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Abstract 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents an 

unprecedented worldwide health problem. Although the primary site of infection is the lung, 

growing evidence points towards a crucial role of the intestinal epithelium. Yet, the exact 

effects of viral infection and the role of intestinal epithelial-immune cell interactions in 

mediating the inflammatory response are not known. In this work, we apply network biology 

approaches to single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic 

organoids to investigate how altered intracellular pathways upon infection in intestinal 

enterocytes leads to modified epithelial-immune crosstalk. We point out specific epithelial-

immune interactions which could help SARS-CoV-2 evade the immune response. By 

integrating our data with existing experimental data, we provide a set of epithelial ligands 

likely to drive the inflammatory response upon infection. Our integrated analysis of intra- and 

inter-cellular molecular networks contribute to finding potential drug targets, and suggest 

using existing anti-inflammatory therapies in the gut as promising drug repurposing 

strategies against COVID-19.  
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Introduction 

 

Since the first reported case in the province of Wuhan (China), severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) has spread to almost every country in the world (Hui 

et al., 2020; Wu et al., 2020), posing an extraordinary threat to global public health (Deng 

and Peng, 2020; Han et al., 2020). Transmitted through respiratory droplets, aerosols and 

fomites, the virus can be detected in upper respiratory tract samples and is believed to 

primarily target airway and alveolar epithelial cells, vascular endothelial cells and lung-

resident macrophages (Tay et al., 2020). Once inside the host cell, SARS-CoV-2 releases 

viral RNAs which can be translated into proteins using host machinery (Merino et al., 2021).  

 

SARS-CoV-2 infection is not limited to the lungs: other organs can be infected too, including 

the heart, kidney, brain, and the intestine (Gupta et al., 2020). In addition to directly infecting 

key organs, the main hurdle of SARS-CoV-2 infection is that, in some severe cases, it 

generates an excessive inflammatory response mediated by both the innate and adaptive 

immune systems (Olbei et al., 2021). The overactivated inflammatory response, also known 

as cytokine release syndrome (CRS) or cytokine storm, is the result of high levels of 

circulating cytokines and chemokines, and it is thought to be responsible for the severe 

COVID symptoms some patients experience (Arunachalam et al., 2020). Yet, there is no 

clear understanding of which particular inflammatory pathways and cell types are driving 

these damaging inflammatory responses, and whether some organs are more important 

than others in initiating this (Stone et al., 2020). The role of gut microbes and previous 

infections were also raised as potential risk-increasing factors (Földvári-Nagy et al., 2021). 

 

COVID-19 patients with severe symptoms show elevated expression of inflammatory 

cytokines (IL-2, IL-4, IL-6, IL-10 and IL-18; (Gu et al., 2020; Park et al., 2021) that are 

correlated with elevated levels of the gut inflammatory marker faecal calprotectin and an 

altered microbiome (Effenberger et al., 2020; Zuo et al., 2020). COVID-19 patients also often 

present various gastrointestinal (GI) symptoms such as vomiting, diarrhoea and abdominal 

pain (Chen et al., 2020; Guo et al., 2020; Lin et al., 2020). Interestingly, patients with GI 

symptoms show decreased production of key proinflammatory cytokines and reduced 

disease severity and mortality following SARS-CoV-2 infection, indicating a potential role of 

the gut in the disease course (Livanos et al., 2021).   

 

Recently, human intestinal organoids have been used as a tool to study SARS-CoV-2 

infection in the gut and the inflammatory responses of specific intestinal epithelial cell types 
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(Lamers et al., 2020; Stanifer et al., 2020; Triana et al., 2021a; Zang et al., 2020). These 

studies provided evidence that SARS-CoV-2 is able to infect and actively replicate in human 

intestinal cells (Lamers et al., 2020). From the organoid experiments, we learned that while 

most intestinal subpopulations are susceptible to SARS-CoV-2, enterocytes are the most 

affected (Lamers et al., 2020; Triana et al., 2021a). Studies using human intestinal organoids 

also revealed that, contrary to the limited type I and type III interferon (IFN) immune 

response observed in the lungs (Blanco-Melo et al., 2020; Hadjadj et al., 2020),  the 

response to SARS-CoV-2 infection in the gut is characterised by the production of IFN and 

interferon stimulated genes (ISGs), and found that IFNs may actually provide protection to 

the intestinal epithelial cells against SARS-CoV-2 (Stanifer et al., 2020).  

 

In inflammatory bowel disease (IBD), intestinal inflammation is known to drive dysregulated 

epithelial-immune cell interactions, often manifesting in extra-intestinal diseases (Weidinger 

et al., 2021). Hence, the question arises as to whether COVID-19 patients may share a 

similar dysregulated inflammatory response driven by gut epithelial-immune interactions as 

that observed in IBD patients. Indeed, examination of human intestinal samples has shown 

infiltration of lymphocytes and other inflammatory mediators in the lamina propria upon 

SARS-CoV-2 infection, suggesting that infection of gut epithelial cells results in the activation 

of local immune populations (Guo et al., 2021). Yet, the exact effects of viral infection in the 

gut and the role of epithelial cell–immune cell interaction in mediating the inflammatory 

response of the body are not known. 

 

To our knowledge, no study has been carried out so far to analyze epithelial–immune 

crosstalk in the gastrointestinal tract upon SARS-CoV-2 infection. Hence, in this study we 

aim to model the effect of viral infection in host intestinal cells, the role of intestinal epithelial 

cell–immune cell crosstalk during infection, as well as their contribution to the inflammatory 

response. As miRNA-like sequences were recently found in the SARS-CoV-2 genome, and 

their potential role and targets predicted during infection (Mirzaei et al., 2021; Saçar Demirci 

and Adan, 2020), in a separate analysis, we assess the potential role of such viral 

regulators. Furthermore, we aim to assess potential tissue-specific differences between 

colon and ileum in these effects. To do this, we used previously generated single-cell RNA 

sequencing (scRNA-seq) data of SARS-CoV-2 infected ileum and colon-derived human 

organoids (Triana et al., 2021a) and of gut-resident immune cell populations (Martin et al., 

2019; Smillie et al., 2019), as well as SARS-CoV-2–human miRNA/protein–protein 

interactions. We employ two independent tools, ViralLink and CARNIVAL, to reconstruct 

intracellular and intercellular networks, connecting intestinal epithelial cells and resident 

immune cells upon infection. With our integrated analysis, we provide a better understanding 
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of the effect of viral infection on intestinal epithelial cells, and the role of intestinal epithelial–

immune cell crosstalk during SARS-CoV-2 infection. Ultimately, our analyses may help to 

find key intercellular inflammatory pathways involved in these crosstalks, which could pave 

the way for potential successful strategies against the cytokine release syndrome 

associated-symptoms observed in severe cases of COVID-19.  
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Methods 

Intercellular analysis  

Input data 

Intestinal epithelial cells 

Single cell transcriptomics data of colonoids and enteroids infected with SARS-CoV-2 was 

obtained from (Triana et al., 2021b). The R packages ‘Mast’ and ‘Seurat’ were used to 

identify differentially expressed genes upon infection with SARS-CoV-2 for each epithelial 

cell type. Specifically, directly infected or bystander cells from organoids treated with SARS-

CoV-2 for 24 hours were compared with the equivalent cell type from uninfected organoids. 

Any genes with adjusted p value ≤ 0.05 and |log2 fold change (FC)| ≥ 0.5 were considered 

significantly differentially expressed. Differential expression could only be calculated for cell 

types within a condition where data was available from ≥ 3 individual cells. 
 

Intestinal resident immune cells 

Single cell expression data from ileal and colonic resident immune cells was obtained from 

(Martin et al., 2019) and (Smillie et al., 2019), respectively. For the analyses, data from 

healthy samples and uninflamed Crohn’s disease samples was used for colonic and ileal 

immune cell populations, respectively. Following removal of all genes with count = 0, 

normalised log2 counts across all samples (separately for each cell type) were fitted to a 

gaussian kernel (Beal, 2017). All genes with expression values above mean minus three 

standard deviations were considered as expressed genes for the given cell type in the given 

intestinal location. For the intercellular ligand-receptor predictions, a representative collection 

of immune cells relevant in gut inflammation and SARS-CoV-2 infection based on previous 

literature was selected, which included all macrophages, T cells, B cells, plasma cells, ILCs, 

mast cells and a representative group of dendritic cells (Filbin et al., 2020; Martin et al., 

2019; Schultze and Aschenbrenner, 2021; Sette and Crotty, 2021; Smillie et al., 2019). Cell 

type labels were maintained as originally published.  

 

Defining ligand-receptor interactions between cell types 

A list of ligand-receptor interactions was obtained from OmniPath on 23 September 2020 

using the ‘OmnipathR’ R package (Türei et al., 2021). Source databases used to retrieve the 
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ligand-receptor interactions through OmnipathR included six independent resources 

(CellPhoneDB, HPMR, Ramilowski 2015, Guide2Pharma, Kirouac 2010, Gene Ontology) 

(Ashburner et al., 2000; Ben-Shlomo et al., 2003; Kirouac et al., 2010; Pawson et al., 2014; 

Ramilowski et al., 2015; Vento-Tormo et al., 2018). No weighing was performed on ligand-

receptor interactions, and protein complexes were dealt with by including each of their 

individual proteins in the list. 

 

Ligand-receptor interactions (intercellular interactions; full list available at 

https://github.com/korcsmarosgroup/gut-COVID) were predicted between epithelial cells 

types and resident immune cells according to the following conditions: 

1.  The ligand is differentially expressed in the epithelial cell (upon SARS-CoV-2 

infection — in directly infected or bystander cells) 

2.  The receptor is expressed in the immune cell in the relevant dataset (ie, ileal or 

colonic immune cells) 

3.  The ligand-receptor interaction is present in OmniPath 

  

Intercellular interactions were defined separately for directly infected epithelial cells and 

bystander epithelial cell populations in the ileum and in the colon. Enteroid epithelial data 

was paired with ileal immune cell data (Martin et al., 2019), while colonoid epithelial data 

was paired with colonic immune cell data (Smillie et al., 2019). Intercellular interactions were 

defined between every possible pair of epithelial cells and immune cells for each condition. 

Interactions derived from upregulated ligands (“upregulated interactions”) were evaluated 

separately from interactions derived from downregulated ligands (“downregulated 

interactions”).  

 

Scoring of ligands, receptors and immune cell types involved in  ligand-

receptor interactions 

To assess the importance of specific ligands, receptors and immune cell types, additional 

parameters were computed using the ligand-receptor network. First, the number of 

interactions between each epithelial and immune cell type was computed by summing up all 

the possible interactions between each differentially expressed epithelial ligand and each of 

the receptors expressed by the specific immune cell type. Second, the number of immune 

cell types involved in each ligand-receptor pair was computed by counting the number of 

different immune cell types which were expressing the receiving receptor. Third, for each 

ligand, a “sum of receptor expression value” was computed for each interacting immune cell 
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type, based on the number of interacting receptors and the mean expression level of the 

interacting receptors. 

Data visualisation 

Venn diagrams were generated using the ‘gplots’ R package. Heatmaps were generated 

using the ‘ggplot2’ and ‘pheatmap’ packages. Barplots were generated with the ‘ggplot2’ 

package. Network visualisations were done using Cytoscape (version 3.8.2) (Shannon et al. 

2003; Su et al. 2014). All scripts used to generate these plots are available on the Github 

repository of the project (https://github.com/korcsmarosgroup/gut-COVID). 

 

Intracellular analysis 

Two previously established tools were employed to predict the effect of SARS-CoV-2 

infection on intestinal epithelial cells: ViralLink and CARNIVAL (Liu et al., 2019; Treveil et al., 

2021). Both tools, using related but distinct methods, infer causal molecular interaction 

networks. These networks link perturbed human proteins predicted to interact with SARS-

CoV-2 viral proteins or miRNAs, to transcription factors known to regulate the observed 

differentially expressed ligands in infected epithelial cells.  

Input data  

To reconstruct the intracellular causal networks, three different a priori interactions datasets 

were used. Information on viral proteins and their interacting human binding partners was 

obtained from the SARS-CoV-2 collection of the IntAct database on 1st October 2020 

(Hermjakob et al., 2004; Orchard et al., 2014). Predicted SARS-CoV-2 miRNAs and their 

putative human binding partners were obtained from (Saçar Demirci and Adan, 2020). 

Intermediary signalling protein interactions known to occur in humans were obtained from 

the core protein-protein interaction (PPI) layer of the OmniPath collection using the 

‘OmnipathR’ R package on 7th October 2020 (Türei et al., 2016). Only directed and signed 

interactions were included. Interactions between human transcription factors (TFs) and their 

target genes (TG) were obtained from the DoRothEA collection using the DoRothEA R 

package on 7th October 2020 (Garcia-Alonso et al., 2019). Only signed interactions of the 

top three confidence levels (A, B, C) were included.  
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Normalised transcript counts and differentially expressed ligands were obtained from single 

cell transcriptomics data of colonoids and enteroids infected with SARS-CoV-2 obtained 

from (Triana et al., 2021a) as previously described. 

ViralLink pipeline  

Intracellular causal networks  were inferred using the ViralLink pipeline, as described in 

(Treveil et al., 2021). Briefly, a list of expressed genes in infected immature enterocytes  

(originally known as “immature enterocytes 2” (MMP7+, MUC1+, CXCL1+)) from SARS-

CoV-2-infected ileal and colonic organoids (Triana et al., 2021a) was generated from a 

normalised count table by fitting a gaussian kernel (Beal, 2017). The list of expressed genes 

in the infected immature enterocytes population was subsequently used to filter the a priori 

molecular interactions from OmniPath and DoRothEA, to obtain PPI and TF-TG sub-

networks where both interacting molecules are expressed (described as “contextualised” 

networks). Transcription factors regulating the differentially expressed ligands were 

predicted using the contextualised DoRothEA TF—TG interactions and scored as described 

in (Treveil et al., 2021). Human binding proteins of viral proteins and viral miRNAs obtained 

from the IntAct database (Hermjakob et al., 2004; Orchard et al., 2014) and (Saçar Demirci 

and Adan, 2020), respectively, were connected to the listed TFs through the contextualised 

PPIs using a network diffusion approach called Tied Diffusion Through Interacting Events 

(TieDIE) (Paull et al., 2013). In this model, all viral protein—human binding protein 

interactions were assumed to be inhibitory in action, based on likely biological function, and 

given a lack of clear literature evidence of proven action. All viral miRNA—human binding 

protein interactions were set as inhibitory based on biological action of miRNAs (Huang et 

al., 2011). The final reconstructed network contains “nodes”, which refers to the interacting 

partners, and “edges”, which refers to the interaction between nodes. Nodes include viral 

proteins and miRNAs, human binding proteins, intermediary signalling proteins, TFs and 

differentially expressed ligands. Edges include activatory or inhibitory interactions. 

 

For both ileal and colonic data, separate networks were generated using the viral miRNA 

and viral protein as perturbations, and subsequently joined using the “Merge” function within 

Cytoscape to generate the final intracellular network. Nodes and edges were annotated 

according to their involvement in networks downstream of viral miRNAs or proteins. Further 

analyses were performed separately on the different layers of the network: miRNA specific, 

protein specific or shared nodes.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455656
http://creativecommons.org/licenses/by/4.0/


 

10 

CARNIVAL pipeline 

Intracellular causal networks were inferred using CARNIVAL and associated tools for 

analyses of expression data as described in (Liu et al., 2019). For simplicity, we refer to the 

pipeline as described in (Liu et al., 2019) as the CARNIVAL pipeline. Briefly, PROGENy is 

used to infer pathway activity from the log2 FC of the infected immature enterocytes 2 gene 

expression data (Schubert et al., 2018). Next, using the TF-TGs interactions (from 

DoRothEA) and the differential expression data from infected organoids, VIPER was used to 

score TF activity based on enriched regulon analysis (Alvarez et al., 2016). Here, only the 

top 25 TFs regulating at least 15 target genes were taken forward, and a correction for 

pleiotropic regulation was included. Finally, CARNIVAL applied an integer linear 

programming approach to identify the most likely paths between human interaction partners  

of viral proteins or miRNAs and the selected TFs, through PPIs from OmniPath, considering 

the activity scores from PROGENy and VIPER. Viral protein—human binding protein 

interactions signs were specified to CARNIVAL as ‘inhibitory’, based on likely biological 

function, and given a lack of clear literature evidence of proven action. All viral miRNA—

human binding protein interactions were also set as inhibitory based on biological action of 

miRNAs (Huang et al., 2011). 

 

Network functional analysis  

Functional overrepresentation analysis was performed on the networks constructed as 

above-mentioned using the R packages ‘ClusterProfiler’ and ‘ReactomePA’, for Gene 

Ontology (GO) (Ashburner et al., 2000)) and for Reactome (Fabregat et al., 2018; Yu and 

He, 2016; Yu et al., 2012) annotations, respectively. For the intercellular network, the 

analysis was carried out separately for ligand-receptor intercellular interactions driven by 

either upregulated or downregulated ligands. A complete list of ligand-receptor interactions is 

available in the GitHub repository of the project (https://github.com/korcsmarosgroup/gut-

COVID). For the upregulated interactions, a list of upregulated ligands and their connecting 

immune receptors was used as the test. For the downregulated interactions, a list of 

downregulated ligands and their connecting immune receptors was used. Where a list of 

ligands plus receptors contained <5 genes, it was excluded from the analysis. All ligands 

and receptors from the original ligand-receptor network used as prior knowledge input for the 

intercellular analysis was used as the statistical background.  

 

For the intracellular network, the analysis has been done separately for each of the sub-

networks (viral protein specific, viral miRNA specific, or shared). For each sub-network, a set 
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of genes that were human binding proteins, intermediary proteins and TFs in the network 

(“PPI layer”) was used as a test list, and a set of all nodes from the original OmniPath PPI 

interaction network used as prior knowledge input for the intracellular analysis was used as 

the statistical background. For the Reactome pathway enrichment analysis the IDs were 

converted to Entrez Gene ID within the ‘ReactomePA’ package. Functional categories with 

adjusted p value ≤ 0.05 and with gene count > 3 were considered significantly 

overrepresented. 

 

Selection of ligands involved in the inflammatory process 

To assess the importance of specific ligands in driving the inflammatory process upon 

SARS-CoV-2 infection, the list of differentially expressed ligands in infected immature 

enterocytes in both colon and ileum was validated using independent data from three 

previously published studies. To identify ligands whose expression was induced by 

cytokines, ligands were compared to DEGs in human colonic organoids exposed to 

cytokines from (Pavlidis et al., 2021). To identify ligands already known to influence immune 

cell population, ligands were compared to two databases: ImmunoGlobe, a manually curated 

intercellular immune interaction network (Atallah et al., 2020), and ImmunoeXpresso, a 

collection of  cell–cytokine interactions generated through text mining (Kveler et al., 2018). 

Finally, to identify ligands that could directly explain blood cytokine level changes in COVID-

19 patients via direct immune cell regulation, ligands were compared to the data from a large 

dataset we recently manually compiled using COVID-19 patient publications (Olbei et al., 

2021).  

Data availability 

The workflow (and necessary input data) and the full ligand-receptor interaction tables are 

available in the GitHub repository of the project (https://github.com/korcsmarosgroup/gut-

COVID). All other relevant data is in the main text and in supplementary files.  
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Results 

 

Reconstructing an epithelial-immune interactome  

 

Our previously published data on ileal and colonic human organoids infected with SARS-

CoV-2 suggested that immature enterocytes were the main epithelial population affected by 

infection (Triana et al., 2021a). In this study, we wanted to further investigate the effects of 

epithelial infection on epithelial-immune cell crosstalk in the gut by integrating single cell data 

and network biology approaches (Figure 1).  

 

To do this, we integrated epithelial cell (Triana et al., 2021a) and immune cell (Martin et al., 

2019; Smillie et al., 2019) RNAseq data and a priori knowledge on ligand-receptor 

interactions (Türei et al., 2021) to construct intercellular networks connecting epithelial cells 

and resident immune cells (Figure 1). Final constructed intercellular networks consisted of 

differentially expressed epithelial cell ligands binding to receptors expressed on healthy 

immune cells (Figure 1). In accordance with our previous findings (Triana et al., 2021a), 

immature enterocytes (originally known as “immature enterocytes 2”, an enterocyte 

subpopulation characterized by MMP7+, MUC1+, CXCL1+) were the epithelial population 

whose ligands were most affected upon infection, among the different cell types studied 

(Supplementary Figure 1). Additionally, directly infected cells, compared to bystander cells, 

showed the highest number of differentially expressed ligands in both colon and ileum 

(Supplementary Figure 1).  

 

To identify the effect of epithelial infection on epithelial-immune cell crosstalk, we looked at 

the putative number of ligand-receptor interactions between each epithelial cell and immune 

cell types (Figure 1). Here, for each epithelial-immune cell type pair, the number of potential 

interactions was computed by summing up all the possible interactions between each set of 

up or downregulated epithelial ligands and each of the receptors expressed by the specific 

immune cell type (from (Martin et al., 2019) and (Smillie et al., 2019)) (Figure 2A). Both 

bystander and infected cell populations were affected by viral infection, but directly infected 

cell populations had a higher number of predicted interactions with immune cells than 

bystander cell populations in both ileum and colon, supporting a role for direct viral infection 

in altering intercellular signalling in the gut (Figure 2A). In the colon, the higher number of 

epithelial-immune interactions involved downregulated ligands, with plasma cells being the 

main immune cell type involved in these interactions, and CD4+/CD8+ T cells, macrophages 
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and dendritic cells (DCs) to a lesser extent (Figure 2A). Conversely, in the ileum, the highest 

number of interactions involved upregulated ligands, with IgA plasma cells, T resident 

memory (Trm) cells, dendritic cells and resident macrophages as the main immune cell 

types involved in these interactions (Figure 2A). Notably, the higher number of interactions 

in the ileum was not a result of a higher number of upregulated ligands (20), as this was 

similar to the number of downregulated ones (24) (Figure 2A, Supplementary Figure 1). 

Instead, the higher number of interactions was driven by upregulated ligands binding to 

multiple receptors on each immune cell targeted (not shown). 

 

 

The infected epithelial signalling network drives the epithelial-immune 

interactome 

 

To further understand how SARS-CoV-2 infection results in altered ligand expression, we 

investigated the effect of SARS-CoV-2 infection on intracellular signalling in directly infected 

immature enterocytes. Using two independent bioinformatics tools, ViralLink and 

CARNIVAL, we constructed an intracellular causal network linking perturbed human proteins 

interacting with SARS-CoV-2 viral proteins or miRNAs to activated transcription factors (TFs) 

regulating the differentially expressed ligands upon infection, through altered intracellular 

protein-protein signalling cascades (Figure 1 and Methods). To spot tissue-specific 

differences in infection response, two separate causal networks were constructed for 

infected immature enterocytes of the ileum and colon  (Figure 1 and Methods). 

Furthermore, to assess the contribution of viral proteins or miRNAs in altering the 

intracellular signalling cascade, separate layers of the networks were built distinguishing 

altered signalling stemming from upstream perturbations caused by SARS-CoV-2 miRNAs, 

proteins or both (Figure 1 and Methods).  

 

Colonic and ileal intracellular networks generated using ViralLink were similar in terms of 

size and network characteristics for ileum and colon, when considering  the diameter, 

characteristic path length, average number of neighbours, and number of molecular entities 

(nodes, miRNAs, genes or proteins) and molecular interactions (edges, activatory or 

inhibitory) (Supplementary Figure 2). A complete description of network characteristics for 

both colonic and ileal networks is available in the Supplementary Information. Notably, 

upstream signalling was predicted for 22 out of the initial 35 differentially expressed ligands 

(29 down- and 6 up-regulated)  in the colon, and for 28 out of 44 differentially expressed 

ligands (24 down- and 20 up-regulated)  for the ileum (Supplementary Figure 2, 3 & 4). 
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These numbers are lower than those predicted to be differentially expressed upon infection 

by (Triana et al., 2021a), indicating that some ligands are not affected by direct upstream 

signalling changes but by more complex mechanisms, or the original knowledge network 

used as input for the analysis did not contain information about such ligands (Menche et al., 

2015) (Supplementary Figure 1 & 2). 

 

To understand how SARS-CoV-2 infection in immature enterocytes affected their function 

through the modulation of intracellular signalling, we performed a functional 

overrepresentation analysis (Gene Ontology (GO) and Reactome) of the protein-protein 

interaction (“PPI”) layer (Ashburner et al., 2000; Fabregat et al., 2018; Yu and He, 2016; Yu 

et al., 2012) (Figure 1 and Methods). This analysis was performed separately for each sub-

network (viral proteins, viral miRNA, both) to assess the contributions of SARS-CoV-2 

miRNAs or proteins to the changes observed (Figure 1 and Methods). Functional analysis 

revealed an overrepresentation of pathways related to inflammation and chemotaxis (NF-kB 

signalling, interleukin signalling, chemokine signalling) in both ileum and colon (Figure 3A, 

4B). Additionally, we found the overrepresentation of functions related to interferon signalling 

and MAPK signalling being overrepresented uniquely in the ileum in both viral protein and 

miRNA intracellular networks (Figure 3B). An overrepresentation of laminin-driven 

interaction pathways, which we observed uniquely for viral miRNA intracellular network in 

both ileum and colon, could be indicative of an increased recruitment and adhesion of 

immune cells following infection (Figure 3A, 3B). Furthermore, we found an 

overrepresentation of pathways related to negative regulation of apoptosis, cell cycle, cell 

proliferation and growth in both ileum and colon, suggesting an effect of SARS-CoV-2 on 

epithelial cell tissue renewal (Figure 3A, 3B). Interestingly, uniquely in the viral-protein 

subnetwork, we found an overrepresentation of WNT signalling, which is involved in stem 

cell renewal, in both ileum and colon, as well as pathways related to the establishment of cell 

and tissue polarity uniquely in the colon, which could indicate an attempt for tissue healing 

following viral infection (Figure 3A, 3B).   

 

Intracellular signalling networks built with CARNIVAL as an independent tool were of much 

smaller sizes compared to those built with ViralLink (Supplementary Figure 2). Compared 

to networks built with ViralLink where all possible interaction paths are explored, CARNIVAL 

networks represent the most optimal paths based on the given input constraints, hence they 

are very useful to understand specific molecular mechanisms and modulators upon SARS-

CoV-2 infection. Functional overrepresentation analysis of the PPI layer of the CARNIVAL 

networks confirmed similar modulated functions upon infection compared to those found in 

the ViralLink networks (Supplementary Figure 3 & 4). Using these networks, we predicted 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455656
http://creativecommons.org/licenses/by/4.0/


 

15 

which transcription factors regulated upstream the altered ligand expression upon infection 

in directly infected immature enterocytes. Both tissues shared similar transcription factors, 

including ATF2/3, FOS, JUN, STAT1, and NFKB1, which were all upregulated in both 

tissues (Supplementary Figure 3 & 4). These transcription factors play a role in interferon 

response (STAT1) and inflammation (NFKB1), anti-apoptosis and cell growth (ATF2/3), cell 

proliferation and differentiation (JUN, FOS), suggesting an increase in these these functions 

upon SARS-CoV-2 infection in both colon and ileum. Interestingly, viral miRNAs that were 

predicted to regulate upstream the altered intracellular signalling were mostly different 

between colon and ileum (miR_10,11,16,18 in the colon and miR_4,5,6,18 in the ileum). 

Additionally, by analysing these networks, we observed that NOTCH1 and SMAD4, seem to 

be central to the intracellular signalling cascade in the colon, by receiving several signals 

driven by viral miRNAs and viral proteins, respectively (Supplementary Figure 3). 

Interestingly, both the Notch and TGF-β SMAD-dependant signaling pathways are involved 

in intestinal epithelial cell homeostasis, including stem cell maintenance, progenitor cell 

proliferation (Carulli et al., 2015) and maintenance of cell differentiation (Yamada et al., 

2013), suggesting a modulation of these pathways upon infection. In the ileal network, JAK2 

and CREB1, as well as SMAD2, SMAD 3 and ERK2 (MAPK1) seem to play a central role in 

the intracellular PPI signalling driven by viral miRNAs and viral proteins, respectively, and 

JAK2 and both SMAD2 and SMAD3 were also upregulated upon infection (Supplementary 

Figure 4).   

 

Upregulated epithelial ligands upon infection impact pro-inflammatory 

responses and immune cell recruitment to the infected epithelium 

 

To understand the functional impact of epithelial infection on intercellular communication, we 

looked at the ligand-receptor interactions driven by up and downregulated epithelial ligands 

in infected immature enterocytes upon infection in the colon and ileum (Figure 1, 

Supplementary Figure 8, and Methods). For each set of up and downregulated 

intercellular interactions, we looked at which ligands, receptors and immune cell types were 

involved in these intercellular interactions, assessing any potential similarities or differences 

between the colon and ileum (Figure 1 and Methods).   

 

Upregulated ligands in infected immature enterocytes were largely shared between colon 

and ileum, with one ligand (FAS) uniquely upregulated in the colon (Figure 2B). Shared 

upregulated ligands included mainly cytokines and chemokines (CXCL2/3/10 and tumor 

necrosis factor (TNF-a)) and the adhesion factor ICAM1. Interestingly, several additional 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2021. ; https://doi.org/10.1101/2021.08.09.455656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.09.455656
http://creativecommons.org/licenses/by/4.0/


 

16 

chemokines (CSF1, CXCLs, TNFSFs) and adhesion factors (PLAU, EFNA) were 

upregulated in the ileum upon infection, which we did not find in the colon (Figure 2B). 

Additionally, 38 receptors on immune cells targeted by upregulated ligands in the colon were 

all shared with the ileum, and were mainly represented by chemokine receptors (CXCRs, 

CCRs) (Figure 4). Epithelial-immune interactions driven by upregulated ligands were also 

mostly shared in the colon and ileum (1 unique to colon, 219 unique to ileum, 66 shared) 

(Figure 6 & Supplementary Figure 8A, 8B).  

 

Next, to understand which ligands were driving the most interactions with specific immune 

cell types, we scored them based on the number of ligand-receptor interactions they had 

with the different immune cell types analysed (Figure 1 and Methods). Chemokines 

(CXCLs) and tumor necrosis factor alpha (TNF-a) were among epithelial ligands (Figure 2C, 

3D), and chemokine receptors (CXCR 3,4,5,6 and CCR 1,2,5,7,9,10) among the receptors 

on immune cells driving the highest numbers of upregulated interactions in both tissues 

(Figure 5A, 5B & Supplementary Figure 6A, 6B), overall pointing towards an increased 

immune cell recruitment upon infection. The high number of upregulated interactions driven 

by chemokines could be attributable to the widespread presence of several different 

chemokine receptors on immune cells (Supplementary Figure 8A, 8B). Additionally, we 

found ileal-specific upregulated interactions involving Plasminogen Activator (PLAU), Ephrin 

A1 (EFNA1) and colony stimulating factor 1 (CSF1) binding to various receptors on immune 

cells, pointing towards an increased immune cell recruitment and adhesion (Figure 6, 

Supplementary Figure 8B). Finally, we found one colon-specific upregulated interaction 

between epithelial Fas Cell Surface Death Receptor (FAS) binding to receptor-interacting 

serine/threonine-protein kinase 1 (RIPK), pointing towards increased cell death upon 

infection (Figure 6, Supplementary Figure 8A).  

 

To understand which epithelial ligands and receptors were driving the strongest epithelial-

immune cell interactions during infection, we scored ligands and receptors based on the 

“sum of receptor expression” value, which takes into account the number of interacting 

receptors and the level of receptor expression in each immune cell type (Figure 1 and 

Methods). In the colon, the strongest upregulated interactions involved the epithelial TNF-a 

binding to B cells, T cells (CD4/CD8+), NK cells, macrophages and DCs, as well as epithelial 

chemokines (CXCL2,3, 10) binding to T cells (CD4/CD8+) and NK cells (Figure 7A). 

Similarly, in the ileum the strongest upregulated interactions involved epithelial chemokines 

binding to T cells (Treg, Tcyto, Tmem, CD8 Trm cyto) as well as TNF-a and CSF1 binding to 

macrophages and DCs (Figure 7B). Receptors driving the strongest upregulated 
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interactions were mainly chemokine receptors (CXCRs, CCRs) in both colon and ileum 

(Figure 9A, 9B), and RIPK1 in the colon only (Figure 9A). 

 

To understand the role of these epithelial-immune interactions, we performed a functional 

overrepresentation analysis of the participating upregulated epithelial ligands and receiving 

receptors on immune cells (Figure 1,  Supplementary Figure 8, and Methods). In line with 

the extensive overlap in upregulated intercellular interactions (Figure 6), most functions 

were shared between colon and ileum, and included  chemotaxis (GPCR signalling, 

chemokine signalling), immunity (interleukin signalling), apoptosis (caspase activation) and 

angiogenesis (VEGFA-VEGFR2 pathway) (Supplementary Figure 9A, 9B). One colonic-

specific function was related to pro-inflammatory responses (TNF signalling) and one ileal-

specific function was related to stem cell renewal (BMP signalling)  (Supplementary Figure 

9A, 9B).  

 

Downregulated epithelial ligands upon infection impact antigen presentation 

and focal adhesion pathways 

 

Downregulated ligands in infected immature enterocytes were partially shared between 

colon and ileum, but were tissue-specific to a large extent (Figure 2B). Additionally, 

receptors on immune cells targeted by downregulated ligands were partially shared between 

colon and ileum (66), but several of them were tissue-specific (63 unique to colon, 38 unique 

to ileum) (Figure 4). In line with this, while some downregulated interactions in infected 

immature enterocytes were shared (104), a large proportion was tissue-specific (73 unique 

to ileum, 125 to colon) (Figure 6 & Supplementary Figure 8A, 8B).  

 

In both tissues, epithelial ligands involved in the highest number of interactions with immune 

cells included human leukocyte antigens (HLA-A/B/C)), beta-2-microglobulin (B2M) and 

calmodulin (CALM1/2), while receptors on immune cells included integrins (ITGs), Natural 

Killer Cell Lectin Like Receptors (KLRCs) and Killer Ig-like receptors (KIRs) (Figure 2C, 2D, 

6A, 6B). Interestingly, the highest number of downregulated interactions in the colon upon 

infection was driven by two epithelial-derived laminins (LAMC2, LAMB3) and by integrins 

(ITGs) present on several different immune cell types (Figure 2A, 6A). Furthermore, 

receptors involved in the highest number of downregulated interactions were represented by 

AKT1 (Protein kinase B, PKB) uniquely in the colon, and by several integrins (ITGs), KLRCs 

and LDL Receptor Related Protein 1 (LRP1) in both colon and ileum (Figure 5A, 5B).  
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In the colon, ligands driving strong downregulated interactions were HLA-s (HLA-A, B, C) 

and B2M targeting CD4/CD8+ T cells, NK cells, ILCs and T reg cells (HLA-A and B2M only) 

(Figure 7A). In the ileum, we found similar downregulated interactions driven by HLAs and 

B2M, but the targeted immune cells included T cells (Trm, Tregs, cytotoxic T cell), ILCs 

(HLA-A, B, C only) and macrophages (both HLAs and B2M) (Figure 7B). Furthermore, the 

strongest downregulated interactions in the colon also included those among laminins 

(LAMB3, LAMC2) targeting T cells and macrophages, which we did not find in the ileum 

(Figure 7A, 7B). Receptors driving the strongest downregulated interactions were AKT1 

uniquely in the colon (Figure 8A) as well as integrins, KLRCs and LRP1 in both colon and 

ileum (Figure 8A, 8B) 

 

Functional overrepresentation analysis revealed shared functions related to antigen 

processing and cross-presentation (MHC class I–mediated), phagocytosis (ER phagosome 

pathway, Signalling by RHO GTPases) and cell-cell communication (immunoregulatory 

interactions between a lymphoid and non-lymphoid cell) in both tissues (Supplementary 

Figure 9A, 9B). Furthermore, several colon-specific functions were related to extracellular 

matrix organization and integrin cell surface interactions, suggesting decreased interactions 

involved in focal adhesion and intestinal tissue polarization uniquely in the colon 

(Supplementary Figure 9A). The only function uniquely overrepresented in the ileum was 

transcriptional regulation by MECP2 (Supplementary Figure 9A), whose expression has 

been shown to play a role in intestinal morphology and function (Millar-Büchner et al., 2016). 

 

Implication of epithelial ligands in the inflammatory process  

 

With our experimental data-based analysis, we pointed out several differentially expressed 

ligands in the epithelial-immune cell network relative to infected immature enterocytes which 

could play a role  in driving the inflammatory process upon SARS-CoV-2 infection. To 

validate their importance during immune reactions, we exploited independent data from 

three previously published studies (Figure 1).  

 

First, by comparing the differentially expressed ligands upon SARS-CoV-2 infection to DEGs 

in human colonic organoids exposed to inflammatory cytokines (Pavlidis et al., 2021), we 

identified 24 ligands whose expression change is regulated by cytokines during intestinal 

inflammation (Table 1, and Methods). These ligands are more probable to contribute to the 

inflammatory responses upon infection. Next, by comparing ileal and colonic ligands to data 

from ImmunoGlobe, a manually curated intercellular immune interaction network (Atallah et 
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al., 2020) and ImmunoeXpresso, a collection of cell–cytokine interactions generated through 

text mining (Kveler et al., 2018), we identified 12 ligands previously known to influence 

immune cell populations (Table 1, and Methods). The full list of affected immune cell types 

for each epithelial ligand is available in Table 2B. Finally, to understand which ileal and 

colonic ligands could  explain blood cytokine level changes of COVID-19 patients via direct 

immune cell regulation, we used data from (Olbei et al., 2021), and identified 6 ligands 

capable to create the detected blood cytokine levels during infection (Table 1, and 

Methods). 

 

Using this assessment, we were able to rank the differentially expressed ligands for their 

importance in the inflammatory process, and subsequently listed the 18 highest ranked  

ligands, for which there is strong evidence of their role in  epithelial–immune cell interactions 

during the inflammatory SARS-CoV-2 disease response (Table 1). These ligands included 

CSF1, various chemokines (CXCL10, CXCL11, CXCL2, CXCL3, CCL5, CX3CL1, CXCL8), 

TNFa & TNFSF13B, and ICAM1 among the upregulated ones; and various laminins 

(LAMC2, LAMB3), AREG, B2M), human leukocyte antigens (HLAs) (HLA-A, HLA-B) and 

IL32 among the downregulated ones. 
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Discussion 

In this work, we have highlighted the putative central role of the gut during the immune 

response following SARS-CoV-2 infection, showing how several intracellular and intercellular 

mechanisms affected during infection, with key differences between colon and ileum.  

 

SARS-CoV-2 has been shown to actively infect and reproduce in the human gut and in 

human gastro-intesinal tract derived organoids (Lamers et al., 2020; Stanifer et al., 2020; 

Triana et al., 2021a). However, it is not known what are the effects of intestinal inflammation 

and the role of epithelial-immune interactions in the hyperinflammatory immune response 

(“cytokine storm”) characterizing many COVID-19 patients (Arunachalam et al., 2020; Olbei 

et al., 2021). A better understanding of these interactions could help identify potential targets 

that are key to selectively disrupt such cell-cell interactions underlying extreme inflammatory 

conditions during SARS-CoV-2 infection. This would be extremely important given the failure 

of most randomized control trials associated with pro-inflammatory drug candidates for 

COVID-19 (Abubakar et al., 2020).  

 

The altered epithelial-immune cell crosstalk during SARS-CoV-2 infection has been explored 

within the nasopharynx and lungs using scRNA seq data (Chua et al., 2020). This study 

found stronger epithelial-immune cell interactions in critically ill patients, based on ligand-

receptor expression profiles, highlighting the importance of the crosstalk between infected 

cells and local immune cells in the disease course. However, to our knowledge no prior 

study has been carried out so far to model the effect of viral infection in host intestinal cells, 

and the role and contribution of intestinal epithelial cell–immune cell crosstalk during SARS-

CoV-2 infection. 

 

Our previous data (Triana et al., 2021a) has pointed out how immature enterocytes are the 

most affected epithelial cell population upon SARS-CoV-2 infection in the gut. Building on 

this knowledge, we developed a computational method to model and further investigate the 

effect of SARS-CoV-2 proteins and potential miRNAs on both ileal and colonic epithelial 

cells. We added in a distinguishable way the analysis of these potential miRNAs encoded by 

SARS-CoV-2 as previous studies highlighted the regulatory role of similar miRNAs produced 

by RNA viruses and their ability to downregulate host genes and affecting host functions 

(Bruscella et al., 2017; Griffiths-Jones et al., 2008; Saçar Demirci and Adan, 2020). In the 

present analysis, infected immature enterocytes were the most affected population based on 

the number of differentially expressed ligands, and drove most interactions with gut resident 
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immune cells. Upon infection of immature enterocytes, several intracellular signalling 

pathways were altered, including those related to inflammation, apoptosis, cell survival and 

cell death (Figure 3A, 3B). Furthermore, pathways related to cell cycle (negative regulation 

of G2/M transition) and cell proliferation were also altered upon infection (Figure 3A, 3B), in 

line with a previous phosphoproteomics study finding a correlation with cell cycle arrest upon 

SARS-CoV-2 infection (Bouhaddou et al., 2020). Interestingly, several pathways involved in 

cell differentiation, cell migration and epithelial polarization, were also modulated upon 

infection in our study (Figure 3A, 3B).  

 

By using available ligand-receptor interaction data, we aimed to elucidate mechanisms by 

which infected epithelial cells in the gut recruit innate and adaptive immune cell populations 

to find key interactions driving the immune response in the gut. In the colon, the number of 

downregulated ligands (29) was higher compared to upregulated ligands (6) upon infection 

(Supplementary Figure 1) and downregulated ligands drove the highest number of 

interactions (Figure 2A). Conversely, in the ileum, the number of upregulated (20) and 

downregulated ligands (24) was comparable (Supplementary Figure 1), but upregulated 

ligands drove the highest number of cell-cell interactions with immune cells (Figure 2A). In 

both cases, the number of interactions with immune cells was not simply driven by the 

overall number of SARS-CoV-2 regulated ligands but by a few ligands presenting many 

different receptors on immune cells, and their relative expression change following infection 

(Figure 2C, 2D & Supplementary Figure 8A, 8B). For instance, in the colon, ligands driving 

the highest number of interactions included laminins (LAMB3, LAMC2) and MHC I - related 

proteins (HLA-A, HLA-B, B2M), which were all downregulated (Figure 2A). Conversely, in 

the ileum, the highest number of interactions was driven by cytokines/chemokines (TNF-a, 

CXCL8, CCL5, CXCL11) and adhesion factor CSF1, which are all upregulated (Figure 2B).  

 

Most of upregulated ligands, mainly pro-inflammatory cytokines and chemokines, and cell-

cell interactions they are involved in, are shared between colonic and ileal immature 

enterocytes upon infection, although more interactions are driven in the ileum (Figure 2B & 

Figure 6). Overall, upregulated interactions may reflect a general effect of the infection. 

Indeed, upregulated interactions were mainly represented by chemokines and TNF-a driven 

interactions (Figure 2C, 2D & Figure 7A, 7B), and functional analysis highlighted a relation 

to proinflammatory signalling pathways, including TNF-a signalling, interleukin signalling and 

chemotaxis via GPCR signalling, overall suggesting an increasing recruitment and cell 

adhesion of these immune cell populations upon infection (Supplementary Figure 9A, 9B). 

Notably, four chemokine receptors identified by our study (CXCR6 in the ileum, CCR1/2 and 

CCR9 in both ileum and colon) are coded in a genomic region that has been found 
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associated as a COVID-19 risk locus on chromosome 3 (Schultze and Aschenbrenner, 

2021). Importantly, recruitment of neutrophils by CXCL8 in the lung, which presented the 

epithelial ligand driving most interactions in the ileum in our study (Figure 2D), has been 

associated with disease severity in COVID-19 patients, supporting the role of chemokine-

driven immune cell recruitment in disease manifestation (Park and Lee, 2020).  

 

In both colon and ileum, we found strong downregulated interactions driven by epithelial 

HLAs (HLA-A, B, C) and B2M, a subcomponent of the major histocompatibility complex I 

(MHC I) (Figure 2C, 2D). According to our analysis, these ligands were mainly binding to  

KLR receptors, which are mainly presented on NK cells (Supplementary Figure 8A, 8B). 

Downregulation of HLAs represents a common immune evasion mechanism of viruses 

(Koutsakos et al., 2019), and has recently been discovered as a mechanism that SARS-

CoV-2 protein ORF8 may use to escape host  immune surveillance (Park, 2020). 

 

Uniquely in the colon, we found strong downregulated interactions driven by epithelial 

laminins (LAMB3 and LAMC2) and integrins, with T cells and macrophages as the main 

immune cell types targeted upon infection (Figure 2C, 6A). Laminin-integrin binding 

contributes to focal adhesion of immune cells to the inflamed tissue (Simon and Bromberg, 

2017) the overrepresentation of focal adhesion pathways and RHO GTPase signalling 

(Supplementary Figure 9A), which is involved in the migration of leukocytes to the site of 

infection (Biro et al., 2014). Overall, downregulation of laminins could represent a strategy 

for immune evasion following viral infection uniquely in the colon. Furthermore, laminins are 

known to play a role in shaping the architecture of intestinal mucosa, and an altered 

expression has been observed in Crohn's disease, a type of IBD, driven by pro-inflammatory 

cytokines TNF-α and IFN-γ (Bouatrouss et al., 2000; Francoeur et al., 2004; Mahoney et al., 

2008). 

 

Finally, calmodulin genes (CALM1, CALM2, CALM2) were predicted to drive several 

downregulated ligand-receptor interactions (Figure 2C, 3D), mainly binding to cyclic AMP-

specific phosphodiesterases (PDEs) (PDE1A, PDE1B, PDE1C) on immune cells in both 

tissues upon infection (Supplementary Figure 8). PDEs, whose activation is 

calcium/calmodulin dependent, are responsible for cyclic AMP (cAMP) degradation in T 

cells, which is a potent inhibitor of T-cell activation (Bjørgo et al., 2011). Hence, the 

downregulation of CALM-PDEs interactions following SARS-CoV-2 infection implies an 

increase in intracellular cAMP in T cells, and consequently an inhibition of their activity. This 

could represent another way during SARS-CoV-2 infection to evade the immune activation 

and viral clearance. 
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IgA plasma cells were the immune cell population with the highest number of cell-cell 

interactions upon infection in both colon and ileum (Figure 2A). Notably, previous reports 

suggests that IgA is the main type of immunoglobulin induced by mucosal infection of SARS-

CoV-2, stressing the importance of the crucial role played by IgA-mediated mucosal 

immunity in anti-SARS-CoV-2 infection (Sterlin et al., 2021). Interestingly, in the colon most 

of these cell-cell interactions were driven by downregulated ligands, including laminins, 

HLAs and calmodulins, possibly suggesting a decreased antigen presentation and calcium-

dependent activation of these cell types (Figure 2A, 2C). Conversely, in the ileum these 

interactions were driven by upregulated ligands, mainly cytokines/chemokines (TNF-a, 

CXCLs, CSF1) and adhesion factors (ICAM1, PLAU), possibly suggesting increased 

recruitment of these cell types to the epithelium (Figure 2A, 2D). The potential 

downregulation of cell-cell interactions with IgA plasma cells in the colon is an interesting 

avenue of further research. Of note, the size of each immune cell population was not taken 

into account in this analysis (Methods). Extension of the study in this way could refine the 

importance of each type of ligand-receptor communication in mediating the overall 

downstream functional changes, leading to a better prediction of the effect size for each 

ligand-receptor combination.  

 

With our integrated workflow, we established a method to evaluate the effect of viral infection 

on host epithelial intestinal cells function and on the epithelial-immune crosstalk. Notably, 

this workflow is not limited to the gut, and it can be easily applied to other organs and cell 

types (e.g. lung, kidney, heart) which are relevant during SARS-CoV-2 infection and 

provided the right input data is available. Using our integrated intracellular and intercellular 

signalling network, we confirmed many of the previous findings about SARS-CoV-2 infection. 

These include the increase in pro-inflammatory responses, including TNF signalling and 

chemokine signalling, and the role played by T cells. Yet, we uncovered new mechanisms by 

which SARS-CoV-2 may evade the immune responses by interfering with epithelial-immune 

cell connections. Such mechanisms include downregulation of NK activation by HLAs-KLR 

interactions, focal adhesion pathways by laminin-integrins interactions, and T cell function by 

calmodulin-PDEs binding. 

 

The methodology we used for our analysis has some limitations. When constructing the 

intracellular causal network, the effect of SARS-CoV-2 proteins towards human binding 

partners was always considered as inhibitory. However, this is not always the case. In the 

future, with increasingly available data, a more refined model could be generated. 

Furthermore, two different single cell transcriptomics datasets were used for colonic and ileal 
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immune cell populations, due to the unavailability of both datasets from the same 

experiment. Similarly, IBD uninflamed data and healthy data were used for the ileum and 

colon respectively, as healthy control scRNAseq immune cell data for both tissues was not 

available at the time of the analysis. Finally, the a priori resources used to infer the 

intracellular and intercellular interaction networks may have some intrinsic limitations 

associated with them (Dimitrov et al., 2021) specific tools such as  LIANA (LIgand-receptor 

ANalysis frAmework; https://github.com/saezlab/liana) could be used in the future to 

compare across several resources available, helping to choose the one(s) providing the best 

overall prediction. 

 

With our analysis, we provided a set of intestinal epithelial ligands and immune cell 

populations implicated in altered epithelial-immune interactions during SARS-CoV-2 

infection, which could potentially drive the excessive inflammatory processes seen in severe 

COVID-19 patients. Further experimental validation will be key to validate these processes 

and the key molecules and cell types involved. Introduction of immune cells to an organoid 

system is currently challenging. Yet, a recent study, where human intestinal CD4+ T cells 

have been co-cultured with human intestinal organoids (Schreurs et al., 2021), may 

represent a promising set-up for future studies to investigate epithelial-immune cell 

interactions during SARS-CoV-2 induced inflammation in the gut. As reviewed recently by 

(Min et al., 2020; Poletti et al., 2020), such co-culture systems could be excellent to study 

host-microbe interactions in the gut, including the detailed experimental analysis of SARS-

CoV-2 infection in the gut. 

 

With our work we presented a novel computational method to investigate the effect of SARS-

CoV-2 proteins and miRNA on epithelial cell functions and epithelial-immune crosstalk upon 

infection. This workflow can be applied in the future to more epithelial and immune cell types 

when these data become available. Analyses of these intracellular and intercellular networks 

could shed light on the viral mechanisms of infection, the contribution of the gut to the 

cytokine storm, and possible location-dependent differences in effects of the viral infection. 
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Figures & Tables Description 

 

Table 1. Key differentially expressed ligands produced by infected immature 

enterocytes drive the inflammatory process upon SARS-CoV-2 infection. Table 

showing a list of top-ranked differentially expressed ligands in infected immature enterocytes 

which were identified to drive inflammation upon SARS-CoV-2 infection. The ranking of the 

ligands was performed using multiple criteria as explained in the Methods. ‘Organoid type’ 

indicates whether the expression change of the ligand was found in ileal or colonic infected 

immature enterocytes upon SARS-CoV-2 infection, respectively. ‘Expression change upon 

SARS-CoV-2 infection’ indicates the direction of expression change of the ligand in infected 

immature enterocytes upon SARS-CoV-2 infection. ‘Regulation by cytokines’ indicates 

whether ligand expression was found to be regulated by cytokines during inflammation 

based on results from (Pavlidis et al., 2021). Ileal data was not available (n.d.) in this study, 

so no conclusions could be drawn for ileal ligands. ‘Known to affect immune cells’ indicates 

whether the ligand was found to be regulated by immune cells using data from 

ImmunoGlobe (1) and ImmunoeXpresso (2) databases. ‘Directly explain patient blood 

cytokine levels’ indicates whether the ligand was found to directly regulate blood cytokine 

levels in COVID-19 patients from (Olbei et al., 2021).  

 

Figure 1. Integrated workflow to analyse the intracellular and intercellular effect of 

SARS-CoV-2 in the gut. Schematic workflow illustrating the different analytical steps used 

to construct the intracellular and intercellular signalling networks between epithelial cells in 

SARS-CoV-2 infected intestinal organoids (ileal and colonic organoids, 24 hrs infection) and 

immune cell types.  

 

Figure 2. Differentially expressed ligands driving upregulated and downregulated 

intercellular interactions between colonic and ileal infected immature enterocytes and 

resident immune cells upon infection in the colon and ileum. 

(A) Heatplot showing the number of interactions between immature enterocytes and resident 

immune cells. Interactions driven by upregulated and downregulated ligands (ligand_dir) are 

shown separately for infected and bystander cells (status), and for ileum and colonic 

organoids. The intensity of the color indicates the number of immune cell types whose 

receptor is targeted by the epithelial cells ligands. The numbers on the ligand_dir row refer to 

the number of upregulated or downregulated ligands driving the indicated interactions with 

immune cells for the different groups/conditions. Abbreviations: Ileum: inf_macrophage, 

infected macrophage; mast, mast cell, CD8_Trm_cyto, Resident memory cytotoxic T cell; 
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DC2, dendritic cell 2; Trm, Tissue-resident memory T cell, gd_Tcell, Gamma delta (γδ) T 

cells; ILC, Innate lymphoid cell; mem_Bcell, memory B cell; naive_Bcell, naive B cell; 

TFH_like, T follicular helper cells; Trm_Th17, Tissue-resident memory Th17 cells; Treg, 

Regulatory T cell; Tcyto, Cytotoxic T cell; Tmem, Memory T cells. Colon: ILC, Innate 

lymphoid cell; CD8_IL17, IL-17+ CD8+ T cells; DC, dendritic cells; GC_Bcell, Germinal 

center B cells; CD4_PD1, mast, mast cell; Treg, Regulatory T cell; NK, Natural Killer cell, 

CD4_MThi, high mitochondrial CD4+ T cell; CD4_memory, CD4+ Memory T cell, 

CD4_activ_fos_high, activated CD4+ T cells (high/low c-fos); CD8_LP, CD8+ lymphocyte-

predominant cells, CD8_IEL, CD8+ intraepithelial lymphocytes. 

(B) Venn diagrams showing the number of ligands of the infected immature enterocytes - 

immune cells intercellular network that are unique or shared between the ileum and colon. 

Upregulated and downregulated ligands are shown separately.  

(C, D) Bar plot showing the upregulated and downregulated ligands in the colonic (C) and 

ileal  (D) infected immature enterocytes - immune cell network scored by number of 

interactions (height of the bar plot) and number of immune cells targeted (black dots). 

Upregulated ligands are shown in red and downregulated ligands in blue.  

 

Figure 3. Overview of intracellular and intercellular signalling of ileal and colonic 

infected immature enterocytes upon SARS-CoV-2 infection 

(A, B) Overview of intracellular and intercellular signalling upon SARS-CoV-2 infection in 

colonic (A) and ileal (B) infected immature enterocytes and immune cell populations. From 

left to right: signalling cascade going from SARS-CoV-2 molecules (proteins or miRNAs) to 

differentially expressed ligands on immature enterocytes and binding receptor groups on 

immune cells. Intracellular network: SARS-COV-2 molecules are grouped separately if they 

are viral proteins (bottom) or miRNAs (top). Differentially expressed ligands for which no 

upstream signalling was identified, but downstream intercellular connections were predicted 

are excluded from this figure. Differentially expressed ligands are grouped based on the 

direction of regulation, which is indicated with blue when downregulated (bottom) and red 

when upregulated (top) when comparing SARS-CoV-2 infected vs uninfected conditions. 

Colors of the nodes and of the functional analysis indicate if the original network was a 

miRNA only (yellow), viral protein only (black) or both viral protein and miRNA (grey). 

Functional overrepresentation analysis was carried out for the “PPI layer” of the intracellular 

network which includes human binding proteins, intermediary signalling proteins and TFs 

(adj p value < 0.05, n > 3). Intercellular network: Size of the receptor node represents the 

sum of receptors within the group targeted by each incoming ligand. Functional analysis is 

indicated for ligand-receptor groups. Receptor groups layout is based on whether they 

contributed to the functional analysis of upregulated interactions (red) or downregulated 
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interactions (blue). Receptor groups not contributing to any functions are indicated in light 

grey.  

 

Figure 4. Overview of receptors involved in upregulated and downregulated 

interactions between infected immature enterocytes and resident immune cells upon 

infection in the colon and ileum. Venn diagrams showing the number of receptors in the 

infected immature enterocytes - immune cells intercellular networks that are unique or 

shared between the ileal and colonic networks. Receptors targeted by upregulated ligands 

and downregulated ligands are shown separately. 

 

Figure 5. Receptors involved in intercellular interactions between colonic and ileal 

infected immature enterocytes and resident immune cells. Bar plot showing the immune 

receptors targeted by upregulated (top graph) and downregulated (bottom graph) ligands in 

colonic (A) and ileal (B) infected immature enterocytes, scored by number of interactions 

(height of the bar plot) and number of immune cells targeted (black dots). The color of the 

bar plots indicates the number of ligands targeting each of the receptors indicated. This plot 

only shows the top 25 receptors by number of interactions, and the full plot is available as 

Supplementary Figure 6. 

 

Figure 6. Overview of upregulated and downregulated ligand-receptor interactions 

between infected immature enterocytes and resident immune cells upon infection in 

the colon and ileum. Venn diagrams showing the number of ligand-receptor interactions in 

the infected immature enterocytes - immune cells intercellular network that are unique or 

shared between the ileum and colon. Intercellular interactions driven by upregulated and 

downregulated ligands are shown separately. 

 

Figure 7. Ligands of infected immature enterocytes involved in the strongest up and 

downregulated interactions upon SARS-CoV-2 infection in the colon and ileum 

(A, B) Heatplot showing the upregulated and downregulated interactions in the colon (A) and 

ileum (B) between intestinal epithelial ligands and resident immune cells upon infection of 

immature enterocytes with SARS-CoV-2. The strength of the interaction is expressed by 

accounting for the number of interactions between epithelial ligands and immune receptors 

and the level of receptor expression of immune cells. The strength of the interaction, named 

“sum of expression values”, is visualized using a color gradient from white (wekeast 

interactions) to purple (strongest interactions). Abbreviations: Ileum: inf_macrophage, 

infected macrophage; mast, mast cell, CD8_Trm_cyto, Resident memory cytotoxic T cell; 

DC2, dendritic cell 2; Trm, Tissue-resident memory T cell, gd_Tcell, Gamma delta (γδ) T 
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cells; ILC, Innate lymphoid cell; mem_Bcell, memory B cell; naive_Bcell, naive B cell; 

TFH_like, T follicular helper cells; Trm_Th17, Tissue-resident memory Th17 cells; Treg, 

Regulatory T cell; Tcyto, Cytotoxic T cell; Tmem, Memory T cells. Colon: ILC, Innate 

lymphoid cell; CD8_IL17, IL-17+ CD8+ T cells; DC, dendritic cells; GC_Bcell, Germinal 

center B cells; CD4_PD1, mast, mast cell; Treg, Regulatory T cell; NK, Natural Killer cell, 

CD4_MThi, high mitochondrial CD4+ T cell; CD4_memory, CD4+ Memory T cell, 

CD4_activ_fos_high, activated CD4+ T cells (high/low c-fos); CD8_LP, CD8+ lymphocyte-

predominant cells, CD8_IEL, CD8+ intraepithelial lymphocytes. 

 

Figure 8. Receptors on immune cell types involved in the strongest up and 

downregulated interactions upon SARS-CoV-2 infection in the colon and ileum 

(A, B) Heatplot showing the upregulated and downregulated interactions in the colon (A) and 

ileum (B) between receptors and resident immune cell types upon infection of immature 

enterocytes with SARS-CoV-2. The strength of the interaction is expressed by accounting for 

the number of interactions and the level of receptor expression of the receptor on immune 

cells. The strength of the interaction, named “sum of expression values”, is visualized using 

a color gradient from blue (wekeast interactions) to red (strongest interactions). 

Abbreviations: Ileum: inf_macrophage, infected macrophage; mast, mast cell, 

CD8_Trm_cyto, Resident memory cytotoxic T cell; DC2, dendritic cell 2; Trm, Tissue-

resident memory T cell, gd_Tcell, Gamma delta (γδ) T cells; ILC, Innate lymphoid cell; 

mem_Bcell, memory B cell; naive_Bcell, naive B cell; TFH_like, T follicular helper cells; 

Trm_Th17, Tissue-resident memory Th17 cells; Treg, Regulatory T cell; Tcyto, Cytotoxic T 

cell; Tmem, Memory T cells. Colon: ILC, Innate lymphoid cell; CD8_IL17, IL-17+ CD8+ T 

cells; DC, dendritic cells; GC_Bcell, Germinal center B cells; CD4_PD1, mast, mast cell; 

Treg, Regulatory T cell; NK, Natural Killer cell, CD4_MThi, high mitochondrial CD4+ T cell; 

CD4_memory, CD4+ Memory T cell, CD4_activ_fos_high, activated CD4+ T cells (high/low 

c-fos); CD8_LP, CD8+ lymphocyte-predominant cells, CD8_IEL, CD8+ intraepithelial 

lymphocytes. 

 

Supplementary Figures.  

 

Supplementary Figure 1. Differentially expressed ligands upon SARS-CoV-2 infection 

in infected or bystander epithelial sub-populations. Bar chart indicating the number of 

differentially expressed ligands in the intercellular network in each epithelial sub-populations, 

either bystander or infected, in ileal or colonic organoids infected with SARS-CoV-2 vs 

control (24 hrs). Differentially expressed ligands are those DEGs found in (Lamers et al., 

2020; Stanifer et al., 2020; Triana et al., 2021a; Zang et al., 2020), for which at least one 
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binding receptor was found on immune cell populations. Color of the bar indicates the 

direction of regulation (red, upregulated; blue: downregulated). Abbreviations: ta, transit 

amplifying; imm_enterocyte, immature enterocyte. 

 

Supplementary Figure 2. Intracellular signalling networks of ileal and colonic infected 

immature enterocytes upon SARS-CoV-2 infection. A, B) Causal networks of SARS-

CoV-2-infected colonic and ileal immature enterocytes reconstructed using ViralLink or 

CARNIVAL. For each network the number of interacting partners (nodes), number of 

interactions (edges), average number of neighbours, network diameter and characteristics 

path length are indicated under “Network characteristics”. Within the “Node table”, columns 

indicate the types of nodes in the different layers of the network, including SARS-CoV-2 

proteins or miRNAs, human binding proteins, intermediary signalling proteins, transcription 

factors (TFs) and differentially expressed ligands. Where an interacting partner (human 

protein/gene) was found to act in multiple layers of the network, it was assigned to a layer 

based on the following priority: differentially expressed ligands, human binding proteins, TFs, 

intermediary signalling proteins. Ligands have log2 fold change ≥ |0.5| and adjusted p value 

≤ 0.05. Within the “Node Table”, rows indicate whether the node or edge belong to 

intracellular signals stemming from viral miRNA only, viral protein only or both (“shared”). 

 

Supplementary Figure 3. Overview of intracellular signalling upon SARS-CoV-2 

infection in colonic infected immature enterocytes, reconstructed using the 

CARNIVAL. From left to right: signalling cascade going from the upstream perturbation 

(SARS-CoV-2 proteins or miRNAs interacting with human binding proteins) to the 

downstream perturbation, transcription factors (TFs) regulating the differentially expressed 

ligands. Diamonds indicate the most active transcription factors after infection and the ovals 

are the perturbed human binding proteins. Rectangles are signaling intermediate proteins 

linking these two. Parallelograms and downward arrows indicate SARS-CoV-2 proteins and 

miRNAs, respectively. The color of the node indicates activation (red) or inhibition (blue) 

upon SARS-CoV-2 infection vs uninfected condition. Connecting edges show the direction of 

the interaction, as activation (pointed arrow) or inhibition (T shape arrow). Differentially 
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expressed ligands for which no upstream signalling was identified, but downstream 

intercellular connections were predicted are excluded from this figure. Differentially 

expressed ligands are grouped based on the direction of regulation, which is indicated with 

blue when downregulated (bottom) and red when upregulated (top) when comparing SARS-

CoV-2 infected vs uninfected conditions. Colors of the nodes edge and of the functional 

analysis boxes indicate if the original network was a miRNA only (yellow), viral protein only 

(black) or both viral protein and miRNA (grey). Functional overrepresentation analysis was 

carried out for the “PPI layer” of the intracellular network which includes human binding 

proteins, intermediary signalling proteins and TFs (adj p value < 0.05, n > 3). 

 

Supplementary Figure 4. Overview of intracellular signalling upon SARS-CoV-2 

infection in ileal infected immature enterocytes, reconstructed using CARNIVAL. From 

left to right: signalling cascade going from the upstream perturbation (SARS-CoV-2 proteins 

or miRNAs interacting with human binding proteins) to the downstream perturbation, 

transcription factors (TFs) regulating the differentially expressed ligands. Diamonds indicate 

the most active transcription factors after infection and the ovals are the perturbed human 

binding proteins. Rectangles are signaling intermediate proteins linking these two. 

Parallelograms and downward arrows indicate SARS-CoV-2 proteins and miRNAs, 

respectively. The color of the node indicates activation (red) or inhibition (blue) upon SARS-

CoV-2 infection vs uninfected condition. Connecting edges show the direction of the 

interaction, as activation (pointed arrow) or inhibition (T shape arrow). Differentially 

expressed ligands for which no upstream signalling was identified, but downstream 

intercellular connections were predicted are excluded from this figure. Differentially 

expressed ligands are grouped based on the direction of regulation, which is indicated with 

blue when downregulated (bottom) and red when upregulated (top) when comparing SARS-

CoV-2 infected vs uninfected conditions. Colors of the nodes edge and of the functional 

analysis boxes indicate if the original network was a miRNA only (yellow), viral protein only 

(black) or both viral protein and miRNA (grey). Functional overrepresentation analysis was 

carried out for the “PPI layer” of the intracellular network which includes human binding 

proteins, intermediary signalling proteins and TFs (adj p value < 0.05, n > 3). 

 

Supplementary Figure 5. Differentially expressed ligands of colonic and ileal 

bystander immature enterocytes upon SARS-CoV-2 infection. Bar plot showing the 

upregulated and downregulated ligands in the colonic (top) and ileal (bottom) bystander 

immature enterocytes - immune cell network scored by number of interactions (height of the 

bar plot) and number of immune cells targeted (black dots). Upregulated ligands are shown 

in red and downregulated ligands in blue.  
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Supplementary Figure 6. Receptors involved in intercellular interactions between 

colonic and ileal infected immature enterocytes and resident immune cells. Bar plot 

showing the immune receptors targeted by upregulated (top graph) and downregulated 

(bottom graph) ligands in colonic (A) and ileal (B) infected immature enterocytes, scored by 

number of interactions (height of the bar plot) and number of immune cells targeted (black 

dots). The color of the bar plots indicates the number of ligands targeting each of the 

receptors indicated.  

 

Supplementary Figure 7. Receptors involved in intercellular interactions between 

colonic and ileal bystander immature enterocytes and resident immune cells. Bar plot 

showing the immune receptors targeted by upregulated (top graph) and downregulated 

(bottom graph) ligands in colonic (A) and ileal (B) bystander immature enterocytes, scored 

by number of interactions (height of the bar plot) and number of immune cells targeted (black 

dots). The color of the bar plots indicates the number of ligands targeting each of the 

receptors indicated.  

 

Supplementary Figure 8. Intercellular interactions with upregulated and 

downregulated ligands of colonic and ileal infected immature enterocytes. Interactions 

driven by upregulated and downregulated ligands are shown separately. The number of 

immune cells involved in ligand-receptor interaction pair is indicated in purple. 

 

Supplementary Figure 9. Functional analysis of ligand-receptor interactions between 

ileal and colonic immature enterocytes and resident immune cells upon SARS-CoV-2.  

A, B) Reactome functional overrepresentation analysis carried out a list of all upregulated 

ligands and receptors for interactions of a specific condition. There was no weighting for the 

number of interactions of each ligand/receptor. Analyses relative to interactions driven by 

upregulated and downregulated ligands are shown separately. 

 

Supplementary Figure 10. Functional analysis of ligand-receptor interactions between 

ileal and colonic immature enterocytes and resident immune cells upon SARS-CoV-2. 

Reactome functional overrepresentation analysis carried out a list of all upregulated ligands 

and receptors for interactions of a specific condition. There was no weighting for the number 

of interactions of each ligand/receptor. For the colon, analyses relative to interactions driven 

by upregulated and downregulated ligands are shown separately. For the ileum, analyses 

relative to upregulated ligands only are shown, as there were no interactions driven by 

downregulated ligands. 
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