitting and facilitate model exploration, we developed the initial model

using the data on wading birds from the Everglades, our first and largest dataset in terms of

number of unique images (Figure S1). We trained the network for 10 epochs with an Adam

Optimizer and learning rate of 0.001 in mini-batches of 6 images. This initial work served as an

exploratory analysis to determine the general model structure and hyperparameters, but not the

weights, of the general model.

One of the major challenges with building generalized models for airborne bird detection

is that airborne data from different sources varies in the height of image capture and resolution

of the camera. This leads to differences in size, contrast and detail of birds among datasets. To

synthesize bird detections at different resolutions we performed on-the-fly-data augmentation

during training to change the sizes of individual annotations to represent variation in the height

and resolution of image capture (Zoph et al., 2019). During each batch, a random annotation

was selected, and then a randomly sized box was placed with this focal annotation at its center.

To avoid over zooming on the annotation and filling the entire image, we set a minimum size of

0.15 times the original image size. This technique reduces overfitting, but cannot fully remedy
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differences in image resolution since it is possible to downscale images, but difficult to

realistically upscale images.

To evaluate the ability of the general model to predict birds in novel locations, we

performed a leave-one-out cross-validation analysis. For each large dataset, we trained a

‘cross-validation’ model using all other datasets and then predicted the test images of the

withheld dataset (Table 2). While the final ‘general’ model available to users is trained with every

dataset, this leave-one-out strategy is a conservative proxy for future use because it represents

how well a general model works when not trained on data for a new monitoring effort. Each of

the cross-validation models were trained with a batch size of 32 for 12 epochs with an initial

learning rate of 0.001.

To determine whether starting from the general model improved performance for new

datasets, we fine-tuned each ‘cross-validation model’ using local data. For example, to test the

ability to customize to the Atlantic Seaduck dataset (ID = 8), we started from the

‘cross-validation’ model trained on all other datasets and added in Atlantic Seaduck annotations.

We trained multiple versions of a fine-tuned model, each with a subset of local datasets with

1000, 5000, 10000 and 20000 annotations. We repeated the sub-sampling for the fine-tuned

model 3 times to evaluate the effect of image sampling. Finally, to determine whether the

fine-tuned model benefited from the pretraining on all other datasets, we trained a ‘local only’

model that used the same annotations as the ‘fine-tuned’ model, but starting from standard

imagenet weights. The same test dataset was used for the fine-tuned and local-only models.

The zoom data augmentation strategy was not used in these models since flight height and

object size are largely conserved within each dataset.

For all analysis, we used precision and recall on held-out images for model evaluation.

The most common evaluation metric in object detection is intersection-over-union, defined as

the area of intersection between the true and predicted bounding box, divided by the area of

union between true and predicted bounding box. Using this metric, we assessed model recall,
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defined as the proportion of ground truth boxes correctly overlapping with predicted boxes with

an intersection-over-union of greater than 0.2, and model precision, defined as the proportion of

predicted boxes which overlap with a ground truth box with an intersection-over-union of 0.2.

We selected this threshold because the vast majority of annotations were automatically created

from original points placed on individual birds. The exact outline of individuals is therefore

approximate and secondary to the goal of detection and enumeration.
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