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Abstract Cytometry techniques are widely used to discover cellular characteristics at single-cell16

resolution. Many data analysis methods for cytometry data focus solely on identifying17

subpopulations via clustering and testing for differential cell abundance. For differential expression18

analysis of markers between conditions, only few tools exist. These tools either reduce the data19

distribution to medians, discarding valuable information, or have underlying assumptions that may20

not hold for all expression patterns.21

Here, we systematically evaluated existing and novel approaches for differential expression22

analysis on real and simulated CyTOF data. We found that methods using median marker23

expressions compute fast and reliable results when the data is not strongly zero-inflated. Methods24

using all data detect changes in strongly zero-inflated markers, but partially suffer from25

overprediction or cannot handle big datasets. We present a new method, CyEMD, based on26

calculating the Earth Mover’s Distance between expression distributions that can handle strong27

zero-inflation without being too sensitive.28

Additionally, we developed CYANUS, a user-friendly R Shiny App allowing the user to analyze29

cytometry data with state-of-the-art tools, including well-performing methods from our30

comparison. A public web interface is available at https://exbio.wzw.tum.de/cyanus/.31

32

Introduction33

In conventional flow cytometry, single cells are passed through one or multiple lasers while being34

suspended in a liquid stream. Antibodies are labeled with fluorescent dyes and lasers produce35

both scattered and fluorescent light signals that are read by detectors (McKinnon (2018)). This36

enables the analysis, identification, and classification of cell populations which is required inmultiple37

disciplines such as immunology, cancer biology, and virology. However, flow cytometry has some38

severe limitations restricting its utility. The number of parameters analyzed at one time is limited39

due to the overlap of the light emissions, the rupture of the stains, and the requirement of large40
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cell numbers. (Gadalla et al. (2019))41

Recently, high-dimensional time-of-flight mass cytometry (CyTOF) has emerged with the ability42

to identify more than 40 parameters simultaneously. Its advantage over flow cytometry is that43

antibodies are labeled with metal isotopes instead of fluorophores, allowing scientists to analyze44

more antibodies in a single run while needing fewer cells per experiment. Traditional flow cytometry45

would require multiple tubes with different antibody panels to cover the same number of markers46

(Gadalla et al. (2019)). Consequently, CyTOF experiments are a powerful tool to unveil new cell47

subtypes, functions, and biomarkers in many fields, e.g. the discovery of disease-associated48

immunologic changes in cancer.49

Cytometry experiments rely on a panel of antibodies that are associated with a specific ex-50

perimental condition or phenotype of interest. Usually, the analysis of cytometry data starts by51

clustering cells into cell subpopulations, followed by a differential expression analysis between52

and within cell types (Nowicka et al. (2019)). Several methods have been developed for testing53

clusters representing cell populations for differential abundance (DA) between conditions (Bruggner54

et al. (2014), Arvaniti and Claassen (2017), Weber et al. (2019)). However, many experiments aim55

to detect differential states (DS), i.e. differential expression of markers between conditions and56

within cell populations (see Figure 1A).57

Diffcyt (Weber et al. (2019)) presents two methods for differential expression detection, a linear58

mixed effect model (LMM) and an adaptation of limma (Ritchie et al. (2015)). For both approaches,59

the data is reduced to median marker expressions per sample and per cluster when comparing60

conditions. Another recently developed method is CytoGLMM (Seiler et al. (2021)) which introduces61

two multiple regression strategies for finding differential proteins in mass cytometry data: a62

bootstrapped generalized linear model and a generalized linear mixed model allowing for random63

and fixed effects.64

Methods that rely solely on median marker expression and do not take other distribution65

characteristics into account might be oblivious to certain marker expression patterns. At the66

same time, the comparison of hundreds of thousands of cells per patient is computationally and67

statistically tedious. In this study, we provide a clear overview of existing and novel approaches68

and compare them in different scenarios, highlighting their strengths and weaknesses. As novel69

approaches, we implemented three statistical tests relying on the medians, a logistic regression70

using all expression data, two techniques modeling the expression distributions and a method71

using the Earth Mover’s distance (see Figure 1B). A similar approach to the latter, SigEMD, has72

recently been introduced by Wang and Nabavi (2018) for single-cell RNA-seq data. All methods73

are evaluated on one semi-simulated, one simulated, and two real datasets resembling several74

experimental scenarios: globally visible differences in various magnitudes, patient-specific effects75

on paired data, highly zero-inflated marker expressions, and an immune dataset composed of76

multiple cell types (see Figure 1C).77

In addition, we present CYANUS (CYtometry ANalysis Using Shiny), a user-friendly R Shiny App78

available at https://exbio.wzw.tum.de/cyanus/. In contrast to existing cytometry analysis platforms79

like Cytobank (Kotecha et al. (2010)) or OMIQ (Belkina et al. (2019)), we provide a free platform80

allowing researchers to analyze normalized, gated cytometry data. To this end, we integrated81

state-of-the-art methods from CATALYST (Crowell et al. (2021)) for preprocessing, visualization,82

and clustering. Additionally, we integrated those methods for differential marker expression and83

abundance which showed good performance in our benchmark.84

Results85

In this study, we compared existing and novel approaches for detecting differentially expressed86

markers in CyTOF datasets. The diffcyt package (Weber et al. (2019)) employs LMM and limma,87

which both use median marker expressions per sample and cluster when comparing conditions.88

In contrast, the methods from the CytoGLMM package (Seiler et al. (2021)) make use of the whole89

data by modeling the condition with all marker expression values (per sample and cluster).90
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We hypothesize that when reducing the datasets to their medians as in diffcyt, simple statistical91

tests such as the Wilcoxon rank-sum/signed-rank test, Kruskal-Wallis or (paired) t-test could be92

effective. We further use a univariate logistic regression to examine whether the CytoGLMM93

approach could be simplified. To explore whether using the entire distribution of the dataset is94

beneficial, we modeled the expression data by fitting a zero-inflated beta distribution (BEZI) and a95

zero-adjusted gamma distribution (ZAGA), respectively. We further used the Earth Mover’s Distance96

to compare normalized distributions for each marker (and cluster) between groups (CyEMD). For97

more details, please refer to the Methods section.98

We used four different datasets to evaluate method performance for different data distributions.99

The semi-simulated data contains a clear, globally visible artificial signal for four markers. In the100

simulated CytoGLMM dataset, five markers are differentially expressed but the differences are only101

present on patient-level, not overall. The dual platelet dataset contains strong zero-inflation for102

two platelet activation markers, leading to a median marker expression of zero. The PBMC dataset103

contains different cell types which is why a differential expression analysis should only be done cell104

type (cluster) -wise. The method performance will be discussed for each dataset to show strengths105

and weaknesses of the algorithms. Statistical test may report significant differences that are not106

markers
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Figure 1. (A) Schematic overview of a differential analysis workflow for cytometry data. In a cytometry experiment, the abundance of state
(condition) and type (lineage) markers are measured for each cell. Usually, cells are clustered using type markers to identify cell subpopulations.

When differential cluster abundance is analysed, the proportion of cell types between conditions is compared (e.g. condition 2 stimulates the

production of cell subpopulation 1). When differential marker expression is analysed, marker expression is compared between conditions within

each cluster (e.g. Marker 1 is more highly expressed in condition 1 in clusters 6 and 8). (B) Overview of the methods compared in this study. (C)
Overview of the datasets used in this study. One simulated, one semi-simulated, and two real CyTOF datasets were used to evaluate the methods.
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meaningful due to their negligible effect size. To account for this, we computed, for all results, the107

overall (global) and grouped (accounting for patients or other groups) effect size. It should be noted108

that the grouped effect size must be treated with caution due to the small number of samples (see109

Methods).110

Figure 1 shows a schematic representation of a differential analysis workflow for cytometry data111

as well as an overview of the methods and datasets investigated in this study.112

Semi-Simulated COVID-19 Dataset With Clean, Globally Visible Difference Between113

Conditions114

For the semi-simulated COVID-19 platelet dataset, we expect to find the markers CD63, CD62P,115

CD107a, and CD154 differentially expressed between stimulated and non-stimulated samples116

because an artificial signal was only created for thesemarkers specifically. In the original experiment,117

platelet expression from baseline samples was compared to expression measured for activated118

platelets after stimulation with thrombin receptor-activating peptide (TRAP). The four markers119

whose expression was used for creating the signal, hereinafter referred to as state markers, are120

known platelet activation markers (Blair et al. (2018a)).121

All other markers (i.e. type markers) detected by any method can be classified as false positives,122

since the baseline expression values were not modified.123

To examine the sensitivity of the methods, we reduced the differences in expression between124

the baseline and the spike condition step-wise via a parameter � (Equation 1) which indicates by125

what percentage the difference between the spiked-in expression and the baseline expression126

is reduced. In the datasets where � was set to 1, no marker should be classified as differentially127

expressed because the spiked-in expressions are equal to their corresponding baseline cell.128

The differences are visible on a global level, as we can observe from the overall effect size which129

is large for CD63, CD62P, CD107a, and moderate for CD154. While all of the other 18 markers have130

a negligible overall effect size, six of them have a small grouped effect size and one has a moderate131

grouped effect size. Supplemental Figures 1 and 2 show the results containing all downsampled132

datasets for activation (state) markers and other (type) markers, respectively.133

Table 1 gives an overview of the methods’ performance across all COVID-19 datasets measured134

by the F1-score. Sensitivity, specificity, and precision on the same datasets can be found in Supple-135

mental Tables 1, 2, and 3, respectively. The methods relying on the median marker expression tend136

to perform better with an increasing number of cells. The opposite is the case for both methods137

from the CytoGLMM package, as well as BEZI, ZAGA, and the logistic regression.138

The diffcyt methods can find all activation markers regardless of sample size and signal intensity.139

Table 1. Methods’ performance measured by F1 scores on the semi-simulated COVID-19 dataset. The means and standard deviations of the scores
are reported across the multiple � values.

Number of Cells 1,000 2,000 5,000 10,000 15,000 20,000 4,052,622

diffcyt-DS-limma 0.89 +/- 0 0.89 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0
diffcyt-DS-LMM 0.62 +/- 0 0.67 +/- 0 0.73 +/- 0 0.73 +/- 0 0.73 +/- 0 0.73 +/- 0 0.73 +/- 0

t-test 0.89 +/- 0 0.89 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0
Wilcoxon test 0.96 +/- 0.07 0.85 +/- 0.07 0.96 +/- 0.07 0.96 +/- 0.07 0.96 +/- 0.07 0.96 +/- 0.07 0.96 +/- 0.07

Kruskal-Wallis test 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0
CytoGLM 0.79 +/- 0.05 0.69 +/- 0.14 0.5 +/- 0.07 0.47 +/- 0.09 0.48 +/- 0.13 0.48 +/- 0.12 0.4 +/- 0.05

CytoGLMM 0.74 +/- 0.06 0.47 +/- 0.03 0.38 +/- 0.02 0.36 +/- 0.03 0.34 +/- 0.04 0.33 +/- 0.03 0.37 +/- 0.04

logRegression 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 0.89 +/- 0

ZAGA 0.96 +/- 0.07 0.85 +/- 0.07 0.96 +/- 0.07 0.93 +/- 0.08 0.96 +/- 0.07 0.85 +/- 0.07 0.89 +/- 0

BEZI 0.93 +/- 0.08 0.96 +/- 0.07 0.96 +/- 0.07 0.88 +/- 0.16 0.96 +/- 0.07 0.58 +/- 0.06 0.28 +/- 0.09

CyEMD 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0
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In the negative controls, both methods find markers in the small downsampled datasets (1000 and140

2000 cells per patient).141

Regarding the statistical tests on expression medians, the Kruskal-Wallis test correctly detects142

all of the state markers and none of the type markers across all sample sizes and � values. The143

Wilcoxon signed-rank test misses CD154 for �=0 regardless of the sample size. In the negative144

controls, the Wilcoxon test and the t-test find one type marker for n=2000 and the t-test finds one145

type marker for n=1000. This observation can be made for all � values, except for �=1.146

The CytoGLMM methods find many false positive type markers across all � values (except147

for �=1). The number of false positives rises with increasing sample size. For the downsampled148

datasets, more type markers are found for higher � values. Additionally, CD154 cannot be detected149

by both CytoGLMMmethods for �=0, as well as by CytoGLM for �=0.25.150

BEZI fails to find different subsets of the state markers across all sample sizes and � values,151

either due to convergence errors (for datasets bigger than 5000 cells/patient) or because they152

did not pass the significance threshold of 0.05. Additionally, BEZI classifies PEAR as differentially153

expressed for all � values in the datasets that were not subsampled. ZAGA and the univariate154

logistic regression also find PEAR in this dataset but not for �=1. Similar to the CytoGLMM methods,155

ZAGA fails to find CD154 for smaller datasets when � is set to 0.25. Apart from that, ZAGA and the156

univariate logistic regression do not make any further false predictions.157

Finally, CyEMD was able to classify all markers correctly.158

Simulated Data from CytoGLMM Package With Differences Only Visible on Patient-159

Level160

The design of the CytoGLMM simulation leads to patient-wise differences that are not visible globally.161

The data was simulated in such a way that m01-m05 are differentially expressed and therefore162

expected to be found. We observe that indeed, the grouped effect size is large for markers m01-m05163

while the overall effect size is negligible (see Supplemental Figure 3).164

Table 2 shows an overview of performance measurements on all subsets of this dataset. For165

more detailed results, we refer to Supplemental Figure 3.166

The two methods that cannot perform a paired analysis, CyEMD and the Kruskal-Wallis test on167

marker expression medians, do not find any marker to be differentially expressed. Consequently,168

they achieve a specificity of 1 and all other measurements are 0 or undefined. Overall, the diffcyt169

methods have a high performance and gain power for greater numbers of cells. This effect can170

Table 2. Methods’ performance on the simulated CytoGLMM dataset. Sensitivity, specificity, precision, and F1
score are shown for each method. Means and standard deviations of the scores are reported across the

multiple numbers of cells. If no positive classification was made, precision and F1 score cannot be computed

and are marked as NaN in the table.

Sensitivity Specificity Precision F1 Score

diffcyt-DS-limma 0.97 +/- 0.08 0.99 +/- 0.03 0.98 +/- 0.06 0.97 +/- 0.05

diffcyt-DS-LMM 1 +/- 0 0.96 +/- 0.04 0.9 +/- 0.09 0.95 +/- 0.05

t-test 0.97 +/- 0.08 1 +/- 0 1 +/- 0 0.98 +/- 0.04

Wilcoxon test 0.49 +/- 0.34 1 +/- 0 1 +/- 0 0.81 +/- 0.08

Kruskal-Wallis test 0 +/- 0 1 +/- 0 NaN NaN

CytoGLM 0.8 +/- 0.38 1 +/- 0 1 +/- 0 0.96 +/- 0.1

CytoGLMM 0.97 +/- 0.08 0.97 +/- 0.05 0.94 +/- 0.12 0.95 +/- 0.07

logRegression 1 +/- 0 1 +/- 0 1 +/- 0 1 +/- 0
ZAGA 0.91 +/- 0.16 0.91 +/- 0.12 0.83 +/- 0.19 0.85 +/- 0.14

BEZI 0.86 +/- 0.15 0.93 +/- 0.07 0.84 +/- 0.16 0.83 +/- 0.1

CyEMD 0 +/- 0 1 +/- 0 NaN NaN
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also be observed for most other methods. CytoGLMM’s and CytoGLM’s scores are close to 1 except171

for the sensitivity scores for CytoGLM which vary more strongly since some of the differentially172

expressed markers cannot be detected for low cell counts. BEZI and ZAGA lose performance mostly173

because the algorithms do not converge. Apart from that, they yield high scores. Only the univariate174

logistic regression can correctly identify all differentially expressed markers without a false positive175

discovery.176

Dual Platelet Dataset With Zero Median Marker Expression177

This dataset was generated by collecting two samples from each participant and stimulating one178

of the two samples with TRAP to activate the platelets. Therefore, we expected to find platelet179

activation (state) markers like CD63, CD62P, CD154 and CD107a to be differentially expressed180

between the two conditions. Figure 4C shows that CD154 and CD107a have a median marker181

expression of zero, posing a challenge for the methods using only marker medians.182

We tested our methods twice on this dataset. For the first run, the patient ID was included as a183

grouping variable while the second analysis was unpaired (see Figure 2). We used the Wilcoxon184

rank-sum test and the Wilcoxon signed-rank test in the unpaired and paired design, respectively.185

ZAGA, BEZI, and the univariate logistic regression classify all markers as significant or do not186

converge. The issues of these three methods are examined thoroughly in the discussion.187

The five algorithms (diffcyt-limma, diffcyt-LMM, t-test, Wilcoxon test, and Kruskal-Wallis test)188

using only median expressions find the two state markers CD63 and CD62P but are not able to189

find the zero-inflated markers CD154 and CD107a. In the unpaired run, no type markers are found190

by these methods. In the analysis with patient ID as grouping variable, the Wilcoxon signed-rank191

test, t-test, and both diffcyt methods find PAR1, PEAR, and CD69 to be significantly differentially192

expressed between the non-stimulated and stimulated samples. CD42a was also found by the t-test193

and both diffcyt methods. Each of the four markers has a large grouped effect size.194

Two of the three methods using whole marker expression, CyEMD and CytoGLMM, classify all195

four state markers as significant. CytoGLM only misses CD107a which has a small overall effect196

size. Since CytoGLMM cannot be run without a random effect, its result for this run is not reliable.197

Looking at the results for the type markers, CyEMD finds CD141 and CytoGLM finds PAR1 when no198

paired analysis is performed. After including the patient ID as grouping variable, additional markers199

are found by all methods able to incorporate this information. CytoGLMM, CytoGLM, and CyEMD all200

detect CD141 (small overall effect size). The two methods of the CytoGLMM package find several201

additional markers: CD41, CD61, PAR1, GPIIbIIIa, CD141, CD9, PEAR, CD47, CD31, and CD42a. While202

PAR1, PEAR, and CD42a are also found by other methods (as mentioned above), some of these203

markers (CD61, CD47, CD9, and CD31) have negligible effect sizes which is why we classify them as204

false positives (see Supplemental Figure 4).205

PBMC Dataset With Different Cell Types206

Since our first real dataset, the dual platelets dataset, only contains one cell type, we also evaluated207

the different approaches on the PBMC dataset by Bodenmiller et al. (2012) which contains eight208

immune cell types annotated by Nowicka et al. (2019). For each cluster of cell types, differential209

expression analysis was performed, comparing the reference condition against the cells that were210

cross-linked with B cell receptor/Fc receptor (BCR/FcR-XL). We expected to find pS6 differentially211

expressed since these findings have been made in the original paper (Bodenmiller et al. (2012)).212

Supplemental Figure 5 shows an overview of the results.213

Many markers were significant across all clusters. Independent of the method, overall and214

grouped effect sizes were large for numerous markers in all clusters (see Supplemental Figure 5).215

Of all possible 192 marker-cluster combinations (24 markers in 8 cell types), the univariate216

logistic regression, BEZI, and ZAGA find the most markers to be differentially expressed (168, 156,217

and 155, respectively).218
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Figure 2. Method results for the dual dataset with patient id as grouping variable (A) and without any grouping variable (B). Results colored in blue
if the adjusted p-value < 0.05, else in red. Uncolored tiles mean convergence errors of the method for the specific marker. The overall and grouped

effect size magnitudes per marker are shown at the top. Overall effect size refers to Cohen’s dmagnitudes using all expression data between two
conditions. The magnitudes indicated by grouped effect size are computed in a paired fashion on the median marker expressions per sample.

Wilcoxon test refers to the Wilcoxon signed-rank test and the Wilcoxon rank-sum test for the paired and the unpaired analysis, respectively.

Markers are divided into their marker class (state and type).

The methods that are not able to include a grouping variable, CyEMD and the Kruskal-Wallis219

test, find the least markers to be differentially expressed (86 and 88, respectively). In contrast to the220

dual dataset results, CytoGLMM and CytoGLM do not produce more positive predictions than the221

statistical tests, CyEMD, or the diffcyt methods.222

Runtime223

The runtimes for the complete datasets are shown in Table 3. For the runtimes of the subsampled224

datasets, please refer to Supplemental Figure 6.225

The diffcyt methods outperform all other methods in terms of runtime. All in all, methods that226
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use median marker expressions are fast independent of sample size. CytoGLMM and the unpaired227

logistic regression are quick as well, even though they take the whole distribution into account.228

The paired univariate logistic regression, CyEMD, and ZAGA have moderate runtimes while229

CytoGLM and BEZI often run more than six hours on the big datasets.230

Table 3. Runtime of the methods on the different datasets. The methods that reduce the data to medians and CytoGLMM have very low runtime
requirements while CytoGLM and BEZI are slow on big datasets. The univariate logistic regression, CyEMD, and ZAGA have moderate runtimes.

Semi-Simulated

COVID-19

Simulated

CytoGLMM

Paired

Dual Platelets

Unpaired

Dual Platelets

PBMC

Number

of Cells

4,052,622 4,400,000 4,491,504 4,491,504 906,815

diffcyt-DS-LMM 26 +/- 2 sec 29 sec 35 sec 33 sec 5 sec
diffcyt-DS-limma 29 +/- 5 sec 38 sec 47 sec 41 sec 5 sec
t-test 1.03 +/- 0.06 min 1.06 min 1.03 min 1.09 min 28 sec

Kruskal-Wallis

test

1.04 +/- 0.09 min 1.01 min 1.08 min 1.04 min 31 sec

Wilcoxon test 1.04 +/- 0.06 min 1.07 min 1.11 min 1.07 min 29 sec

CytoGLMM 1.92 +/- 0.41 min 1.18 min 2.02 min 7.82 min 11 sec

CyEMD 1.9 +/- 0.2h 2.1h 2.0h 1.9h 6.66 min

logRegression 2.5 +/- 0.2h 2.2h 2.6h 3.62 min 49.73 min

ZAGA 2.7 +/- 0.4h 2.3h 2.1h 49.53 min 5.9 min

CytoGLM 6.5 +/- 1.6h 4.0h 6.5h 7.8h 15.92 min

BEZI 9.8 +/- 1.6h 9.7h 9.7h 4.7h 26.13 min

Discussion231

Semi-Simulated COVID-19 Dataset With Clean, Globally Visible Difference Between232

Conditions233

Regarding the grouped effect sizes, we can observe a problem that occurs when the differences234

between the groups are very small, yielding a standard deviation close to zero (see Equation 3). By235

dividing by a value close to zero, bigger values for the effect sizes are obtained, hence seven of the236

markers that were not spiked in appear to have a small or even moderate grouped effect size. The237

difference in means between the two conditions is not significant, as shown by the paired t-test.238

Therefore, we recommend checking the effect size when a marker is classified as differentially239

expressed and additionally, checking the results of the paired t-test when the grouped effect size is240

not negligible because both methods compare paired means.241

The diffcyt methods and the statistical tests perform well, especially for higher sample sizes. We242

hypothesize that the markers that are found in the small negative control datasets were detected243

because of noise in the measured data. Due to the law of large numbers, the median becomes more244

reliable for higher cell counts. Therefore, methods that reduce the expression data to medians245

become more stable with growing dataset size.246

The CytoGLMM methods produce a high number of false positives for all � values except for247

�=1, especially with rising sample size. A possible explanation could be that the multivariate248

generalized mixed effect models become too sensitive to small changes when there are only249

few bigger differences (here, CD62P and CD63) because all markers are included as explanatory250

variables. Therefore, the condition is modeled as a result of various small changes which are251

present because of the semi-simulated nature of the data. The increasing sample size seems to252

reduce the magnitude of the p-values.253

The Wilcoxon signed-rank test and the CytoGLMMmethods miss CD154 for �=0 and �=0.25 but254

find it for the other � values because of the way the artificial signal was created. Looking at the255
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medians per patient for the full number of cells (see Supplemental Figure 7), it is visible that the256

medians of the spike condition are higher for �=0.25, 0.5, and 0.75 than for �=0 in two patients.257

Additionally, the medians are extremely close to zero. Due to this strong zero-inflation, the spiked-in258

expressions for CD154 were sometimes smaller than the baseline expressions. As Equation 1259

leads to a convergence of the activated measurements towards the baseline measurements, the260

spiked-in values become higher for the cells where the activated measurements were smaller than261

the baseline measurements. Therefore, the expression is less zero-inflated in these two patients262

and the marker can be found by the three methods for higher � values.263

For BEZI, we see its high sensitivity for big sample sizes (see dual dataset), since PEAR is found264

across all � settings in the big dataset, while it is not found for the downsampled datasets. ZAGA265

and the univariate logistic regression yield reliable results for datasets with a clean, globally visible266

difference, especially for smaller sample sizes.267

Simulated Data from CytoGLMM Package With Differences Only Visible on Patient-268

Level269

Because this data is paired, we expect that only methods that can handle paired data can detect270

the differentially expressed markers between the two conditions. This is confirmed as all methods271

except for CyEMD and the unpaired Kruskal-Wallis test detect the differential expression and can272

be sensitive to small changes in expression that are only detectable at the patient level.273

CytoGLMM’s false detection of one marker suggests an over-sensitivity further described in the274

next section.275

Dual Platelet Dataset With Zero Median Marker Expression276

The results for this dataset clearly show the problem of reducing the data on median marker ex-277

pressions to perform differential expression analysis. Methods taking the whole marker expression278

into account find markers with zero-median marker expression, whereas methods working on the279

medians are not able to find these.280

Furthermore, the results differ depending on the applied method. The markers PAR1 and PEAR281

are found by several methods. While PEAR has a higher expression in the stimulated condition, PAR1282

is less expressed in this condition (see Supplemental Figure 8). In literature, the PEAR receptor has283

been described to be increased on the platelet membrane after stimulation with several activators284

(Kauskot et al. (2012)), while the effect on PAR1 expression after stimulation depends on the agonist.285

Studies using a PAR1-AP are in line with our findings and show a decreased amount of the PAR1286

receptor on the platelet surface after stimulation (Ramström et al. (2008)).287

CD69 which is found by limma, LMM, the Wilcoxon test, and the t-test, shows a higher signal after288

stimulation. Several studies have observed a similar trend for CD69 increase upon stimulation (Testi289

et al. (1990, 1992)). CD42a is detected by the two diffcyt methods, the CytoGLM/Mmethods, and the290

t-test, and shows a decreasing trend after TRAP stimulation. This also has been previously shown in291

platelets using CyTOF (Blair et al. (2018b)). Several other studies examined a decrease of CD42a292

expression after stimulation with activators ADP (Braune et al. (2014)) and collagen (Hagberg et al.293

(1997)). The biological reason behind the differential expression of the two markers CD141 and294

CD45 remains unclear. In general, CD141 is not found to be expressed on platelets (Bongiovanni295

et al. (2021)) whereas CD45 has shown to be present on the surface of several platelets (Gabbasov296

et al. (2014)).297

The application of ZAGA, BEZI, and the univariate logistic regression is unfeasible for a real298

dataset of this size. CytoGLMM and CytoGLM produce at least three false positives due to their high299

sensitivity. Additionally, CytoGLM misses one of the two highly zero-inflated activation markers.300

The diffcyt methods, the t-test, and the Wilcoxon signed-rank test perform fast and yield reliable301

results but miss the two activation markers that have a median of zero. The Kruskal-Wallis test302

performs worse than the Wilcoxon signed-rank test on this dataset because it is not able to handle303

paired data and could therefore not detect markers like PAR1, PEAR, CD69, or CD42a. Lastly, CyEMD304
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detects the globally visible changes for the activation markers and CD141 but fails to detect any of305

the changes that can only be seen on the patient level as seen in Figure 2.306

PBMC Dataset With Different Cell Types307

The evaluation of this dataset is limited by the number of cells per sample and cluster (see Sup-308

plemental Figure 9). For cell types with less than 1000 cells per sample, noise is distorting the309

analysis.310

When Weber et al. (2019) evaluated their diffcyt methods on this dataset, they could confirm311

that pS6 is differentially expressed in B-cells. From Figure 5, it becomes apparent that all methods312

can find this marker. Moreover, Nowicka et al. (2019) showed that the diffcyt methods identify pS6313

to be also differentially expressed in other cell types. All methods tested in this study confirm this314

finding and find pS6 differentially expressed in all cell types except for dendritic cells.315

In contrast to the dual platelet dataset, the univariate logistic regression, BEZI, and ZAGA were316

not suffering from a clear over-identification of markers. Because the PBMC dataset is rather small317

(172,791 cells in total vs. 4,491,504 in the dual platelet dataset), we hypothesize that the higher the318

number of cells, the less suitable these three methods become. This is due to the influence of large319

sample sizes on the magnitude of the p-values (Lin et al. (2013)).320

Compared to the dual platelet dataset, the CytoGLM/M methods did not identify more markers321

as significantly differentially expressed than the other methods, even though there are more322

markers with a large effect size.323

Conclusion and Outlook324

Existing approaches for differential marker expression analysis were compared with simple and325

advanced novel approaches that rely either on median or on full marker expression data using two326

real, one semi-simulated, and one simulated dataset.327

A limitation on the level of dataset evaluation is that we could not interpret the results obtained328

on the PBMC dataset biologically. We could therefore not describe which markers were falsely329

classified as differentially expressed and which markers were overlooked. Additionally, we did not330

include a dataset with batch effects but assumed that the data had already been corrected for331

it. Theoretically, it should be possible to include a batch effect as a random effect or additional332

term in a model. This can be done for all the approaches we evaluated but the statistical tests and333

CyEMD. Finally, the downsampling of the spiked and the CytoGLMM datasets was not repeated334

multiple times. If that would have been done, the results would be more reliable and robust. In335

this study, repeating the evaluations that many times was not feasible because of the high runtime336

requirement of BEZI and ZAGA.337

All in all, the diffcyt methods perform fast and yield good, trustworthy results when the median338

of the differentially expressed marker is unequal to zero. Nevertheless, they did not outperform339

a simple, Wilcoxon signed-rank test or t-test on the medians, meaning that a more complicated340

model is not certainly necessary to detect significant differences in CyTOF marker medians. The341

comparison with the Kruskal-Wallis test on marker medians shows that the clear advantage of the342

Wilcoxon/t- test is the ability to compute a paired test statistic.343

Regarding the cytoGLMMmethods, we observe that small, individual changes can be detected as344

well as globally visible changes on very clean data, even when it is strongly zero-inflated. Additionally,345

cytoGLMM is fast even though it takes the whole distribution into account. On the other hand, the346

methods are extremely sensitive to changes even without a small, grouped effect size and classify347

many markers to be differentially expressed, especially with growing dataset size. Therefore, we348

recommend checking for overlaps between cytoGLMM and other methods, making diagnostic plots349

and looking at the effect size magnitude when running cytoGLMM on larger, real datasets.350

BEZI, ZAGA, and the univariate logistic regression proved to be infeasible for larger, real datasets.351

While the performance on the completely artificial CytoGLMM dataset was acceptable, the method352
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Figure 3. Overview of the methods suitable for CyTOF data. Several scenarios can occur while analyzing CyTOF data. This graph helps to identify
the most suitable method and includes the runtime of the different methods.

performance dropped for the semi-simulated spike dataset and eventually only produced positive353

predictions on the real, dual platelets dataset. Additionally, BEZI is unacceptably slow.354

Finally, our novel method CyEMD exploits the advantages of taking the wholemarker expressions355

into account and still performs well on big datasets because it partitions the distribution into356

bins and computes p-values via permutation tests. We showed that the EMD approach can357

detect differentially expressed markers that are strongly zero-inflated in an acceptable amount of358

time. Additionally, the approach should be able to find differences in bimodal or skewed marker359

expressions, even when the medians are similar. A disadvantage to the EMD approach is that it360

cannot detect differentially expressed markers when the changes are only visible by comparing361

expressions group- or patient-wise.362

Our results across datasets with different properties show that each of the tested methods363

comes with its own strengths and weaknesses. Taking factors like runtime, zero-inflation and364

skewness and sample groups into account, we offer a guideline for users to choose optimal365

methods for their analysis (Figure 3). However, often several methods are suitable for a given366

scenario and should be compared to obtain robust and interpretable results.367

To make such a comparative analysis easily accessible, we integrated the diffcyt methods, the368

Wilcoxon rank-sum and signed-rank test, the t-test, the cytoGLMMmethods, and CyEMD into a user-369

friendly R Shiny App CYANUS available at https://exbio.wzw.tum.de/cyanus/. CYANUS (CYtometry370

ANalysis Using Shiny) allows the user to analyze gated and normalized cytometry data (i.e. flow371

cytometry as well as CyTOF) with state-of-the-art methods from CATALYST (Crowell et al. (2021)).372

For differential abundance analysis, we integrated the methods included in the diffcyt package. All373

differential analysis methods can be easily compared to each other, enabling thorough analysis of374

cytometry data exploiting the advantages of the various approaches.375
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Methods376

Data Description377

For the evaluation of the differential expression methods, we worked with four different datasets.378

The methods were tested on one semi-simulated, one simulated, and two real CyTOF datasets (see379

Figure 1).380

Figure 4. Marker Expressions of the simulated CytoGLMM (A), semi-simulated COVID-19 (B), and the dual platelet datasets (C,D). (A) Normalized
density of the markers m01-m09 of the dataset simulated using the CytoGLMM data generation process by Seiler et al. (2021). The markers
m01-m05 are simulated to be differentially expressed in such a way that the expression differs slightly but consistently for each patient.

Meanwhile, the median marker expressions of the whole dataset, marked by the vertical lines, do not differ significantly. (B)Mean expressions for
the four spiked-in activation markers at different intensities. For �=0 (full intensity), the originally measured expressions of the corresponding
activated sample were used. Subsequently, � was repeatedly increased by 0.25 in order to reduce the difference between the spiked and the base
condition so that the differences would become harder to detect. �=1 was used as control dataset. (C)Median expression of state markers of the
dual platelet dataset. Markers CD62P and CD63 are higher expressed in the activated condition. The median marker expression of CD107a and

CD154 is zero, except for one sample. (D) Normalized density of state markers of the dual platelet dataset. CD107a and CD154 show a small
difference in the expression.

Semi-Simulated COVID-19 Data381

The semi-simulated COVID-19 dataset originates from the University Hospital rechts der Isar, Munich,382

Germany (Bongiovanni et al. (2021)). The original dataset comprises CyTOF data of 8 symptomatic383

SARS-CoV-2-infected patients, hospitalized between March and May 2020. Additionally, 11 healthy384

donors were included in the study. A baseline sample (non-stimulated platelets) and one sample385

stimulated with TRAP was prepared for each donor.386

12 of 30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455609doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455609
http://creativecommons.org/licenses/by-nc-nd/4.0/


In order to study the sensitivity of the methods to changes in the expression patterns, we387

performed the following data generation procedure. Firstly, the baseline healthy samples were388

randomly split in half. Half of a sample was used for randomly spiking in the expression values for389

the four known activation markers (CD62P, CD63, CD107a, CD154) from the activated sample of the390

corresponding patient. Because this leads to very clear, well distinguishable results, we reduced391

the differences in expression between baseline and spike expressions for the four markers using392

the following formula:393

cm,xi ∶= 5sinℎ
[

asinℎ(
cm,yi
5

) − �
(

asinℎ(
cm,yi
5

) − asinℎ(
cm,xi
5

)
)]

(1)

where m is the marker, cm,xi is the raw value measured for the baseline sample for cell xi, cm,yj is394

the raw value measured for the activated sample for cell yj , X = x1, ..., xN∕2 are the indices of the395

baseline cells whose expression was randomly replaced and Y = y1, ..., yN∕2 are the indices of the396

activated cells whose values were used for spiking. Since we wanted to observe the differences in397

the asinh transformed expression values, the reduction was made on the level of the transformed398

values. Using the formula, five datasets were produced by setting � to 0 (full intensity), 0.25, 0.5,399

0.75, and 1.0 (control) (see Figure 4B). Each dataset contains eleven paired samples with 4,052,622400

cells in total (see Supplemental Table 4 for the number of cells per sample). This approach was401

inspired by the diffcyt benchmarking strategy (Weber et al. (2019)). In contrast to their approach, we402

did not use differences in means and standard deviations between the two conditions for reducing403

the signal but the actual differences between cm,xi and cm,yj .404

Simulated CytoGLMM Data405

To investigate the methods’ handling of data without global but paired differences in expression,406

we used a customized version of the data simulation process described by Seiler et al. (2021). The407

algorithm samples from a Poisson GLM with an underlying hierarchical model combining effects on408

cell and donor-level for two conditions. Figure 4A shows that this leads to expression differences409

on a patient level, but not overall. The resulting simulated dataset used in this study consists of 20410

markers, of which 5 are differentially expressed, in 22 paired samples from 11 patients with 200,000411

cells per sample.412

Dual Platelet Data413

We used a CyTOF platelet dataset originating from the University Hospital rechts der Isar, Munich,414

Germany, consisting of platelet heterogeneity measurements of patients with chronic coronary415

syndrome receiving dual anti-thrombotic therapy. The dataset contains 4,491,504 cells and includes416

18 paired samples from 9 donors in two conditions: non-stimulated and stimulated (TRAP). For the417

exact number of cells per sample, refer to Supplemental Table 5. The panel containing 22 protein418

markers (see Supplemental Table 6) includes four well-known platelet activation markers (Blair419

et al. (2018a)). Two of the platelet activation markers, CD63 and CD62P, are known to be highly420

upregulated after TRAP stimulation, whereas CD107a and CD154 are upregulated less strongly (see421

Figures 4C, D).422

PBMC Data423

The peripheral blood mononuclear cells (PBMCs) dataset originating from Bodenmiller et al. (2012)424

consists of samples from 8 healthy donors in 12 conditions. Nowicka et al. (2019) performed a425

complete CyTOF analysis on a subset of this data containing the reference and one stimulated426

condition. In the stimulated condition, the cells were cross-linked with B cell receptor/Fc receptor427

for 30 minutes. This subset consists of 172,791 cells in 16 paired samples from 8 patients (see428

Supplemental Table 7). Nowicka et al. (2019) manually merged 20 clusters obtained via meta429

clustering into 8 cell populations which were made publicly available. In this study, this annotated430

and well-described subset was used.431
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Downsampling of Artificial Datasets432

To review changes in the methods’ power and runtime with respect to sample size, we downsampled433

the two simulated datasets. Both the spiked COVID-19 and the simulated CytoGLMM data was434

subsampled to contain 1000, 2000, 5000, 10000, 15000, and 20000 cells per patient. For both435

datasets, we sampled in such a way that the smaller sets are always subsets of the bigger ones. The436

same cells were used in the COVID-19 dataset for different � values, to ensure a fair comparison.437

Effect Size438

To quantify the difference between marker expressions, we computed Cohen’s d (Cohen (1977)) for439

each marker in every dataset using the rstatix R package (Kassambara (2021)). The thresholds for440

the absolute value of d to consider the magnitude of the effect size at least small,moderate, and441

large are 0.2, 0.5, and 0.8, respectively. Values smaller than 0.2 are referred to as negligible. The442

effect size was calculated overall (on the whole expression) and grouped (based on the median443

marker expression of the paired samples). The overall effect size compares marker intensities444

between two conditions by using their mean and (shared) standard deviation:445

d =
�1 − �2
�

(2)

Differences on the patient-level can be captured with a paired effect-size estimation, defined446

as grouped effect size. To obtain paired data points, the expression median was computed for447

each sample. Additionally, the paired effect-size allows us to check whether significant results from448

the paired t-test have considerable effect-sizes and whether effect-sizes of higher magnitudes are449

statistically significant because both methods investigate differences in population means. Since450

the sample size for the paired calculation is limited to the number of patients n, which is smaller451

than 20 for all datasets, and there is a known upwards bias for small sample sizes, we used Hedges’452

correction to adjust for that. The grouped effect size with Hedges correction is computed as follows453

(Hedges and Olkin (1985)):454

dz =
�z
�z

× n − 2
n − 1.25

, (3)

where x and y are the median marker expressions of two groups with paired samples and z is455

their difference z = x − y.456

Differential Analysis457

In this work, we compared the existing approaches for differential marker expression analysis from458

Weber et al. (2019) (diffcyt-limma, diffcyt-LMM) and Seiler et al. (2021) (CytoGLM, CytoGLMM) with459

simple and advanced novel approaches that rely either on median or on full marker expression data.460

The simple approaches consisted of a t-test, a Wilcoxon test (both paired and unpaired) on median461

marker expressions, a Kruskal-Wallis test on median marker expressions, and a univariate logistic462

regression predicting the condition from the whole marker expression profiles. More advanced463

approaches comprised modeling the marker expression distributions with a zero-inflated beta464

distribution (BEZI) and a zero-adjusted gamma distribution (ZAGA). Furthermore, we developed465

CyEMD, a method which compares the normalized distributions using the Earth Mover’s Distance466

(EMD). All p-values mentioned in this study have been adjusted per method and dataset to control467

the false-discovery rate using the Benjamini-Hochberg procedure at a significance level of 0.05.468

Diffcyt Methods469

The diffcyt limma method fits a linear model for each marker-cluster combination, predicting the470

sample medians from the corresponding conditions. The LMMmethod builds a linear mixed-effects471

model and can therefore handle random effects in contrast to the limma method where a grouping472

variable can be included only as an additional fixed effect (Weber et al. (2019)). The diffcyt methods473

can easily incorporate other covariates such as batch effects in their model as additional terms.474
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CytoGLMM Methods475

Instead of predicting the expression from the conditions, the CytoGLMMmethods fit a generalized476

mixed model predicting the conditions from the whole expression vectors. The package contains477

two methods, CytoGLMM and CytoGLM. The former can only handle grouped data since it relies on478

a random effect like patient ID whereas the latter can also handle unpaired data. CytoGLM builds a479

bootstrapped generalized linear model while CytoGLMM builds a generalized linear mixed model480

(Seiler et al. (2021)). In this study, 500 bootstrap replications were used. These methods can also481

include additional terms in their model.482

Logistic Regression483

In order to find out whether the CytoGLMM approach based on the whole marker expression could484

be simplified, we fitted univariate logistic regression models per marker and cluster and extracted485

the p-value from the regression model. A multivariate approach was omitted since the markers486

are not statistically independent by design. CytoGLMM partially evades this problem by fitting a487

hierarchical model containing random slopes and intercepts for the grouping variable (patient ID)488

which assumes dependent errors.489

Approaches Modeling the Expression: BEZI, ZAGA490

As CyTOF data can be strongly zero-inflated (Papoutsoglou et al. (2019)), we fit a zero-inflated491

beta distribution (BEZI) as well as a zero-adjusted gamma distribution (ZAGA) to our expression492

data. As a basis, we chose the gamma distribution for modeling non-zero expressions because493

it was demonstrated that the gamma distribution fits expression data more often than other494

non-Normal distributions (de Torrenté et al. (2020)). A common choice for single cell RNA-seq data495

is the negative binomial distribution (He et al. (2021)) which is not suitable for CyTOF data as it496

requires discrete values. Therefore, we selected the beta distribution as a conjugate to negative497

binomial distribution, i.e. it belongs to the same probability distribution family. To model the marker498

expression distributions of CyTOF data, the condition was used as an explanatory variable and its499

model coefficient was tested for equality to zero. For this, we used the gamlss and the gamlss.dist500

packages (Rigby and Stasinopoulos (2005); Stasinopoulos and Rigby (2021)). To model changes on501

a patient level for paired data, random intercepts can be included.502

The zero-adjusted gamma distribution, ZAGA(�, �, �), is a continuous distribution on (0,∞).503

The response variable Y ∼ ZAGA(�, �, �) ∈ [0,∞) is modeled using the mixed probability function504

fY (y|�, �, �):505

fY (y|�, �, �) =

{

� if y = 0
(1 − �)fY1 (y|�, �) if y > 0

(4)

where y ≥ 0, � > 0 , � > 0, and 0 < � < 1, and where Y1 ∼ GA(�, �). The parameter � is the506

non-zero probability for Y = 0. For Y ∈ (0,∞), Y is gamma-distributed.507

The zero-inflated beta distribution, BEZI(�, �, �), is defined on [0, 1). The response variable508

Y ∼ BEZI(�, �, �) ∈ [0, 1) is modeled using the mixed probability function fY (y|�, �, �):509

fY (y|�, �, �) =

{

� if y = 0
(1 − �)fW (y|�, �) if 0 < y < 1

(5)

where 0 < � < 1, � > 0, 0 < � < 1. The beta distribution fW (y|�, �) is based on the work of Ospina510

and Ferrari (2012). To fit a zero-inflated beta distribution on CyTOF data, the marker expressions511

were first scaled to the range [0, 1). For further details regarding the implementation of gamlss,512

please refer to Rigby et al. (2020).513
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CyEMD514

Our novel approach, CyEMD, uses the Earth Mover’s Distance to compare normalized distributions515

for each marker (and cluster) between groups.516

For two normalized histograms P and Q, the EMD is calculated by minimizing the cost of517

transforming one into the other. The histograms are represented as P = {(p1, wp1), ..., (pn, wpn)} and518

Q = (q1, wq1), ..., (qn, wqn), where pi/qj is the center of the ith/jth histogram bin and wpi/wqj describes519

the height of the corresponding bin for P /Q.520

To transform histogram P into histogram Q, certain proportions of the bins pi, qj differing521

between P and Q need to be moved to other bins. The optimization problem for this task is how522

much has to be transferred from one bin to another bin (defined as flow F = [fij]) in order to523

minimize the cost. The flow is weighted according to the distances dij between the bins such that524

transporting a high amount of a bin over a long distance is penalized (Rubner et al. (1998)):525

COST (P ,Q, F ) =
n
∑

i=1

n
∑

j=1
fijdij =

n
∑

i=1

n
∑

j=1
|wpi −wqj| ⋅ |pi − qj| (6)

After normalizing the minimal cost by the overall flow we get526

EMD(P ,Q) = min COST
∑n

i=1
∑n

j=1 fij
. (7)

Since the expression densities in CyTOF data can have different ranges for distinct values, we527

use a flexible bin width estimated by the Freedman–Diaconis rule evaluated on all nonzero values:528

Bin width = 2
IQR(x)

3
√

n
(8)

where IQR(x) is the interquartile range of nonzero marker expressions and n is the number of529

observed expressions (Freedman and Diaconis (1981)).530

To determine the significance of the EMD between two marker expressions, a permutation531

test (500 permutations) that permutes the condition labels sample-wise is performed to obtain a532

p-value for each marker.533

As opposed toWang and Nabavi (2018), we compute the EMD on normalized histograms, which534

can be done in linear time. In order to speed up the computationally intensive EMD computation,535

we implemented this part in C++. Furthermore, SigEMD permutes the labels cell-wise instead of536

sample-wise which proved to be infeasible for big datasets since the empirical p-values become537

smaller with growing dataset size.538

Data Availability539

The scripts for the analysis and the code for the Shiny App are available at https://github.com/540

biomedbigdata/cyanus under the GPL-3 license.541

The original COVID-19 dataset is publicly available at flowrepository.org, accessible at repository542

ID FR-FCM-Z4AE. The script for producing the semi-simulated COVID-19 data is provided in the543

Github repository. The simulated CytoGLMM data can be reproduced using a script of the Github544

repository. Access to the dual dataset (9 patients) is granted upon request. The original PBMC545

dataset is published at www.cytobank.org/nolanlab. We followed the CyTOF workflow by Nowicka546

et al. (2019) and downloaded the data using HDCytoData (Weber and Soneson (2019)). The manual547

cluster annotation of the CyTOF workflow can be downloaded from http://imlspenticton.uzh.ch/548

robinson_lab/cytofWorkflow/.549
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