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ABSTRACT 
 
Background: Arthrospira platensis (commonly known as spirulina) is a promising new platform 
for low-cost manufacturing of biopharmaceuticals. However, full realization of the platform's 
potential will depend on achieving both high growth rates of spirulina and high expression of 
therapeutic proteins.   
  
Objective: We aimed to optimize culture conditions for the spirulina-based production of 
therapeutic proteins.  
  
Methods: We used a machine learning approach called Bayesian black-box optimization to 
iteratively guide experiments in 96 photobioreactors that explored the relationship between 
production outcomes and 17 environmental variables such as pH, temperature, and light 
intensity.  
  
Results: Over 16 rounds of experiments, we identified key variable adjustments that 
approximately doubled spirulina-based production of heterologous proteins, improving 
volumetric productivity between 70% to 100% in multiple bioreactor setting configurations. 
 
Conclusion: An adaptive, machine learning-based approach to optimize heterologous protein 
production can improve outcomes based on complex, multivariate experiments, identifying 
beneficial variable combinations and adjustments that might not otherwise be discoverable 
within high-dimensional data. 
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INTRODUCTION 
 
Biologic drugs have been transforming patient lives for decades. But the traditional systems used 
to produce therapeutic proteins require complex and costly manufacturing. As a result, affordable 
and widespread access to biologics remains a challenge1–3.  
  
The photosynthetic cyanobacterium Arthrospira platensis (commonly known as spirulina) has 
many advantages compared with traditional platforms used to produce biopharmaceuticals. 
These include simple, inexpensive growth and downstream processing; photosynthetic 
metabolism; and Generally Regarded as Safe (GRAS) status with the FDA4–6. Genetic 
engineering of spirulina allows for stable expression of heterologous proteins, including diverse 
anti-pathogen proteins such as active vaccine antigens, antibodies, and therapeutic enzymes7. 
Together, these features offer the potential to produce disruptively low-cost biologics and 
biologic cocktails.  
  
A key aim of any emerging biotechnology platform is the production of recombinant proteins at 
high yields8. Environmental variables play a crucial role in achieving high yields of both biomass 
and heterologous protein3. For platforms like spirulina, many continuous environmental variables 
can be adjusted simultaneously. These include light intensity and spectrum, mixing, aeration, and 
temperature. Methods to predict the optimal combination of so many variables are desirable.  
 
Historically, the biotechnology industry used one-variable-at-a-time (OVAT) experiments to 
optimize production medium9. But this method is slow, expensive, and laborious, leading to 
widespread adoption of ‘multivariate data analysis’ (MVA) to improve manufacturing of 
biologics10–12. MVA carried out with a ‘design of experiments’ (DOE) approach has been widely 
used by biologics manufacturers to optimize production media and growth conditions10–13. One 
biotechnology manufacturer used iterative statistical modeling to increase productivity 34% in 
mammalian cell lines14. However, a central challenge remains in selecting variable subsets and 
the appropriate variable levels to test, given limited a priori knowledge and resources. 
  
Machine learning (ML) approaches can facilitate the adaptive exploration of complex 
multivariate spaces and can exploit complex, nonlinear, higher-order relationships15,16. Among 
such ML approaches, batched Bayesian optimization (BO) has become a preferred black box 
method to tune high-complexity systems when trials are expensive to run, observations are noisy, 
or derivatives of the objective to optimize are unavailable17,18. It is a powerful tool to adaptively 
select experiments and approach an optimum as quickly as possible - even in non-convex 
multimodal search spaces - while being robust with respect to poorly chosen variable bounds, 
which may be expensive or impossible to know with accuracy before experimentation18. 
  
The ability to build genetically modified spirulina cell lines while tightly controlling 
photobioreactor environments presents a unique opportunity to adaptively optimize conditions 
for low-cost production of therapeutics. We report below on the development of a high-
throughput experimentation pipeline using custom bioreactor arrays. We describe how an ML-
based approach iteratively guided a series of experiments to search across possible combinations 
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of 17 environment variables, which ultimately identified several key variable combinations to 
improve production outcomes. Finally, we describe how we applied these conditions to cultures 
of therapeutic strains in larger-scale bioreactors to improve therapeutic protein yield.      
 
 
METHODS 
 
See Supplemental Materials. 
 
 
RESULTS 
 
Custom bioreactor arrays allow for high throughput experimentation 
   
We set out to improve volumetric productivity (heterologous protein yield per unit of culture 
volume and per unit of time) in the spirulina expression system. To enable rapid quantification of 
heterologous protein for ML-guided optimization, we engineered a spirulina strain (SP699) 
constitutively expressing green fluorescent protein (GFP) with a C-terminus dimerization 
scaffold and polyhistidine-tag. This design was similar to our fusion protein designs for 
therapeutic antibodies. Once fully segregated to homozygosity, cells in the engineered spirulina 
filaments showed diffuse and uniform GFP fluorescence (Figure 1A). Using western blot, we 
found that the GFP fusion protein comprised 2.7% of total protein (Supplemental Figure S1). 
This level was within the typical range for antibodies in development as therapeutics7.  
 
To carry out high-throughput experimentation, we constructed 96 bioreactors each with a liquid 
capacity of 0.5 liters. This reactor array was designed with a light path-length similar to 
commercial-sized reactors to facilitate scale-up of improved growth regimens. Each bioreactor 
was constructed with independently controlled, continuously tunable settings for LED-
illumination, temperature, airflow (for mixing), and CO2 flow (for pH control). Initial growth 
conditions were selected to closely mimic commercial and laboratory growth conditions for 
Arthrospira. The growth media used is based on the ATCC recommended medium 1679 for 
spirulina: SOT medium for spirulina, modified by doubling nitrate concentration from 2.5 g/L to 
5.0 g/L to support higher total biomass accumulation without reaching nitrogen limitation. A 
growth temperature of 35°C and cultivation pH of 9.75 to 9.95 were selected to closely match 
published commercial spirulina growth conditions19. Cultures were illuminated with constant 
light at 1000 µmol/m2/s from both sides of the bioreactor to mimic existing capabilities of our 
production-scale system for therapeutics. We defined these initial growth conditions as our 
“standard” for the study. We next sought to commission the bioreactors by verifying the 
reproducibility of run outcomes. Starting with inoculation densities of 0.5 g/L, we carried out 
initial run sets of 15 to 48 bioreactor cultures with the GFP fusion strain. These cultures were 
grown for ~90 hours in our standard condition. Throughout each run, we monitored changes in 
pH and used the cumulative change as a proxy metric for total fixed carbon and, hence, biomass 
growth (see Methods, “Cumulative pH calculation”). For each day of the run set, we also 
sampled the cultures and measured both GFP fluorescence and cell autofluorescence per unit of 
culture volume (see Supplemental Figure S2 for strain spectral analysis).  
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We initially observed a high degree of variance in bioreactor production run metrics. Cumulative 
pH readings for an early run set of 22 bioreactors had a relative standard deviation of ~16% at 72 
hours. However, with improved processes, especially more uniform airflow rates and tighter 
control of CO2 delivery, we reduced overall variance to a relative standard deviation of ~6% in 
cumulative pH change across 61 reactor runs in 3 run sets (Figure 1C). GFP fluorescence 
readings initially had a relative standard deviation of ~13% at ~72 hours. With fluorescence 
normalizations (see Methods), we reduced the noise and achieved a relative standard deviation 
of ~5-6% within single run sets and ~8% across 93 reactor runs in 2 run sets (Figure 1D). Based 
on the consistency of these results, we initiated experiments with varying conditions. 
 
In our first set of bioreactor experiments, we varied the intensity of light, a key variable in 
photosynthetic growth. If carbon fixation rates are less than the cell’s photosynthetic capacity, 
then increasing the intensity of light can increase growth rates. However, delivery of light 
amounts that exceed the cell’s capacity to use it for photosynthesis confers no additional growth 
benefit and can lead to cell damage through the generation of reactive oxygen species. We 
carried out triplicate bioreactor runs at 13 constant light settings, ranging from ~120 to 2415 
µmol/m2/s. We found that cultures grown at higher light intensities had consistently better 
growth and protein production up to a light intensity around 2000 µmol/m2/s. Cultures grown at 
light intensities above our standard condition of 1000 µmol/m2/s had an average of 23% to 38% 
higher GFP yield at the final time point (group mean = 34% more signal, p-value = 1.8e-05) 
(Figure 2A). Volumetric productivity differences with fluxes of 680 to 1000 µmol/m2/s emerged 
around the 48-hour sampling timepoint. Plotting these results as high-resolution light response 
curves revealed a plateau of carbon fixation rates per unit volume at about 2000 µmol/m2/s, 
while GFP accumulation rates per unit volume plateaued at a lower intensity of around 1250 
µmol/m2/s (Figure 2B). The results suggested that increases in light intensity between ~1250 and 
2415 µmol/m2/s reduces the concentration of heterologous protein per unit of biomass 
(“potency”), since the rate of carbon fixation per unit of volume continued to increase without 
similar increases in the rate of heterologous protein accumulation per unit of volume. These 
results further suggested that our cultures reached their maximum photosynthetic capacity at a 
light intensity below the maximum achievable with our light equipment. Thus, further 
improvements in productivity would need to come from other variables.  
 
Bayesian black box mapping of parameter relationships leads to efficient selection of 
culture conditions with improved performance 
 
As a photosynthetic microbe, spirulina is highly attuned to light characteristics such as intensity, 
color, and cycling20. Thus, we sought to vary these light characteristics in our search for more 
optimal conditions. We defined 6 different light parameters. Configuration of these parameters 
specified 1-2 light intensity levels for two different LED types: a set of red-shifted white LEDs 
(3000 - 4750 Kelvin) and a set of blue-shifted white LEDs (4750 - 6500 Kelvin). For red-shifted 
LEDs, the maximum intensity level was a flux of about 1015 µmol/m2/s and for blue-shifted 
LEDs about 1400 µmol/m2/s, yielding a combined flux capacity of around 2415 µmol/m2/s. 
Other light parameters included the light level duration and frequency of cycling. We reasoned 
that because cells in more densely growing cultures would experience, on average, lower 
amounts of light (due to shelf-shading), it may be beneficial to ramp-up light intensities over 
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time. Thus, we also included 2 parameters to configure the slope of light ramping on each LED 
type.  
 
Another key environmental variable is pH. Spirulina cultures are typically grown in alkaline 
conditions. Our search space included a pH range from 8.0 to 10.0 with pH control bands as 
small as 0.2 units. Indoor spirulina cultures are typically grown at a temperature of about 35°C 
with sufficient air flow for mixing. We allowed for bioreactor growth regimens with two 
temperature levels, between 20°C to 37°C, with a specified duration and frequency. In defining 
all parameter bounds we considered that optima for biomass potency may not match the optima 
for biomass yield or volumetric productivity (similar to what we had observed for light 
intensity). Having defined these parameters and associated ranges for configuration 
(Supplemental Table 1), we set out to conduct ML-guided optimization in a complex, 17-
dimentional space. 
 
A key consideration for any ML optimization process is defining the reward function. To 
optimize volumetric productivity, we reasoned that ideal harvest times for some culture 
conditions may not necessarily fall on the last day of the experiment. Fast-growing cultures that 
reached peak productivity at earlier timepoints may be more optimal, provided that enough 
biomass is produced to justify the increased labor cost of more frequent run initiation and 
harvesting. Thus, we scored volumetric productivity, as measured by GFP fluorescence, at each 
sampling timepoint in association with a constant labor cost (Methods, Equation 2). Then we 
took the maximum score for each run (Methods, Equation 3). To better account for week-to-
week fluctuations and to compare outcomes between run sets, we adjusted these run scores using 
the run set standards, and then calculated each run’s fold-improvement relative to the global 
standard mean (Methods, Equation 4). We refer to this productivity score (the reward) as 
“performance.” 
 
To model the relationship between run parameter configurations and performance, we applied a 
Bayesian black-box approach. Bayesian, black-box ML is an automated approach to the joint 
optimization of a complex set of choices using reward function outcomes. The “black box” 
aspect allows us to optimize the function of bioreactor parameters without requiring that we 
know the function in closed form or its derivatives. This allows for unbiased, noise-corrupted 
(stochastic) observations of performance; the only requirement is that the function of bioreactor 
parameters can be evaluated at any point in the defined search space. With this approach, a prior 
belief is prescribed over all the possible run outcomes. This model is then refined as run sets are 
completed, using non-parametric, Gaussian Process (GP) algorithms. The posterior model 
represents updated beliefs about the bioreactor parameters and configurations most likely to 
produce high performance. The model then maximizes over this updated belief, using batch-wise 
optimization strategies to select the next set of experiments. 
 
We explored the 17-dimensional configuration space by iteratively carrying out weekly 
bioreactor run sets with an average of 60 bioreactors on approximately a 90-hour growth interval 
(Figure 3A). Culture conditions for each bioreactor were separately programmed and controlled 
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according to an assigned configuration, informed by the modeling results from previous runs. To 
monitor week-to-week variation, we also ran at least two reactors under standard conditions in 
every run set. Each day, we collected a culture sample from every bioreactor to monitor GFP 
accumulation. At the end of the run set, we scored each run’s performance. Then we fed these 
results back into the model, refining the model’s beliefs and using a batch-wise optimization 
strategy to select configurations for the next run set. 
 
For early run sets, our batch-wise optimization strategy had a bias toward exploratory 
configurations. This allowed for broader sampling of the search space and broad mapping of the 
parameter configuration zones, helping identify potential performance peaks and valleys. We 
found that early run sets had a range of performance outcomes that suggested immediate 
improvements over standard runs. By run set number 5, we observed multiple run configurations 
with around a 2-fold performance improvement, despite having covered only a small proportion 
of the overall search space. Later, in run sets 11-16, we observed 15 additional configurations 
with greater than a 2-fold increase in performance (Figure 3B). To confirm the improvements, 
we took the initial top performers and ran a series of configuration replicates in run set 10. 
Improved configurations had consistently higher performance (group mean fold improvement = 
1.8, standard deviation = 0.25, T test p-value = 3.3e-12) across 5 configuration replicates. 
Relative to standards, these replicates showed a stronger boost in signal after the first 24-hours of 
growth, leading to significant differences by 48-hours (T test p-value = 1.0e-06) (Figure 4A 
top). Mean volumetric productivity for each configuration was 69% to 93% higher than run set 
standards on the final day, leading to 81% higher volumetric yield on average (std = 25%) 
(Figure 4A bottom). For one of these high-performing configurations, we ran a second round of 
replicates in run set 13 and confirmed week-to-week robustness with a mean volumetric 
productivity improvement of 69% in the second run set (Figure 4B). Based on a conversion 
between GFP fluorescence units and µg GFP (Methods, Equation 5), we estimated the mean 
overall rate of protein production increased from 7.8 μg/mL/day to 14.2 μg/mL/day. 
 
For the second group of configurations in run sets 11-16, we took the top performer and sought 
to validate the discovery with 5 configuration replicates in run set 15. Once again, we confirmed 
that the high-scoring configuration had consistently better performance (mean fold improvement 
= 1.8, standard deviation = 0.14, T test p-value = 1.2e-06) (Figure 4C top). Mean volumetric 
productivity was 102% higher than the run set standards on the final day (std = 27%) (Figure 4C 
bottom). Thus, the model discovered multiple run configurations with performance outcomes 
that were more than 4 standard deviations away from our standard conditions, and these 
improvements were robust to replication, both within a given run set and across run sets. We 
concluded that modeling was successful in guiding the efficient discovery of high-performing 
bioreactor conditions for spirulina-based production of heterologous protein.  

 
Temperature, pH, and light adjustments contribute to improved performance 
 
We observed that many high performing configurations had similar parameter settings. To 
further assess the degree to which these shared characteristics were representative of top-
performing configurations, we binned each run based on performance and examined the binned 
histograms for each individual parameter and for derived variables (e.g., lowest temperature 
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across temperature levels) (Supplemental Figure S3). We found that the best performing runs 
had strong temperature, pH, and initial light intensity biases (Figure 5A).  
 
Target temperatures for the top 10% of runs with constant temperature fell into a narrow band, 
with an interquartile range of 33.7°C to 34.1°C. The full range of sampled temperatures for runs 
in the top 10% spanned from 27.7°C to 36.6°C, suggesting that temperatures greater than ~28°C 
may be necessary for the highest performance outcomes. Overall, the further away from a target 
temperature of 34°C, the stronger the association with lower run performance in our 
experiments. This “ideal” temperature fell below the maximum possible temperature of 37°C as 
well as the standard temperature of 35°C.  
 
With respect to pH, the top 10% of runs displayed a strong bias for the lowest possible pH in our 
search space. These high-performing configurations had a median, lower bound pH of 8.06 and 
upper bound pH of 8.56 (lower IQR = 8.01 - 8.10; upper bound IQR = 8.31 - 8.63).  Unlike 
temperature, where the highest-performing configurations had settings adjacent to our initial 
standard, the pH bias fell at the far end of the parameter search space from our initial standard 
pH of 9.75 to 9.95. While it was possible for a given run configuration to sample a wide-ranging 
pH, no runs in the top 10% exceeded an upper pH bound of 9.23, and all reached a lower bound 
of at least 8.54. These results suggest that dipping below a pH threshold of around 8.5 may be 
necessary for the highest performance outcomes.  
 
Due to specification of light gradient parameters within our search space, there was an overall 
bias towards light schedules that would reach our equipment’s maximum light intensity. Across 
all sampled configurations, only 13% had a maximum light flux that fell below 1250 µmol/m2/s. 
Among the top 10% of runs (n = 72), only 12.5% (n = 9) configurations had a max light flux 
below 2000 µmol/m2/s. Nevertheless, among these high-performers, 4 configurations had a max 
light flux between 1200 and 1500 µmol/m2/s. This suggests that while maximizing light is a 
strong contributing factor to more optimal performance, it may not be necessary for top 
performance. 
 
To examine the relationship between parameters, we began by plotting the values for each 
parameter pairing in bins based on run performance (Supplemental Figure S4-S6). We also 
created plots that applied third parameter cutoff values. Since there were no top performing runs 
with a temperature below 28°C, we applied this as one of our cutoffs. We observed that the low-
performing configurations below this temperature had maximum light fluxes and lower-bound 
pH settings that spanned a range of values with no clear relationship (Supplemental Figure S7). 
Above this temperature, however, configurations in the top 25% tended to have either low pH or 
the maximum achievable light intensity; configurations in the top 10% tended to have both 
(Figure 5B). These observations suggest that light flux and pH depend on a temperature 
threshold but are otherwise independent parameters that combine to generate the highest 
performance outcomes. To further evaluate the contribution of lower pH to overall performance, 
we compared two groups of high-light, moderate temperature configurations: one with lower pH 
and the other with high pH. Median fold improvement in performance was 0.53-fold greater for 
the lower pH group (Figure 5C). We thus conclude that the ideal temperature band for 
cultivation falls around 33 to 34°C, and that for run configurations with temperatures above 
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~28°C, both high light intensity (schedules with max light flux reaching at least 1200 µmol/m2/s) 
and low pH (lower bound < 8.5) contribute to dramatic performance improvements.  
 
Key parameter adjustments lead to improved yield with therapeutic strain and larger-scale 
cultures 
 
We applied one of the top-performing run configurations (Supplemental Table 2) to culturing a 
spirulina strain that expresses a single-domain antibody (VHH) specific to Campylobacter jejuni 
flagellin in the 450 mL reactors. We compared growth (as measured by ash-free dry weight) and 
VHH levels (as a percentage of total soluble protein) between our initial standard and ML-
discovered configuration. We found that cultures of this anti-campylobacter strain grew better 
than GFP strain cultures under our standard conditions. Despite this higher baseline, total 
biomass yield for the anti-campylobacter strain was 39% higher in the ML-discovered conditions 
after ~90 hours of growth (one-tailed T test p-value = 0.04), corresponding to overall growth rate 
of approximately 0.68 g/L/day vs. 0.49 g/L/day in the standard condition (Figure 6A). VHH 
levels were unchanged in biomass samples from the ML-discovered condition (Supplemental 
Figure S8), indicating that performance improvements with the ML-discovered condition came 
primarily from improved growth.  
 
To confirm effect in a production-scale system, the anti-campylobacter strain (SP1182) was 
grown in parallel 250-liter flat panel photobioreactors under standard and improved conditions. 
We used a simplified, constant light program at 1350 µmol/m2/s, given constraints in the existing 
larger-scale system. We also had more approximate temperature controls than in the smaller-
scale reactors. In a production run growth cycle totaling 7 days, the culture under improved 
conditions outperformed standard conditions, generating about 63% more biomass and higher 
VHH yields (Figure 6B). Thus, we conclude that lower pH (8.10 - 8.61) with higher light (1350 
µmol/m2/s or more) and a slightly lower target temperature (33.3°C - 34.128°C) is a beneficial 
set of conditions to improve the yield of antibody-expressing strains at larger-scale.   
 
 
DISCUSSION 
 
Traditional biologic platforms are ill-equipped to meet global demand, leaving a need for 
alternative, low-cost expression systems2. Indoor cultivation of spirulina provides an opportunity 
to finely tune growth conditions for low-cost production of biologics. We demonstrate that a 
Bayesian black-box model can efficiently steer cultivation conditions toward improved 
outcomes. Over iterative rounds of experimentation (between 5 to 15 rounds), we discovered 
multiple configurations with specifically tuned temperature, lower pH, and high overall light that 
approximately doubled productivities in a spirulina-based expression system. We further 
demonstrate that these conditions improve spirulina-based production of an anti-campylobacter 
antibody in large-scale culture. 
 
Emerging biotechnology platforms introduce production organisms with unique and valuable 
attributes to the biopharmaceutical industry. A key challenge for emerging platforms is 
effectively evaluating multiple, often interacting environmental parameters that can impact 
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productivity. Outside of ideal conditions, heterologous expression systems are particularly 
sensitive to stressors21. Thus, precise tuning of culture conditions can help to push the limits of 
cellular productivity while also ensuring more reliable production cultures and processes. Given 
limited resources, biologics manufacturers must try to both discover optimal combinations and 
finely tune key variables. Methods that reduce the total number of trials and evaluate variable 
interactions have improved upon the conventional one-variable at a time (OVAT) approach to 
variable optimization. Most notably, DOE approaches have saved time and money across 
multiple phases of drug development, leading to widespread adoption in the pharmaceutical and 
biotechnology industries. 
 
DOE involves pre-determined study designs based on goals (e.g., screening, response surface 
mapping, optimization), number of factors to be investigated, and total number of experiments9. 
Often DOE is carried out in multiple phases. An initial screening phase applies fractional 
factorial designs to test combinations of variables at 2 or 3 levels22,23. After selecting key 
variables an optimization phase may follow, which tests additional center and axial points to help 
estimate linear and quadratic response curves and thus better “tune” each variable24. The specific 
design of a DOE-based study often takes a reasoned approach to characterizing complex, 
multivariate space by cautiously selecting appropriate variable levels and fractional factorials, 
applying both existing expert knowledge and thoughtful consideration. 
 
In contrast with the pre-planned trials and separate phases for screening and optimization in 
many DOE studies, the adaptive nature of BO allows for greater flexibility in design. It is more 
robust to observation noise and variables that may interact non-linearly, such as genetic 
perturbations. BO samples broadly and efficiently across a landscape of possible variable 
combinations, continuously updates model assumptions based on the available data, and then 
adaptively shifts resources to conduct additional experiments in the most promising areas of a 
search space. With this adaptive modeling approach, researchers can rapidly move toward 
improved outcomes based on available information.  
 
It can sometimes be difficult to appreciate the full value of an adaptive model in retrospect. As 
part of our study, we ran just 245 configurations prior to discovering multiple configurations that 
landed in the top 10% of performers overall. A comparable number of trials could be run in a 2-
level, 8 factor, full factorial DOE study (28 = 256 trials) by testing only a subset of variables, 
similar to our “simple” 8-parameter search sub-space (see Methods, “Parameter space of 
controllable bioreactor alternatives”). This traditional approach may have delivered similar 
directional information regarding temperature, pH, and light intensity responses, but reaching 
these conclusions would have depended on which variable levels were selected initially for 
testing. We found that temperatures for top performing bioreactor run configurations tended to 
fall in a narrow band around 33 to 34°C; DOE screening with a high temperature point of 37°C 
and a middle or low point between 25°C and 30°C, for example, would have missed this effect. 
Similarly, we found that all top-performing configurations had a pH range that fell below 8.5 
units; DOE screening based on the spirulina literature, which widely reports using pH values 
between 9 and 1025, would likely have missed this pH effect if the low point was above 8.5. By 
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de-risking the design phase selection of variable subsets and levels for testing, the adaptive 
model encourages broader exploration of possibilities, including variables that may contribute to 
higher-order interactions and non-convex responses. Furthermore, the rigidity of DOE would 
have presented significant limitations in sampling from both ramping and cyclic light schedules 
as a complex subspace, which in our study totaled 17-dimensions, requiring over 130,000 trials 
to complete a two-level full factorial experiment.   
 
The adaptive, BO approach has a long history in fields outside of biotechnology26–30. It 
originated in the oil industry as a means of predicting more optimal oil-drilling locations and has 
become a de facto tool at leading machine-learning centers for model hyperparameter 
tuning17,18,29,30. Within biotechnology drug discovery fields, BO approaches have successfully 
guided chemical synthesis and protein engineering improvements31,32. Despite this history and 
demonstrated value, BO has had limited overall adoption in biotechnology, and it has not to our 
knowledge been applied in biologic manufacturing33,34. 
 
We conclude that an adaptive, ML-based approach to optimization of culturing conditions is a 
valuable tool for biotechnology. BO can identify beneficial variable combinations and 
adjustments that might not otherwise be discoverable within high-dimensional data. As a 
complement to commonly applied DOE approaches, the adaptive ML approach can be especially 
helpful in exploring relatively uncharacterized systems, fine-tuning parameters in the context of 
many variables, and overcoming preconceived notions about an established system by using a 
wider search space with the potential for surprising discoveries. Future efforts could focus on 
new parameters, such as media and genetic variables, and could apply deep learning tools to 
incorporate other data sources, such as microscopy images, for further improvements in model 
prediction and search efficiency. 
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Figure 1: Bioreactor facility setup and commissioning establishes foundation for high-
throughput exploration of culturing conditions. A) Microscope images of WT (UTEX LB 1926) 
and GFP-scaffold (SP699) spirulina strains shown in bright field, with Texas Red filter, and with 
YFP filter shown at 1000x magnification (top) and 100x magnification (bottom) using a Leica 
DM5000B microscope. B) Photobioreactors in a facility of 96 independently controlled reactors. 
Each reactor is independently controlled with programmed settings. C and D) Bioreactor 
commissioning runs as time series of cumulative change in pH (left plot, total n = 61), and GFP 
fluorescence (right plot, total n = 93). Box plots depict median and interquartile range by run set 
(color) and timepoint. Precise sampling times for GFP readings vary. Points reflect actual sample 
times; box plots are grouped by day. 
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Figure 2: Higher light intensities lead to more culture growth and GFP production until the 
relationships plateau. A) Time series of mean cumulative change in pH (left plot) and mean GFP 
yield in fluorescence units (right plot) for bioreactor cultures grown at constant light across 13 
different target light fluxes (120 - 2415 µmol/m2/s). Shaded regions represent the 95% 
confidence interval based on triplicate runs. B) Light response curves for the rate of cumulative 
pH change (left) and volumetric GFP productivity (right) on each day of the run set (colors). 
Shaded regions represent the 95% confidence interval based on triplicate runs. 
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Figure 3: Bioreactor run performances over 16 rounds with targeted sampling of the run 
parameter search space. A) Workflow schematic for ML-guided optimization of bioreactor run 
performance. Each week ~40-80 bioreactors are run with a set of parameter configurations for 
light, temperature, pH and mixing rate variables, totaling a 17-dimensional search space. B) Fold 
improvement in bioreactor run performance by round of ML-guided experimentation. Top plot 
shows individual bioreactor runs (dots) and standard condition runs (white circles) with fold 
improvement adjusted for run set variation in standards and calculated relative to the global 
mean of standards (1-fold, n = 51). 
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Figure 4: Kernel density estimate of fold-improvement (top) and time series of mean GFP 
fluorescence yield (bottom) for replicate runs of top-performing bioreactor configurations 
compared to standards (gray). A) Early, top-five run configurations in a validation run set (n = 5 
each configuration, gray standard n = 7). B) Early top-performing configuration across two run 
sets (orange configuration n = 10, standard n = 14). C) Later-stage, top-performing configuration 
(pink configuration n = 5, blue standard n = 6). Shaded areas represent 95% confidence intervals. 
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Figure 5: Highest-performing conditions tend to have similar pH, light, and temperature 
characteristics. A) Key single variable histograms binned by performance: lowest 10% (red), 
lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% (teal). B) Key variable 
kernel density plots and paired scatter plots for run configurations with temperatures above 
28°C. Run configurations are binned by performance: lowest 10% (red, temperature subset n = 
16), lower 25% (orange, temperature subset n = 60), upper 25% (dark blue, temperature subset n 
= 100), top 10% (teal, temperature subset n = 66). C) Boxplot comparison of low pH 
configurations (purple, n = 65, pH lower bound < 8.55, pH upper bound < 9.23) and high pH 
configurations (green, n = 18, pH lower bound > 9.5) with temperature 33°C – 35°C and 
maximum light flux > 2000 µmol/m2/s. 
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Figure 6: Application of high-performing conditions to anti-campylobacter strain in 450 mL and 
250 L reactors increases biomass yields. A) Net biomass yield of the GFP-fusion (SP699) and 
anti-campylobacter VHH (SP1182) strains after ~90 hours of growth at 450 mL scale. ML-
discovered configuration (teal) compared with standard (gray). Error bars represent standard 
deviation of 3 run replicates. B) Biomass growth of an anti-campylobacter antibody strain 
(SP1182) in 250 L reactors. Improved condition based on ML-guided experimentation (orange) 
and initial standard condition (blue). Error bars represent standard deviation of AFDW 
measurements.  
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Supplemental Materials 
 
 
METHODS 
 
Plasmids and strains 
Strains were built using integration vectors directed toward a neutral integration site (Q01210 - 
Q01230 in the case of SP699) or D01030 kmR locus (in the case of SP1182). Integration vectors 
were built with a constitutively active, native promoter from upstream of spirulina’s cpcB gene 
(Pcpc600), as well as with the appropriate transgene, the E. coli rrnB terminator, a selection marker 
expression cassette, and 1-1.5 kb homology arms. SP699’s GFP transgene was constructed using 
Enhanced GFP (eGFP) fused to a synthetically designed, homo-dimeric scaffold and poly-histidine 
tag at the C-terminus (AA276). Methods for construction of SP1182 are further described in Jester, 
et al., 2020. Cultured cells were transformed into wild-type UTEX (SP003) or kanamycin 
resistance knock-out (SP205) and genotyped as described in Jester, et al., 2021. Pre-transformation 
cultures were grown in Multitron incubators at 35°C, 0.5% CO2, 110‐150 μEi of light, and shaking 
at 120‐270 rpm. Longer‐term cultures were maintained in Innova incubators at 30°C, atmospheric 
C02, 50‐110 μEi of light, and shaking at 120 rpm. These small-scale cultures of 3-100 ml were 
grown in SOT media supplemented with 2.5-5 µg/ml streptomycin (for SP699) or 70-100 µg/ml 
of kanamycin (for SP1182) based on the transgene selection marker.  
 
Bioreactor design (450 mL reactors) 
Experiments were conducted in 96 independently controlled small, 450 mL, airlift reactors. All 
reactors were equipped with silicone adhesive-mount heater and a Neptune Systems temperature 
probe. A subset of the reactors were equipped for cooling with aluminum cooling heat sink 
plates. Each reactor was also equipped with a dimmable, dual color, LED-backlit LCD panel 
(Reefbright, NJ, USA) capable of illuminating the culture up to 2415 µmol/m2/s (3000 to 6500 
Kelvin) as well as a pH probe to drive feedback control of culture pH via CO2 injection to the 
airlift stream. Each reactor is lit from the narrow ends to simulate a larger form factor flat plate 
bioreactor with commercially usable volume. Neptune Systems controllers with Apex software 
were used to monitor the temperature and pH and to control each reactor’s heating/cooling 
elements, solenoid for CO2 injection, and light panel intensity level. 
 
Bioreactor run set experiments (450 mL reactors) 
Seed train cultures used for inoculation were maintained in 9 L bioreactors in 1x SOT with 2x 
nitrate and sodium bi/carbonate buffer under the following settings: constant 500 µmol/m2/s, 
34.8 - 35.3 °C, pH of 9.8 – 10, 2 LPM air flow for mixing. Three days prior to a run set, seed 
train cultures were harvested and used to re-inoculate seed reactors at a consistent inoculation 
density based on chlorophyll content. 
  
To prepare inoculums, cells were transferred from seed reactors into an induction tank and 
allowed to settle. Liquid was decanted off the top, leaving a cell slurry. Inoculum slurries were 
assayed for chlorophyll content levels by first taking a 10 mL sample of slurry, centrifuging the 
sample for 10 min at 4,000 RPM, decanting, resuspending in DI water, transferring into 90 mL 
methanol, and placing in a sonicating water bath for 15 minutes. Then after taking a 1 mL aliquot 
of the methanol cell mixture and spinning it down, a 0.5 mL aliquot of supernatant was diluted 
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and used to measure chlorophyll absorbance at 664 nm. This absorbance measure was used to 
estimate the chlorophyll content (12.1 μg/Abs unit) and biomass (total μg of chlorophyll / 1.8% 
of total biomass) and to calculate a volume of cell slurry for each bioreactor inoculation, 
targeting an initial estimated biomass of 500 mg/L. 
  
Prior to bioreactor run initiation, all pH probes were checked for pH drift between readings. 
Probes were recalibrated if the cumulative drift exceeded 0.15 pH units. Benchtop reactors were 
filled with 320 mL of water followed by 40 mL 10x SOT with 2x nitrate, 40 mL 1 M sodium 
bi/carbonate pH 9, and 0.5 mL of 100g/L antifoam. Once filled, the CO2 tank value was opened 
and set to 30 PSI and flow rate on each CO2 rotamer was set to 0.1 LPM. Following inoculation, 
all reactors were brought up to a final volume of 450 mL and adjusted to the appropriate air flow 
rate. During the run, any water lost to evaporation was replaced by topping up reactor volumes 
each morning. 
 
Bioreactor schedules and monitoring (450 mL reactors) 
All bioreactor runs were registered in a PostgreSQL database together with a run configuration 
ID. Updated light and temperature settings were pushed to controllers every 12 minutes. 
Temperature and pH were actively monitored for deviations outside of programmed ranges and a 
record of light settings was updated with successful/failed pushes to the controller. Alarm 
notifications were triggered when temperatures reached 1.5 degrees above or below programmed 
values, as well as when pH readings reached 0.2 units above or below or when there were failed 
attempts to push light setting updates after a retry. Runs with either sustained alarms or 
recognized process deviations were flagged and manually reviewed. Upon review, runs with 
significant deviations, which may have impacted the integrity of results, were excluded from 
further analysis. 
 
Cumulative pH calculation 
Spirulina cells fix carbon during photosynthesis at a rate that correlates with biomass growth, 
and over time this increases the pH of a photobioreactor. When the upper bound pH setting is 
reached, this triggers the solenoid opening for the CO2 sparging, which lowers the pH back down 
to the lower bound of the pH range. The result is a sawtooth pattern, consisting of a gradual 
ascending interval to the upper bound and a steep return to the lower bound.  To estimate 
biomass growth during bioreactor run experiments, we tracked the cumulative change in pH 
between solenoid firings and extrapolated changes during CO2 sparging times. Starting 30 
minutes after run initiation, changes between pH sensor data points were cumulative added 
together. During CO2 sparging, the change in pH was estimated using a linear regression based 
on the previous 6 hours of data. 
 
GFP fluorescence readings and normalization 
For high-throughput protein quantification in bioreactor run experiments with SP699, daily 
samples of 1 mL were taken from each reactor and diluted (typically, 5 to 17-fold) in Thermo 
Scientific 8-well dishes with SOT to within the linear range of readings on a Spectramax M2 
plate reader. Using SoftMax Pro 5.2 we ran a protocol script with shaking. Measurements to 
quantify GFP per unit of volume were taken with 488 nm excitation at 512 nm emission with a 
495 nm cutoff filter. Additional control measurements of GFP were taken with 488 nm excitation 
at 540 nm emission with a 495 nm cutoff filter. Cell autofluorescence, composed primarily of 
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chlorophyll and phycocyanin, was measured with 370 nm excitation at 660 nm emission with no 
cutoff filter. We adapted the instrument’s 96-well layout to 8-well plates by measuring at four 
central positions within each well of the 8-well plate and averaging the results. To account for 
position-to-position variation in the instrument’s readings, we first found each position’s median 
time zero fluorescence reading, and then adjusted readings to account for the relative difference 
between positional medians and a global median baseline. 

 
Overview of batched Bayesian optimization 
Bioreactors were run in parallel for many iterations to characterize the effects and co-dependence 
of bioreactor parameter settings on spirulina growth and protein product yield. By measuring 
cells grown in a large matrix of different environmental parameter settings, the best conditions 
for the highest protein yields can be realized; but both selection of the search space, for 
parameter settings over which to optimize, and the efficient prioritization of search space 
exploration is an open problem.  
 
In this work, the settings for each bioreactor parameter were guided by the  black-box Bayesian 
optimization (BO). This methodology provides an automated approach to the joint optimization 
of a complex set of choices, such as bioreactor parameter configurations. The "black box" aspect 
of the optimization refers to the fact that we do not need to know the closed form or the 
derivatives of f(bioreactor parameters) to optimize it and can allow for unbiased noise-corrupted 
(stochastic) observations of bioreactor run outcomes; the only requirement is that we are able to 
evaluate f(bioreactor parameters) at any point in the configuration space of interest.  
Specifically, we used the following procedures for optimizing bioreactor run outcomes via BO: 

1. Mapping spirulina growth condition alternatives to an explorable bioreactor parameter 
space 

2. Defining a reward function to optimize over the parameter space 
3. Selecting a batch (“set”) of trials (bioreactor runs) from the current space modeled via  

Gaussian Process Batched Upper Confidence Bound (GP-BUCB) 
4. Updating Bayesian model from noisy observations of bioreactor run outcomes 
5. Running the loop: repeat (selecting (#3) => updating (#4)) until "done" 

Each of these steps is further outlined in the following subsections. 
 
Parameter space of controllable bioreactor alternatives 
Each bioreactor run in ML-model experiments had an assigned run configuration with settings 
for 17 different parameters (Supplemental Table 1). The use of contextual bandits (see Golovin, 
et al.) allowed for the top-level selection of a "simple" light and temperature 8-dimensional 
subspace, while still allowing for identification of more complex light and temperature schedules 
in the full 17-dimensional space, if the complexity provided improved bioreactor run outcomes. 
This strategy also encouraged the model to sample equally from simple and complex search 
subspaces initially (i.e., both were tried in equal proportion when the model had a uniform prior, 
allowing fast discovery of simple, improved bioreactor run configurations if the simple 
parameter settings were on-par or better than complex parameter settings).  
 
Light parameters made up 9 of the 17 parameters. Light level parameter settings were specified 
in units of µmol/m2/s, whereas each type of LED backlighting on the bioreactor LCD panels was 
controlled on a power scale of 1 to 100%. To convert between units of µmol/m2/s and the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 8, 2021. ; https://doi.org/10.1101/2021.08.06.453272doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.06.453272
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

24 

equipment’s power settings, specified intensities were normalized by the maximum achievable 
intensity: 1015 µmol /m2/s for the red-shifted LEDs; 1400 µmol /m/2 for the blue-shifted LEDs. 
Each LED-type (red-shifted and blue-shifted) had independent level and gradient settings. 
However, for configurations with two, alternating light levels, the timing of light level changes 
was synchronized between LED types. A light period was defined as one cycle of level 1 and 
level 2 settings. Cycle frequency was specified by the “number of light periods” parameter, 
which specified the total number of equal duration periods across 96 hours. The “light level 1 
fraction” specified the proportion of each period at light level 1 versus light level 2. Light 
gradients were specified as slopes corresponding to the daily, percent of max increase in light 
intensity. Thus, a gradient slope of 0.5 corresponded to a 50% increase above specified light 
intensities over 24 hours. In application, these light level changes were pushed to controllers 
every 12 minutes. Gradients were applied at the start of a run, and as a result, light intensities 
often reached and maintained the maximum setting at some point during the run. 
 
Beyond light parameters, there were 5 temperature, 1 air flow and 2 pH related parameters. 
Similar to light parameters, the “number of temperature periods” specified the total number of 
equal duration periods across 96 hours, and the “temperature level 1 fraction” specified the 
proportion of each period at temperature level 1 versus temperature level 2. The “air flow” 
parameter was manually set to the appropriate LPM on air flow meter. The pH parameters 
defined a band within which the pH was allowed to vary cyclically. The “pH lower level” 
(Φlower) defined the lower bound of this allowed pH window while the “pH upper fraction” (f) 
defined the height of the window relative to the maximum achievable pH (Φmax) of 10.0. When a 
culture reached the upper extent of the allowed pH window, due to biomass growth, the pH was 
adjusted via CO2 bubbling back to the lower level. Due to physical hardware limitations, the 
allowed pH window had a minimum achievable width, referred to as Δmin. We then defined the 
upper extent of the allowed pH window (Φupper) as a function of the following: 
 
Constants:   

Φmax = 10.0 The maximum achievable/allowed pH for our system 
Δmin = 0.2 The minimum achievable pH window/gap size 

Given:  
Φlower   The lower bound of the pH window (“pH lower level”) 
f   The fraction of the maximum achievable window size to use (“pH upper  

  fraction”) 
Equation #1: 

Φupper = Φlower + Δmin + f * (Φmax - Φlower - Δmin) 

 
For example, given a pH lower level of 8.2 units, a pH upper fraction of 0.5 would place the 
upper-bound pH setting at 9.2 units; i.e., Φupper = 8.2 + 0.2 + 0.5*(10.0 - 0.2 - 8.2) = 9.2. 
 
Reward function definition 
The function being optimized in this case was: f(bioreactor parameters) = bioreactor run 
outcome; each reactor run having a unique configuration of parameter settings was equivalent to 
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one evaluation of f(bioreactor parameters) and produced a resultant outcome at the end of each 
bioreactor run.  
We defined a protein production curve for a single reactor over time as follows: 
Given: 

F(t) The GFP fluorescence reading at time t 
 C Overhead cost of a production run 
Equation #2: 

g(t) = (F(t) – F(0)) / (t + C) 
 

The cost parameter, C, encodes an overhead penalty associated with initiating and harvesting 
each production run cycle. We have used an empirically selected value of C = 200 in this work, 
as actual, live-production environment costs can carry complex sets of dependencies and 
uncertainties that are difficult to rapidly and accurately access. Given our protein production 
curve definition for a single run (Equation #2), we then defined the reward for a given bioreactor 
run as:  
Equation #3: 

R(g) = maxt g(t) 
Each batch (“set”) of bioreactor runs was seeded by a common starting culture (see “Bioreactor 
run set experiments (450 mL reactors)”) and the interbatch performance variance was estimated 
by including multiple control condition replicates (“standards” based on initial conditions) within 
the batch to quantify both inter- and intra-batch variance. The reward outcome for a given 
bioreactor run was then adjusted to account for this inter-batch variance as follows: 
Given: 
 µbatch The mean intra-batch reward for our standard runs 
 µglobal The mean inter-batch (global) reward for our standard runs 
Equation #4: 
 R’(g) = (R(g) - µbatch + µglobal) / µglobal 
 
We then defined our per bioreactor run reward (termed “performance”) over which to optimize, 
f(bioreactor parameters), as this adjusted reward function: R’(g). 
 
Selecting a batch of trials via GP-BUCB and iterating 
The strategy employed in this work to search the defined parameter space was via Gaussian 
Process Batched Upper Confidence Bound (GP-BUCB) as implemented by Vizier17. The GP 
model (Bayesian black box model) prescribed a prior belief over all possible bioreactor run 
outcomes and its posterior represented updated beliefs about the bioreactor parameter settings 
most likely to produce the highest performance given the runs completed so far. Initially the 
model assigned a uniform prior belief across all outcomes. Selecting a single trial (bioreactor 
run) via the GP model can be performed by taking the bioreactor configuration (i.e., a point in 
model belief space) expected to produce the highest performance according to the current belief, 
as modeled by the GP according to the Upper Confidence Bound (UCB). However, extending 
this procedure to produce a batch of parameter choices optimally is an open problem.  
 
In this work, the Batched Upper Confidence Bound (BUCB) approach selected subsequent 
points in the parameter space by simulating the model belief posterior, assuming a pessimistic 
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performance for all points included in the batch so far, and then reapplying the UCB selection 
policy on this updated posterior. Each subsequent bioreactor configuration choice was made 
serially by the model using this simulated approach, resulting in a batch of bioreactor 
configuration choices to attempt in parallel. 
 
Given a new batch (set) of bioreactor configuration evaluations (actual run performances), the 
belief posterior was updated with the full set of run performances to-date. Subsequent batches of 
runs were then sampled and evaluated cyclically by repeating this GP-BUCB policy. 
 
Ash-free dry weight (AFDW) and chlorophyll content 
Biomass samples were taken from each bioreactor and spun down in tabletop centrifuge for 10-
15 minutes. Supernatant was removed. Biomass was transferred to glass tubes, washed with 10 
mL of 200 mM NaCl, and spun down for another 10-15 minutes. After removing the supernatant, 
biomass was placed in a drying oven at 100°C for 24 to 72 hours. Once dry, biomass was 
removed, allowed to cool, and weighed on microbalance to obtain the pre-ash weight. Biomass 
material was then placed in an ashing furnace at 550°C for at least 16 hours followed by cooling. 
Samples were then weighed to obtain the post-ash weight with which to subtract from pre-ash 
weights.  
 
To determine chlorophyll content of dried pellets and cell lysates, samples were diluted 1:9 in 
methanol and incubated on ice for 5-10 minutes. After spinning for 10 minutes to separate blue 
pellet, the absorbance of supernatant fraction was measured at 664 nm.  
 
Immunoassay protein quantification 
Cell lysates were prepared by a freeze-thaw and bead-beating protocol. 10 mL cell samples were 
collected, pelleted, and washed with 100 mM sodium chloride + 100 mM sodium phosphate, pH 
6.0. Washed pellets were stored at -80°C overnight; then thawed in 100m mM sodium phosphate 
on ice and transferred to tube with glass beads. Samples were run ~3 times in bead beater at 5000 
for 30 seconds, saving the supernatant and washing beads with sodium phosphate buffer. After 
removing a subsample to determine chlorophyll content and the AFDW equivalent per uL of cell 
lysate, samples were transferred to 2x SDS buffer. 
 
Cell lysate and purified proteins (from SP699) were separated by standard SDS-PAGE 
electrophoresis and transferred to a nitrocellulose membrane. Blots were probed with a 
monoclonal mouse anti-histidine tag antibody (GenScript), rinsed, and probed with rabbit anti-
mouse horseradish peroxidase (HRP) secondary antibody. Chemiluminescent substrate was 
added, and the blot was imaged and then quantified using ImageJ. Total band intensity vs. loaded 
protein calibration curves were prepared for the purified proteins, and the concentration of 
epitope tagged protein in the lysate calculated from band intensity and this standard curve.  
 
Protein levels for later run sets with SP1182 were measured by capillary electrophoresis 
immunoassay (CEIA). First, a Bradford assay was carried out to quantify total soluble protein in 
each run sample. Samples were then diluted and loaded with 0.12 µg of protein per capillary. 
Purified protein controls were loaded in the range of 0.004 to 0.03 µg per capillary in generating 
a standard curve. Materials included: 12-230 kDa Jess/Wes Separation Module (ProteinSimple), 
mouse anti-histidine tag primary antibody (GenScript), and a rabbit anti-mouse HRP-conjugated 
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secondary antibody (Protein Simple). Peak analysis was performed using the Protein Simple 
Compass software. 
 
GFP unit conversion 
From immunoassay quantification of GFP protein in an SP699 culture, grown under our standard 
conditions, we found there were ~12321 µg of GFP per unit of chlorophyll absorbance. 
Similarly, there were ~1297 GFP fluorescence units per unit of chlorophyll absorbance. Thus, we 
defined a rough conversion factor (c) of 9.5e-3 µg GFP per unit of GFP fluorescence. Assuming 
these relationships held constant for a given bioreactor run timepoint with associated GFP 
fluorescence readings, the GFP yield in µg/mL (y(t)) was estimated as follows: 
Given: 

F(t) The GFP fluorescence reading at time t 
c  Conversion factor for GFP fluorescence to µg using sample chlorophyll content 

Equation #5: 
y(t) = (F(t) – F(0)) * c 

 
Bioreactor run experiments (250 L reactors) 
To validate performance of BO improved conditions at scale, growth of the strains under 
standard and machine learning conditions was conducted in 250 L production reactors with 
similar light path and geometry. One reactor was run under standard conditions (pH 9.8 – 10.0; 
temperature 34.9-35.1 °C), the other reactor was run under conditions similar to high-performing 
run configurations from the BO search (pH 8.1-8.6, temperature 33.3-34.1 °C). Both reactors 
delivered the same light flux (1350 µmols/m²/sec) and the same media (1x SOT with 2x nitrate, 
identical to that described above in section “Bioreactor run set experiments (450 mL reactors)”. 
Cells were grown for seven days; relative growth rates are compared in Figure 6B. 
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SUPPLEMENTAL TABLES 
 
 
Supplemental Table 1: Model Parameters and Ranges 
 

Name Min 
Value 

Max 
Value 

Simple 
Subspace 

Complex 
Subspace 

Parent 

Air flow 0.4 1 X X  
Number of light levels 1 2  X  
Number of light periods 0 10  X Number of light 

levels 
Light level 1 fraction 0.15 0.85  X Number of light 

levels 
Blue-shifted light level 1 0 1400 X X  
Blue-shifted light level 2 0 1400  X Number of light 

levels 
Red-shifted light level 1 0 1015 X X  
Red-shifted light level 2 0 1015  X Number of light 

levels 
Blue-shifted light gradient 0 0.5 X X  
Red-shifted light gradient 0 0.5 X X  
Number of temperature levels 1 2  X  
Number of temperature 
periods 

0 4  X Number of 
temperature levels 

Temperature level 1 fraction 0.25 1  X Number of 
temperature levels 

Temperature level 1 20 37 X X  
Temperature level 2 20 37  X Number of 

temperature levels 
pH lower bound (Φlower) 8 9.79 X X  
pH upper fraction (f) 0 1 X X  
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Supplemental Table 2: ML-discovered configuration applied to culturing a VHH-expressing 
strain, SP1182 (450 mL) 
 

Name Value 
Air flow 0.8 
Number of light levels 2 
Number of light periods 9.27 
Light level 1 fraction 0.16 
Blue-shifted light level 1 1307 
Blue-shifted light level 2 1399 
Red-shifted light level 1 1003 
Red-shifted light level 2 282 
Blue-shifted light gradient 0.49 
Red-shifted light gradient 0.37 
Number of temperature levels 1 
Number of temperature 
periods 

 

Temperature level 1 fraction  
Temperature level 1 33.85 
Temperature level 2  
pH lower bound (Φlower) 8.01 
pH upper fraction (f) 0.045 
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SUPPLEMENTAL FIGURES 
 
 

 
 
Supplemental Figure S1: Western blot of his-tagged protein. Cell lysate from SP699 (GFP 
fusion strain) was loaded in three amounts and compared with the calibration curve of a known 
standard to quantify epitope-tagged protein in the lysate.  
 
 
 

 
 
Supplemental Figure S2: GFP and cell autofluorescence emissions have distinct peaks. The 
fluorescence emission spectra with 370 nm excitation shows one sample composed of 100% 
GFP-fusion (SP699) cells (dark blue) and samples mixed with WT (UTEX LB 1926) cells. 
Mixed samples are composed of 80% GFP-fusion (orange), 60% GFP-fusion (gray), 40% GFP-
fusion (yellow), 20% GFP-fusion (light blue). The final sample is 100% WT (green). 
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Supplemental Figure S3: Subset of single parameter histograms by performance bin: lowest 
10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% (teal). 
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Supplemental Figure S4: Selected subset of temperature-related parameter pairings by 
performance bin: lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark 
blue), top 10% (teal). 
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Supplemental Figure S5: Selected subset of light-related parameter pairings by performance 
bin: lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% 
(teal). 
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Supplemental Figure S6: Selected subset of pH related parameter pairings by performance bin: 
lowest 10% (red), lower 25% (orange), within IQR (gray), upper 25% (dark blue), top 10% 
(teal). 
 
 
 

 
 

Supplemental Figure S7: Key parameter kernel density plots and paired scatter plots for run 
configurations with temperatures below 28°C. Run configurations are binned by performance: 
lowest 10% (red, temperature subset n = 56), lower 25% (orange, temperature subset n = 42), 
upper 25% (dark blue, temperature subset n = 3). There are no configurations from the top 10% 
in this subset. 
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Supplemental Figure S8: Mean VHH protein as a percentage of total soluble protein for 
biomass grown in ML-discovered configuration (teal) vs. standard (gray). Error bars represent 
standard deviation (n = 2 run replicates). 
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