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S1 Experimental Data

We collect data on enough spheroids to ensure at least 10 for each initial seeding density and

observation day (20 for comparing steady-state structure) are available. We then randomly

subsample to ensure a consistent number of spheroids are analysed for each initial seeding density

and observation day. The total number of spheroids, and the number in the subset, are given

in Table S1. Raw data (complete and the subset) are available on GitHub as supplementary

material.

In Fig. S1 to Fig. S6 we show a random subset of 10 spheroids from the complete data set

for each condition, from days 7 to day 21 (WM983b) and day 24 (WM793b).

Condition
Day

Totals
3 4 5 7 10 12 14 16 18 21 24

All

983b 2500 6 12 12 20 16 16 13 17 13 26 − 151
456983b 5000 9 9 10 15 13 17 14 21 20 31 − 159

983b 10000 6 10 9 18 15 21 13 19 19 16 − 146
793b 2500 − 5 10 22 28 27 19 18 20 15 23 187

538793b 5000 − 12 11 23 25 20 21 19 22 14 21 188
793b 10000 − 7 12 18 25 23 15 17 21 5 20 163

Subset

983b 2500 6 10 10 10 10 10 10 10 10 20 − 106
318983b 5000 9 9 10 10 10 10 10 10 20 10 − 108

983b 10000 6 10 9 10 10 10 10 10 19 10 − 104
793b 2500 − 5 10 10 10 10 10 10 10 10 20 105

317793b 5000 − 10 10 10 10 10 10 10 10 10 20 110
793b 10000 − 7 10 10 10 10 10 10 10 5 20 102

Table S1
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S1.2 WM983b (seeded with 5000 cells)
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S1.3 WM983b (seeded with 10000 cells)

WM983b 10000

7 
d

10
 d

12
 d

14
 d

16
 d

18
 d

21
 d

Figure S3
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S1.4 WM793b (seeded with 2500 cells)
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S1.5 WM793b (seeded with 5000 cells)
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S1.6 WM793b (seeded with 10000 cells)
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S2 Steady state model solution

The steady-state, denoted (R̄, φ̄, η̄) is given by setting dR/ dt = 0 (Eq. (3) in the main docu-

ment) yielding the non-linear system of equations

0 = 1− φ̄3 − γη̄3,

0 = 2R̄2η̄3 − 3R̄2η̄2 + R̄2 − R̄2
c ,

0 = R̄2φ̄3 +
!
Q2R̄2

c − R̄2(1 + 2η̄3)
"
φ̄+ 2η̄3R̄2.

(S1)

Applying the substitution ρ = η̄/φ̄, where 0 ≤ ρ ≤ 1, and algebraic manipulation (see the Math-

ematica workbook SteadyStateSolution.nb) allows the solution to Eqs. S1 to be expressed

as the root of f(ρ;Q, γ), where

f(ρ;Q, γ) =

12#

m=0

cmρm, (S2)

and where

c0 = 3Q2 − 3Q4 +Q6,

c1 = 0,

c2 = −9Q2,

c3 = 18Q2 − 18Q4 + 6Q6 − 2γ + 9Q2γ − 9Q4γ + 3Q6γ,

c4 = 27Q4,

c5 = −36Q2 − 9Q2γ,

c6 = 36Q2 − 36Q4 − 15Q6 − 6γ + 36Q2γ − 36Q4γ

+ 12Q6γ − 3γ2 + 9Q2γ2 − 9Q4γ2 + 3Q6γ2,

c7 = 54Q4 + 27Q4γ,

c8 = −36Q2 − 36Q2γ,

c9 = 24Q2 − 24Q4 + 8Q6 + 36Q2γ − 36Q4γ − 15Q6γ − 6γ2 + 18Q2γ2

− 18Q4γ2 + 6Q6γ2 − γ3 + 3Q2γ3 − 3Q4γ3 +Q6γ3,

c10 = 54Q4γ,

c11 = −36Q2γ,

c12 = 8γ.

Since ρ is subject to the constraint 0 ≤ ρ ≤ 1, we solve 0 = f(ρ;Q, γ) using bisection1,

which is guaranteed to converge provided there exists only one root in the interval 0 ≤ ρ ≤ 1.

In Fig. S7a, we demonstrate that in the parameter region of interest (0 < Q < 1, γ > 0) there

exists only a single solution to Eq. S2. We do this by finding all 12 roots of Eq. S22 and counting

1Implemented to within machine precision using Roots.jl: https://github.com/JuliaMath/Roots.jl
2Implemented by finding the eigenvalues of the characteristic matrix using Polynomials.jl: https:
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the number of real roots where 0 ≤ ρ ≤ 1.

The solution to Eq. S1 is then given by

R̄ = fR(ρ, φ̄,θ) =
Rc

(1− ρφ)
√
1 + 2ρφ

(S3a)

φ̄ = fφ(ρ,θ) =
1

(1 + γρ3)1/3
, (S3b)

η̄ = fη(ρ, φ̄) = ρφ, (S3c)

where θ = (Q,Rc, γ).

In Fig. S7b, we compare a numerical solution to the transient model to the semi-analytical

solution for the steady state showing an excellent match. All algorithms used to produce the

results relating to the mathematical model are available in Module/Greenspan.jl.
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Figure S7. (a) Number of solutions to Eq. S2 subject to the constraint 0 ≤ ρ ≤ 1. Dashed line indicates
the region of interest, where γ > 0 and 0 < Q < 1. (b) Comparison between a long-term solution to the
transient model and the semi-analytical solution to the steady state, where Q = 0.8, γ = 1, Rc = 150,
s = 1 and R0 = 100.

//github.com/JuliaMath/Polynomials.jl
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S2.1 Jacobian of the steady state model

In the main document, we denote the solution to Eq. S1 as m(θ). Here, we demonstrate how

given a value (R̄, φ̄, η̄) = m(θ), we can obtain an analytical expression for the model Jacobian,

Jm(θ) =
∂m

∂θ
. (S4)

Given ρ, we can form an analytical expression for Eq. S4. Noting that the coefficients of

Eq. S2 are functions of θ, we consider

∂

∂ci
(0) = 0 =

12#

m=0

∂

∂ci

!
cmρm

"
=

∂

∂ci

!
ciρ

i
"
+

12#

m=0
m ∕=i

∂

∂ci

!
cmρm

"
,

= ρi + ciiρ
i−1 ∂ρ

∂ci
+

12#

m=0
m ∕=i

cmmρm−1 ∂ρ

∂ci
,

= ρi +
∂ρ

∂ci

12#

m=0

cmmρm−1,

which yields
∂ρ

∂ci
=

−ρi
$12

m=0mcmρm−1
= −ρi

%
∂f

∂ρ

&−1

(S5)

Therefore,
dρ

dθ
=

∂ρ

∂c

∂c

∂θ
,

where c = (c0, c1, ..., c12); ∂ρ/∂c = (∂ρ/∂c0, ..., ∂ρ/∂c12) and ∂c/∂θ is the Jacobian of c with

respect to θ.

Therefore, we have that

dφ̄

dθ
=

∂fφ

∂φ̄
+

∂fφ
∂ρ

dρ

dθ
. (S6)

and it follows that

dη̄

dθ
=

∂fη

∂φ̄

dφ̄

dθ
+

∂fη
∂ρ

dρ

dθ
, (S7)

dR̄

dθ
=

∂fR
∂φ̄

dφ̄

dθ
+

∂fR
∂ρ

dρ

dθ
+

∂fR
∂θ

. (S8)

Therefore, an analytical expression for Jm(θ) (Eq. S4) is given by

Jm(θ) =

%
dR̄

dθ
,
dφ̄

dθ
,
dη̄

dθ

&
. (S9)
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S3 Results for WM793b
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Figure S8. Estimates of parameters using the structural model with data from various time points.
(a–c) Parameters are the mean of each observation. (d–f) Parameters in the mathematical model.
As estimates Q and Rc can be derived from the structural model, which applies at any time during
phase 3, we expect to see consistent estimates across observation times. Given that WM793b spheroids
initiated with 2500 cells do not reach phase 3 until day 14, we exclude day 12 for these spheroids from
the mathematical analysis. As estimates of γ can only be derived from the steady-state model, which
assumes the outer radius is no longer increasing, we only expect consistency for later observation days.
Bars indicate an approximate 95% confidence interval.
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S4 Total squares regression

In typical least-squares estimation we fit a model of the form

yi = a+ bxi + εy,i, (S10)

where εy,i ∼ N (0,σy) is assumed to be a normally distributed error component in y component

[1], and (a, b) are model parameters. Least-squares and maximum likelihood estimates (â, b̂)

can then be found by minimising the sum-square error

(â, b̂) = argmin
(a,b)

#

i

(yi − (a+ bxi))
2. (S11)

We demonstrate this in Fig. S9. In typical least squares estimation, we minimise the vertical

distance between the data points and the regression line (blue dashed).

In the main document, we fit a linear model to data of the form (R,φ, η), where each

component contains an error term. In two-dimensions, this is akin to a model of the form

yi = a+ bxi + εy,i + bεx,i. (S12)

where we have included an additional error term εx,i ∼ N (0,σx), assumed to be a normally

distributed error component in xi. In this case, the least squares estimate is given by minimising

the total perpendicular distance between the data points and the regression line (Fig. S9, blue

solid) [1].

In the main paper, we fit a linear model of the form

(R(τ),φ(τ), η(τ)) = (Rc,φc, 0) + τ q̂, (S13)

parameterised by Rc,φc and a unit vector q̂.

If we denote y0 = (Rc,φc, 0) and y1 = (Rc,φc, 0) + q̂, then the shortest distance between

observation xi = (Ri,φi, ηi) is given by

d(xi;Rc,φc, q̂) =
‖(xi − y0)× (xi − y1)‖

‖y0 − y1‖
, (S14)

where ‖ · ‖ denotes the Frobenius norm, and × denotes the vector cross product.

Therefore, least-squares estimates of the parameters can then be found by minimising the

sum-square error

min
(Rc,φc,q̂)

#

i

d(xi;Rc,φc, q̂). (S15)

S4.1 Approximating the likelihood

To implement a log-likelihood-ratio based hypothesis test, we must approximate the likelihood

at the parameter estimates. To do this, we note that the total square error, denoted ε2i , is of

the form

ε2i = c1ε
2
x,i + c2ε

2
y,i + c3ε

2
z,i, (S16)
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where εx,i, εy,i, and εz,i are normally distributed with variances σ2
x, σ

2
y and σ2

z , respectively.

If σ2
x = σ2

y = σ2
z , ε2i would have an approximate chi-squared distribution by the Welch-

Satterthwaite equation [2], a special case of the gamma distribution. Therefore, we approximate

the distribution of ε2i by fitting a gamma-distribution to the observed square error when a total

squares estimate is fit to the combined data (Fig. S9b).

Therefore, the approximate log-likelihood is given by

ℓ(Rc,φc, q̂) =
#

i

log fΓ
!
d2(xi;Rc,φc, q̂)

"
, (S17)

where fΓ(·) is the probability density function of the fitted gamma function.

S4.2 Log-likelihood-ratio based test

We denote θ̂0 = (Rc,φc, q̂) the maximum likelihood estimate when the data from all ini-

tial conditions is pooled, and θ̂N = (Rc,φc, q̂) the estimates from initial condition N ∈
{2500, 5000, 10000}. As the models must be nested for the likelihood-ratio test, we estimate the

noise model, fΓ(·), using the estimates from the pooled data.

The test-statistic is given by

λ = ℓ(θ̂2500) + ℓ(θ̂5000) + ℓ(θ̂10000)− ℓ(θ̂0), (S18)

where λ ∼ χ2
ν , and

ν = dim(θ̂2500) + dim(θ̂5000) + dim(θ̂10000)− dim(θ̂0) = 8. (S19)

Our implementation of this test is provided on GitHub in Module/Inference in the function

lm orthogonal test.
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Figure S9. (a) Comparison between typical least-squares error (blue dashed), and total-least-squares
error (blue solid). (b) Square error observed in the data and fitted gamma distribution
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