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Abstract—To cope with the lack of highly skilled professionals,
machine learning with proper signal processing is key for
establishing automated diagnostic-aid technologies with which
to conduct epileptic electroencephalogram (EEG) testing. In
particular, frequency filtering with the appropriate passbands
is essential for enhancing the biomarkers—such as epileptic
spike waves—that are noted in the EEG. This paper introduces
a novel class of neural networks (NNs) that have a bank of
linear-phase finite impulse response filters at the first layer as
a preprocessor that can behave as bandpass filters that extract
biomarkers without destroying waveforms because of a linear-
phase condition. Besides, the parameters of the filters are also
data-driven. The proposed NNs were trained with a large amount
of clinical EEG data, including 15,833 epileptic spike waveforms
recorded from 50 patients, and their labels were annotated by
specialists. In the experiments, we compared three scenarios for
the first layer: no preprocessing, discrete wavelet transform,
and the proposed data-driven filters. The experimental results
show that the trained data-driven filter bank with supervised
learning behaves like multiple bandpass filters. In particular, the
trained filter passed a frequency band of approximately 10–30
Hz. Moreover, the proposed method detected epileptic spikes,
with the area under the receiver operating characteristic curve
of 0.967 in the mean of 50 intersubject validations.

Index Terms—Epilepsy; Spike detection; Electroencephalo-
gram (EEG); Linear-phase filter; Convolutional neural network
(CNN).

I. INTRODUCTION

EPILEPSY is a neurological disorder that is said to affect
50 million patients worldwide. In particular, childhood

epilepsy affects an individual’s cognitive activity. Early ap-
propriate diagnosis helps patients reduce future brain damage.
In the diagnosis, the measurement of an electroencephalogram
(EEG) along with a medical examination is essential for deter-
mining the type of seizure symptom. The examination requires
clinical knowledge and experience, but epilepsy specialists
with these skills are in chronically short supply. This has
motivated the development of an automated diagnostic tool
to support epileptologists.

One of the essential biomarkers in diagnosing epilepsy is
an epileptic spike called a paroxysmal discharge, which is
frequently present in a patient’s interictal EEG [1]. To support

This work was supported by JST CREST Grant Number JPMJCR1784.
K. Fukumori and T. Tanaka are with the Tokyo University of Agriculture

and Technology, Tokyo, Japan. T. Tanaka is also with RIKEN Center for
Brain Science, Saitama, Japan, and RIKEN Center for Advanced Intelligence
Project, Tokyo, Japan.

N. Yoshida is with Juntendo University Nerima Hospital, Tokyo, Japan.
H. Sugano and M. Nakajima are with Juntendo University School of

Medicine, Tokyo, Japan.

the detection of epileptic spikes, several automated detection
approaches are making great advances. To implement the
automatic detection of epileptic spikes, supervised learning is
one effective method. To efficiently train the machine learning
models, the EEG signal is generally decomposed into standard
clinical frequency bands of interest—such as δ, θ, α, β, and
γ—before the learning [2]. While conducting such training, it
is necessary to select the frequency bands appropriately, which
depends on several factors, such as the EEG measurement
method, measurement environment, the type of epilepsy, and
epileptologists’ skills. However, in various studies, a range of
frequencies or frequency bands of interest has been empirically
selected. Douget et al. [3] used discrete wavelet transform
(DWT) to obtain a set of subbands with a range of 4–32 Hz
for the analysis of both intracranial and scalp EEG. Carey et
al. [4] used an infinite impulse response Butterworth bandpass
filter with a frequency band of 1–30 Hz. In addition, Maurice
et al. [5] employed 0.5–70 Hz band-pass filter with a third-
order Butterworth and 60 Hz notch filter with a fourth-order
Butterworth to detect spikes from an intracranial EEG. For
epileptic seizure detection, Iesmantas et al. [6] used seven
bandpass filters to divide the EEG into seven frequency bands
of <4 Hz, 4–7 Hz, 7–13 Hz, 13–15 Hz, 14–30 Hz, 30–45 Hz,
and 45–70 Hz.

With the advent of deep neural networks, model parameters
could learn from observed data, including feature extraction
methods. In particular, convolutional neural networks (CNN)
can extract features by applying filters to input data [7], [8].
However, each filter in the convolutional layer has a high
degree of freedom, even though the predefined filters in previ-
ous studies have been designed with a linear-phase constraint
to preserve the waveform shape. It is undesirable to destroy
the waveform shape using unconstrained filtering, because
the manual identification of epileptic biomarkers by clinical
experts is also an essential requirement of the diagnosis.

This paper hypothesizes that the frequency subbands can
be estimated on the basis of the data from an epileptic EEG
labeled by clinical specialists. To this end, we propose the
use of supervised learning to find filter coefficients regarded
as a one-dimensional (1D) convolutional layer under a linear-
phase constraint. This layer can be connected to general neural
networks, such as CNN and artificial neural networks (ANN),
as a classifier. Furthermore, because no dataset of epileptic
spike detection is, to the best of our knowledge, publicly
available, this paper built a large medical dataset—containing
15,833 epileptic spikes, 15,004 nonepileptic discharges, and
the corresponding 30,837 labels—to train the parameters in
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the proposed model.

II. RELATED WORK

A. Feature Extraction

Recently, many studies of epileptic EEGs have applied
signal decomposition methods using DWT in a preprocessing
stage [3], [9]–[15]. However, in these cases, the parameter
selection frequency range of the bandpass filters is empirically
given.

Cheong et al. [16] used DWT to decompose the signal into
frequency subbands from the delta band to the gamma band
(0–63 Hz). Gutierrez et al. [9] applied a bandpass filter in the
range of 0.5–70 Hz. Then, they obtained wavelet coefficients
from the filtered signal to classify epileptic spikes. Similarly,
a range of 0.5–70 Hz was extracted with a Butterworth filter
to obtain wavelet coefficients [15].

Other studies have utilized narrow bandpass filter ranges for
preprocessing. Polat et al. [17] applied a bandpass filter range
of 0.53–40 Hz and then used the discrete Fourier transform
to extract the features for the decision tree classifier. Khan
et al. [12] used the range of 0–32 Hz decomposed by DWT
because most of epileptic information lies in the range of
0.5–30 Hz. Similarly, Douget et al. [3] and Indiradevi et
al. [18] adopted DWT with Daubechies 4 (DB4) to extract
the frequency band of 4–32 Hz. Moreover, Fergus et al. [19]
used the range of only 0–25 Hz, although they did not use
DWT but a Butterworth filter. Thereafter, they employed the
holdout technique and k-fold cross-validation, passing into
many different classifier models for distinguishing seizure and
nonseizure EEG records.

In these studies for the classification or detection of epilepsy,
DWT decomposition and other filtering methods were effec-
tive. As seen above, although the frequency range, including
the epileptic information, is roughly known to be less than
about 60 Hz, the selection of cut-off frequencies depends on
several factors, such as the designer of the automated system,
the type of epilepsy, the epileptologists on diagnosis, and so
forth. This motivated us to identify the filter parameters based
on data.

B. Convolutional Neural Networks

A type of neural network (NN) that demonstrates excel-
lent performance—especially in the field of image or video
recognition [20], [21]—is the CNN. The CNN is an ex-
tended NN that has an input layer, multiple hidden layers,
and output layer. In general, the hidden layers consist of
convolutional layers, and a fully connected layer is used as
the output layer. The convolution layer applies a convolution
to the input and forwards the result to the next layer. Let
X = {x0, x1, . . . , xN−1}, Y = {y0, y1, . . . , yM−1}, and
H = {h0, h1, . . . , hL−1} be a 1D input signal, a 1D output
signal, and a convolutional kernel, where N , M , and L are the
length of X , Y , and H , respectively. For the sake of simplicity,
L is assumed to be even. Focusing on one layer, the input X

TABLE I
SUMMARY OF THE DATASETS ON EPILEPTIC SPIKE DETECTION IN OTHER

STUDIES

Reference and #Labels annotated #Patientspublication year as epileptic spikes
Wilson et al. [24], 1999 2,400 50
Indiradevi et al. [18], 2008 684 22
Liu et al. [25], 2013 142 12
Johansen et al. [22], 2016 7,500 5
Douget et al. [3], 2017 2,157 17
Xuyen et al. [14], 2018 1,491 19
Thanh et al. [15], 2020 1,442 17
This paper 15,833 50

is convolved with the kernel H , and the output Y is generated
as follows:

ym =
L−1∑
l=0

hlxm+l. (1)

The flattened layer smoothes multiple convolved signals into
a single dimension. Then, the fully connected layer multiplies
all input neurons by their weight coefficients and connects
them to the output.

Some recent studies have applied a CNN-based model to
EEG signals [7], [8], [22], [23]. Ullah et al. [7] used 1D
convolution to extract features by filtering time series EEG.
Zhou et al. [23] directly input both of the multichannel time
series EEG signals and their frequency domain signals into a
CNN-based model. Such studies using CNN to detect epileptic
seizures or epileptic spikes have been gaining interest.

C. Dataset of Other Works

This section summarizes datasets of recent studies of epilep-
tic spike detection. The most common task is the classification
of epileptic spike waveforms and nonepileptic waveforms.
Table I summarizes the datasets from similar studies. It
should be emphasized that the dataset constructed in this
paper achieved a much larger dataset (15,833 epileptic spike
waveforms from 50 patients) than previous studies, in which
the largest dataset in terms of spike waveforms consisted of
7,500 samples [22] and the largest one in terms of patients
consisted of 50 patients [24]. Note that neither of the datasets
from the previous studies is publicly available.

III. METHOD

A. Dataset

EEG recordings were collected from 50 patients (24 males
and 26 females) with childhood epilepsy with centro-temporal
spikes (CECTS) [26] at the Department of Pediatrics, Juntendo
University Nerima Hospital. The age range of the patients
at the time of the examination was 3–12 years. The data
were recorded from 16 electrodes with the international 10–
20 methods using the Nihon Koden EEG-1200 system. The
sampling frequency was 500 Hz. This dataset was recorded
and analyzed with the approval of the Juntendo University
Hospital Ethics Committee and the Tokyo University of Agri-
culture and Technology Ethics Committee. Details of these
EEG recordings are given in Appendix A.
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First, two neurosurgeons, one pediatrician, and one clinical
technologists selected a focal channel associated with the
origin of the epileptic spike. In particular, CECTS is a type
of focal epilepsy in which spikes appear only in a certain
channel. Therefore, the annotators chose the most epileptic
intense channel as the annotation channel. Peaks (minima
and maxima) of the EEG at the channel were detected by
a peak search function implemented with Scipy [27]. This
function extracts both upward and downward peaks with a
minimum distance of 100 points. Using a threshold determined
at the 80th percentile value in the absolute amplitude of all
peaks, meaningless peaks caused by noise, and so forth were
removed. Second, the annotators labeled each peak as either
an epileptic spike (spike or spike-and-wave) or nonepileptic
discharge. These non-epileptic waveforms were carefully se-
lected by the annotator from noise peaks excluding extreme
voltage fluctuations caused by body movements and sweating
and other possible interferences. Then, a 1-s segment was
extracted at every detected peak, including 300 ms before and
700 ms after the peak. Fig. 1 illustrates an example of typical
waveforms. Z-score normalization was applied with the mean
value and standard deviation for each segment. It should be
noted that each segment represents one candidate spike.

B. Preprocessing and Subband Decomposition

We considered two models, as shown in Fig. 2. The first
model uses a predefined bank of filters. It is based on
the method adopted in several previous studies. The second
model involves a special convolution layer called the linear-
phase convolutional layer (LPCL) in which the parameters are
searched based on the dataset.

1) Fixed approach: The first approach employs a hand-
engineered preprocessing technique for each segment. DWT
is applied to extract the subbands from the EEG. In this
paper, the Daubechies wavelet of order 4 (DB4), which has
been reported to be appropriate for analyzing EEG signals [3],
[28], [29], is adopted as the mother wavelet. The input EEG
is decomposed into six coefficient levels—D6, D5, D4, D3,
D2, and D1—and one approximation level, A6. Then, four
subbands corresponding to D6, D5, D4, or D3 are generated.
Each subband represents the θ band (4–8 Hz), the α band
(8–16 Hz), the β band (16–32 Hz), and the γ band (32–64
Hz), respectively [16]. The approximation level, A6, and the
coefficient levels, D2 and D1, are eliminated because the low-
frequency band may include breathing and eye movements.
The high-frequency band can be considered noise.

2) Novel data-driven approach using linear-phase convolu-
tional layer: The convolutional layer described in Section II-B
can behave as a finite impulse response (FIR) filter. However,
each weight in a convolutional layer is fitted with a high degree
of freedom, although FIR filters are designed with a linear-
phase (LP) constraint to preserve the waveform shape. This
paper proposes a convolutional layer with LP constraints, that
is, the LPCL, and its implementation.

The FIR filter is realized by convolution of the discrete
signal X = {x0, x1, . . . , xN−1} and the kernel H =
{h0, h1, . . . , hL−1}, and the output discrete signal Y =

{y0, y1, . . . , yM−1} is calculated based on the current and past
L − 1 inputs, much like (1). Generally, the kernel described
above causes phase distortion, which can be avoided by
imposing an LP constraint. When the length of the filter is
even, the even symmetry and odd symmetry of the kernel
yields the LP FIR filter of type-II and type-IV [30], that is:

hl = hL−1−l, (2)

and
hl = −hL−1−l, (3)

respectively. The idea behind using type-II and type-IV sym-
metric filters is twofold: (a) In generalizing the Haar transform
to a bank of FIR filters, the multistage Haar wavelet transform
is equivalent to an orthogonal matrix [31], including type-
II and type-IV FIR filters with different lengths, and each
filter corresponds to a bandpass filter. (b) By using type-I
I and type-IV, it is possible to compose a bank of lowpass,
bandpass, and highpass filters because type-II and type-IV are
inherently unable to yield a highpass filter and a lowpass filter,
respectively [30].

From (1) and (2), an even symmetric convolution Y e =
{ye0, ye1, . . . , yeM} is described as follows:

yem =

L/2−1∑
l=0

hl
(
xm+l + xm+(L−1)−l

)
. (4)

This convolution can be implemented using a lattice struc-
ture [32], as shown in Fig. 3(a). As shown in this figure, even
symmetric convolution can be regarded as the product of the
vector expressed by the addition of the two components in
X and kernel H . This is the same operation as a weighted
full connection (namely, a fully connected layer). Therefore,
this can be implemented by repurposing a conventional neural
network framework with the addition of X elements, as illus-
trated in Fig. 3(a). Similarly, an odd symmetric convolution
Y o = {yo0, yo1, . . . , yoM} is described as follows:

yom =

L/2−1∑
l=0

hl
(
xm+l − xm+(L−1)−l

)
. (5)

Fig. 3(b) illustrates the lattice structure for (5). As this figure
shows, the odd symmetric convolution can be implemented by
repurposing a conventional neural network framework with the
subtraction of X elements. These LPCLs can replace the fixed
(predesigned) subband filters, as illustrated in Fig. 2. The idea
is hypothesized that the LPCL can derive the frequency bands
of interest from the epileptic EEG dataset.

C. Classifier Models

Random forest (RF), ANN, and CNN are adopted as the
classifiers. Although the ANN and CNN can be combined
with either a traditional preprocessing technique or the pro-
posed method, RF can be combined only with the traditional
preprocessing technique.

The RF parameters are tuned using a grid search for the
parameters listed in Table II. To adjust the grid search, the
F1 score is used as the ranking score, and fivefold cross-
validation with two subsets is used. The model architectures
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(a) An epileptic spike
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(b) A nonepileptic discharge

Fig. 1. Typical waveforms of detected peaks. Each waveform is clipped into a 1-s segment.
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Fig. 3. Lattice structures of the LP convolution.

of the ANN and CNN are depicted in Fig. 4. To generate the
initial weights of these models, the He initializer [33] is used
for the layers that employ the rectified linear unit (ReLU) as
the activation function. The Xavier initializer [34] is used for
the other layers. These neural networks are fitted by the Adam

optimizer [35] (the learning rate η and the scale parameters β1
and β2 are 0.001, 0.9, and 0.999, respectively) with batch size
256 while suppressing overfitting using early stopping [36].

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2020.10.08.330936doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.08.330936
http://creativecommons.org/licenses/by-nd/4.0/


5

Fl
at

te
n

0:
 N

on
ep

ile
pt

ic
 sp

ik
e

1:
 E

pi
le

pt
ic

 sp
ik

e

Output

Fu
ll 

Co
nn

ec
tio

n 
(5

00
)

A
ct

iv
at

io
n 

(R
eL

U
)

[N×C]

Ba
tc

h 
N

or
m

al
iz

at
io

n

[500]

Fu
ll 

Co
nn

ec
tio

n 
(5

00
)

A
ct

iv
at

io
n 

(R
eL

U
)

Ba
tc

h 
N

or
m

al
iz

at
io

n

[500]

Fu
ll 

Co
nn

ec
tio

n 
(5

00
)

A
ct

iv
at

io
n 

(R
eL

U
)

Ba
tc

h 
N

or
m

al
iz

at
io

n

[500]

Fu
ll 

Co
nn

ec
tio

n 
(1

)
A

ct
iv

at
io

n 
(S

ig
m

oi
d)

[1]

Input

1-s raw EEG
[N, 1]

None (C=1)

[N, C]

Preprocessing

DWT (C=4)

LPCLs (C=8)

Either one of:

Learnable block

Fixed block

Note:

(a) Classification model based on ANN

Fl
at

te
n

1D
 C

on
vo

lu
tio

n 
(#

ke
rn

el
s=

8,
 si

ze
=4

)

A
ct

iv
at

io
n 

(R
eL

U
)

Ba
tc

h 
N

or
m

al
iz

at
io

n

[125, 8]

Fu
ll 

Co
nn

ec
tio

n 
(1

)
A

ct
iv

at
io

n 
(S

ig
m

oi
d)

[224]

M
ax

Po
ol

in
g 

(1
/4

)

1D
 C

on
vo

lu
tio

n 
(#

ke
rn

el
s=

16
, s

iz
e=

4)

A
ct

iv
at

io
n 

(R
eL

U
)

Ba
tc

h 
N

or
m

al
iz

at
io

n

M
ax

Po
ol

in
g 

(1
/4

)

1D
 C

on
vo

lu
tio

n 
(#

ke
rn

el
s=

32
, s

iz
e=

4)

A
ct

iv
at

io
n 

(R
eL

U
)

Ba
tc

h 
N

or
m

al
iz

at
io

n

M
ax

Po
ol

in
g 

(1
/4

)

[31, 16] [7, 32] [1]

0:
 N

on
ep

ile
pt

ic
 sp

ik
e

1:
 E

pi
le

pt
ic

 sp
ik

e

OutputInput

1-s raw EEG
[N, 1]

None (C=1)

[N, C]

Preprocessing

DWT (C=4)

LPCLs (C=8)

Either one of:

Learnable block

Fixed block

Note:

(b) Classification model based on CNN

Fig. 4. The model architectures, where N and C are the length of the input segment and the number of input subbands to the following model, respectively.
When “None” is selected as the preprocessing, the raw EEG is output without any changes (C = 1); when “DWT,” four clinical frequency bands are extracted
(C = 4); when “LPCLs,” the raw EEG is preprocessed by the eight LPCLs in Table III (C = 8). Then, the three-stacked ANN and CNN output a prediction
value in the range of 0 to 1.

TABLE II
PARAMETER FOR THE RANDOM FOREST TO BE TUNED BY GRID SEARCH

Parameter Candidates
Number of trees Ntree 5, 10, 20, 30, 50, 100, 300
Maximum depth Dmax 2, 4, 6, 8, 10

D. Application of the Linear-Phase Convolutional Layer

In this paper, eight LPCLs are connected in parallel to the
classification model, as illustrated in Fig. 2(b). Each LPCL
setting is as shown in Table III. As in this table, there are
LPCLs with different filter lengths to let the model select filters
that contribute to the classification. These kernel lengths are
set based on the length of the Haar transform matrix induced
from the Haar wavelet [31]. That is, filter lengths of 8, 16, 32,
and 64 are expected to extract the standard clinical bands of
γ, β, α, and θ, respectively. At the LPCL’s filtering, the stride
length is 1, and the input signal is padded with zero to keep
the input and output lengths invariant. For the initialization of
the coefficients in these LPCLs, the Xavier initializer [34] is
used.

E. Evaluation

To validate the effectiveness of the proposed method, an
experiment is performed using the dataset described in Section
III-A. Recall that the classification is binary: an epileptic spike
or a nonepileptic discharge. For comparison, three approaches
are used: the fixed approach, the proposed data-driven ap-
proach, and an approach without preprocessing. Combining
these approaches with the three classification models, a total of
eight methods are compared, as shown in Table IV. In the fixed

approach, a 1-s raw EEG is decomposed into four frequency
bands (θ, α, β, and γ bands) using DWT. In the proposed
approach, because the LPCLs act as a bank of FIR filters,
a 1-s segment is input to this layer. Furthermore, in the third
approach, a 1-s segment is input directly into the classification
model. This approach is similar to our previous work [8].

In the experiment, intersubject validation in all combina-
tions is performed, in which 49 patients are used as training
data and the remaining patient is used for the test data. To
evaluate the models, the area under the curve (AUC), F1
value, sensitivity, and specificity are employed. AUC is the
area of the curve drawn by the false positive rate (FPR) and the
true positive rate (TPR = Sensitivity) when the discrimination
threshold is changed, and it is calculated in the following
manner:

FPR =
FP

FP + TN
, (6)

TPR =
TP

TP + FN
(7)

= Sensitivity, (8)

where TP, FP, FN, and TN are the numbers of a true positive,
false positive, false negative, and true negative, respectively.
The specificity is the true negative rate, which is calculated as
follows:

Specificity =
TN

TN + FP
. (9)

The F1 value is calculated as the harmonic mean of the preci-
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TABLE III
SETTINGS OF THE LPCLS

LPCL no. Filter length Constraint type
1 8

even symmetric2 16
3 32
4 64
5 8

odd symmetric6 16
7 32
8 64

TABLE IV
METHODS OF EXPERIMENTAL COMPARISON. THE PROPOSED

DATA-DRIVEN METHOD IS COMBINED ONLY WITH THE NEURAL NETWORK
MODELS.

Preprocessing None DWT LPCL
Input feature to Raw EEG Decomposed four Learnable eight

the following models [500, 1] frequency bands frequency bands
[#length, #band] [500, 4] [500, 8]

Combine with RF X X
Combine with ANN X X X
Combine with CNN X X X

sion and sensitivity. These metrics are defined as follows [37]:

Precision =
TP

TP + FP
, (10)

F1 =
2 · Precision · Sensitivity

Precision + Sensitivity
. (11)

In particular, this paper employs the mean AUC and the
mean F1 value (by taking 30 independent realizations) in
evaluating the ANN, CNN, and LPCLs because the initial
weight and initial kernel value affect the learning. In addition,
because the convolution filter can be regarded as an FIR filter,
the frequency response of each filter of the eight LPCLs is
analyzed after training. Similar to evaluating the AUC and F1
values, the frequency response is meaned by 30 independent
runs.

All experimental results are computed on a high-
performance computer built with an AMD(R) EPYC(TM)
7742 CPU@2.25 GHz, 512 GB RAM, and four NVIDIA(R)
A100 GPUs. The models in the experiment are constructed
using Python 3.7.6 with Keras [38] and Scikit-learn [39].

IV. EXPERIMENTAL RESULTS

Table V represents the AUC, F1 value, sensitivity, and
specificity by each model and preprocessing technique. This
table shows the mean values of all intersubject validations.
The detailed values of the intersubject validations are given
in Appendix B. A statistical tests including Friedman’s one-
way analysis of variance (ANOVA) [40] showed that the
effects of the methods on the four metrics were significant
(FAUC(1, 7) = 294, pAUC = 7.21× 10−59, FF1(1, 7) = 197,
pF1 = 2.41× 10−38, Fsen(1, 7) = 205, psen = 5.89× 10−40,
Fspe(1, 7) = 120, and pspe = 3.10 × 10−22). Because the
main effect of the models has been observed, a Bonferroni
post-hoc test [40] was performed to better understand the
changes in cross-correlation across the different preprocessors.
Fig. 5 visualizes the numerical results and their analysis of
variance of 50 intersubject validations. As shown in Fig. 5(a),

significant differences in the AUC results were observed when
using the preprocessors, especially for RF and ANN. More-
over, significant differences in the F1 results were observed
for all classification models when using the preprocessors. In
particular, the F1 results using LPCLs tended to be statistically
higher than DWT in the ANN-based comparison. This is
because LPCLs statistically increased specificity, as shown in
Fig. 5(d). From these results, it can be seen that the prepro-
cessing of EEG affects the classification performance, even
with manually designed filters such as DWT. Furthermore,
the optimal preprocessing could be learned in a data-driven
method with LPCLs.

Fig. 6 provides an example of prediction by CNN combined
with the LPCL. In this figure, a relatively sharp waveform
indicates an epileptic spike, regardless of its amplitude. Figs. 7
and 8 illustrate examples of the frequency responses at the
proposed layers. In addition, Figs. 7 and 8 show clearly that
the proposed method’s filter emphasizes the low-frequency
band (around 12 Hz). Thus, while the conventional method
manually focuses on the low-frequency band, it can be said
that the proposed method automatically extracts this frequency.
Moreover, Figs. 7(b) and 8(b) show that filters with odd sym-
metric constraints pass different frequency bands according to
the filter length.

V. DISCUSSION AND CONCLUSION

The experimental results show that the filters with an odd
symmetry constraint have a different passband, as shown in
Figs. 7 and 8. This behavior is similar to a bank of filters. As
Fig. 8(b) shows, three of the frequency bands, approximately
12, 24, and 50 Hz (the focus bands of nos. 7 and 8 are similar),
are focused on by the odd symmetry LPCLs. Focusing on the
adjacent peak frequencies in the spectrum, the lower frequency
is approximately half of the higher frequency. Their three
frequency bands can be regarded as corresponding to the
standard clinical frequency bands of α, β, and γ, respectively.
This paper’s finding showed that the filters learned from the
raw EEG and that the experts’ labels can be decomposed into
the frequency bands contributing to the inspections. That is,
the data-driven filters may emulate the logic of the physician’s
analysis. Another advantage of the proposed work is that fine-
tuning of the frequency bands is accomplished in a data-
driven manner, such that the performance of the classifier is
enhanced (AUC = 0.967, F1 = 0.880), as shown in Table V.
Considering medical applications, the fact that the combination
of LPCLs with CNN has achieved higher sensitivities than
other methods [3], [8] is promising, as shown in Fig. 5(c).

Moreover, the LPCLs achieves these advantage points with
a small computational complexity. As shown in (4) and (5),
an LPCL consist of L/2-time additions (or subtractions) and
an inner product calculation of size L/2. That is, only L/2
parameters (h0, h1, . . . , hL/2−1) are increased at the inner
product calculation as learning parameters. In the proposed
model shown in Fig. 4, there are a total of eight LPCLs
with four different lengths (L = 8, 16, 32, and 64) and two
constraint types, even and odd. In this case, the total number
of parameters in the LPCLs is 120 only. Note that since
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TABLE V
NUMERICAL EVALUATION RESULTS. TOTAL OF 50 INTERSUBJECT VALIDATIONS ARE CONDUCTED, WITH 30 INDEPENDENT RUNS PER TEST PATIENT
DATA. THUS, A MEAN OF 1,500 RUNS IS CALCULATED (MEAN ± STD). THE HIGHEST VALUES FOR EACH METRIC ARE BOLDED. THE INDIVIDUAL

VALUES OF THE INTERSUBJECT VALIDATIONS ARE GIVEN IN APPENDIX B

Metric

Classification model
Random forest ANN CNN

Preprocessor
None DWT None DWT LPCLs None DWT LPCLs

AUC 0.912 ± 7.13E-02 0.941 ± 7.14E-02 0.915 ± 6.76E-02 0.937 ± 5.70E-02 0.944 ± 4.99E-02 0.965 ± 3.80E-02 0.965 ± 3.96E-02 0.967 ± 3.54E-02
F1 0.780 ± 1.66E-01 0.838 ± 1.62E-01 0.811 ± 1.68E-01 0.843 ± 1.57E-01 0.850 ± 1.54E-01 0.813 ± 1.79E-01 0.862 ± 1.63E-01 0.880 ± 1.34E-01

Sensitivity 0.744 ± 1.96E-01 0.823 ± 1.82E-01 0.827 ± 1.42E-01 0.853 ± 1.38E-01 0.859 ± 1.30E-01 0.773 ± 2.22E-01 0.858 ± 1.74E-01 0.883 ± 1.31E-01
Specificity 0.905 ± 6.18E-02 0.915 ± 7.02E-02 0.853 ± 7.52E-02 0.886 ± 7.01E-02 0.904 ± 7.28E-02 0.944 ± 8.64E-02 0.931 ± 8.06E-02 0.927 ± 8.01E-02
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Fig. 5. Visualized results in understanding the differences between preprocessors. Statistical significance is indicated by an asterisk (*: p < 0.05, **:
p < 0.01).

the total number of parameters in the CNN-based model is
approximately 3,500, the ratio of the number of parameters
in the LPCLs to the all model’s parameters is less than 4%.
Therefore, the ratio of the LPCL parameters in the overall
architecture is relatively low. However, because the proposed
method is designed based on neural networks, it cannot be
combined with traditional classifiers like RF. In addition,
similar to standard convolutional layers, it still requires a

manual setting of hyperparameters such as the kernel size and
number of filters. Considering these limitations, using DWT
to decompose the EEG into clinical frequency bands [3], [28],
[29] would prove to be better when it comes to versatility.

Next, we investigated the characteristics of the 1-s segments
to consider the effectiveness of the frequency band extracted
by the LPCLs. To determine the differences of spectra between
the nonepileptic discharge segments and epileptic spike seg-
ments, statistical analyses were performed on the amplitude
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Nonepileptic discharge
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False prediction

Fig. 6. An example of the predicted spikes. The circles and triangles indicate nonepileptic discharges and epileptic spikes, respectively. The bars at the bottom
indicate that the classification failed.
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Fig. 7. An example of mean filter spectrums at the LPCL combining with ANN.
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Fig. 8. An example of mean filter spectrums at the LPCL combining with CNN.

distributions at each frequency using Welch’s t-test [41].
Then, the effect sizes were calculated using Cohen’s d [42].
Fig. 9 shows the mean spectrum of all 15,004 nonepileptic
discharges, the mean spectrum of all 15,833 epileptic spikes,
the areas where p < 0.01 in the t-test, and the effect sizes.
Fig. 9 shows that there are significant differences (p < 0.01)

in the amplitudes of almost all frequencies. In addition, in
the range of 5–15 Hz, there is a large difference (d ≈ 0.8)
between the two classes. Similarly, the LPCLs, especially
no. 8, as shown in Fig. 7(b), showed a strong response to
this significantly different low-frequency band. This resulted
in LPCLs that can extract the frequency bands of statistical
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Fig. 9. The mean spectrum of all 15,004 segments of nonepileptic discharges
and the mean spectrum of all 15,833 segments of epileptic spikes. The areas
where p < 0.01 in the t-test between the two classes at each frequency are
filled in with yellow, and the bottom of the graph shows its effect size.

interest in the proposed data-driven approach. Furthermore,
because the methods using the LPCL and the predefined filter
of 4–64 Hz exhibit comparable performance, as shown in
Fig. 5, a frequency band such as those shown in Figs. 7
and 8—less than 30 Hz, as roughly estimated—rather than
a much higher frequency band is sufficient for epileptic spike
detection.

Finally, we consider the advantage of the dataset. In this
paper, EEGs were measured from 50 CECTS patients, and
15,833 epileptic spikes and 15,004 nonepileptic discharges
were then extracted as 1-s segments. To the best of our knowl-
edge, the number of epileptic spike segments is the largest
in the literature on epileptic spike detection, as described in
Section II-C. This number of segments strongly supports the
credibility of the statistical validation in this paper. However,
more non-epileptic labels would be needed for the task of
finding epileptic spikes in whole EEG recordings, rather than
for the EEG segment classification task, as in this work.
Moreover, the results of this paper may be limited by the fact
that all patients’ symptoms are CECTS.

In the design of this dataset, we set the segment’s length as
1 s, following other studies [3], [23] and the annotation tasks
performed by the five specialists. Of course, certain studies
have used different length segments [14], [22]. As the results
of this paper show, 1-s extraction is sufficient to achieve a high
AUC (> 0.9 in most cases) for CECTS spikes. In particular,
because epileptic spike-wave discharges in CECTS patients are
known to contain a 3–4 Hz component [43], a segment length
of 1 s can fully contain one of these discharges. Furthermore,
even if the position of extracting the spike waveform is slightly
misaligned, it is unlikely that any part of the waveform will
be lost; thus, the 1-s extraction is appropriate.

In conclusion, we proposed a method to combine a bank
of LP filters with a NN-based model and the ability to learn
its coefficients from the data. To the best of our knowledge,

we have built the largest dataset in the literature, containing
30,837 samples annotated by two neurosurgeons, one clini-
cal technologists, and one pediatrician. The proposed model
classifies 1-s segments as epileptic spikes or nonepileptic
discharges with high performance (AUC > 0.9 in most cases).
Furthermore, the filter’s frequency response fitted from the
EEG is strong in the low-frequency range (around 12 Hz).
This band coincided brilliantly with the frequency band of
interest in the raw EEG segments of epileptic spikes.
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APPENDIX A
EEG DATASET

Table VI shows the dataset information used in the exper-
iment. This dataset was labeled by two neurosurgeons, one
clinical technologists, and one pediatrician. The total number
of labeled samples is 30,837. The EEG recordings contain
both awake and sleep—rapid eye movement (REM) or non-
REM—states. This paper did not separate these states because
each peak can be observed in both states.

APPENDIX B
NUMERICAL RESULTS

Tables VII to X list the results of individual intersubject val-
idations as AUC, F1, sensitivity, and specificity, respectively.
Table V and Fig. 5 are created based on these tables.
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TABLE VI
DATASET INFORMATION OF 50 EPILEPTIC EEG RECORDS DIAGNOSED WITH CECTS.

Patient Age of Sex Recording Annotator #Epileptic #Nonepileptic #TotalID years duration spikes discharges
1 7 Female 21 m 52 s Pediatrician 424 178 602
2 6 Male 23 m 53 s Pediatrician 263 629 892
3 5 Male 29 m 45 s Pediatrician 240 580 820
4 10 Female 21 m 50 s Pediatrician 236 461 697
5 6 Female 28 m 38 s Pediatrician 939 728 1,667
6 7 Male 26 m 48 s Neurosurgeon 1 105 207 312
7 10 Male 28 m 50 s Clinical technologist 321 351 672
8 6 Female 28 m 24 s Clinical technologist 166 297 463
9 6 Female 31 m 19 s Neurosurgeon 2 412 94 506

10 8 Male 29 m 8 s Neurosurgeon 1 495 239 734
11 7 Female 28 m 56 s Neurosurgeon 1 345 199 544
12 8 Female 26 m 56 s Clinical technologist 655 189 844
13 10 Female 27 m 28 s Neurosurgeon 1 341 303 644
14 10 Male 25 m 41 s Neurosurgeon 1 295 210 505
15 6 Female 29 m 10 s Neurosurgeon 1 159 355 514
16 11 Female 32 m 42 s Neurosurgeon 1 175 340 515
17 11 Female 27 m 49 s Neurosurgeon 1 295 335 630
18 10 Male 24 m 24 s Neurosurgeon 1 385 189 574
19 6 Male 28 m 14 s Neurosurgeon 1 232 289 521
20 7 Male 28 m 57 s Pediatrician 74 118 192
21 11 Female 27 m 17 s Neurosurgeon 1 446 385 831
22 9 Male 24 m 13 s Neurosurgeon 1 231 330 561
23 7 Female 29 m 15 s Neurosurgeon 1 253 390 643
24 7 Male 29 m 45 s Neurosurgeon 1 350 190 540
25 10 Male 29 m 29 s Pediatrician 17 238 255
26 9 Male 29 m 22 s Neurosurgeon 1 408 389 797
27 8 Male 29 m 48 s Neurosurgeon 1 294 292 586
28 8 Male 26 m 47 s Neurosurgeon 1 1,009 763 1,772
29 7 Female 28 m 37 s Neurosurgeon 1 416 293 709
30 9 Female 27 m 9 s Neurosurgeon 1 129 245 374
31 9 Male 27 m 15 s Clinical technologist 282 112 394
32 7 Female 26 m 53 s Clinical technologist 560 314 874
33 9 Female 13 m 13 s Clinical technologist 331 214 545
34 9 Male 32 m 27 s Pediatrician 21 253 274
35 12 Female 28 m 11 s Neurosurgeon 1 355 342 697
36 6 Female 28 m 12 s Clinical technologist 440 244 684
37 9 Female 19 m 40 s Neurosurgeon 1 368 358 726
38 6 Female 30 m 4 s Pediatrician 315 301 616
39 9 Female 26 m 13 s Pediatrician 456 225 681
40 5 Male 28 m 39 s Pediatrician 211 255 466
41 11 Male 32 m 27 s Pediatrician 318 85 403
42 7 Male 27 m 54 s Pediatrician 256 209 465
43 9 Female 30 m 4 s Pediatrician 172 108 280
44 10 Female 26 m 41 s Pediatrician 99 55 154
45 7 Female 29 m 34 s Pediatrician 261 322 583
46 7 Female 30 m 1 s Clinical technologist 72 369 441
47 10 Male 27 m 8 s Pediatrician 287 509 796
48 3 Male 29 m 8 s Pediatrician 271 511 782
49 6 Male 27 m 50 s Pediatrician 351 151 502
50 5 Male 23 m 14 s Pediatrician 297 261 558

24 males 21 by Neurosurgeon 1

Total 1 by Neurosurgeon 2 15,833 15,004 30,837
26 females 8 by Clinical technologist

20 by Pediatrician
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TABLE VII
AUC EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD).

Patient ID Classification model
Random forest ANN CNN

Train Test Preprocessor
data data None DWT None DWT LPCLs None DWT LPCLs

A
ll

ID
s

ex
ce

pt
te

st
da

ta
in

th
e

ri
gh

t
co

lu
m

n

1 0.954 ± 3.12E-03 0.969 ± 2.70E-03 0.935 ± 4.11E-03 0.958 ± 3.54E-03 0.961 ± 2.09E-03 0.972 ± 7.36E-04 0.972 ± 8.71E-04 0.970 ± 3.06E-03
2 0.924 ± 1.02E-03 0.933 ± 1.05E-03 0.902 ± 3.54E-03 0.907 ± 4.60E-03 0.929 ± 2.17E-03 0.924 ± 1.20E-03 0.927 ± 1.12E-03 0.924 ± 4.23E-03
3 0.842 ± 2.92E-03 0.891 ± 1.52E-03 0.880 ± 5.91E-03 0.921 ± 4.87E-03 0.928 ± 5.26E-03 0.956 ± 9.54E-04 0.953 ± 1.32E-03 0.961 ± 3.62E-03
4 0.938 ± 2.10E-03 0.958 ± 1.49E-03 0.907 ± 7.79E-03 0.948 ± 4.56E-03 0.933 ± 1.76E-02 0.932 ± 2.19E-03 0.952 ± 2.75E-03 0.923 ± 9.35E-03
5 0.887 ± 1.72E-03 0.911 ± 1.31E-03 0.866 ± 3.74E-03 0.862 ± 3.61E-03 0.883 ± 4.82E-03 0.875 ± 3.97E-03 0.893 ± 2.55E-03 0.907 ± 3.70E-03
6 0.884 ± 3.24E-03 0.922 ± 2.24E-03 0.851 ± 4.19E-03 0.871 ± 5.59E-03 0.860 ± 1.02E-02 0.960 ± 2.34E-03 0.959 ± 2.80E-03 0.948 ± 6.70E-03
7 0.968 ± 5.26E-04 0.984 ± 4.52E-04 0.969 ± 2.03E-03 0.976 ± 1.54E-03 0.986 ± 1.37E-03 0.985 ± 1.33E-03 0.981 ± 8.95E-04 0.986 ± 2.32E-03
8 0.915 ± 2.54E-03 0.930 ± 2.89E-03 0.950 ± 2.57E-03 0.974 ± 2.29E-03 0.942 ± 6.41E-03 0.982 ± 1.27E-03 0.984 ± 1.32E-03 0.983 ± 3.16E-03
9 0.949 ± 1.29E-03 0.967 ± 7.65E-04 0.946 ± 1.45E-03 0.952 ± 1.35E-03 0.950 ± 2.39E-03 0.978 ± 6.11E-04 0.974 ± 6.65E-04 0.976 ± 3.08E-03

10 0.919 ± 2.05E-03 0.952 ± 1.06E-03 0.885 ± 5.69E-03 0.923 ± 3.09E-03 0.923 ± 4.87E-03 0.961 ± 1.30E-03 0.963 ± 1.01E-03 0.954 ± 5.48E-03
11 0.960 ± 9.83E-04 0.976 ± 5.77E-04 0.942 ± 1.76E-03 0.963 ± 1.85E-03 0.966 ± 1.88E-03 0.981 ± 8.49E-04 0.980 ± 1.06E-03 0.985 ± 1.44E-03
12 0.969 ± 4.82E-04 0.986 ± 4.02E-04 0.976 ± 6.96E-04 0.984 ± 1.22E-03 0.988 ± 1.19E-03 0.997 ± 6.74E-04 0.998 ± 1.67E-04 0.998 ± 5.43E-04
13 0.984 ± 5.28E-04 0.994 ± 1.39E-04 0.990 ± 4.88E-04 0.992 ± 5.29E-04 0.995 ± 4.08E-04 0.997 ± 5.17E-05 0.997 ± 1.18E-04 0.997 ± 2.43E-04
14 0.947 ± 1.13E-03 0.973 ± 1.00E-03 0.961 ± 2.60E-03 0.979 ± 1.53E-03 0.981 ± 1.94E-03 0.995 ± 3.52E-04 0.997 ± 3.77E-04 0.994 ± 9.44E-04
15 0.785 ± 2.50E-03 0.819 ± 3.07E-03 0.760 ± 2.54E-03 0.804 ± 5.30E-03 0.822 ± 8.40E-03 0.876 ± 2.53E-03 0.863 ± 4.09E-03 0.872 ± 6.53E-03
16 0.823 ± 2.04E-03 0.886 ± 2.01E-03 0.826 ± 2.50E-03 0.877 ± 3.71E-03 0.898 ± 7.92E-03 0.942 ± 9.45E-04 0.937 ± 1.69E-03 0.944 ± 3.54E-03
17 0.989 ± 3.69E-04 0.996 ± 1.73E-04 0.979 ± 1.69E-03 0.989 ± 7.66E-04 0.995 ± 8.15E-04 0.998 ± 1.14E-04 0.998 ± 1.39E-04 0.999 ± 1.53E-04
18 0.945 ± 1.08E-03 0.971 ± 5.70E-04 0.926 ± 2.50E-03 0.942 ± 2.76E-03 0.963 ± 2.04E-03 0.980 ± 4.93E-04 0.981 ± 7.47E-04 0.976 ± 1.73E-03
19 0.931 ± 2.97E-03 0.984 ± 4.15E-04 0.939 ± 2.60E-03 0.968 ± 1.51E-03 0.968 ± 3.38E-03 0.983 ± 9.69E-04 0.991 ± 4.22E-04 0.978 ± 2.94E-03
20 0.970 ± 8.82E-04 0.982 ± 7.25E-04 0.974 ± 1.52E-03 0.987 ± 1.32E-03 0.991 ± 1.77E-03 0.991 ± 4.23E-04 0.991 ± 5.88E-04 0.996 ± 9.00E-04
21 0.971 ± 6.71E-04 0.983 ± 4.89E-04 0.969 ± 9.84E-04 0.973 ± 1.16E-03 0.979 ± 1.22E-03 0.993 ± 2.87E-04 0.994 ± 2.58E-04 0.993 ± 6.10E-04
22 0.880 ± 1.05E-03 0.950 ± 8.86E-04 0.916 ± 2.70E-03 0.948 ± 1.67E-03 0.942 ± 3.46E-03 0.970 ± 9.58E-04 0.968 ± 6.96E-04 0.970 ± 2.03E-03
23 0.820 ± 1.72E-03 0.884 ± 1.34E-03 0.831 ± 3.31E-03 0.897 ± 2.83E-03 0.890 ± 6.33E-03 0.962 ± 9.43E-04 0.941 ± 1.60E-03 0.961 ± 3.31E-03
24 0.919 ± 1.20E-03 0.958 ± 9.53E-04 0.926 ± 2.45E-03 0.954 ± 1.90E-03 0.946 ± 4.76E-03 0.983 ± 5.67E-04 0.982 ± 5.48E-04 0.974 ± 2.99E-03
25 0.636 ± 6.54E-03 0.616 ± 4.80E-03 0.748 ± 9.83E-03 0.784 ± 1.12E-02 0.816 ± 2.05E-02 0.882 ± 4.65E-03 0.878 ± 6.74E-03 0.856 ± 1.08E-02
26 0.881 ± 1.80E-03 0.951 ± 7.90E-04 0.899 ± 3.95E-03 0.931 ± 2.78E-03 0.943 ± 2.36E-03 0.969 ± 8.95E-04 0.972 ± 9.53E-04 0.973 ± 2.07E-03
27 0.934 ± 1.20E-03 0.970 ± 8.47E-04 0.929 ± 2.02E-03 0.936 ± 2.56E-03 0.937 ± 3.57E-03 0.985 ± 1.23E-03 0.983 ± 1.24E-03 0.980 ± 2.68E-03
28 0.989 ± 3.02E-04 0.998 ± 1.57E-04 0.984 ± 1.14E-03 0.989 ± 1.04E-03 0.995 ± 5.74E-04 0.998 ± 1.51E-04 0.998 ± 1.11E-04 0.998 ± 2.48E-04
29 0.931 ± 7.31E-04 0.940 ± 1.12E-03 0.939 ± 2.02E-03 0.956 ± 1.07E-03 0.956 ± 2.75E-03 0.980 ± 8.30E-04 0.979 ± 5.09E-04 0.981 ± 1.33E-03
30 0.749 ± 1.78E-03 0.803 ± 3.58E-03 0.733 ± 3.25E-03 0.805 ± 5.69E-03 0.824 ± 1.10E-02 0.856 ± 4.89E-03 0.870 ± 3.58E-03 0.880 ± 6.96E-03
31 0.902 ± 2.20E-03 0.966 ± 1.42E-03 0.941 ± 4.07E-03 0.966 ± 2.62E-03 0.976 ± 3.89E-03 0.984 ± 1.08E-03 0.987 ± 8.33E-04 0.990 ± 1.78E-03
32 0.990 ± 3.77E-04 0.994 ± 5.50E-04 0.977 ± 1.29E-03 0.987 ± 1.40E-03 0.992 ± 9.23E-04 0.994 ± 3.03E-04 0.996 ± 3.36E-04 0.995 ± 7.48E-04
33 0.941 ± 9.59E-04 0.976 ± 6.24E-04 0.957 ± 2.17E-03 0.978 ± 1.14E-03 0.982 ± 2.08E-03 0.995 ± 4.17E-04 0.996 ± 3.72E-04 0.996 ± 6.60E-04
34 0.757 ± 6.51E-03 0.724 ± 4.50E-03 0.711 ± 9.83E-03 0.739 ± 1.15E-02 0.800 ± 1.29E-02 0.848 ± 5.31E-03 0.820 ± 6.33E-03 0.882 ± 1.09E-02
35 0.959 ± 9.16E-04 0.975 ± 5.14E-04 0.954 ± 1.94E-03 0.965 ± 1.09E-03 0.974 ± 1.54E-03 0.986 ± 7.66E-04 0.990 ± 4.16E-04 0.987 ± 1.55E-03
36 0.867 ± 1.95E-03 0.931 ± 1.75E-03 0.912 ± 2.36E-03 0.953 ± 1.56E-03 0.927 ± 3.73E-03 0.973 ± 1.49E-03 0.968 ± 2.20E-03 0.976 ± 2.17E-03
37 0.978 ± 4.82E-04 0.995 ± 2.42E-04 0.980 ± 1.27E-03 0.989 ± 7.16E-04 0.987 ± 1.26E-03 0.999 ± 1.21E-04 1.000 ± 7.29E-05 0.999 ± 3.14E-04
38 0.972 ± 4.60E-04 0.988 ± 3.85E-04 0.977 ± 1.48E-03 0.981 ± 9.66E-04 0.991 ± 1.10E-03 0.996 ± 1.86E-04 0.995 ± 1.93E-04 0.997 ± 4.65E-04
39 0.879 ± 1.54E-03 0.928 ± 8.67E-04 0.890 ± 2.75E-03 0.900 ± 3.23E-03 0.921 ± 2.25E-03 0.934 ± 1.30E-03 0.936 ± 1.26E-03 0.941 ± 2.42E-03
40 0.933 ± 1.43E-03 0.957 ± 1.47E-03 0.931 ± 1.44E-03 0.948 ± 1.80E-03 0.949 ± 2.51E-03 0.961 ± 8.08E-04 0.970 ± 1.01E-03 0.966 ± 2.25E-03
41 0.915 ± 1.17E-03 0.926 ± 4.53E-03 0.890 ± 6.90E-03 0.911 ± 7.27E-03 0.936 ± 3.96E-03 0.938 ± 2.62E-03 0.924 ± 4.67E-03 0.944 ± 6.96E-03
42 0.944 ± 2.63E-03 0.976 ± 6.64E-04 0.977 ± 1.40E-03 0.984 ± 1.22E-03 0.990 ± 9.04E-04 0.991 ± 4.20E-04 0.991 ± 4.16E-04 0.991 ± 1.01E-03
43 0.965 ± 1.76E-03 0.981 ± 1.39E-03 0.955 ± 1.84E-03 0.965 ± 1.95E-03 0.974 ± 2.80E-03 0.978 ± 1.60E-03 0.982 ± 9.81E-04 0.981 ± 2.01E-03
44 0.925 ± 4.16E-03 0.991 ± 9.11E-04 0.960 ± 4.23E-03 0.970 ± 3.23E-03 0.990 ± 2.38E-03 0.995 ± 7.87E-04 0.994 ± 1.10E-03 0.993 ± 1.50E-03
45 0.800 ± 2.27E-03 0.844 ± 1.57E-03 0.834 ± 4.35E-03 0.886 ± 2.23E-03 0.902 ± 4.81E-03 0.946 ± 1.71E-03 0.951 ± 2.20E-03 0.948 ± 4.35E-03
46 0.891 ± 4.10E-03 0.960 ± 1.96E-03 0.864 ± 1.11E-02 0.931 ± 6.59E-03 0.933 ± 8.31E-03 0.979 ± 1.35E-03 0.991 ± 1.65E-03 0.990 ± 3.19E-03
47 0.932 ± 1.98E-03 0.968 ± 9.43E-04 0.905 ± 6.21E-03 0.938 ± 4.51E-03 0.954 ± 3.32E-03 0.961 ± 1.97E-03 0.965 ± 1.67E-03 0.973 ± 3.33E-03
48 0.936 ± 2.89E-03 0.988 ± 3.40E-04 0.973 ± 2.84E-03 0.993 ± 6.97E-04 0.992 ± 1.20E-03 0.993 ± 4.41E-04 0.996 ± 3.52E-04 0.995 ± 9.80E-04
49 0.998 ± 1.56E-04 0.999 ± 7.10E-05 0.987 ± 1.07E-03 0.991 ± 1.92E-03 0.998 ± 3.32E-04 0.999 ± 8.28E-05 0.998 ± 1.23E-04 0.999 ± 2.39E-04
50 0.900 ± 1.98E-03 0.954 ± 1.65E-03 0.918 ± 2.86E-03 0.941 ± 2.00E-03 0.946 ± 1.36E-03 0.951 ± 8.96E-04 0.968 ± 1.10E-03 0.956 ± 2.39E-03

Mean of 0.912 ± 7.13E-02 0.941 ± 7.14E-02 0.915 ± 6.76E-02 0.937 ± 5.70E-02 0.944 ± 4.99E-02 0.965 ± 3.80E-02 0.965 ± 3.96E-02 0.967 ± 3.54E-02all runs
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TABLE VIII
F1 VALUE EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD).

Patient ID Classification model
Random forest ANN CNN

Train Test Preprocessor
data data None DWT None DWT LPCLs None DWT LPCLs

A
ll

ID
s

ex
ce

pt
te

st
da

ta
in

th
e

ri
gh

t
co

lu
m

n

1 0.963 ± 8.49E-04 0.964 ± 8.15E-04 0.959 ± 1.04E-03 0.962 ± 1.48E-03 0.964 ± 1.33E-03 0.964 ± 7.95E-04 0.963 ± 6.64E-04 0.963 ± 2.26E-03
2 0.671 ± 4.21E-03 0.651 ± 2.99E-03 0.612 ± 7.26E-03 0.618 ± 7.04E-03 0.669 ± 6.18E-03 0.579 ± 5.79E-03 0.601 ± 3.82E-03 0.614 ± 9.60E-03
3 0.632 ± 1.31E-02 0.761 ± 5.46E-03 0.679 ± 1.30E-02 0.751 ± 6.93E-03 0.778 ± 1.23E-02 0.811 ± 3.97E-03 0.816 ± 5.07E-03 0.828 ± 1.13E-02
4 0.761 ± 3.52E-03 0.733 ± 2.75E-03 0.690 ± 5.90E-03 0.727 ± 9.84E-03 0.745 ± 5.62E-03 0.727 ± 6.82E-03 0.742 ± 4.30E-03 0.743 ± 7.16E-03
5 0.805 ± 5.05E-03 0.839 ± 3.28E-03 0.809 ± 8.81E-03 0.813 ± 1.09E-02 0.820 ± 7.41E-03 0.820 ± 1.27E-02 0.857 ± 3.47E-03 0.884 ± 2.83E-03
6 0.668 ± 1.51E-02 0.704 ± 6.38E-03 0.680 ± 1.21E-02 0.648 ± 1.18E-02 0.674 ± 2.25E-02 0.822 ± 1.07E-02 0.834 ± 9.86E-03 0.809 ± 2.06E-02
7 0.912 ± 2.79E-03 0.944 ± 2.55E-03 0.907 ± 3.09E-03 0.920 ± 3.76E-03 0.948 ± 2.43E-03 0.929 ± 3.43E-03 0.930 ± 3.70E-03 0.940 ± 6.25E-03
8 0.826 ± 5.32E-03 0.851 ± 6.09E-03 0.838 ± 4.90E-03 0.891 ± 6.23E-03 0.860 ± 8.94E-03 0.893 ± 6.32E-03 0.880 ± 8.53E-03 0.903 ± 1.18E-02
9 0.867 ± 5.55E-03 0.942 ± 2.31E-03 0.930 ± 2.03E-03 0.942 ± 2.19E-03 0.931 ± 4.40E-03 0.954 ± 1.23E-03 0.960 ± 9.36E-04 0.959 ± 1.54E-03

10 0.763 ± 7.17E-03 0.863 ± 3.41E-03 0.808 ± 1.42E-02 0.873 ± 9.60E-03 0.877 ± 7.25E-03 0.922 ± 6.44E-03 0.936 ± 2.39E-03 0.916 ± 7.40E-03
11 0.907 ± 4.30E-03 0.934 ± 2.13E-03 0.892 ± 3.37E-03 0.914 ± 4.02E-03 0.925 ± 3.84E-03 0.911 ± 5.25E-03 0.926 ± 3.61E-03 0.941 ± 3.69E-03
12 0.942 ± 1.65E-03 0.968 ± 1.02E-03 0.955 ± 1.86E-03 0.958 ± 2.40E-03 0.961 ± 2.37E-03 0.982 ± 8.89E-04 0.986 ± 1.08E-03 0.983 ± 1.70E-03
13 0.947 ± 2.07E-03 0.967 ± 1.47E-03 0.950 ± 2.26E-03 0.969 ± 1.67E-03 0.978 ± 2.26E-03 0.988 ± 8.09E-04 0.987 ± 1.08E-03 0.989 ± 1.39E-03
14 0.873 ± 1.93E-03 0.935 ± 1.73E-03 0.915 ± 3.20E-03 0.943 ± 2.56E-03 0.943 ± 4.70E-03 0.964 ± 2.69E-03 0.972 ± 2.37E-03 0.974 ± 2.84E-03
15 0.560 ± 1.02E-02 0.611 ± 6.80E-03 0.548 ± 6.38E-03 0.592 ± 1.30E-02 0.634 ± 1.23E-02 0.661 ± 6.99E-03 0.655 ± 7.83E-03 0.695 ± 1.27E-02
16 0.647 ± 9.21E-03 0.719 ± 3.71E-03 0.664 ± 4.46E-03 0.715 ± 6.34E-03 0.736 ± 1.00E-02 0.675 ± 8.32E-03 0.759 ± 9.26E-03 0.739 ± 1.06E-02
17 0.945 ± 1.48E-03 0.965 ± 2.45E-03 0.921 ± 3.07E-03 0.948 ± 2.85E-03 0.967 ± 4.26E-03 0.984 ± 8.07E-04 0.983 ± 1.19E-03 0.990 ± 1.43E-03
18 0.885 ± 2.93E-03 0.934 ± 1.78E-03 0.891 ± 4.18E-03 0.910 ± 4.06E-03 0.937 ± 3.62E-03 0.941 ± 3.45E-03 0.954 ± 1.52E-03 0.948 ± 4.18E-03
19 0.690 ± 7.11E-03 0.801 ± 4.27E-03 0.821 ± 9.28E-03 0.904 ± 5.20E-03 0.895 ± 1.07E-02 0.878 ± 1.01E-02 0.904 ± 8.15E-03 0.923 ± 9.11E-03
20 0.914 ± 5.21E-03 0.957 ± 3.26E-03 0.894 ± 5.60E-03 0.948 ± 4.93E-03 0.958 ± 6.35E-03 0.896 ± 2.00E-02 0.967 ± 4.10E-03 0.972 ± 5.49E-03
21 0.919 ± 2.19E-03 0.940 ± 1.65E-03 0.918 ± 2.42E-03 0.929 ± 2.20E-03 0.939 ± 3.87E-03 0.964 ± 2.28E-03 0.968 ± 1.19E-03 0.969 ± 2.06E-03
22 0.610 ± 6.57E-03 0.836 ± 4.39E-03 0.814 ± 4.03E-03 0.866 ± 5.79E-03 0.856 ± 4.15E-03 0.898 ± 2.84E-03 0.901 ± 2.88E-03 0.906 ± 7.49E-03
23 0.685 ± 6.50E-03 0.752 ± 7.15E-03 0.706 ± 4.73E-03 0.773 ± 5.90E-03 0.713 ± 1.10E-02 0.820 ± 8.21E-03 0.842 ± 3.47E-03 0.855 ± 5.29E-03
24 0.691 ± 6.49E-03 0.825 ± 2.40E-03 0.848 ± 6.03E-03 0.891 ± 6.04E-03 0.854 ± 9.67E-03 0.951 ± 3.53E-03 0.956 ± 2.58E-03 0.928 ± 7.87E-03
25 0.197 ± 1.82E-02 0.224 ± 2.60E-02 0.208 ± 7.23E-03 0.271 ± 1.64E-02 0.293 ± 2.72E-02 0.357 ± 1.87E-02 0.461 ± 2.51E-02 0.445 ± 4.03E-02
26 0.724 ± 4.22E-03 0.887 ± 2.47E-03 0.828 ± 5.71E-03 0.870 ± 4.05E-03 0.889 ± 5.45E-03 0.802 ± 3.54E-02 0.916 ± 4.72E-03 0.931 ± 3.55E-03
27 0.784 ± 4.23E-03 0.869 ± 4.81E-03 0.865 ± 3.46E-03 0.882 ± 4.27E-03 0.873 ± 6.99E-03 0.878 ± 2.98E-02 0.933 ± 3.86E-03 0.936 ± 6.64E-03
28 0.952 ± 9.92E-04 0.968 ± 9.98E-04 0.943 ± 2.37E-03 0.957 ± 1.92E-03 0.966 ± 2.40E-03 0.979 ± 1.98E-03 0.984 ± 7.98E-04 0.979 ± 1.80E-03
29 0.855 ± 2.88E-03 0.887 ± 2.60E-03 0.887 ± 3.02E-03 0.912 ± 2.36E-03 0.899 ± 4.20E-03 0.836 ± 2.01E-02 0.939 ± 4.71E-03 0.938 ± 3.85E-03
30 0.539 ± 7.15E-03 0.593 ± 6.53E-03 0.534 ± 9.73E-03 0.611 ± 9.82E-03 0.609 ± 1.87E-02 0.419 ± 2.44E-02 0.576 ± 2.48E-02 0.635 ± 1.37E-02
31 0.833 ± 3.82E-03 0.922 ± 2.35E-03 0.910 ± 6.38E-03 0.927 ± 5.00E-03 0.943 ± 6.30E-03 0.743 ± 5.57E-02 0.927 ± 9.40E-03 0.946 ± 5.49E-03
32 0.969 ± 1.54E-03 0.976 ± 1.01E-03 0.955 ± 1.93E-03 0.968 ± 1.54E-03 0.975 ± 2.45E-03 0.959 ± 1.07E-02 0.987 ± 7.52E-04 0.982 ± 2.63E-03
33 0.871 ± 4.03E-03 0.924 ± 2.55E-03 0.905 ± 3.63E-03 0.931 ± 2.54E-03 0.938 ± 5.13E-03 0.851 ± 1.14E-02 0.942 ± 9.54E-03 0.965 ± 3.66E-03
34 0.309 ± 1.08E-02 0.245 ± 1.38E-02 0.213 ± 8.20E-03 0.251 ± 1.25E-02 0.280 ± 1.52E-02 0.292 ± 4.98E-02 0.342 ± 1.16E-02 0.390 ± 2.14E-02
35 0.896 ± 2.66E-03 0.924 ± 3.06E-03 0.890 ± 2.60E-03 0.910 ± 3.09E-03 0.926 ± 3.62E-03 0.917 ± 7.60E-03 0.950 ± 2.48E-03 0.955 ± 2.04E-03
36 0.779 ± 3.10E-03 0.822 ± 2.92E-03 0.829 ± 5.74E-03 0.876 ± 7.41E-03 0.830 ± 6.85E-03 0.644 ± 3.56E-02 0.778 ± 2.18E-02 0.897 ± 1.20E-02
37 0.922 ± 1.53E-03 0.970 ± 1.74E-03 0.915 ± 3.86E-03 0.942 ± 2.03E-03 0.950 ± 4.28E-03 0.980 ± 3.83E-03 0.990 ± 1.02E-03 0.986 ± 1.53E-03
38 0.919 ± 2.71E-03 0.950 ± 2.07E-03 0.921 ± 3.29E-03 0.937 ± 3.32E-03 0.960 ± 3.37E-03 0.972 ± 4.79E-03 0.978 ± 1.25E-03 0.983 ± 2.85E-03
39 0.750 ± 5.51E-03 0.903 ± 2.51E-03 0.854 ± 9.67E-03 0.882 ± 5.66E-03 0.912 ± 2.94E-03 0.708 ± 4.75E-02 0.893 ± 9.54E-03 0.924 ± 6.67E-03
40 0.882 ± 2.78E-03 0.896 ± 2.49E-03 0.871 ± 2.50E-03 0.891 ± 2.89E-03 0.895 ± 3.73E-03 0.906 ± 4.25E-03 0.921 ± 2.25E-03 0.910 ± 5.35E-03
41 0.901 ± 2.60E-03 0.843 ± 1.16E-02 0.905 ± 7.59E-03 0.886 ± 9.27E-03 0.913 ± 1.03E-02 0.370 ± 4.58E-02 0.270 ± 5.37E-02 0.894 ± 1.61E-02
42 0.860 ± 5.04E-03 0.927 ± 1.51E-03 0.932 ± 3.16E-03 0.954 ± 2.74E-03 0.960 ± 3.45E-03 0.907 ± 1.26E-02 0.957 ± 4.28E-03 0.963 ± 5.46E-03
43 0.950 ± 1.85E-03 0.955 ± 1.40E-03 0.935 ± 2.07E-03 0.955 ± 1.89E-03 0.954 ± 4.27E-03 0.921 ± 4.20E-03 0.968 ± 1.40E-03 0.960 ± 5.16E-03
44 0.757 ± 8.72E-03 0.935 ± 1.78E-03 0.918 ± 8.23E-03 0.931 ± 1.03E-02 0.949 ± 9.13E-03 0.642 ± 2.64E-02 0.907 ± 1.45E-02 0.870 ± 2.23E-02
45 0.554 ± 7.81E-03 0.617 ± 6.51E-03 0.663 ± 9.40E-03 0.720 ± 1.13E-02 0.714 ± 1.68E-02 0.504 ± 2.62E-02 0.697 ± 1.84E-02 0.743 ± 2.25E-02
46 0.642 ± 7.40E-03 0.676 ± 1.54E-02 0.536 ± 1.89E-02 0.673 ± 1.76E-02 0.645 ± 2.79E-02 0.741 ± 3.18E-02 0.808 ± 1.23E-02 0.675 ± 4.57E-02
47 0.724 ± 6.46E-03 0.841 ± 8.14E-03 0.770 ± 1.03E-02 0.823 ± 9.26E-03 0.860 ± 7.06E-03 0.659 ± 3.14E-02 0.842 ± 8.71E-03 0.890 ± 7.44E-03
48 0.528 ± 1.00E-02 0.892 ± 4.73E-03 0.876 ± 1.22E-02 0.943 ± 3.39E-03 0.949 ± 4.27E-03 0.827 ± 2.95E-02 0.960 ± 3.39E-03 0.956 ± 5.72E-03
49 0.981 ± 1.34E-03 0.975 ± 9.71E-04 0.963 ± 1.38E-03 0.967 ± 1.95E-03 0.979 ± 2.10E-03 0.987 ± 9.12E-04 0.986 ± 1.36E-03 0.982 ± 1.86E-03
50 0.838 ± 3.29E-03 0.899 ± 1.55E-03 0.855 ± 2.61E-03 0.881 ± 3.31E-03 0.890 ± 3.65E-03 0.915 ± 2.43E-03 0.923 ± 2.69E-03 0.904 ± 5.08E-03

Mean of 0.780 ± 1.66E-01 0.838 ± 1.62E-01 0.811 ± 1.68E-01 0.843 ± 1.57E-01 0.850 ± 1.54E-01 0.813 ± 1.79E-01 0.862 ± 1.63E-01 0.880 ± 1.34E-01all runs
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TABLE IX
SENSITIVITY EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD).

Patient ID Classification model
Random forest ANN CNN

Train Test Preprocessor
data data None DWT None DWT LPCLs None DWT LPCLs

A
ll

ID
s

ex
ce

pt
te

st
da

ta
in

th
e

ri
gh

t
co

lu
m

n

1 0.982 ± 1.21E-03 0.985 ± 1.07E-03 0.981 ± 4.72E-03 0.985 ± 4.81E-03 0.986 ± 2.93E-03 0.991 ± 4.57E-03 0.994 ± 3.48E-03 0.988 ± 4.38E-03
2 0.897 ± 5.75E-03 0.927 ± 4.11E-03 0.945 ± 1.89E-02 0.931 ± 1.73E-02 0.938 ± 1.85E-02 0.988 ± 3.97E-03 0.985 ± 4.28E-03 0.974 ± 8.19E-03
3 0.574 ± 1.58E-02 0.770 ± 6.27E-03 0.672 ± 4.19E-02 0.819 ± 5.11E-02 0.779 ± 2.95E-02 0.842 ± 4.46E-02 0.837 ± 2.83E-02 0.826 ± 3.01E-02
4 0.937 ± 7.20E-03 0.951 ± 3.54E-03 0.924 ± 2.17E-02 0.949 ± 2.61E-02 0.947 ± 1.07E-02 0.978 ± 8.94E-03 0.980 ± 1.07E-02 0.958 ± 1.46E-02
5 0.725 ± 9.14E-03 0.780 ± 5.82E-03 0.745 ± 2.00E-02 0.768 ± 3.19E-02 0.758 ± 1.58E-02 0.776 ± 5.64E-02 0.839 ± 1.70E-02 0.899 ± 1.32E-02
6 0.540 ± 1.68E-02 0.579 ± 7.67E-03 0.669 ± 4.28E-02 0.539 ± 2.65E-02 0.562 ± 3.50E-02 0.758 ± 3.45E-02 0.784 ± 2.96E-02 0.737 ± 3.45E-02
7 0.916 ± 3.88E-03 0.945 ± 2.83E-03 0.927 ± 2.30E-02 0.910 ± 2.16E-02 0.941 ± 9.88E-03 0.899 ± 2.53E-02 0.916 ± 1.49E-02 0.915 ± 1.48E-02
8 0.787 ± 9.00E-03 0.749 ± 8.74E-03 0.853 ± 2.86E-02 0.880 ± 3.19E-02 0.814 ± 2.37E-02 0.855 ± 3.84E-02 0.801 ± 1.82E-02 0.866 ± 3.25E-02
9 0.773 ± 8.69E-03 0.894 ± 4.13E-03 0.881 ± 7.30E-03 0.900 ± 4.02E-03 0.885 ± 7.71E-03 0.919 ± 3.07E-03 0.932 ± 2.99E-03 0.929 ± 3.24E-03

10 0.627 ± 9.54E-03 0.780 ± 5.59E-03 0.702 ± 2.18E-02 0.802 ± 1.72E-02 0.805 ± 1.18E-02 0.878 ± 2.09E-02 0.905 ± 6.69E-03 0.866 ± 1.42E-02
11 0.867 ± 6.89E-03 0.906 ± 2.91E-03 0.861 ± 1.66E-02 0.875 ± 1.44E-02 0.887 ± 9.01E-03 0.844 ± 1.08E-02 0.880 ± 8.04E-03 0.902 ± 7.61E-03
12 0.902 ± 3.09E-03 0.945 ± 1.87E-03 0.936 ± 7.10E-03 0.932 ± 8.16E-03 0.930 ± 4.73E-03 0.967 ± 2.07E-03 0.976 ± 2.63E-03 0.969 ± 3.49E-03
13 0.956 ± 2.24E-03 0.985 ± 2.28E-16 0.976 ± 1.18E-02 0.977 ± 9.43E-03 0.981 ± 4.82E-03 0.995 ± 3.23E-03 0.994 ± 1.02E-03 0.993 ± 2.53E-03
14 0.833 ± 4.19E-03 0.935 ± 2.11E-03 0.937 ± 2.34E-02 0.965 ± 9.13E-03 0.953 ± 1.14E-02 0.983 ± 9.86E-03 0.984 ± 6.59E-03 0.982 ± 5.68E-03
15 0.544 ± 1.58E-02 0.560 ± 1.10E-02 0.542 ± 4.08E-02 0.550 ± 4.31E-02 0.601 ± 2.53E-02 0.582 ± 6.19E-02 0.568 ± 3.59E-02 0.617 ± 3.04E-02
16 0.563 ± 1.01E-02 0.622 ± 7.00E-03 0.638 ± 2.72E-02 0.650 ± 2.66E-02 0.639 ± 1.40E-02 0.522 ± 1.16E-02 0.659 ± 1.87E-02 0.610 ± 1.73E-02
17 0.954 ± 3.86E-03 0.992 ± 2.07E-03 0.971 ± 1.42E-02 0.970 ± 1.36E-02 0.983 ± 4.65E-03 0.996 ± 3.70E-03 0.995 ± 4.18E-03 0.999 ± 1.64E-03
18 0.827 ± 4.81E-03 0.910 ± 2.47E-03 0.859 ± 1.51E-02 0.891 ± 1.51E-02 0.915 ± 7.15E-03 0.904 ± 7.31E-03 0.946 ± 8.15E-03 0.923 ± 8.23E-03
19 0.533 ± 8.51E-03 0.672 ± 5.70E-03 0.730 ± 1.61E-02 0.874 ± 1.30E-02 0.837 ± 2.09E-02 0.800 ± 1.78E-02 0.838 ± 1.50E-02 0.900 ± 2.02E-02
20 0.934 ± 4.95E-03 0.973 ± 2.28E-16 0.945 ± 2.02E-02 0.948 ± 2.13E-02 0.962 ± 1.51E-02 0.812 ± 3.28E-02 0.944 ± 1.13E-02 0.958 ± 1.09E-02
21 0.950 ± 2.84E-03 0.977 ± 2.22E-03 0.964 ± 1.33E-02 0.954 ± 1.28E-02 0.967 ± 6.54E-03 0.993 ± 2.95E-03 0.989 ± 3.93E-03 0.988 ± 4.52E-03
22 0.472 ± 8.55E-03 0.746 ± 6.39E-03 0.813 ± 2.45E-02 0.844 ± 2.55E-02 0.829 ± 1.46E-02 0.903 ± 2.87E-02 0.890 ± 1.90E-02 0.880 ± 1.50E-02
23 0.570 ± 8.75E-03 0.644 ± 9.00E-03 0.644 ± 2.92E-02 0.715 ± 2.70E-02 0.585 ± 1.66E-02 0.721 ± 1.65E-02 0.783 ± 1.58E-02 0.786 ± 1.84E-02
24 0.537 ± 7.80E-03 0.709 ± 3.94E-03 0.751 ± 1.21E-02 0.817 ± 1.16E-02 0.758 ± 1.67E-02 0.915 ± 8.02E-03 0.927 ± 7.09E-03 0.876 ± 1.67E-02
25 0.260 ± 2.05E-02 0.217 ± 2.96E-02 0.560 ± 9.03E-02 0.473 ± 8.46E-02 0.662 ± 7.82E-02 0.276 ± 4.87E-02 0.553 ± 1.02E-01 0.438 ± 9.54E-02
26 0.607 ± 5.56E-03 0.871 ± 4.59E-03 0.794 ± 1.85E-02 0.879 ± 2.39E-02 0.880 ± 1.25E-02 0.677 ± 5.00E-02 0.910 ± 3.15E-02 0.926 ± 1.53E-02
27 0.663 ± 7.24E-03 0.796 ± 7.20E-03 0.825 ± 1.37E-02 0.852 ± 1.69E-02 0.828 ± 1.58E-02 0.793 ± 5.97E-02 0.916 ± 2.05E-02 0.925 ± 1.54E-02
28 0.974 ± 2.11E-03 0.999 ± 5.22E-04 0.983 ± 9.57E-03 0.980 ± 1.15E-02 0.989 ± 3.84E-03 0.984 ± 1.22E-02 0.990 ± 5.35E-03 0.996 ± 2.09E-03
29 0.779 ± 4.83E-03 0.828 ± 5.07E-03 0.859 ± 1.34E-02 0.881 ± 1.44E-02 0.857 ± 1.18E-02 0.724 ± 2.96E-02 0.910 ± 1.63E-02 0.903 ± 7.99E-03
30 0.440 ± 6.77E-03 0.451 ± 4.45E-03 0.493 ± 2.98E-02 0.529 ± 3.04E-02 0.480 ± 2.08E-02 0.266 ± 1.94E-02 0.417 ± 2.82E-02 0.482 ± 2.00E-02
31 0.740 ± 6.36E-03 0.872 ± 3.83E-03 0.873 ± 1.66E-02 0.894 ± 1.41E-02 0.917 ± 1.36E-02 0.595 ± 7.12E-02 0.872 ± 1.80E-02 0.909 ± 1.14E-02
32 0.983 ± 1.69E-03 0.993 ± 9.34E-04 0.970 ± 8.83E-03 0.984 ± 7.44E-03 0.980 ± 4.26E-03 0.929 ± 2.11E-02 0.989 ± 4.47E-03 0.988 ± 5.47E-03
33 0.806 ± 6.36E-03 0.871 ± 4.53E-03 0.869 ± 1.51E-02 0.901 ± 1.39E-02 0.897 ± 1.00E-02 0.741 ± 1.72E-02 0.894 ± 1.78E-02 0.936 ± 7.99E-03
34 0.430 ± 2.51E-02 0.315 ± 2.35E-02 0.523 ± 6.79E-02 0.528 ± 8.27E-02 0.785 ± 7.45E-02 0.273 ± 9.71E-02 0.535 ± 9.48E-02 0.747 ± 8.40E-02
35 0.919 ± 4.76E-03 0.955 ± 3.46E-03 0.920 ± 2.36E-02 0.921 ± 1.89E-02 0.929 ± 6.84E-03 0.855 ± 1.50E-02 0.940 ± 1.22E-02 0.946 ± 5.90E-03
36 0.667 ± 4.26E-03 0.717 ± 4.53E-03 0.747 ± 1.20E-02 0.810 ± 1.53E-02 0.736 ± 1.25E-02 0.476 ± 3.88E-02 0.640 ± 3.06E-02 0.831 ± 2.29E-02
37 0.908 ± 3.82E-03 0.983 ± 2.23E-03 0.967 ± 1.61E-02 0.958 ± 1.40E-02 0.963 ± 7.09E-03 0.964 ± 9.10E-03 0.990 ± 2.94E-03 0.991 ± 3.95E-03
38 0.933 ± 4.09E-03 0.971 ± 2.29E-03 0.953 ± 1.45E-02 0.951 ± 1.09E-02 0.975 ± 6.08E-03 0.949 ± 1.17E-02 0.977 ± 5.64E-03 0.989 ± 3.76E-03
39 0.624 ± 6.87E-03 0.864 ± 4.24E-03 0.787 ± 2.03E-02 0.849 ± 1.48E-02 0.893 ± 7.79E-03 0.561 ± 6.05E-02 0.840 ± 1.81E-02 0.906 ± 1.48E-02
40 0.961 ± 4.01E-03 0.993 ± 2.35E-03 0.981 ± 1.20E-02 0.970 ± 1.66E-02 0.976 ± 9.21E-03 0.950 ± 2.64E-02 0.985 ± 1.29E-02 0.985 ± 7.82E-03
41 0.850 ± 5.07E-03 0.744 ± 1.83E-02 0.875 ± 1.54E-02 0.825 ± 2.07E-02 0.866 ± 1.92E-02 0.228 ± 3.42E-02 0.157 ± 3.67E-02 0.828 ± 2.92E-02
42 0.788 ± 8.01E-03 0.904 ± 3.23E-03 0.935 ± 1.88E-02 0.954 ± 1.35E-02 0.959 ± 7.78E-03 0.843 ± 2.26E-02 0.941 ± 9.68E-03 0.958 ± 1.11E-02
43 0.987 ± 2.18E-03 0.988 ± 1.14E-16 0.977 ± 1.17E-02 0.978 ± 1.03E-02 0.957 ± 1.00E-02 0.866 ± 9.07E-03 0.982 ± 6.80E-03 0.959 ± 1.35E-02
44 0.611 ± 1.06E-02 0.886 ± 4.99E-03 0.881 ± 1.53E-02 0.915 ± 2.79E-02 0.921 ± 1.58E-02 0.473 ± 2.85E-02 0.833 ± 2.58E-02 0.772 ± 3.73E-02
45 0.400 ± 7.58E-03 0.465 ± 7.20E-03 0.544 ± 2.30E-02 0.611 ± 2.35E-02 0.582 ± 2.09E-02 0.340 ± 2.41E-02 0.549 ± 2.57E-02 0.614 ± 3.49E-02
46 0.835 ± 1.64E-02 0.917 ± 1.10E-02 0.635 ± 1.06E-01 0.785 ± 7.14E-02 0.872 ± 3.21E-02 0.906 ± 1.25E-01 0.959 ± 5.87E-02 0.975 ± 2.08E-02
47 0.600 ± 9.50E-03 0.785 ± 1.39E-02 0.753 ± 3.17E-02 0.827 ± 3.20E-02 0.863 ± 1.97E-02 0.497 ± 3.53E-02 0.813 ± 4.50E-02 0.869 ± 2.78E-02
48 0.365 ± 9.77E-03 0.843 ± 8.20E-03 0.836 ± 2.52E-02 0.964 ± 1.68E-02 0.956 ± 1.23E-02 0.714 ± 4.39E-02 0.971 ± 1.27E-02 0.962 ± 1.59E-02
49 0.997 ± 1.14E-16 0.997 ± 9.30E-04 0.994 ± 3.08E-03 0.994 ± 4.12E-03 0.998 ± 2.31E-03 0.991 ± 4.55E-03 0.993 ± 2.56E-03 0.995 ± 2.48E-03
50 0.876 ± 6.97E-03 0.985 ± 3.42E-16 0.971 ± 1.54E-02 0.974 ± 1.13E-02 0.980 ± 1.17E-02 0.969 ± 1.53E-02 0.982 ± 4.84E-03 0.982 ± 6.52E-03

Mean of 0.744 ± 1.96E-01 0.823 ± 1.82E-01 0.827 ± 1.42E-01 0.853 ± 1.38E-01 0.859 ± 1.30E-01 0.773 ± 2.22E-01 0.858 ± 1.74E-01 0.883 ± 1.31E-01all runs
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TABLE X
SPECIFICITY EVALUATION RESULTS. FOR EACH METHOD, THE MEAN OF 30 INDEPENDENT RUNS IS CALCULATED (MEAN ± STD).

Patient ID Classification model
Random forest ANN CNN

Train Test Preprocessor
data data None DWT None DWT LPCLs None DWT LPCLs

A
ll

ID
s

ex
ce

pt
te

st
da

ta
in

th
e

ri
gh

t
co

lu
m

n

1 0.705 ± 7.89E-03 0.696 ± 8.72E-03 0.665 ± 3.37E-02 0.678 ± 2.85E-02 0.698 ± 2.02E-02 0.665 ± 2.77E-02 0.640 ± 2.41E-02 0.672 ± 2.62E-02
2 0.780 ± 3.95E-03 0.738 ± 4.13E-03 0.675 ± 1.54E-02 0.693 ± 1.51E-02 0.754 ± 1.41E-02 0.596 ± 1.02E-02 0.633 ± 6.95E-03 0.659 ± 1.44E-02
3 0.909 ± 4.60E-03 0.905 ± 4.11E-03 0.885 ± 2.63E-02 0.864 ± 3.07E-02 0.916 ± 1.56E-02 0.911 ± 2.47E-02 0.919 ± 1.55E-02 0.937 ± 1.18E-02
4 0.763 ± 5.77E-03 0.709 ± 4.11E-03 0.659 ± 1.84E-02 0.700 ± 2.41E-02 0.731 ± 1.14E-02 0.678 ± 1.39E-02 0.700 ± 1.14E-02 0.720 ± 1.41E-02
5 0.875 ± 6.84E-03 0.873 ± 4.75E-03 0.843 ± 2.85E-02 0.805 ± 4.62E-02 0.853 ± 1.98E-02 0.810 ± 1.27E-01 0.805 ± 3.29E-02 0.781 ± 2.60E-02
6 0.965 ± 5.96E-03 0.969 ± 2.18E-03 0.860 ± 3.65E-02 0.942 ± 1.66E-02 0.951 ± 1.38E-02 0.960 ± 1.80E-02 0.956 ± 1.86E-02 0.961 ± 9.51E-03
7 0.913 ± 5.77E-03 0.946 ± 4.23E-03 0.891 ± 2.59E-02 0.936 ± 2.31E-02 0.959 ± 8.51E-03 0.965 ± 2.60E-02 0.949 ± 1.62E-02 0.970 ± 1.13E-02
8 0.937 ± 3.42E-03 0.993 ± 2.91E-03 0.902 ± 2.14E-02 0.949 ± 2.04E-02 0.957 ± 1.60E-02 0.969 ± 2.35E-02 0.990 ± 7.66E-03 0.972 ± 1.26E-02
9 0.953 ± 2.57E-03 0.977 ± 1.82E-03 0.933 ± 3.23E-02 0.950 ± 1.61E-02 0.930 ± 1.70E-02 0.965 ± 8.26E-03 0.957 ± 1.23E-02 0.962 ± 1.21E-02

10 0.956 ± 4.93E-03 0.932 ± 4.87E-03 0.911 ± 2.01E-02 0.907 ± 2.19E-02 0.919 ± 1.44E-02 0.933 ± 6.23E-02 0.924 ± 1.32E-02 0.936 ± 1.71E-02
11 0.919 ± 5.26E-03 0.939 ± 5.52E-03 0.873 ± 3.21E-02 0.928 ± 2.19E-02 0.944 ± 1.10E-02 0.982 ± 6.94E-03 0.965 ± 9.41E-03 0.975 ± 8.34E-03
12 0.958 ± 4.69E-03 0.973 ± 5.00E-03 0.916 ± 2.60E-02 0.953 ± 2.53E-02 0.980 ± 9.82E-03 0.992 ± 4.55E-03 0.987 ± 6.01E-03 0.993 ± 7.01E-03
13 0.926 ± 4.92E-03 0.939 ± 3.63E-03 0.907 ± 1.72E-02 0.955 ± 1.22E-02 0.971 ± 6.91E-03 0.978 ± 5.00E-03 0.975 ± 2.73E-03 0.983 ± 2.87E-03
14 0.880 ± 5.75E-03 0.898 ± 5.52E-03 0.827 ± 4.36E-02 0.873 ± 1.72E-02 0.893 ± 1.91E-02 0.912 ± 2.05E-02 0.937 ± 1.45E-02 0.945 ± 1.01E-02
15 0.867 ± 5.26E-03 0.909 ± 6.43E-03 0.854 ± 3.37E-02 0.898 ± 3.05E-02 0.902 ± 1.55E-02 0.941 ± 4.19E-02 0.945 ± 2.16E-02 0.947 ± 1.75E-02
16 0.914 ± 5.49E-03 0.947 ± 4.68E-03 0.862 ± 2.60E-02 0.917 ± 2.36E-02 0.952 ± 8.93E-03 0.987 ± 4.26E-03 0.963 ± 9.08E-03 0.980 ± 6.39E-03
17 0.940 ± 3.50E-03 0.942 ± 5.88E-03 0.876 ± 1.46E-02 0.932 ± 1.31E-02 0.954 ± 8.45E-03 0.974 ± 3.90E-03 0.974 ± 4.45E-03 0.983 ± 3.17E-03
18 0.917 ± 4.65E-03 0.921 ± 5.79E-03 0.863 ± 3.08E-02 0.863 ± 2.75E-02 0.921 ± 1.44E-02 0.966 ± 9.73E-03 0.924 ± 1.85E-02 0.953 ± 1.07E-02
19 0.988 ± 9.32E-04 0.994 ± 2.04E-03 0.954 ± 1.46E-02 0.944 ± 1.27E-02 0.970 ± 8.78E-03 0.980 ± 7.21E-03 0.985 ± 4.20E-03 0.954 ± 1.28E-02
20 0.930 ± 7.98E-03 0.962 ± 4.38E-03 0.892 ± 1.83E-02 0.967 ± 1.65E-02 0.971 ± 1.16E-02 1.000 ± 0.00E+00 0.995 ± 8.54E-03 0.992 ± 7.75E-03
21 0.854 ± 3.70E-03 0.873 ± 4.04E-03 0.830 ± 2.13E-02 0.874 ± 1.89E-02 0.885 ± 1.33E-02 0.917 ± 7.22E-03 0.932 ± 6.42E-03 0.935 ± 8.46E-03
22 0.950 ± 5.91E-03 0.975 ± 2.16E-03 0.877 ± 2.41E-02 0.930 ± 1.95E-02 0.929 ± 1.31E-02 0.927 ± 2.38E-02 0.942 ± 1.62E-02 0.958 ± 1.26E-02
23 0.941 ± 5.90E-03 0.958 ± 3.51E-03 0.887 ± 3.44E-02 0.916 ± 2.37E-02 0.966 ± 8.84E-03 0.976 ± 5.53E-03 0.952 ± 1.25E-02 0.967 ± 1.14E-02
24 0.960 ± 3.87E-03 0.975 ± 5.31E-03 0.951 ± 2.14E-02 0.959 ± 1.25E-02 0.960 ± 1.78E-02 0.976 ± 9.74E-03 0.969 ± 1.30E-02 0.972 ± 1.26E-02
25 0.912 ± 8.86E-03 0.955 ± 8.39E-03 0.758 ± 4.72E-02 0.873 ± 3.32E-02 0.817 ± 3.90E-02 0.983 ± 1.46E-02 0.946 ± 2.19E-02 0.967 ± 1.80E-02
26 0.917 ± 4.63E-03 0.888 ± 4.02E-03 0.854 ± 2.64E-02 0.832 ± 3.78E-02 0.880 ± 1.93E-02 0.988 ± 4.84E-03 0.909 ± 4.38E-02 0.924 ± 2.21E-02
27 0.969 ± 6.39E-03 0.961 ± 5.21E-03 0.908 ± 1.68E-02 0.910 ± 2.61E-02 0.924 ± 1.69E-02 0.986 ± 3.98E-02 0.947 ± 2.37E-02 0.942 ± 1.88E-02
28 0.895 ± 2.50E-03 0.907 ± 3.04E-03 0.852 ± 1.74E-02 0.901 ± 1.89E-02 0.915 ± 8.66E-03 0.963 ± 1.88E-02 0.966 ± 8.39E-03 0.945 ± 6.71E-03
29 0.934 ± 5.17E-03 0.941 ± 3.14E-03 0.885 ± 2.40E-02 0.923 ± 2.19E-02 0.926 ± 1.85E-02 0.989 ± 3.03E-03 0.959 ± 1.94E-02 0.967 ± 7.06E-03
30 0.910 ± 4.70E-03 0.967 ± 6.44E-03 0.833 ± 3.54E-02 0.905 ± 2.96E-02 0.955 ± 1.20E-02 0.999 ± 1.74E-03 0.985 ± 8.82E-03 0.984 ± 1.28E-02
31 0.905 ± 6.92E-03 0.950 ± 9.55E-03 0.882 ± 3.55E-02 0.912 ± 2.90E-02 0.928 ± 2.98E-02 0.996 ± 5.69E-03 0.978 ± 1.34E-02 0.966 ± 1.44E-02
32 0.916 ± 5.41E-03 0.926 ± 3.48E-03 0.890 ± 1.80E-02 0.911 ± 1.37E-02 0.945 ± 7.88E-03 0.985 ± 4.43E-03 0.973 ± 8.44E-03 0.956 ± 8.18E-03
33 0.931 ± 4.79E-03 0.979 ± 4.16E-03 0.921 ± 2.74E-02 0.947 ± 2.26E-02 0.975 ± 1.04E-02 1.000 ± 8.57E-04 0.993 ± 5.87E-03 0.993 ± 6.36E-03
34 0.892 ± 7.56E-03 0.900 ± 5.11E-03 0.729 ± 4.51E-02 0.785 ± 4.38E-02 0.694 ± 3.56E-02 0.955 ± 2.64E-02 0.873 ± 3.67E-02 0.833 ± 3.11E-02
35 0.854 ± 6.56E-03 0.876 ± 7.03E-03 0.838 ± 3.30E-02 0.886 ± 2.46E-02 0.916 ± 1.18E-02 0.990 ± 4.30E-03 0.957 ± 1.13E-02 0.960 ± 7.06E-03
36 0.919 ± 7.58E-03 0.950 ± 4.46E-03 0.898 ± 1.87E-02 0.930 ± 1.98E-02 0.932 ± 1.29E-02 0.998 ± 2.61E-03 0.992 ± 5.52E-03 0.962 ± 1.45E-02
37 0.935 ± 3.87E-03 0.954 ± 3.22E-03 0.846 ± 2.20E-02 0.919 ± 1.66E-02 0.933 ± 1.00E-02 0.996 ± 4.05E-03 0.990 ± 3.59E-03 0.980 ± 4.97E-03
38 0.898 ± 4.09E-03 0.924 ± 4.81E-03 0.879 ± 1.82E-02 0.917 ± 1.50E-02 0.942 ± 8.02E-03 0.996 ± 5.09E-03 0.978 ± 6.84E-03 0.976 ± 6.94E-03
39 0.899 ± 5.52E-03 0.873 ± 4.86E-03 0.860 ± 2.79E-02 0.809 ± 2.95E-02 0.832 ± 1.66E-02 0.952 ± 1.50E-02 0.896 ± 1.06E-02 0.862 ± 2.20E-02
40 0.784 ± 4.87E-03 0.778 ± 5.17E-03 0.732 ± 1.49E-02 0.797 ± 2.02E-02 0.799 ± 1.31E-02 0.856 ± 2.78E-02 0.848 ± 1.58E-02 0.822 ± 1.40E-02
41 0.849 ± 1.04E-02 0.906 ± 1.90E-02 0.751 ± 5.43E-02 0.838 ± 4.35E-02 0.866 ± 2.70E-02 0.994 ± 7.79E-03 0.998 ± 4.74E-03 0.900 ± 3.38E-02
42 0.943 ± 5.68E-03 0.939 ± 5.14E-03 0.909 ± 2.53E-02 0.940 ± 1.93E-02 0.950 ± 9.35E-03 0.980 ± 7.50E-03 0.968 ± 5.85E-03 0.961 ± 8.51E-03
43 0.829 ± 7.82E-03 0.848 ± 5.74E-03 0.788 ± 2.64E-02 0.866 ± 2.32E-02 0.906 ± 1.74E-02 0.971 ± 8.18E-03 0.914 ± 1.63E-02 0.927 ± 2.12E-02
44 0.995 ± 1.20E-02 0.982 ± 1.06E-02 0.918 ± 2.66E-02 0.891 ± 5.36E-02 0.956 ± 2.17E-02 1.000 ± 0.00E+00 0.992 ± 1.21E-02 0.995 ± 1.24E-02
45 0.965 ± 4.42E-03 0.965 ± 5.19E-03 0.923 ± 2.57E-02 0.932 ± 1.85E-02 0.962 ± 1.00E-02 0.993 ± 3.13E-03 0.980 ± 8.61E-03 0.969 ± 1.01E-02
46 0.850 ± 6.57E-03 0.845 ± 1.09E-02 0.856 ± 5.72E-02 0.893 ± 3.04E-02 0.837 ± 2.16E-02 0.895 ± 4.28E-02 0.919 ± 1.84E-02 0.820 ± 3.69E-02
47 0.971 ± 3.79E-03 0.959 ± 3.22E-03 0.898 ± 2.57E-02 0.908 ± 2.22E-02 0.928 ± 1.23E-02 0.995 ± 2.72E-03 0.941 ± 2.71E-02 0.958 ± 1.37E-02
48 0.993 ± 1.33E-03 0.978 ± 1.79E-03 0.967 ± 1.12E-02 0.964 ± 9.90E-03 0.974 ± 6.32E-03 0.995 ± 2.70E-03 0.976 ± 5.92E-03 0.977 ± 7.09E-03
49 0.905 ± 7.28E-03 0.877 ± 5.45E-03 0.813 ± 1.31E-02 0.840 ± 1.73E-02 0.894 ± 1.24E-02 0.953 ± 1.46E-02 0.941 ± 1.23E-02 0.915 ± 1.17E-02
50 0.766 ± 6.19E-03 0.774 ± 4.15E-03 0.669 ± 2.43E-02 0.740 ± 1.65E-02 0.757 ± 1.95E-02 0.836 ± 2.00E-02 0.839 ± 9.75E-03 0.792 ± 1.71E-02

Mean of 0.905 ± 6.18E-02 0.915 ± 7.02E-02 0.853 ± 7.52E-02 0.886 ± 7.01E-02 0.904 ± 7.28E-02 0.944 ± 8.64E-02 0.931 ± 8.06E-02 0.927 ± 8.01E-02all runs
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